
C Language Reference Manual

Document Number 007-0701-080



C Language Reference Manual
Document Number 007-0701-080

CONTRIBUTORS

Written by C J Silverio and Wendy Ferguson
Edited by Gail Larrick, Loraine McCormick, and Christina Cary
Production by Laura Cooper and Gloria Ackley
Engineering contributions by Greg Boyd, Dave Anderson, Dave Ciemiewicz, Rune
Dahl, and John Wilkinson

© Copyright 1994, Silicon Graphics, Inc.— All Rights Reserved
This document contains proprietary and confidential information of Silicon
Graphics, Inc. The contents of this document may not be disclosed to third parties,
copied, or duplicated in any form, in whole or in part, without the prior written
permission of Silicon Graphics, Inc.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure of the technical data contained in this document by
the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS 52.227-7013 and/
or in similar or successor clauses in the FAR, or in the DOD or NASA FAR
Supplement. Unpublished rights reserved under the Copyright Laws of the United
States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd.,
Mountain View, CA 94039-7311.

Silicon Graphics and IRIS are registered trademarks and IRIX and IRIS 4D are
trademarks of Silicon Graphics, Inc. NFS is a registered trademark of Sun
Microsystems, Inc. UNIX is a registered trademark in the United States and other
countries, licensed exclusively through X/Open Company, Ltd.



iii

Contents

1. Introduction    1
What This Manual Contains    1
Suggestions for Further Reading    2
Conventions Used in This Manual    3

2. An Overview of ANSI C    5
What Is ANSI C?    5

Compiling ANSI Programs    6
Helpful Programming Hints    7

Recommended Practices    8
Practices to Avoid    8

Areas of Major Change    9

3. C Language Changes    11
Preprocessor Changes    11

Replacement of Macro Arguments in Strings    12
Token Concatenation    14

Changes in Disambiguating Identifiers    15
Scoping Differences    15
Name Space Changes    16
Changes in the Linkage of Identifiers    17



iv

Contents

Types and Type Compatibility    18
Type Promotion in Arithmetic Expressions    19
Type Promotion and Floating-Point Constants    20
Compatible Types    21
Argument Type Promotions    22
Mixed Use of Functions    23

Function Prototypes    23
External Name Changes    25

Changes in Function Names    25
Changes in Linker-Defined Names    25
Data Area Name Changes    26

Standard Headers    27

4. Lexical Conventions    29
Comments    29
Identifiers    30
Keywords    30
Constants    30

Integer Constants    31
Character Constants    31
Special Characters    32

Trigraph Sequences (ANSI C Only)    33
Floating Constants    34
Enumeration Constants    34

String Literals    34
Operators    35
Punctuators    35



v

5. Meaning of Identifiers    37
Disambiguating Names    37

Scope    38
Block Scope    38
Function Scope    39
Function Prototype Scope    39
File Scope    39

Name Spaces    39
Name Space Discrepancies Between Traditional and ANSI C    40

Linkage of Identifiers    41
Linkage Discrepancies Between Traditional and ANSI C    43
Storage Duration    44

Types    45
Character Types    45
Integer and Floating Point Types    45
Derived Types    47
The void Type    47

Objects and lvalues    48

6. Operator Conversions    49
Conversions of Characters and Integers    49
Conversions of Float and Double    49
Conversion of Floating and Integral Types    50
Conversion of Pointers and Integers    50
Conversion of Unsigned Integers    51
Arithmetic Conversions    51

Integral Promotions    51
Usual Arithmetic Conversions    52

Traditional C Conversion Rules    52
ANSI C Conversion Rules    53



vi

Contents

Conversion of Other Operands    53
Conversion of lvalues and Function Designators    53
Conversion of Void Objects    54
Conversion of Pointers    54

7. Expressions and Operators    55
Primary Expressions    57
Postfix Expressions    57

Subscripts    58
Function Calls    58
Structure and Union References    60
Indirect Structure and Union References    60
Postfix ++ and – –    61

Unary Operators    62
Address-of and Indirection Operators    62
Unary + and – Operators    62
Unary ! and ~ Operators    63
Prefix ++ and – – Operators    63
The sizeof Unary Operator    64

Cast Operators    64
Multiplicative Operators    65
Additive Operators    66
Shift Operators    67
Relational Operators    67
Equality Operators    68
Bitwise AND Operator    69
Bitwise Exclusive OR Operator    69
Bitwise Inclusive OR Operator    70
Logical AND Operator    70
Logical OR Operator    70



vii

Conditional Operator    71
Assignment Operators    72

Assignment Using = (Simple Assignment)    72
Compound Assignment    73

Comma Operator    73
Constant Expressions    74

8. Declarations    75
Storage-class Specifiers    76
Type Specifiers    77
Structure and Union Declarations    79
Bitfields    81
Enumeration Declarations    83
Type Qualifiers    84
Declarators    85

Meaning of Declarators    86
Pointer Declarators    86

Qualifiers and Pointers    87
Array Declarators    87
Function Declarators and Prototypes    88

Prototyped Functions Summarized    91
Restrictions on Declarators    91

Type Names    92
Implicit Declarations    93
typedef    94
Initialization    95

Initialization of Aggregates    96
Examples of Initialization    97



viii

Contents

9. Statements    99
Expression Statement    99
Compound Statement or Block    100
Selection Statements    100

The if Statement    101
The switch Statement    101

Iteration Statements    102
The while Statement    103
The do Statement    103
The for Statement    103

Jump Statements    104
The goto Statement    104
The continue Statement    104
The break Statement    105
The return Statement    105

Labeled Statements    106

10. External Definitions    107
External Function Definitions    107
External Object Definitions    108



ix

A. Implementation-Defined Behavior    109
Translation (F.3.1)    109
Environment (F.3.2)    110
Identifiers (F.3.3)    111
Characters (F.3.4)    112
Integers (F.3.5)    113
Floating Point (F.3.6)    115
Arrays and Pointers (F.3.7)    116
Registers (F.3.8)    117
Structures, Unions, Enumerations, and Bitfields (F.3.9)    117
Qualifiers (F.3.10)    119
Declarators (F.3.11)    119
Statements (F.3.12)    119
Preprocessing Directives (F.3.13)    120
Library Functions (F.3.14)    123

Signals    125
Signal Notes    129
Diagnostics    132

Streams and Files    133
Temporary Files    135
errno and perror    135
Memory Allocation    142
The abort Function    142
The exit Function    143
The getenv Function    143
The system Function    143
The strerror Function    144
Timezones and the clock Function.    144



x

Contents

Locale-Specific Behavior (F.4)    144
Common Extensions (F.5)    144

Environment Arguments (F.5.1)    145
Specialized Identifiers    145
Lengths and Cases of Identifiers    145
Scopes of Identifiers (F.5.4)    146
Writable String Literals (F.5.5)    146
Other Arithmetic Types (F.5.6)    146
Function Pointer Casts (F.5.7)    146
Non-int Bit-Field Types (F.5.8)    147
The fortran Keyword (F.5.9)    147
The asm Keyword (F.5.10)    147
Multiple External Definitions (F.5.11)    148
Empty Macro Arguments (F.5.12)    148
Predefined Macro Names (F.5.13)    148
Extra Arguments for Signal Handlers (F.5.14)    149
Additional Stream Types and File-Opening Modes (F.5.15)    149
Defined File Position Indicator (F.5.16)    149

Index    151
We'd Like to Hear From You    165

Three Ways to Reach Us    165



xi

Tables

Table 3-1 The Effect of Compilation Options on Floating-Point
Conversions    20

Table 3-2 Using __STDC__ to Affect Floating Point Conversions    21
Table 3-3 The Effect of Compilation Mode on Names    26
Table 3-4 ANSI C Standard Header Files    27
Table 4-1 Reserved Keywords    30
Table 4-2 Escape Sequences for Nongraphic Characters    32
Table 4-3 Trigraph Sequences    33
Table 5-1 Storage Class Sizes    46
Table 7-1 Operator Precedence and Associativity    55
Table 8-1 Examples of Type Names    93
Table A-1 Integer Types and Ranges    114
Table A-2 Ranges of Floating-Point Types    115
Table A-3 Alignment of Structure Members    118
Table A-4 Signals    125
Table A-5 Valid Codes in a Signal-Catching Function    128



xii

Tables



1

Chapter 1

1. Introduction

This document contains a summary of the syntax and semantics of the C
programming language as implemented on the IRIS-4D™ Series
workstations. It documents previous releases of the Silicon Graphics® C
compilers as well as the ANSI C compiler.

The Silicon Graphics compiler system supports two modes of compilation: a
32-bit mode and a 64-bit mode. For information on compilation modes and
general compiler options, see the MIPSpro Compiling, Debugging, and
Performance Tuning Guide and IRIX System Programming Guide.

The term “traditional C” refers to the dialect of C described in the first
edition of The C Programming Language, by Kernighan and Ritchie.

What This Manual Contains

This manual also includes information formerly in the ANSI C Transition
Guide. That material is now in the following chapters:

• Chapter 2, “An Overview of ANSI C,” discusses some effective
strategies in porting your traditional C code to ANSI C.

• Chapter 3, “C Language Changes,” presents an overview of changes
that the ANSI standard introduced to the language.

Chapters 4 through 10 of this manual describe the syntax and semantics of
C, and specify ANSI C differences.

• Chapter 4, “Lexical Conventions,” lists and defines the six classes of C
tokens.

• Chapter 5, “Meaning of Identifiers,” describes objects, lvalues,
identifiers, and disambiguation.
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• Chapter 6, “Operator Conversions,” discusses object type conversions
and result types.

• Chapter 7, “Expressions and Operators,” defines the various types of
expressions and operators and gives their order of precedence.

• Chapter 8, “Declarations,” discusses type specifiers, structures, unions,
declarators of various kinds, and initialization.

• Chapter 9, “Statements,” describes expression, compound, selection,
iteration, and jump statements.

• Chapter 10, “External Definitions,” explains the syntax for external
definitions.

• Appendix A, “Implementation-Defined Behavior,” describes various
implementation-specific aspects of the Silicon Graphics C compiler,
keyed to paragraphs from the ANSI standard.

Suggestions for Further Reading

In addition to this manual, you may find the following documents useful:

• MIPSpro Compiling, Debugging and Performance Tuning Guide describes
the MIPSpro compiler system, Dynamic Shared Objects (DSOs), the
debugger, programming tools and interfaces, and explains ways to
improve program performance.

• IRIX System Programming Guide covers the IRIX compiler system,
programming tools, and ways to improve program performance. It also
includes information on DSOs, IPC, Fonts, and Internationalization.

• The ANSI C language specification is available from the American
National Standards Institute (ANSI) at 1430 Broadway, New York, NY
10018, (212) 642-4900. Specify ANSI X3.159-1989 or ANSI/ISO
9899-1990. This C Language Reference Manual is not intended as a
substitute for the specification.
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Conventions Used in This Manual

This manual uses some typographical and notational conventions explained
below.

The expression [fF] stands for “f or F.”

Filenames are italicized. For example, <stddef.h> is the file
/usr/include/stddef.h.

Syntactic categories are indicated by italic type, and literal words and
characters by bold type. Alternative categories are listed on separate lines.
An optional entry is indicated by the subscript “opt” to indicate an optional
expression enclosed in braces. For example:

{ expressionopt }

This notation is the standard BNF notation.
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Chapter 2

2. An Overview of ANSI C

This chapter covers the following topics:

• “What Is ANSI C?” on page 5 briefly discusses the scope of the new
standard.

• “Helpful Programming Hints” on page 7 lists some programming
practices to avoid and some to use.

• “Areas of Major Change” on page 9 lists the major changes to C made
by the ANSI standard.

What Is ANSI C?

The ANSI standard on the programming language C is designed to promote
the portability of C programs among a variety of data-processing systems.
To accomplish this, the standard covers three major areas: the environment
in which the program compiles and executes, the semantics and syntax of
the language, and the content and semantics of a set of library routines and
header files. Strictly conforming programs are programs that:

• use only those features of the language defined in the standard

• do not produce output dependent on any ill-defined behavior

• do not exceed any minimum limit.

Ill-defined behavior includes implementation-defined, undefined, and unspecified
behavior. The term refers to areas that the standard does not specify.

This ANSI C environment is designed to be, in the words of the standard, a
conforming hosted implementation, which is guaranteed to accept any strictly
conforming program. Extensions are allowed, as long as the behavior of
strictly conforming programs is not altered.
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Besides knowing which features of the language and library you may rely on
when writing portable programs, you must be able to avoid naming conflicts
with support routines used for the implementation of the library. To avoid
such naming conflicts, ANSI divides the space of available names into a set
reserved for the user and a set reserved for the implementation. Any name
that does not begin with an underscore and is neither a keyword in the
language nor reserved for the ANSI library, is in the user’s namespace. (This
rule is given for simplicity. The space of names reserved for the user is
actually somewhat larger than this.)

Strictly conforming programs may not define any names unless they are in
the user’s namespace. New keywords as well as those names reserved for
the ANSI library are discussed in “Standard Headers” on page 27.

Compiling ANSI Programs

To provide the portable clean environment dictated by ANSI while retaining
the many extensions available to Silicon Graphics users, two modes of
compilation are provided for ANSI programs. Each of these modes invokes
the ANSI compiler and is selected by a switch to cc(1):

–ansi enforces a pure ANSI environment, eliminating Silicon
Graphics extensions. The ANSI symbol indicating a pure
environment (__STDC__) is defined to be 1 for the
preprocessor. Use this mode when compiling strictly
conforming programs, as it guarantees purity of the ANSI
namespace.

–xansi adds Silicon Graphics extensions to the environment. This
mode is the default. The ANSI preprocessor symbol
(__STDC__) is defined to be 1. The symbol to include
extensions from standard headers (__EXTENSIONS__) is
also defined, as is the symbol to inline certain library
routines that are directly supported by the hardware
(__INLINE_INTRINSICS.) Note that when these library
routines are made to be intrinsic, they may no longer be
strictly ANSI conforming (e.g., errno may not be set
correctly).
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Some key facts to keep in mind when you use ANSI C are listed below:

• Useonly –lc and/or –lm to specify the C and/or math libraries. These
switches ensure the incorporation of the ANSI version of these libraries.

• The default compilation mode is shared and the libraries are shared.

• Use the switch –fullwarn to receive additional diagnostic warnings that
are suppressed by default. Silicon Graphics recommends using this
option with the –woff option to remove selected warnings during
software development.

• Use the switch –wlint (–32 mode only) to get lint-like warnings about
the compiled source. This option provides lint-like warnings for ANSI
and –cckr modes and can be used together with the other cc(1) options
and switches.

If you want to compile code using traditional C (that is, non-ANSI), use the
switch –cckr. The dialect of C invoked by –cckr is referred to interchangeably
as –cckr, “the previous version of Silicon Graphics C,” and “traditional C” in
the remainder of this document.

You can find complete information concerning ANSI and non-ANSI
compilation modes in the online manual page for cc(1).

Helpful Programming Hints

Although the ANSI Standard has added only a few new features to the C
language, it has tightened the semantics of many areas. In some cases,
constructs were removed that were ambiguous, no longer used, or obvious
hacks. The next two sections give two lists of programming practices. The
first section recommends practices that you can use to ease your transition
to this new environment. The second section below lists common C coding
practices that cause problems when you use ANSI C.
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Recommended Practices

Follow these recommendations as you code:

• Always use the appropriate header file when declaring standard
external functions. Avoid embedding the declaration in your
code. Thus you avoid inconsistent declarations for the same function.

• Always use function prototypes, and write your function prologues in
function prototype form.

• Use the offsetof() macro to derive structure member offsets. The offsetof()
macro is in <stddef.h>.

• Always use casts when converting.

• Be strict with your use of qualified objects, such as with volatile and
const. Assign the addresses of these objects only to pointers that are so
qualified.

• Return a value from all return points of all non-void functions.

• Use only structure designators of the appropriate type as the structure
designator in . and -> expressions (that is, ensure that the right side is a
member of the structure on the left side).

• Always specify the types of integer bitfields as signed or unsigned.

Practices to Avoid

Avoid these dangerous practices:

• Never mix prototyped and nonprototyped declarations of the same
function.

• Never call a function before it has been declared. This may lead to an
incompatible implicit declaration for the function. In particular, this is
unlikely to work for prototyped functions that take a variable number
of arguments.

• Never rely on the order in which arguments are evaluated. For
example, what is the result of the code fragment
foo(a++,a,…) ?

• Avoid using expressions with side effects as arguments to a function
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• Avoid two side effects to the same data location between two successive
sequence points (for example, x=++x; ).

• Avoid declaring functions in a local context, especially if they have
prototypes.

• Never access parameters that are not specified in the argument list
unless using the stdarg facilities. Use the stdarg facilities only on a
function with an unbounded argument list (that is, an argument list
terminated with …).

• Never cast a pointer type to anything other than another pointer type
or an integral type of the same size (unsigned long), and vice versa. Use
a union type to access the bit-pattern of a pointer as a nonintegral and
nonpointer type (that is, as an array of chars).

• Don’t hack preprocessor tokens (for example, FOO/**/BAR ).

• Never modify a string literal.

• Don’t rely on search rules to locate include files that you specify with
quotes.

Areas of Major Change

Major changes to C made by the ANSI standard include:

• Some preprocessor changes are noteworthy. The changes are in practices
that, although questionable, are not uncommon.

• Rules for disambiguating names have been more clearly defined. Most of
these changes allow greater freedom to use the same name in different
contexts.

• Types have undergone some significant changes in the areas of
promotions and more strictly enforced compatibility rules. In addition, the
compiler is more strict about mixing qualified and unqualified types and
their pointers.

• Function prototypes are more completely observed. Many warnings
concerning prototypes in traditional C are now errors under ANSI.

• A few external names have been changed for conformance.
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3. C Language Changes

This chapter describes changes to the C language including:

• “Preprocessor Changes” on page 11 discusses two changes in the way
the preprocessor handles string literals and tokens.

• “Changes in Disambiguating Identifiers” on page 15 covers the four
characteristics ANSI C uses to distinguish identifiers.

• “Types and Type Compatibility” on page 18 describes ANSI C changes
to type promotions and type compatibility.

• “Function Prototypes” on page 23 explains how ANSI C handles
function prototyping.

• “External Name Changes” on page 25 discusses the changes in
function, linker-defined, and data area names.

• “Standard Headers” on page 27 lists standard header files.

Preprocessor Changes

When compiling in an ANSI C mode (which is the default unless you specify
–cckr), ANSI-standard C preprocessing is used. The preprocessor is built
into the C front end and is functionally unchanged from the version
appearing on IRIX™ Release 3.10.

The 3.10 version of the compiler had no built-in preprocessor and used two
standalone preprocessors for –cckr (cpp(1)) and ANSI C (acpp(5))
preprocessing respectively. If you compile using the –32 option, you can
activate acpp or cpp instead of the built-in preprocessor by using the –oldcpp
option, and acpp in –cckr mode by using the –acpp option. Silicon Graphics
recommends that you always use the built-in preprocessor, rather than cpp
or acpp, since these standalone preprocessors may not be supported in future
releases of the compilers.
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acpp is a public domain preprocessor and its source is included in
/usr/src/gnu/acpp.

Traditionally, the C preprocessor performed two functions that are now
illegal under ANSI C. These functions are the substitution of macro
arguments within string literals and the concatenation of tokens after
removing a null comment sequence.

Replacement of Macro Arguments in Strings

Suppose you define two macros IN and PLANT as shown in this example:

#define IN(x)    ‘x’
#define PLANT(y) "placing y in a string"

Later, you invoke them as follows:

IN(hi)
PLANT(foo)

Compiling with –cckr makes these substitutions:

‘hi’
"placing foo in a string"

However, since ANSI C considers a string literal to be an atomic unit, the
expected substitution doesn’t occur. So, ANSI C adopted an explicit
preprocessor sequence to accomplish the substitution.

In ANSI C, adjacent string literals are concatenated. Thus

"abc" "def"

becomes

"abcdef"

A mechanism for quoting a macro argument was adopted that relies on this.
When a macro definition contains one of its formal arguments preceded by
a single #, the substituted argument value is quoted in the output.
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The simplest example of this is as follows:

#define STRING_LITERAL(a)   # a

For example, the above code is invoked as:

STRING_LITERAL(foo)

This code yields:

"foo"

In conjunction with the rule of concatenation of adjacent string literals, the
following macros can be defined:

#define ARE(a,c)# a " are " # c

Then

ARE(trucks,big)

yields

"trucks" " are " "big"

or

"trucks are big"

when concatenated. Blanks prepended and appended to the argument value
are removed. If the value has more than one word, each pair of words in the
result is separated by a single blank. Thus, the macro ARE above could be
invoked as the following:

ARE( fat cows,big )
ARE(fat cows, big)

Each of the above yields (after concatenation):

"fat cows are big"

Be sure to avoid enclosing your macro arguments in quotes, since these
quotes are placed in the output string. For example,

ARE (“fat cows”, “big”)
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This code becomes:

“\”fat cows\” are \”big\””

No obvious facility exists to enclose macro arguments with single quotes.

Token Concatenation

When compiling –cckr, the value of macro arguments can be concatenated
by entering

#define glue(a,b)  a/**/b
glue(FOO,BAR)

The result yields FOOBAR.

This concatenation does not occur under ANSI C, since null comments are
replaced by a blank. However, similar behavior can be obtained by using the
## operator in –ansi and –xansi mode. ## instructs the precompiler to
concatenate the value of a macro argument with the adjacent token. Thus

#define glue_left(a) GLUED ## a
#define glue_right(a) a ## GLUED
#define glue(a,b) a ## b
glue_left(LEFT)
glue_right(RIGHT)
glue(LEFT,RIGHT)

yields

GLUEDLEFT
RIGHTGLUED
LEFTRIGHT

Furthermore, the resulting token is a candidate for further replacement.
Note what happens in this example:

#define HELLO "hello"
#define glue(a,b) a ## b
glue(HEL,LO)

The above example yields the following:

"hello"
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Changes in Disambiguating Identifiers

Under ANSI C, an identifier has four disambiguating characteristics: its
scope, linkage, name space, and storage duration. Each of these characteristics
was used in traditional C, either implicitly or explicitly. Except in the case of
storage duration, which is either static or automatic, the definitions of these
characteristics chosen by the standard differ in certain ways from those you
may be accustomed to, as detailed below. For a discussion of the same
material with a different focus, see “Disambiguating Names” on page 37.

Scoping Differences

ANSI C recognizes four scopes of identifiers: the familiar file and block scopes
and the new function and function prototype scopes.

• Function scope includes only labels. As in traditional C, labels are valid
until the end of the current function.

• Block scope rules differ from traditional C in one significant instance: the
outermost block of a function and the block that contains the function
arguments are the same under ANSI C. For example:

int f(x)
int x;
{
   int x;
   x = 1;
}

ANSI C complains of a redeclaration of x, whereas traditional C quietly
hides the argument x with the local variable x, as they were in distinct
scopes.

• Function prototype scope is a new scope in ANSI C. If an identifier
appears within the list of parameter declarations in a function
prototype that is not part of a function definition, it has function
prototype scope, which terminates at the end of the prototype. This
allows any dummy parameter names appearing in a function prototype
to disappear at the end of the prototype.

Consider the following example:

char * getenv (const char * name);
int name;
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The int variable name does not conflict with the parameter name since
the parameter went out of scope at the end of the prototype. However,
the prototype is still in scope.

• Identifiers appearing outside of any block, function, or function
prototype have file scope.

One last discrepancy in scoping rules between ANSI and traditional C
concerns the scope of the function foo() in the example
below:

float f;
func0() {
   extern float foo() ;
   f = foo() ;
}
func1() {
   f = foo() ;
}

In traditional C, the function foo() would be of type float when it is invoked
in the function func1(), since the declaration for foo() had file scope, even
though it occurred within a function. ANSI C dictates that the declaration for
foo() has block scope. Thus, there is no declaration for foo() in scope in func1(),
and it is implicitly typed int. This difference in typing between the explicitly
and implicitly declared versions of foo() results in a redeclaration error at
compile time, since they both are linked to the same external definition for
foo() and the difference in typing could otherwise produce unexpected
behavior.

Name Space Changes

ANSI C recognizes four distinct name spaces: one for tags, one for labels, one
for members of a particular struct or union, and one for everything else. This
division creates two discrepancies with traditional C:

• In ANSI C, each struct or union has its own name space for its
members. This is a pointed departure from traditional C, in which these
members were nothing more than offsets, allowing you to use a
member with a structure to which it does not belong. This usage is
illegal in ANSI C.
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• Enumeration constants were special identifiers in versions of Silicon
Graphics C prior to IRIX Release 3.3. In ANSI C, these constants are
simply integer constants that can be used anywhere they are
appropriate. Similarly, in ANSI C, other integer variables can be
assigned to a variable of an enumeration type with no error.

Changes in the Linkage of Identifiers

An identifier’s linkage determines which of the references to that identifier
refer to the same object. This terminology formalizes the familiar concept of
variables declared extern and variables declared static and is a necessary
augmentation to the concept of scope.

extern int mytime;
static int yourtime;

In the example above, both mytime and yourtime have file scope. However,
mytime has external linkage, while yourtime has internal linkage. An object can
also have no linkage, as is the case of automatic variables.

The above example illustrates another implicit difference between the
declarations of mytime and yourtime. The declaration of yourtime allocates
storage for the object, whereas the declaration of mytime merely references it.
If mytime is initialized as follows:

int mytime=0;

This also allocates storage. In ANSI C terminology, a declaration that
allocates storage is referred to as a definition. Herein lies the change.

In traditional C, neither of the declarations below was a definition.

extern int bert;
int bert;

In effect, the second declaration included an implicit extern specification.
This is not true in ANSI C.

Note: Objects with external linkage that are not specified as extern at the end
of the compilation unit are considered definitions, and, in effect, initialized to
zero. (If multiple declarations of the object are in the compilation unit, only
one needs the extern specification.)
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The effect of this change is to produce “multiple definition” messages from
the linker when two modules contain definitions of the same identifier, even
though neither is explicitly initialized. This is often referred to as the strict
ref/def model. A more relaxed model can be achieved by using the compiler
flag –common.

The ANSI C linker issues a warning when it finds redundant definitions,
indicating the modules that produced the conflict. However, the linker
cannot determine whether the definition of the object is explicit. The result
may be incorrectly initialized objects, if a definition was given with an
explicit initialization, and this definition is not the linker’s random choice.

Thus, consider the following example:

module1.c:
   int ernie;
module2.c:
   int ernie=5;

ANSI C implicitly initializes ernie in module1.c to zero. To the linker, ernie is
initialized in two different modules. The linker warns you of this situation,
and chooses the first such module it encounters as the true definition of ernie.
This module may or may not contain the explicitly initialized copy.

Types and Type Compatibility

Historically, C has allowed free mixing of arithmetic types in expressions
and as arguments to functions. (Arithmetic types include integral and
floating point types. Pointer types are not included.) C’s type promotion
rules reduced the number of actual types used in arithmetic expressions and
as arguments to three: int, unsigned, and double. This scheme allowed free
mixing of types, but in some cases forced unnecessary conversions and
complexity in the generated code.

One ubiquitous example of unnecessary conversions is when float variables
were used as arguments to a function. C’s type promotion rules often caused
two unwanted expensive conversions across a function boundary.

ANSI C has altered these rules somewhat to avoid the unnecessary overhead
in many C implementations. This alteration, however, may produce
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differences in arithmetic and pointer expressions and in argument passing.
For a complete discussion of operator conversions and type promotions, see
Chapter 6, “Operator Conversions.”

Type Promotion in Arithmetic Expressions

Two differences are noteworthy between ANSI and traditional C. First,
ANSI C relaxes the restriction that all floating point calculations must be
performed in double precision. In the example below, pre-ANSI C compilers
are required to convert each operand to double, perform the operation in
double precision, and truncate the result to float.

extern float f,f0,f1;
addf() {
   f = f0 + f1;
}

These steps are not required in ANSI C. In ANSI C, the operation can be done
entirely in single-precision. (In traditional C, these operations were
performed in single-precision if the –float compiler option was selected.)

The second difference in arithmetic expression evaluation involves integral
promotions. ANSI C dictates that any integral promotions be
value-preserving. Traditional C used unsignedness-preserving promotions.
Consider the example below:

unsigned short us=1,them=2;
int i;
test() {
   i = us - them;
}

ANSI C’s value-preserving rules cause each of us and them to be promoted
to int, which is the expression type. The unsignedness-preserving rules, in
traditional C, cause each of us and them to be promoted to unsigned, which
is the expression type. The latter case yields a large unsigned number,
whereas ANSI C yields -1. The discrepancy in this case is inconsequential, as
the same bit pattern is stored in the integer i in both cases, and it is later
interpreted as -1.
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However, if the case is altered slightly as in the following example:

unsigned short us=1,them=2;
float f;
test() {
   f = us - them;
}

The result assigned to f is quite different under the two schemes. If you use
the –wlint option, you’ll be warned about the implicit conversions from int
or unsigned to float.

For more information on arithmetic conversions, see “Arithmetic
Conversions” on page 51.

Type Promotion and Floating-Point Constants

The differences in behavior of ANSI C floating-point constants and
traditional C floating point constants can cause numerical and performance
differences in code ported from the traditional C to the ANSI C compiler.

For example, consider the result type of the computation below:

#define PI 3.1415926
float a,b;

b = a * PI;

The result type of b depends on which compilation options you use.
Table 3-1 lists the effects of various options.

Table 3-1 The Effect of Compilation Options on Floating-Point Conversions

Compilation Option PI Constant Type Promotion Behavior

–cckr double (float)((double)a * PI)

–cckr –float float a * PI

–xansi double (float)((double)a * PI)

–ansi double (float)((double)a * PI)
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Each conversion incurs computational overhead.

The –float flag has no effect if you also specify –ansi or –xansi. To prevent
the promotion of floating constants to double—and thus promoting the
computation to double precision multiplies—you must specify the constant
as a single precision floating point constant. To continue the example, use:

#define PI 3.1415926f    /* single precision float */

Traditional C (compiled with the –cckr option) doesn’t recognize the f float
qualifier, however. You may want to write the constant definition like this:

#ifdef __STDC__
#define PI 3.1415926f
#else
#define PI 3.1415926
#endif

If you compile with the –ansi or –xansi options, __STDC__ is automatically
defined as though –D__STDC__ = 1 were used on your compilation line.

If you compile with the –ansi, –ansiposix or –xansi options, __STDC__ is
automatically defined, as though you used –D__STDC__=1 on your
compilation line. Thus, with the last form of constant definition noted above,
the calculation in the example is promoted as described in Table 3-2.

Compatible Types

To determine whether or not an implicit conversion is permissible, ANSI C
introduced the concept of compatible types. After promotion, using the
appropriate set of promotion rules, two non-pointer types are compatible if

Table 3-2 Using __STDC__ to Affect Floating Point Conversions

Compilation Option PI Constant Type Promotion Behavior

–cckr double (float)((double)a * PI)

–cckr –float float a * PI

–xansi float a * PI

–ansi float a * PI
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they have the same size, signedness, integer/float characteristic, or, in the
case of aggregates, are of the same structure or union type. Except as
discussed in the previous section, no surprises should result from these
changes. You should not encounter unexpected problems unless you are
using pointers.

Pointers are compatible if they point to compatible types. No default
promotion rules apply to pointers. Under traditional C, the following code
fragment compiled silently:

int *iptr;
unsigned int *uiptr;
foo() {
   iptr = uiptr;
}

Under ANSI C, the pointers iptr and uiptr do not point to compatible types
(as they differ in unsignedness), which means that the assignment is illegal.
Insert the appropriate cast to alleviate the problem. When the underlying
pointer type is irrelevant or variable, use the wildcard type void *.

Argument Type Promotions

ANSI C rules for the promotion of arithmetic types when passing arguments
to a function depend on whether or not a prototype is in scope for the
function at the point of the call. If a prototype is not in scope, the arguments
are converted using the default argument promotion rules: short and char
types (whether signed or unsigned) are passed as ints, other integral
quantities are not changed, and floating point quantities are passed as
doubles. These rules are also used for arguments in the variable-argument
portion of a function whose prototype ends in ellipses (…).

If a prototype is in scope, an attempt is made to convert each argument to the
type indicated in the prototype prior to the call. The types of conversions
that succeed are similar to those that succeed in expressions. Thus, an int is
promoted to a float if the prototype so indicates, but a pointer to unsigned
is not converted to a pointer to int. ANSI C also allows the implementation
greater freedom when passing integral arguments if a prototype is in scope.
If it makes sense for an implementation to pass short arguments as 16-bit
quantities, it can do so.
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Use of prototypes when calling functions allows greater ease in coding.
However, due to the differences in argument promotion rules, serious
discrepancies can occur if a function is called both with and without a
prototype in scope. Make sure that you use prototypes consistently and that
any prototype is declared to be in scope for all uses of the function identifier.

Mixed Use of Functions

To reduce the chances of problems occurring when calling a function with
and without a prototype in scope, limit the types of arithmetic arguments in
function declarations. In particular, avoid using short or char types for
arguments; their use rarely improves performance and may raise portability
issues if you move your code to a machine with a smaller word size. This is
because function calls made with and without a prototype in scope may
promote the arguments differently. In addition, be circumspect when typing
a function argument float, because you can encounter difficulties if the
function is called without a prototype in scope. With these issues in mind,
you can solve quickly the few problems that may arise.

Function Prototypes

Function prototypes are not new to Silicon Graphics C. In traditional C,
however, the implementation of prototypes was incomplete. In one case,
shown below, a significant difference still exists between the ANSI C and the
traditional C implementations of prototypes.

You can prototype functions in two ways. The most common method is to
simply create a copy of the function declaration with the arguments typed,
with or without identifiers for each, such as either of the following:

int func(int, float, unsigned [2]);
int func(int i, float f, unsigned u[2]);

You can also prototype a function by writing the function definition in
prototype form, as:

int func(int i, float f, unsigned u[2])
{
   < code for func >
}
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In each case, a prototype is created for func() that remains in scope for the rest
of the compilation unit.

One area of confusion about function prototypes is that you must write
functions that have prototypes in prototype form. Unless you do this, the
default argument promotion rules apply.

ANSI C elicits an error diagnostics for two incompatible types for the same
parameter in two declarations of the same function. Traditional C elicits an
error diagnostics when the incompatibility may lead to a difference between
the bit-pattern of the value passed in by the caller and the bit-pattern seen in
the parameter by the callee.

As an example, the function func() below is declared twice with incompatible
parameter profiles.

int func (float);
int func (f)
float f;
{ … }

The parameter f in func() is assumed to be type double, because the default
argument promotions apply. Error diagnostics in traditional C and ANSI C
are elicited about the two incompatible declarations for func().

The following three situations produce diagnostics from the ANSI C
compiler when you use function prototypes:

• A prototyped function is called with one or more arguments of
incompatible type. (Incompatible types are discussed in Section 3.3.)

• Two incompatible (explicit or implicit) declarations for the same
function are encountered. This version of the compiler scrutinizes
duplicate declarations carefully and catches inconsistencies.

Note: When you use –cckr you do not get warnings about prototyped
functions, unless you specify –prototypes.
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External Name Changes

Many well-known UNIX® external names that are not covered by the ANSI
C standard are in the user’s name space. These names fall into three
categories:

• names of functions in the C library

• names defined by the linker

• names of data areas with external linkage

Changes in Function Names

Names of functions that are in the user’s name space and that are referenced
by ANSI C functions in the C library are aliased to counterpart functions
whose names are reserved. In all cases, the new name is formed simply by
prefixing an underbar to the old name. Thus, although it was necessary to
change the name of the familiar UNIX C library function write to _write, the
function write remains in the library as an alias.

The behavior of a program may change if you have written your own
versions of C library functions. If, for example, you have your own version
of write, the C library continues to use its version of _write.

Changes in Linker-Defined Names

The linker is responsible for defining the standard UNIX symbols end, etext,
and edata, if these symbols are unresolved in the final phases of linking. (See
end(3c) for more information.) The ANSI C linker has been modified to
satisfy references for _etext, _edata, and _end as well. The ANSI C library
reference to end has been altered to _end.

This mechanism preserves the ANSI C name space, while providing for the
definition of the non-ANSI C forms of these names if they are referenced
from existing code.
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Data Area Name Changes

The names of several well-known data objects used in the ANSI C portion of
the C library were in the user’s name space. These objects are listed in Table
3.1. These names were moved into the reserved name space by prefixing
their old names with an underscore. Whether these names are defined in
your environment depends on the compilation mode you are using. Recall
that –xansi is the default.

Table 3-3 shows the effect of compilation mode on names and indicates
whether or not these well-known external names are visible when you
compile code in the various modes. The left column has three sets of names.
Determine which versions of these names are visible by examining the
corresponding column under your compilation mode.

In the Table:

• “aliased” means the two names access the same object.

• “unchanged” means the well-known version of the name is unaltered.

• “identical copies” means that two copies of the object exist—one with
the well-known name and one with the ANSI C name (prefixed with an
underbar). Applications should not alter these objects.

• “#define” means that a macro is provided in the indicated header to
translate the well-known name to the ANSI C counterpart. Only the

Table 3-3 The Effect of Compilation Mode on Names

name compilation mode

–cckr –xansi –ansi

environ environ and
_environ aliased

environ and
_environ aliased

only _environ
visible

timezone, tzname,
altzone, daylight

unchanged #define to ANSI C
name if using
<time.h>

_timezone,
_tzname, _altzone,
_daylight

sys_nerr, sys_errlist unchanged identical copies
with names
_sys_nerr,
_sys_errlist

identical copies
with names
_sys_nerr,
_sys_errlist
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ANSI C name exists. You should include the indicated header if your
code refers to the well-known name. For example, the name tzname is
unchanged when compiling –cckr, is converted to the reserved ANSI C
name (_tzname) by a macro if you include <time.h> when compiling
–xansi, and is available only as the ANSI C version (_tzname) if
compiling –ansi. (Recall that –xansi is the default.)

Standard Headers

Functions in the ANSI C library are declared in a set of standard headers and
are a subset of the C and math library included in the beta release. This
subset is self-consistent and is free of name space pollution, when compiling
in the pure ANSI mode. Names that are normally elements of the user’s
name space but are specifically reserved by ANSI are described in the
corresponding standard header. Refer to these headers for information on
both reserved names and ANSI library function prototypes. The set of
standard headers is listed in Table 3-4.

Table 3-4 ANSI C Standard Header Files

Header Files

<assert.h> <ctype.h> <errno.h> <sys/errno.h> <float.h>

<limits.h> <locale.h> <math.h> <setjmp.h> <signal.h>

<sys/signal.h> <stdarg.h> <stddef.h> <stdio.h>

<stdlib.h> <string.h> <time.h>
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4. Lexical Conventions

This chapter covers the C lexical conventions including comments and
tokens. A token is a series of contiguous characters that the compiler treats
as a unit. The classes of tokens described in the sections below include:

• “Identifiers”

• “Keywords”

• “Constants”

• “String Literals”

• “Operators”

• “Punctuators”

Blanks, tabs, new-lines, and comments (described in the next section) are
collectively known as “white space.” White space is ignored except as it
serves to separate tokens. Some white space is required to separate
otherwise adjacent identifiers, keywords, and constants.

If the input stream has been parsed into tokens up to a given character, the
next token is taken to include the longest string of characters that could
possibly constitute a token.

Comments

The characters /* introduce a comment; the characters */ terminate a
comment. They do not indicate a comment when occurring within a string
literal. Comments do not nest. Once the /* introducing a comment is seen, all
other characters are ignored until the ending */ is encountered.
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Identifiers

An identifier, or name, is a sequence of letters, digits, and underscores (_).
The first character cannot be a digit. Uppercase and lowercase letters are
distinct. Name length is unlimited. The terms identifier and name are used
interchangeably.

Keywords

The identifiers listed in Table 4-1 are reserved for use as keywords and
cannot be used for any other purpose.

Traditional C reserves and ignores the keyword fortran.

Constants

The four types of constants are integer, character, floating, and enumeration.
Each constant has a type, determined by its form and value.

In the following discussion of the various types of constants, a unary
operator preceding the constant is not considered part of it. Rather, such a
construct is a constant-expression (see “Constant Expressions” on page 74).
Thus, the integer constant 0xff becomes an integral constant expression by

Table 4-1 Reserved Keywords

Keywords

auto default float register struct volatile

break do for return switch while

case double goto short typedef

char else if signed union

const enum int sizeof unsigned

continue extern long static void
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prefixing a minus sign, as -0xff. The effect of the operator – is not considered
in the discussion of integer constants.

As an example, the integer constant 0xffffffff has type int in traditional C,
with value -1. It has type unsigned in ANSI C, with value 232–1. This
discrepancy is inconsequential if the constant is assigned to a variable of
integral type (for example, int or unsigned), as a conversion occurs. If it is
assigned to a double, however, the value differs as indicated between
traditional and ANSI C.

Integer Constants

An integer constant consisting of a sequence of digits is considered octal if it
begins with 0. An octal constant consists of the digits 0 through 7 only. A
sequence of digits preceded by 0x or 0X is considered a hexadecimal integer.
The hexadecimal digits include [aA] through [fF] with values 10 through 15.

The suffixes [lL] traditionally indicate integer constants of type long. These
suffixes are allowed, but are superfluous, since int and long are the same size
in –32 mode. The suffices ll, LL, lL, and Ll indicate a long long constant (a
64-bit integral type). Note that long long is not a strict ANSI C type, and a
warning is given for long long constants in –ansi and –ansiposix modes.
Examples of long long include:

12345LL
12345ll

In ANSI C, an integer constant can be suffixed with [uU], in which case its
type is unsigned. (One or both of [uU] and [lL] can appear.) An integer
constant also has type unsigned if its value cannot be represented as an int.
Otherwise, the type of an integer constant is int. Examples of unsigned long
long include:

123456ULL
123456ull

Character Constants

A character constant is a character enclosed in single quotes, as in ‘x’. The
value of a character constant is the numerical value of the character in the
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machine’s character set. An explicit new-line character is illegal in a
character constant. The type of a character constant is int.

  In ANSI C, a character constant can be prefixed by L, in which case it is a
wide character constant. For example, a wide character constant for ‘z’ is
written L’z’. The type of a wide character constant is wchar_t, which is
defined in <stddef.h>.

Special Characters

Some special and nongraphic characters are represented by the escape
sequences shown in Table 4-2.

The escape \ddd consists of the backslash followed by 1, 2, or 3 octal digits
that are taken to specify the value of the desired character. A special case of
this construction is \0 (not followed by a digit), which indicates the ASCII
character NUL.

Table 4-2 Escape Sequences for Nongraphic Characters

Character Name Escape Sequence

new-line \n

horizontal tab \t

vertical tab \v

backspace \b

carriage return \r

form feed \f

backslash \\

single quote \'

double quote \"

question mark \?

bell (ANSI C only) \a
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In ANSI C, \x indicates the beginning of a hexadecimal escape sequence.
The sequence is assumed to continue until a character is encountered that is
not a member of the hexadecimal character set 0,1, … 9, [aA], [bB], … [fF].
The resulting unsigned number cannot be larger than a character can
accommodate (decimal 255).

If the character following a backslash is not one of those specified in this
discussion, the behavior is undefined.

Trigraph Sequences (ANSI C Only)

The character sets of some older machines lack certain members that have
come into common usage. To allow the machines to specify these characters,
ANSI C defined an alternate method for their specification, using sequences
of characters that are commonly available. These sequences are termed
trigraph sequences. Nine sequences are defined, each consists of three
characters beginning with two question marks. Each instance of one of these
sequences is translated to the corresponding single character. Other
sequences of characters, perhaps including multiple question marks, are
unchanged. Each trigraph sequence with the single character it represents is
listed in Table 4-3.

Table 4-3 Trigraph Sequences

Trigraph Sequence Single Character

??= #

??( [

??/ \

??) ]

??' ^

??< {

??! |

??> }

??- ~
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Floating Constants

A floating constant consists of an integer part, a decimal point, a fraction
part, an [eE], and an optionally signed integer exponent. The integer and
fraction parts both consist of a sequence of digits. Either the integer part or
the fraction part (but not both) can be missing. Either the decimal point or
the [eE] and the exponent (not both) can be missing.

In traditional C, every floating constant has type double.

In ANSI C, floating constants can be suffixed by either [fF] or [lL]. Floating
constants suffixed with [fF] have type float. Those suffixed with [lL] have
type long double, which has greater precision than double in –64 mode and
a precision equal to double in –32 mode.

Enumeration Constants

Names declared as enumerators have type int. For a discussion of
enumerators, see “Enumeration Declarations” on page 83. For information
on the use of enumerators in expressions, see “Integer and Floating Point
Types” on page 45.

String Literals

A string literal is a sequence of characters surrounded by double quotes, as
in “...”. A string literal has type array of char and is initialized with the given
characters. The compiler places a null byte (\0) at the end of each string
literal so that programs that scan the string literal can find its end. A
double-quote character (“) in a string literal must be preceded by a backslash
(\). In addition, the same escapes as described for character constants can be
used. (See “Character Constants” on page 31 for a list of escapes.) A
backslash (\) and the immediately following newline are ignored. Adjacent
string literals are concatenated.

In traditional C, all string literals, even when written identically, are distinct.
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In ANSI C, identical string literals are not necessarily distinct. Prefixing a
string literal with L specifies a wide string literal. Adjacent wide string
literals are concatenated.

As an example, consider the sentence He said, “Hi there.” This sentence could
be written with three adjacent string literals as

"He said, " "\"Hi " "there.\""

Operators

An operator specifies an operation to be performed. The operators [ ], ( ), and
? : must occur in pairs, possibly separated by expressions. The operators #
and ## can occur only in preprocessing directives.

operator: one of

[  ]  (  )  .  –>

++  – –  &  *  +  –  ~  !  sizeof

/  %  <<  >>  <  >  <=  =>  ==  !=  ^  |  &&  ||

?  :

=  *=  /=  %=  +=  –=  <<=  >>= &=  ^=  |=

, # ##

Individual operations are discussed in Chapter 7, “Expressions and
Operators.”

Punctuators

A punctuator is a symbol that has semantic significance but does not specify
an operation to be performed. The punctuators [ ], ( ), and { } must occur in
pairs, possibly separated by expressions, declarations or statements. The
punctuator # can occur only in preprocessing directives.

punctuator: one of

[  ]  (  )  {  }  *  ,  :  =  ;  …  #
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Some operators, determined by context, are also punctuators. For example,
the array index indicator [ ] is a punctuator in a declaration (see Chapter 8,
“Declarations”), but an operator in an expression (see Chapter 7,
“Expressions and Operators”).
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5. Meaning of Identifiers

Traditional C formally based the interpretation of an identifier on two of its
attributes: storage class and type. The storage class determined the location
and lifetime of the storage associated with an identifier; the type determined
the meaning of the values found in the identifier’s storage. Informally, name
space, scope, and linkage were also considered.

ANSI C formalizes the practices of traditional C. An ANSI C identifier is
disambiguated by four characteristics: its scope, name space, linkage, and
storage duration. The ANSI C definitions of these terms differ somewhat from
their interpretations in traditional C.

Storage-class specifiers and their meanings are described in Chapter 8,
“Declarations.” Storage-class specifiers are discussed in this chapter only in
terms of their effect on an object’s storage duration and linkage.

This chapter contains the following sections:

• “Disambiguating Names” on page 37 discusses scope, name spaces,
linkage, and storage duration as means of distinguishing identifiers.

• “Types” on page 45 describes the three fundamental object types.

• “Objects and lvalues” on page 48 briefly defines those two terms.

You can find a discussion of some of this material, focusing on changes to the
language, in “Changes in Disambiguating Identifiers” on page 15 and
“Types and Type Compatibility” on page 18.

Disambiguating Names

This section discusses the ways C disambiguates names: scope, name space,
linkage, and storage class.
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Scope

The region of a program in which a given instance of an identifier is visible
is called its scope. The scope of an identifier usually begins when its
declaration is seen, or, in the case of labels and functions, when it is implied
by use. Although it is impossible to have two declarations of the same
identifier active in the same scope, no conflict occurs if the instances are in
different scopes. Of the four kinds of scope, two—file and block—are
traditional C scopes. Two “newer” kinds of scope—function and function
prototype—are implied in traditional C and formalized in ANSI C.

Block Scope

Block scope is the scope of automatic variables—that is, variables declared
within a function. Each block has its own scope. No conflict occurs if the
same identifier is declared in two blocks. If one block encloses the other, the
declaration in the enclosed block hides that in the enclosing block until the
end of the enclosed block is reached. The definition of a block is the same in
ANSI C and traditional C, with one exception, illustrated by the example
below:

int f(x)
int x;
{
    int x;
    x = 1;
}

In ANSI C, the function arguments are in the function body block. Thus,
ANSI C complains of a “redeclaration of x.”

In traditional C, the function arguments are in a separate block that encloses
the function body block. Thus, traditional C would quietly hide the argument
x with the local variable x, as they are in distinct blocks.

ANSI C and traditional C differ in the assignment of block and file scope in a
few instances. See the following discussion of file scope.
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Function Scope

Only labels have function scope. Function scope continues until the end of
the current function.

Function Prototype Scope

If an identifier appears within the list of parameter declarations in a function
prototype that is not part of a function definition (see “Function Declarators
and Prototypes” on page 88), it has function prototype scope, which
terminates at the end of the prototype. This termination allows any dummy
parameter names appearing in a function prototype to disappear at the end
of the prototype.

File Scope

Identifiers appearing outside of any block, function, or function prototype,
have file scope. This scope continues to the end of the compilation unit.
Unlike other scopes, multiple declarations of the same identifier with file
scope can exist in a compilation unit, so long as the declarations are
compatible.

Whereas ANSI C assigns block scope to all declarations occurring inside a
function, traditional C assigns file scope to such declarations if they have the
storage class extern. This storage class is implied in all function declarations,
whether the declaration is explicit (as in int foo();) or implicit (if there is no
active declaration for foo() when an invocation is encountered, as in f =
foo();). For a further discussion of this discrepancy, with examples, see
“Scoping Differences” on page 15.

Name Spaces

In certain cases, the purpose for which an identifier is used may
disambiguate it from other uses of the same identifier appearing in the same
scope. This is true, for example, for tags, and is used in traditional C to avoid
conflicts between identifiers used as tags and those used in object or function
declarations. ANSI C formalizes this mechanism by defining certain name
spaces. These name spaces are completely independent. A member of one
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name space cannot conflict with a member of another. ANSI C recognizes
four distinct name spaces:

Tags struct, union, and enum tags have a single name space.

Labels Labels are in their own name space.

Members Each struct or union has its own name space for its
members.

Ordinary identifiers
Ordinary identifiers, including function and object names
as well as user-defined type names, are placed in the last
name space.

Name Space Discrepancies Between Traditional and ANSI C

The definition of name spaces causes discrepancies between traditional and
ANSI C in a few situations:

• Structure members in traditional C were nothing more than offsets,
allowing the use of a member with a structure to which it does not
belong. This is illegal under ANSI C.

• Enumeration constants were special identifiers in traditional C prior to
IRIX Release 3.3. In later releases of traditional C, as in ANSI C, these
constants are simply integer constants that can be used anywhere they
are appropriate.

• Labels reside in the same name space as ordinary identifiers in
traditional C. Thus the following example is legal in ANSI C but not in
traditional C.

func() {
int lab;
   if (lab) goto lab;
   func1() ;
lab:
   return;
}
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Linkage of Identifiers

Two instances of the same identifier appearing in different scopes may, in
fact, refer to the same entity. For example, the references to a variable counter
declared with file scope as shown below:

extern int counter;

In this example, two separate files refer to the same int object. The
association between the references to an identifier occurring in distinct
scopes and the underlying objects are determined by the identifier’s linkage.

The three kinds of linkage are:

Internal linkage Within a file, all declarations of the same identifier with
internal linkage denote the same object.

External linkage Within an entire program, all declarations of an identifier
with external linkage denote the same object.

No linkage A unique entity, accessible only in its own scope, has no
linkage.

An identifier’s linkage is determined by whether it appears inside or outside
a function, whether it appears in a declaration of a function (as opposed to
an object), its storage-class specifier, and the linkage of any previous
declarations of the same identifier that have file scope. It is determined as
follows:

1. If an identifier is declared with file scope and the storage-class specifier
static, it has internal linkage.

2. If the identifier is declared with the storage-class specifier extern, or is
an explicit or implicit function declaration with block scope, the
identifier has the same linkage as any previous declaration of the same
identifier with file scope. If no previous declaration exists, the identifier
has external linkage.

3. If an identifier for an object is declared with file scope and no
storage-class specifier, it has external linkage. (See “Changes in the
Linkage of Identifiers” on page 17.)
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4. All other identifiers have no linkage. This includes all identifiers that do
not denote an object or function, all objects with block scope declared
without the storage-class specifier extern, and all identifiers that are not
members of the ordinary variables name space.

Two declarations of the same identifier in a single file that have the same
linkage, either internal or external, refer to the same object. The same
identifier cannot appear in a file with both internal and external linkage.

This code gives an example where the linkage of each declaration is the same
in both traditional and ANSI C:

static int pete;
extern int bert;
int mom;
int func0() {
    extern int mom;
    extern int pete;
    static int dad;
    int bert;
    ...
}
int func1() {
    static int mom;
    extern int dad;
    extern int bert;
    ...
}

The declaration of pete with file scope has internal linkage by rule 1 above.
This means that the declaration of pete in func0() also has internal linkage by
rule 2 and refers to the same object.

By rule 2, the declaration of bert with file scope has external linkage, since
there is no previous declaration of bert with file scope. Thus, the declaration
of bert in func1() also has external linkage (again by rule 2) and refers to the
same (external) object. By rule 4, however, the declaration of bert in func0()
has no linkage, and refers to a unique object.

The declaration of mom with file scope has external linkage by rule 3, and, by
rule 2, so does the declaration of mom in func0(). (Again, two declarations of
the same identifier in a single file that both have either internal or external
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linkage refer to the same object.) The declaration of mom in func1(), however,
has no linkage by rule 4 and thus refers to a unique object.

Last, the declarations of dad in func0() and func1() refer to different objects, as
the former has no linkage and the latter, by rule 2, has external linkage.

Linkage Discrepancies Between Traditional and ANSI C

Traditional and ANSI C differ on the concept of linkage in the following
important ways:

• In traditional C, a function can be declared with block scope and the
storage-class specifier static. The declaration is given internal linkage.
Only the storage class extern can be specified in function declarations
with block scope in ANSI C.

• In traditional C, if an object is declared with block scope and the
storage-class specifier static, and a declaration for the object with file
scope and internal linkage exists, the block scope declaration has
internal linkage. In ANSI C, an object declared with block scope and the
storage-class specifier static has no linkage.

Traditional and ANSI C handle the concepts of reference and definition
differently. For example:

extern int mytime;
static int yourtime;

In the example above, both mytime and yourtime have file scope. As
discussed previously, mytime has external linkage, while yourtime has
internal linkage.

However, there is an implicit difference—which exists in both ANSI and
traditional C—between the declarations of mytime and yourtime in the above
example. The declaration of yourtime allocates storage for the object, whereas
the declaration of mytime merely references it. If mytime had been initialized,
as in the following example, it would also have allocated storage.

int mytime=0;

A declaration that allocates storage is referred to as a definition.
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In traditional C, neither of the two declarations below is a definition.

extern int bert;
int bert;

In effect, the second declaration includes an implicit extern specification.
ANSI C does not include such an implicit specification.

Note: In ANSI C, objects with external linkage that are not specified as
extern at the end of the compilation unit are considered definitions, and, in
effect, initialized to zero. (If multiple declarations of the object occur in the
compilation unit, only one need have the extern specification.)

If two modules contain definitions of the same identifier, the linker
complains of “multiple definitions,” even though neither is explicitly
initialized.

The ANSI C linker issues a warning when it finds redundant definitions,
indicating the modules that produced the conflict. However, the linker
cannot determine if the initialization of the object is explicit. The result may
be incorrectly initialized objects, if another module fails to tag the object with
extern.

Thus, consider the following example:

module1.c:
    int ernie;
module2.c:
    int ernie=5;

ANSI C implicitly initializes ernie  in module1.c to zero. To the linker, ernie is
initialized in two different modules. The linker warns you of this situation,
and chooses the first such module it encountered as the true definition of
ernie . This module may or may not be the one containing the explicitly
initialized copy.

Storage Duration

Storage duration denotes the lifetime of an object. Storage duration is of two
types: static and automatic.
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Objects declared with external or internal linkage, or with the storage-class
specifier static, have static storage duration. If these objects are initialized, the
initialization occurs once, prior to any reference.

Other objects have automatic storage duration. Storage is newly allocated for
these objects each time the block that contains their declaration is entered. If
an object with automatic storage duration is initialized, the initialization
occurs each time the block is entered at the top. It is not guaranteed to occur
if the block is entered by a jump to a labeled statement.

Types

The C language supports three fundamental types of objects: character,
integer, and floating point.

Character Types

Objects declared as characters (char) are large enough to store any member
of the implementation’s character set. If a genuine character from that
character set is stored in a char variable, its value is equivalent to the integer
code for that character. Other quantities may be stored into character
variables, but the implementation is machine dependent. In this
implementation, char is unsigned by default.

The ANSI C standard has added multibyte and wide character types. In the
initial Silicon Graphics release of ANSI C, wide characters are of type
unsigned char, and multibyte characters are of length one. (See the header
files <stddef.h> and <limits.h> for more information.) Because of their initial
limited implementation in this release, this document includes little
discussion of wide and multibyte character types.

Integer and Floating Point Types

Up to five sizes of integral types (signed and unsigned) are available: char,
short, int, long, and long long. Up to three sizes of floating point types are
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available. The sizes are shown in Table 5-1. (The values in the table apply to
both ANSI and traditional C, with the exceptions noted below.)

Although Silicon Graphics supports long double as a type in –cckr mode,
this is viewed as an extension to traditional C and is ignored in subsequent
discussions pertinent only to traditional C.

Differences exist in 32-bit mode (–32) and 64-bit mode (–64) compilations.
Types long and int have different sizes (and ranges) in 64-bit mode; type
long always has the same size as a pointer value. A pointer (or address) has
a 64-bit representation in 64-bit mode and a 32-bit representation in 32-bit
mode. Hence, an int object has a smaller size than a pointer object in 64-bit
mode.

The long long type is not a valid ANSI C type, hence a warning is elicited for
every occurrence of “long long” in the source program text in –ansi and
–ansiposix modes.

The long double type has equal range in 32-bit and 64-bit mode, but it has
increased precision in 64-bit mode.

Characteristics of integer and floating point types are defined in the
standard header files <limits.h> and <float.h>. The range of a signed integral

Table 5-1 Storage Class Sizes

Type Size in Bits (–32) Size in Bits (–64)

char 8 8

short 16 16

int 32 32

long 32 64

long long 64 64

float 32 32

double 64 64

long double 64 128



Types

47

type of size n is [(-2n-1)... (2n-1 -1)]. The range of an unsigned version of the
type is [0... (2n -1)].

Enumeration constants were special identifiers under various versions of
traditional C, prior to IRIX Release 3.3. In ANSI C, these constants are simply
integer constants that may be used anywhere. Similarly, ANSI C allows the
assignment of other integer variables to variables of enumeration type, with
no error.

Derived Types

Because objects of the types mentioned in “Integer and Floating Point
Types” on page 45 can be interpreted usefully as numbers, this manual refers
to them as arithmetic types. The types char, enum, and int of all sizes
(whether unsigned or not) are collectively called integral types. The float and
double types are collectively called floating types. Arithmetic types and
pointers are collectively called as scalar types.

The fundamental arithmetic types can be used to construct a conceptually
infinite class of derived types, such as:

• arrays of objects of most types

• functions that return objects of a given type

• pointers to objects of a given type

• structures that contain a sequence of objects of various types

• unions capable of containing any one of several objects of various types

In general, these constructed objects can be used as building blocks for other
constructed objects.

The void Type

The void type specifies an empty set of values. It is used as the type returned
by functions that generate no value. The void type never refers to an object,
and is therefore not included in any reference to object types.
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Objects and lvalues

An object is a manipulatable region of storage. An lvalue is an expression
referring to an object. An obvious example of an lvalue expression is an
identifier. Some operators yield lvalues. For example, if E is an expression of
pointer type, then *E is an lvalue expression referring to the object to which
E points. The term lvalue comes from the term “left value.” In the assignment
expression E1= E2, the left operand E1 must be an lvalue expression.

Most lvalues are modifiable, meaning that the lvalue may be used to modify
the object to which it refers. Examples of lvalues that are not modifiable
include array names, lvalues with incomplete type, and lvalues that refer to
an object, part or all of which is qualified with const (see “Type Qualifiers”
on page 84). Whether an lvalue appearing in an expression must be
modifiable is usually obvious. For example, in the assignment expression E1
= E2, E1 must be modifiable. This document makes the distinction between
modifiable and unmodifiable lvalues only when it is not obvious.
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6. Operator Conversions

A number of operators can, depending on the types of their operands, cause
an implicit conversion of some operands from one type to another. The
following discussion explains the results you can expect from these
conversions. The conversions demanded by most operators are summarized
in “Arithmetic Conversions” on page 51. As necessary, a discussion of the
individual operators supplements the summary.

Conversions of Characters and Integers

You can use a character or a short integer wherever you can use an integer.
Characters are unsigned by default. In all cases, the value is converted to an
integer. Conversion of a shorter integer to a longer integer preserves the
sign. Traditional C uses “unsigned preserving integer promotion” (unsigned
short to unsigned int), while ANSI C uses “value preserving integer
promotion” (unsigned short to int).

A longer integer is truncated on the left when converted to a shorter integer
or to a char. Excess bits are simply discarded.

Conversions of Float and Double

Historically in C, expressions containing floating point operands (either
float or double) were calculated using double precision. This is also true of
calculations in traditional C, unless you’ve specified the compiler option
–float. With the –float option, calculations involving floating point operands
and no double or long double operands take place in single precision. The
–float option has no effect on argument promotion rules at function calls or
on function prototypes.
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ANSI C performs calculations involving floating point in the same precision
as if –float had been specified in traditional C, except when floating point
constants are involved.

In traditional C, specifying the –float option coerces floating point constants
into type float if all the other subexpressions are of type float. This is not the
case in ANSI C. ANSI C considers all floating point constants to be implicitly
double precision, and arithmetics involving such constants therefore take
place in double precision. To force single precision arithmetic in ANSI C, use
the f or F suffix on floating point constants. To force long double precision on
constants, use the l or L suffix. For example, 3.14l  is long double precision,
3.14  is double precision, and 3.14f  is single precision in ANSI C.

For a complete discussion with examples, see “Type Promotion and
Floating-Point Constants” on page 20.

Conversion of Floating and Integral Types

Conversions between floating and integral values are machine dependent.
Silicon Graphics uses IEEE floating point, in which the default rounding
mode is to nearest, or in case of a tie, to even. Floating point rounding modes
can be controlled using the facilities of fpc(3c). Floating point exception
conditions are discussed in the introductory paragraph of Chapter 7,
“Expressions and Operators.”

When a floating value is converted to an integral value, the rounded value is
preserved as long as it does not overflow. When an integral value is
converted to a floating value, the value is preserved unless a value of more
than six significant digits is being converted to single precision, or fifteen
significant digits is being converted to double precision.

Conversion of Pointers and Integers

An expression of integral type can be added to or subtracted from an object
pointer. In such a case, the integer expression is converted as specified in the
discussion of the addition operator in “Additive Operators” on page 66. Two
pointers to objects of the same type can be subtracted. In this case, the result
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is converted to an integer as specified in the discussion of the subtraction
operator, in “Additive Operators” on page 66.

Conversion of Unsigned Integers

When an unsigned integer is converted to a longer unsigned or signed
integer, the value of the result is preserved. Thus, the conversion amounts to
padding with zeros on the left.

When an unsigned integer is converted to a shorter signed or unsigned
integer, the value is truncated on the left. This truncation may produce a
negative value, if the result is signed.

Arithmetic Conversions

Many types of operations in C require two operands to be converted to a
common type. Two sets of conversion rules are applied to accomplish this
conversion. The first, referred to as the integral promotions, defines how
integral types are promoted to one of several integral types that are at least
as large as int. The second, called the usual arithmetic conversions, derives a
common type in which the operation is performed.

ANSI C and traditional C follow different sets of these rules.

Integral Promotions

The difference between the ANSI C and traditional versions of the
conversion rules is that the traditional C rules emphasize preservation of the
(un)signedness of a quantity, while ANSI C rules emphasize preservation of
its value.

In traditional C, operands of types char, unsigned char, and unsigned short
are converted to unsigned int. Operands of types signed char and short are
converted to int.
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ANSI C converts all char and short operands, whether signed or unsigned,
to int. Only operands of type unsigned int, unsigned long, and unsigned
long long may remain unsigned.

Usual Arithmetic Conversions

Besides differing in emphasis on signedness and value preservation, the
usual arithmetic conversion rules of ANSI C and traditional C also differ in
the precision of the chosen floating point type.

Below are two sets of conversion rules, one for traditional C, and the other
for ANSI C. Each set is ordered in decreasing precedence. In any particular
case, the rule that applies is the first whose conditions are met.

Each rule specifies a type, referred to as the result type. Once a rule has been
chosen, each operand is converted to the result type, the operation is
performed in that type, and the result is of that type.

Traditional C Conversion Rules

The traditional C conversion rules are:

• If any operand is of type double, the result type is double.

• If an operand is of type float, the result type is float if you have
specified the –float switch. Otherwise, the result type is double.

• The integral promotions are performed on each operand:

– If one of the operands is of type unsigned long long, the result is of
type unsigned long long

– If one of the operands is of type long long, the result is of type long
long

– If one of the operands is of type unsigned long, the result is of type
unsigned long

– If one of the operands is of type long, the result is of type long

– If one of the operands is of type unsigned int, the result type is
unsigned int

– Otherwise, the result is of type int
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ANSI C Conversion Rules

The ANSI C rules are as follows:

• If any operand is of type long double, the result type is long double.

• If any operand is of type double, the result type is double.

• If an operand is of type float, the result type is float.

• The integral promotions are performed on each operand:

– If one of the operands is of type unsigned long long, the result is of
type unsigned long long

– If one of the operands is of type long long, the result is of type long
long

– If one of the operands is of type unsigned long, the result is of type
unsigned long

– If one of the operands is of type long, the result is of type long

– If one of the operands is of type unsigned int, the result type is
unsigned int

– Otherwise the result is of type int

Conversion of Other Operands

The following three sections discuss conversion of lvalues, function
designators, void objects, and pointers.

Conversion of  lvalue s and Function Designators

Except as noted, if an lvalue that has type array of <type> appears as an
operand, it is converted to an expression of the type pointer to <type>. The
resultant pointer points to the initial element of the array. In this case, the
resultant pointer ceases to be an lvalue. (For a discussion of lvalues, see
“Objects and lvalues” on page 48.)
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A function designator is an expression that has function type. Except as noted,
a function designator appearing as an operand is converted to an expression
of type pointer to function.

Conversion of Void Objects

The (nonexistent) value of a void object cannot be used in any way, and
neither explicit nor implicit conversion can be applied.  Because a void
expression denotes a nonexistent value, such an expression can be used only
as an expression statement (see “Expression Statement” on page 99), or as
the left operand of a comma expression (see “Comma Operator” on page 73).

An expression can be converted to type void by use of a cast. For example,
this makes explicit the discarding of the value of a function call used as an
expression statement.

Conversion of Pointers

A pointer to void can be converted to a pointer to any object type and back
without change in the underlying value.

The NULL pointer constant can be specified either as the integral value zero,
or the value zero cast to a pointer to void. If a NULL pointer constant is
assigned or compared to a pointer to any type, it is appropriately converted.
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7. Expressions and Operators

The precedence of expression operators is indicated by their syntax in this
chapter; it usually follows the order of the major subsections, with earlier
subsections having higher precedence. For example, since the multiplication
operator * can have a unary-expression (which is a cast-expression) as well as
an operand, the order of evaluation of the expression

~ i * z

gives ~ higher precedence than * and can be written

( ~ i ) * z

The text indicates this precedence by placing unary-expressions in “Unary
Operators” on page 62, and multiplicative-expressions in “Multiplicative
Operators” on page 65. This syntax–subsection correlation is violated in a
few cases. For example, cast-expressions can be operands in unary-expressions,
in which case the cast-expression has higher precedence. See “Cast
Operators” on page 64 and “Unary Operators” on page 62 for more
information.

Within each subsection, the operators have the same precedence. All
operators group left to right, unless otherwise indicated in their discussion.
Table 7-1 shows operators and indicates the priority ranking and grouping
of each.

Table 7-1 Operator Precedence and Associativity

Operator (from high to low priority) Grouping

() [] -> . L-R

! ~ ++ -- - (type) * & sizeof (all unary) R-L

* / % L-R
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 The order of evaluation of expressions, as well as the order in which
side-effects take place, is unspecified, except as indicated by the syntax, or
specified explicitly in this chapter. The compiler can arbitrarily rearrange
expressions involving a commutative and associative operator (*, +, &, |, ̂ ).

Integer divide-by-zero results in a trap. Other integer exception conditions
are ignored. Silicon Graphics floating point conforms to the IEEE standard.
Floating point exceptions are ignored by default, yielding the default IEEE
results of infinity for divide-by-zero and overflow, not-a-number for invalid
operations, and zero for underflow. You can gain control over these
exceptions and their results most easily by using the Silicon Graphics IEEE
floating point exception handler package (see handle_sigfpes(3c)). You can
also control these exceptions by implementing your own handler and
appropriately initializing the floating point unit (see fpc(3c)).

+ - L-R

<< >> L-R

< <= > >= L-R

== != L-R

& L-R

^ L-R

| L-R

&& L-R

|| L-R

? : L-R

= += -= *= /= %= ^= &= |= R-L

, L-R

Table 7-1 (continued) Operator Precedence and Associativity

Operator (from high to low priority) Grouping
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Primary Expressions

An identifier is a primary-expression, provided it has been declared as
referring to an object, in which case it is an lvalue; or a function, in which case
it is a function designator. Lvalues and function designators are discussed in
“Conversion of lvalues and Function Designators” on page 53.

primary-expression:

identifier

constant

string literal

(expression)

A constant is a primary-expression. Its type is determined by its form and
value, as described in “Constants” on page 30.

A string literal is a primary-expression. Its type is array of char, subject to
modification, as described in “Conversions of Characters and Integers” on
page 49.

A parenthesized expression is a primary-expression whose type and value are
identical to those of the unparenthesized expression. The presence of
parentheses does not affect whether the expression is an lvalue, rvalue, or
function designator. For information on expressions, see “Constant
Expressions” on page 74.

Postfix Expressions

Postfix expressions involving ., –>, subscripting, and function calls group
left to right.

postfix-expression:

primary-expression

postfix-expression [expression]

postfix-expression (argument-expression-list opt)

postfix-expression . identifier

postfix-expression –> identifier
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postfix-expression ++

postfix-expression – –

argument-expression-list:

argument-expression

argument-expression-list, argument-expression

Subscripts

A postfix-expression followed by an expression in square brackets is a
subscript. Usually, the postfix-expression has type pointer to <type>, the
expression within the square brackets has type int, and the type of the result
is <type>. However, it is equally valid if the types of the postfix-expression and
the expression in brackets are reversed. This is because the expression postfix

E1[E2]

is identical (by definition) to

*((E1)+(E2))

Since + is commutative, E1 and E2 can be interchanged.

You can find further information on this notation in the discussions on
identifiers, and in the discussion of the operators * (in “Unary Operators” on
page 62) and + (in “Additive Operators” on page 66).

Function Calls

The syntax of postfix-expressions that are function calls is

postfix-expression (argument-expression-list opt)

argument-expression-list:

argument-expression

argument-expression-list, argument-expression
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A postfix–expression followed by parentheses containing a possibly empty,
comma-separated list of expressions (which constitute the actual arguments
to the function) denotes a function call. The postfix–expression must be of type
function returning <type>, and the result of the function call is of type <type>,
and is not an lvalue. If the postfix–expression denoting the called function
consists solely of a previously unseen identifier foo, the call produces an
implicit declaration as if, in the innermost block containing the call, the
declaration had appeared:

extern int foo();

If a corresponding function prototype that specifies a type for the argument
being evaluated is in force, an attempt is made to convert the argument to
that type. If the number of arguments does not agree with the number of
parameters specified in the prototype, the behavior is undefined. If the type
returned by the function as specified in the prototype does not agree with the
type derived from the postfix-expression denoting the called function, the
behavior is undefined. Such a scenario may occur for an external function
declared with conflicting prototypes in different files. If no corresponding
prototype is in scope or the argument is in the variable argument section of
a prototype that ends in ellipses (…), the argument is converted according to
the following default argument promotions:

• Type float is converted to double.

• Array and function names are converted to corresponding pointers.

• When using traditional C:

– types unsigned short and unsigned char are converted to
unsigned int.

– types signed short and signed char are converted to signed int.

• When using ANSI C:

– types short and char, whether signed or unsigned, are converted to
int.

In preparing for the call to a function, a copy is made of each actual
argument. Thus, all argument passing in C is strictly by value. A function
can change the values of its parameters, but these changes cannot affect the
values of the actual arguments. It is possible to pass a pointer on the
understanding that the function can change the value of the object to which
the pointer points. (Arguments that are array names can be changed as well,
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since these arguments are converted to pointer expressions.) Since the order
of evaluation of arguments is unspecified, side effects may be delayed until
the next sequence point, which occurs at the point of the actual call—after all
arguments have been evaluated. (For example, the incrementation of foo,
which is a side-effect of the evaluation of an argument foo++, may be
delayed.) Recursive calls to any function are permitted.

Silicon Graphics recommends consistent use of prototypes for function
declarations and definitions, as it is extremely dangerous to mix prototyped
and nonprototyped function declarations/definitions. Never call functions
before you declare them (although the language allows this). It results in an
implicit nonprototyped declaration that may be incompatible with the
function definition.

Structure and Union References

A postfix-expression followed by a dot followed by an identifier denotes a
structure or union reference.

postfix-expression . identifier

The postfix-expression must be a structure or a union, and the identifier must
name a member of the structure or union. The value is the named member
of the structure or union, and it is an lvalue if the first expression is an lvalue.
The result has the type of the indicated member and the qualifiers of the
structure or union.

Indirect Structure and Union References

A postfix-expression followed by an arrow (built from – and > ) followed by an
identifier is an indirect structure or union reference.

postfix-expression –> identifier

The postfix-expression must be a pointer to a structure or a union, and the
identifier must name a member of that structure or union. The result is an
lvalue referring to the named member of the structure or union to which the
postfix-expression points. The result has the type of the selected member, and
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the qualifiers of the structure or union to which the postfix-expression points.
Thus the expression

E1–>MOS

is the same as

(*E1).MOS

Structures and unions are discussed in “Structure and Union Declarations”
on page 79.

Postfix ++ and – –

The syntax of postfix ++ and postfix -- is:

postfix-expression ++

postfix-expression – –

When postfix ++ is applied to a modifiable lvalue, the result is the value of
the object referred to by the lvalue. After the result is noted, the object is
incremented as if the constant 1 (one) were added to it. See the discussions
in “Additive Operators” on page 66 and “Assignment Operators” on
page 72 for information on conversions. The type of the result is the same as
the type of the lvalue expression. The result is not an lvalue.

When postfix – – is applied to a modifiable lvalue, the result is the value of
the object referred to by the lvalue. After the result is noted, the object is
decremented as if the constant 1 (one) were subtracted from it. See the
discussions in “Additive Operators” on page 66 and “Assignment
Operators” on page 72 for information on conversions. The type of the result
is the same as the type of the lvalue expression. The result is not an lvalue.

For both postfix ++ and – – operators, updating the stored value of the
operand may be delayed until the next sequence point.
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Unary Operators

Expressions with unary operators group from right to left.

 unary-expression:

postfix-expression

++ unary-expression

– – unary-expression

unary-operator cast-expression

sizeof unary-expression

sizeof (type-name)

unary-operator: one of

* & – ! ~ +

Except as noted, the operand of a unary-operator must have arithmetic type.

Address-of and Indirection Operators

The unary * operator means “indirection”; the cast-expression must be a
pointer, and the result is either an lvalue referring to the object to which the
expression points, or a function designator. If the type of the expression is
pointer to <type>, the type of the result is <type>.

The operand of the unary & operator can be either a function designator or
an lvalue that designates an object. If it is an lvalue, the object it designates
cannot be a bitfield, and it cannot be declared with the storage-class register.
The result of the unary & operator is a pointer to the object or function
referred to by the lvalue or function designator. If the type of the lvalue is
<type>, the type of the result is pointer to <type>.

Unary + and – Operators

The result of the unary – operator is the negative of its operand. The integral
promotions are performed on the operand, and the result has the promoted
type and the value of the negative of the operand. Negation of unsigned
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quantities is analogous to subtracting the value from 2n, where n is the
number of bits in the promoted type.

The unary + operator exists only in ANSI C. The integral promotions are
used to convert the operand. The result has the promoted type and the value
of the operand.

Unary ! and ~ Operators

The result of the logical negation operator ! is 1 if the value of its operand is
zero, and 0 if the value of its operand is nonzero. The type of the result is int.
The logical negation operator is applicable to any arithmetic type and to
pointers.

The ~ operator yields the one’s complement of its operand. The usual
arithmetic conversions are performed. The type of the operand must be
integral.

Prefix ++ and – – Operators

The prefix operators ++ and – – increment and decrement their operands.

++ unary-expression

– – unary-expression

The object referred to by the modifiable lvalue operand of prefix ++ is
incremented. The value is the new value of the operand but is not an lvalue.
The expression ++x is equivalent to x += 1. See the discussions in “Additive
Operators” on page 66 and “Assignment Operators” on page 72 for
information on conversions.

The prefix – – decrements its lvalue operand in the same manner as prefix ++
increments it.
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The sizeof  Unary Operator

The sizeof operator yields the size in bytes of its operand. The size of a char
is 1 (one). Its major use is in communication with routines like storage
allocators and I/O systems.

sizeof unary-expression

sizeof (type-name)

The operand of sizeof can not have function or incomplete type, or be an
lvalue that denotes a bitfield. It can be an object or a parenthesized type
name. In traditional C, the type of the result is unsigned. In ANSI C, the type
of the result is size_t, which is defined in <stddef.h> as unsigned int (in 32-bit
mode) or as unsigned long (in 64-bit mode). The result is a constant and can
be used anywhere a constant is required.

When applied to an array, sizeof returns the total number of bytes in the
array. The size is determined from the declaration of the object in the
unary-expression. The sizeof operator can also be applied to a parenthesized
type-name. In that case it yields the size in bytes of an object of the indicated
type.

When sizeof is applied to an aggregate, the result includes space used for
padding, if any.

Cast Operators

A cast-expression preceded by a parenthesized type-name causes of the value
the expression to convert to the indicated type. This construction is called a
cast. Type names are discussed in “Type Names” on page 92.

cast-expression:

unary-expression

(type-name) cast-expression

The type-name specifies scalar type or void, and the operand has scalar type.
Since a cast does not yield an lvalue, the effect of qualifiers attached to the
type name is inconsequential.
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When an arithmetic value is cast to a pointer, and vice versa, the appropriate
number of bits are simply copied unchanged from one type of value to the
other. Be aware of the possible truncation of pointer values in 64-bit mode
compilation, when a pointer value is converted to an (unsigned) int.

Multiplicative Operators

The multiplicative operators *, /,  and % group from left to right. The usual
arithmetic conversions are performed.

multiplicative expression:

cast-expression

multiplicative-expression * cast-expression

multiplicative-expression / cast-expression

multiplicative-expression % cast-expression

Operands of * and / must have arithmetic type. Operands of % must have
integral type.

The binary * operator indicates multiplication, and its result is the product
of the operands.

The binary / operator indicates division of the first operator (dividend) by
the second (divisor). If the operands are integral and the value of the divisor
is 0, SIGTRAP is signalled. Integral division results in the integer quotient
whose magnitude is less than or equal to that of the true quotient, and with
the same sign.

The binary % operator yields the remainder from the division of the first
expression (dividend) by the second (divisor).   The operands must be
integral. The remainder has the same sign as the dividend, so that the
equality is true when the divisor is nonzero:

(dividend / divisor) * divisor + dividend % divisor ==
dividend

If the value of the divisor is 0, SIGTRAP is signalled.



66

Chapter 7: Expressions and Operators

Additive Operators

The additive operators + and – group from left to right. The usual arithmetic
conversions are performed.

additive-expression:

multiplicative-expression

additive-expression + multiplicative-expression

additive-expression – multiplicative-expression

In addition to arithmetic types, the following type combinations are
acceptable for additive-expressions:

• For addition, one operand is a pointer to an object type and the other
operand is an integral type.

• For subtraction:

– Both operands are pointers to qualified or unqualified versions of
compatible object types.

– The left operand is a pointer to an object type, and the right
operand has integral type.

The result of the + operator is the sum of the operands. The result of the
– operator is the difference of the operands. When an operand of integral
type is added to or subtracted from a pointer to an object type, the integral
operand is first converted to an address offset by multiplying it by the length
of the object to which the pointer points. The result is a pointer of the same
type as the original pointer.

Suppose a has type array of <object>, and p has type pointer to <object> and
points to the initial element of a. Then the result of p n, where n is an integral
operand, is the same as &a [ n] .

If two pointers to objects of the same type are subtracted, the result is
converted (by division by the length of the object) to an integral quantity
representing the number of objects separating them. Unless the pointers
point to objects in the same array, the result is undefined. The actual type of
the result is int in traditional C, and ptrdiff_t (defined in <stddef.h> as int in
32-bit mode and as long in 64-bit mode) in ANSI C.
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Shift Operators

The shift operators << and >> group from left to right. Each operand must
be of an integral type. The integral promotions are performed on each
operand. The type of the result is that of the promoted left operand. The
result is undefined if the right operand is negative or greater than or equal
to the length in bits of the promoted left operand.

shift-expression:

additive-expression

shift-expression << additive-expression

shift-expression >> additive-expression

The value of E1<<E2 is E1 (interpreted as a bit pattern) left-shifted E2 bits.
Vacated bits are filled with zeros.

The value of E1>>E2 is E1 right-shifted E2 bit positions. Vacated bits are
filled with zeros if E1 is unsigned, or if it’s signed and its value is
nonnegative. If E1 is signed and its value is negative, vacated bits are filled
with ones.

Relational Operators

The relational operators group from left to right.

relational-expression:

shift-expression

relational-expression < shift-expression

relational-expression > shift-expression

relational-expression <= shift-expression

relational-expression >= shift-expression

The operators < (less than), > (greater than), <= (less than or equal to), and
>= (greater than or equal to) all yield a result of type int with the value 0 if
the specified relation is false and 1 if it is true.
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The operands must be one of the following:

• both arithmetic, in which case the usual arithmetic conversions are
performed on them

• both pointers to qualified or unqualified versions of compatible object
types

• both pointers to qualified or unqualified versions of compatible
incomplete types

When two pointers are compared, the result depends on the relative
locations in the address space of the pointed-to objects. Pointer comparison
is portable only when the pointers point to objects in the same aggregate. In
particular, no correlation is guaranteed between the order in which objects
are declared and their resulting addresses.

Equality Operators

The == (equal to) and the != (not equal to) operators are exactly analogous to
the relational operators except for their lower precedence. (Thus a<b == c<d
is 1 whenever a<b and c<d have the same truth value.)

equality-expression:

relational-expression

equality-expression == relational-expression

equality-expression != relational-expression

The operands must be one of the following:

• both arithmetic, in which case the usual arithmetic conversions are
performed on them

• both pointers to qualified or unqualified versions of compatible types

• a pointer to an object or incomplete type, and a pointer to qualified or
unqualified void type

• a pointer and a null pointer constant
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The semantics detailed in “Relational Operators” on page 67 apply if the
operands have types suitable for those operators. Combinations of other
operands have the behavior detailed below:

• Two null pointers to object or incomplete types are equal. If two
pointers to such types are equal, they either are null, point to the same
object, or point to one object beyond the end of an array of such objects.

• Two pointers to the same function are equal, as are two null function
pointers. Two function pointers that are equal are either both null or
both point to the same function.

Bitwise AND Operator

Each operand must have integral type. The usual arithmetic conversions are
performed. The result is the bitwise AND function of the operands, that is,
each bit in the result is 0 unless the corresponding bit in each of the two
operands is 1.

AND-expression:

equality-expression

AND-expression & equality-expression

Bitwise Exclusive OR Operator

Each operand must have integral type. The usual arithmetic conversions are
performed. The result has type int, long, or long long, and the value is the
bitwise exclusive OR function of the operands. That is, each bit in the result
is 0 unless the corresponding bit in one of the operands is 1, and the
corresponding bit in the other operand is 0.

exclusive-OR-expression:

AND-expression

exclusive-OR-expression ^ AND-expression
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Bitwise Inclusive OR Operator

Each operand must have integral type. The usual arithmetic conversions are
performed.

inclusive-OR-expression:

exclusive-OR-expression

inclusive-OR-expression | exclusive-OR-expression

The result has type int, long, or long long, and the value is the bitwise
inclusive OR function of the operands. That is, each bit in the result is 0
unless the corresponding bit in at least one of the operands is 1.

Logical AND Operator

The && operator groups left to right.

logical-AND-expression:

inclusive-OR-expression

logical-AND-expression && inclusive-OR-expression

Each of the operands must have scalar type. The result has type int and
value 1 if neither of its operands evaluates to 0. Otherwise it has value 0.

Unlike &, && guarantees left to right evaluation; moreover, the second
operand is not evaluated if the first operand evaluates to zero. There is a
sequence point after the evaluation of the first operand.

Logical OR Operator

The || operator groups left to right.

logical-OR-expression:

logical-AND-expression

logical-OR-expression || logical-AND-expression
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Each of the operands must have scalar type. The result has type int and
value 1 if either of its operands evaluates to one. Otherwise it has value 0.

Unlike |, || guarantees left to right evaluation; moreover, the second
operand is not evaluated unless the first operand evaluates to zero. A
sequence point occurs after the evaluation of the first operand.

Conditional Operator

Conditional expressions group from right to left.

conditional-expression:

logical-OR-expression

logical-OR-expression ? expression : conditional-expression

The type of the first operand must be scalar. Only certain combinations of
types are allowed for the second and third operands. These combinations are
listed below, along with the type of result the combination yields.

• Both can be arithmetic types. In this case, the usual arithmetic
conversions are performed on them to derive a common type, which is
the type of the result.

• Both are compatible structure or union objects. The result has that type.

• Both are void. The type of the result is void.

• One is a pointer, and the other a null pointer constant. The type of the
result is the type of the nonconstant pointer.

• One is a pointer to void, and the other is a pointer to an object or
incomplete type. The second operand is converted to a pointer to void,
and this is the type of the result.

• Both are pointers to qualified or unqualified versions of compatible
types. The result has a type compatible with each, qualified with all the
qualifiers of the types pointed to by both operands.

Evaluation of the conditional operator proceeds as follows. The first
expression is evaluated, after which a sequence point occurs.   If the value of
the first expression is nonzero, the result is the value of the second operand;
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otherwise it is that of the third operand. Only one of the second and third
operands is evaluated.

Assignment Operators

All assignment operators group from right to left.

assignment-expression:

conditional-expression

unary-expression assignment-operator assignment-expression

assignment operator: one of

=  *=  /=  %=  +=  -=   <<=  >>=  &=  ^=  |=

Assignment operators require a modifiable lvalue as their left operand. The
type of an assignment expression is that of its unqualified left operand. The
result is not an lvalue. Its value is the value stored in the left operand after the
assignment, but the actual update of the stored value may be delayed until
the next sequence point.

The order of evaluation of the operands is unspecified.

Assignment Using = (Simple Assignment)

The operands permissible in simple assignment must obey one of the
following:

• Both have arithmetic type or are compatible structure or union types.

• Both are pointers, and the type pointed to by the left has all of the
qualifiers of the type pointed to by the right.

• One is a pointer to an object or incomplete type, and the other is a
pointer to void. The type pointed to by the left must have all of the
qualifiers of the type pointed to by the right.

• The left operand is a pointer, and the right is a null pointer constant.
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In simple assignment, the value of the right operand is converted to the type
of the assignment expression and replaces the value of the object referred to
by the left operand. If the value being stored is accessed by another object
that overlaps it, the behavior is undefined unless the overlap is exact and the
types of the two objects are compatible.

Compound Assignment

For the operators += and -=, either both have arithmetic types, or the left
operand is a pointer and the right is an operand integral. In the latter case,
the right operand is converted as explained in “Additive Operators” on
page 66. For all other operators, each operand must have arithmetic type
consistent with those allowed for the corresponding binary operator.

The expression E1 op = E2 is equivalent to the expression E1 = E1 op E2,
except that in the former, E1 is evaluated only once.

Comma Operator

A pair of expressions separated by a comma is evaluated left to right, and the
value of the left expression is discarded.

expression:

assignment-expression

expression, assignment-expression

The type and value of the result are the type and value of the right operand.
This operator groups left to right. In contexts where comma is given a special
meaning, the comma operator as described in this section can appear only in
parentheses. Two such contexts are lists of actual arguments to functions
(described in “Primary Expressions” on page 57) and lists of initializers (see
“Initialization” on page 95). For example, the following code has three
arguments, the second of which has the value 5.

f(a, (t=3, t+2), c)
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Constant Expressions

A constant expression can be used any place a constant can be used.

constant-expression:

conditional-expression

It cannot contain assignment, increment, decrement, function-call, or
comma operators. It must evaluate to a constant that is in the range of
representable values for its type. Otherwise, the semantic rules for the
evaluation of nonconstant expressions apply.

Constant expressions are separated into three classes:

• An integral constant expression has integral type and is restricted to
operands that are integral constants, sizeof expressions, and floating
constants that are the immediate operands of integral casts.

• An arithmetic constant expression has arithmetic type and is restricted to
operands that are arithmetic constants, and sizeof expressions. Cast
expressions in arithmetic constant expressions can convert only
between arithmetic types.

• An address constant is a pointer to an lvalue designating an object of
static storage duration, or a pointer to a function designator. It can be
created explicitly or implicitly, as long as no attempt is made to access
an object value.

Either address or arithmetic constant expressions can be used in initializers.
In addition, initializers can contain null pointer constants and address
constants (for object types), and plus or minus integral constant expressions.
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8. Declarations

A declaration specifies the interpretation given to a set of identifiers.
Declarations have the form:

declaration:

declaration-specifiers init-declarator-listopt;

The init-declarator-list is a comma-separated sequence of declarators, each of
which can have an initializer. In ANSI C, the init-declarator-list can also
contain additional type information:

init-declarator-list:

init-declarator

init-declarator-list , init-declarator

init-declarator:

declarator

declarator = initializer

The declarators in the init-declarator-list contain the identifiers being declared.
The declaration-specifiers consist of a sequence of specifiers that determine the
linkage, storage duration, and part of the type of the identifiers indicated by
the declarator. Declaration-specifiers have the form:

declaration-specifiers:

storage-class-specifier declaration-specifiersopt

type-specifier declaration-specifiersopt

type-qualifier declaration-specifiersopt

If an identifier that is not a tag has no linkage (see “Disambiguating Names”
on page 37), at most one declaration of the identifier can appear in the same
scope and name space. The type of an object that has no linkage must be
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complete by the end of its declarator or initializer. Multiple declarations of
tags and ordinary identifiers with external or internal linkage can appear in
the same scope so long as they specify compatible types.

In traditional C, at most one declaration of an identifier with internal linkage
can appear in the same scope and name space, unless it is a tag.

In ANSI C, a declaration must declare at least one of:

• a declarator

• a tag

• the members of an enumeration

A declaration may reserve storage for the entities specified in the
declarators. Such a declaration is called a definition. (Function definitions
have a different syntax and are discussed in “Function Declarators and
Prototypes” and Chapter 10, “External Definitions.”)

Storage-class Specifiers

The storage-class-specifier indicates linkage and storage duration. These
attributes are discussed in “Disambiguating Names” on page 37.
Storage-class specifiers have the form:

storage-class-specifier:

auto

static

extern

register

typedef

The typedef specifier does not reserve storage and is called a storage class
specifier only for syntactic convenience. See “typedef” for more information.

At most one storage-class specifier can appear in a declaration. If the
storage-class-specifier is missing from a declaration, it is assumed to be extern
unless the declaration is of an object and occurs inside a function, in which
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case it is assumed to be auto. (See “Changes in Disambiguating Identifiers”
on page 15 for further details.)

Identifiers declared within a function with the storage class extern must
have an external definition (see Chapter 10, “External Definitions”)
somewhere outside the function in which they are declared.

Identifiers declared with the storage class static have static storage duration,
and either internal linkage (if declared outside a function) or no linkage (if
declared inside a function). If the identifiers are initialized, the initialization
is performed once before the beginning of execution. If no explicit
initialization is performed, static objects are implicitly initialized to zero.

A register declaration is an auto declaration, with a hint to the compiler that
the objects declared will be heavily used. Whether the object is actually
placed in fast storage is implementation-defined. You cannot take the
address of any part of an object declared with the register specifier.

Type Specifiers

Type specifiers are listed below. The syntax is:

type-specifier:

struct-or-union-specifier

typedef-name

enum-specifier

char

short

int

long

signed

unsigned

float

double

void
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The following list enumerates all valid combinations of type specifiers.
These combinations are organized into a number of sets, each set made up
of one line. The arrangement of the type specifiers appearing in any
combination below can be altered without effect. The type specifiers in each
set are equivalent in all implementations.

• void

• char

• signed char

• unsigned char

• short, signed short, short int, or signed short int

• unsigned short, or unsigned short int

• int, signed, signed int, or no type specifiers

• unsigned, or unsigned int

• long, signed long, long int, or signed long int

• unsigned long, or unsigned long int

• long long, signed long long, long long int, or signed long long int

• unsigned long long, or unsigned long long int

• float

• double

• long double

In traditional C, the type long float is allowed and equivalent to double; its
use is not recommended. It elicits a warning if you’re not in –cckr mode. Use
of the type long double is not recommended in traditional C.

Note: long long is not a valid ANSI C type, so a warning appears for every
occurrence of it in the source program text in –ansi and –ansiposix modes.

Specifiers for structures, unions, and enumerations are discussed in
“Structure and Union Declarations” on page 79 and “Enumeration
Declarations” on page 83. Declarations with typedef names are discussed in
“typedef” on page 94.
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Structure and Union Declarations

A structure is an object consisting of a sequence of named members. Each
member can have any type. A union is an object that can, at a given time,
contain any one of several members. Structure and union specifiers have the
same form. The syntax is:

struct-or-union-specifier:

struct-or-union {struct-decl-list}

struct-or-union identifier {struct-decl-list}

struct-or-union identifier

struct-or-union:

struct

union

The struct-decl-list is a sequence of declarations for the members of the
structure or union. The syntax is:

struct-decl-list:

struct-declaration

struct-decl-list struct-declaration

struct-declaration:

specifier-qualifier-list struct-declarator-list;

struct-declarator-list:

struct-declarator

struct-declarator-list , struct-declarator

In the usual case, a struct-declarator is just a declarator for a member of a
structure or union. A structure member can also consist of a specified
number of bits. Such a member is also called a bitfield. Its length, a
non-negative constant expression, is separated from the field name by a
colon. “Bitfields” are discussed at the end of this section.
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The syntax for struct-declarator is:

struct-declarator:

declarator

declarator : constant-expression

: constant-expression

A struct or union cannot contain a member with incomplete or function
type, or that is an instance of itself. It can, however, contain a member that is
a pointer to an instance of itself.

Within a structure, the objects declared have addresses that increase as the
declarations are read left to right. Each non-field member of a structure
begins on an addressing boundary appropriate to its type; therefore, there
may be unnamed holes in a structure.

A union can be thought of as a structure whose members all begin at offset
0 and whose size is sufficient to contain any of its members. At most, one of
the members can be stored in a union at any time.

A structure or union specifier of the second form declares the identifier to be
the structure tag (or union tag) of the structure specified by the list. This type
of specifier is one of

struct identifier {struct-decl-list}

union identifier {struct-decl-list}

A subsequent declaration can use the third form of specifier, one of
struct identifier

union identifier

Structure tags allow definition of self-referential structures. Structure tags
also permit the long part of the declaration to be given once and used several
times.

The third form of a structure or union specifier can be used prior to a
declaration that gives the complete specification of the structure or union in
situations in which the size of the structure or union is unnecessary. The size
is unnecessary in two situations: when a pointer to a structure or union is
being declared and when a typedef name is declared to be a synonym for a
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structure or union. This, for example, allows the declaration of a pair of
structures that contain pointers to each other.

The names of members of each struct or union have their own name space,
and do not conflict with each other or with ordinary variables. A particular
member name cannot be used twice in the same structure, but it can be used
in several different structures in the same scope. Names that are used for
tags reside in a single name space. They do not conflict with other names or
with names used for tags in an enclosing scope. This tag name space,
however, consists of tag names used for all struct, union, or enum
declarations. Thus the tag name of an enum may conflict with the tag name
of a struct in the same scope. (See “Disambiguating Names” on page 37.)

A simple but important example of a structure declaration is the following
binary tree structure:

struct tnode {
char tword[20];
int count;
struct tnode *left;
struct tnode *right;
};

This structure contains an array of 20 characters, an integer, and two pointers
to instances of itself. Once this declaration has been given, the declaration
declares s to be a structure of the given sort and sp to be a pointer to a
structure of the given sort. For example:

struct tnode s, *sp;

With these declarations, the expression sp->count refers to the count field of
the structure to which sp points. The expression s.left refers to the left subtree
pointer of the structure s. The expression s.right->tword[0] refers to the first
character of the tword member of the right subtree of s.

Bitfields

A structure member can consist of a specified number of bits, called a
bitfield. Bitfields should be of type int, signed int, or unsigned int in strict
ANSI C mode. Silicon Graphics allows bitfields of any integral type, but
warn for non-int types in –ansi and –ansiposix modes.
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The default type of field members is int, but whether it is signed or unsigned
int is defined by the implementation. It is thus wise to specify the signedness
of bitfields when they are declared. In this implementation, the default type
of a bitfield is signed.

The constant-expression that denotes the width of the bitfield must have a
value no greater than the width, in bits, of the type of the bitfield. An
implementation can allocate any addressable storage unit (referred to in this
discussion as simply a “unit”) large enough to hold a bitfield. If an adjacent
bitfield will not fit in the remainder of the unit, whether a unit is allocated
for it or bitfields are allowed to span units is implementation-defined. The
ordering of the bits within a unit is also implementation-defined.

A bitfield with no declarator, just a colon and a width, indicates an unnamed
field useful for padding. As a special case, a field with a width of zero, which
cannot have a declarator, specifies alignment of the next field at the next unit
boundary.

These implementation-defined characteristics make the use of bitfields
inherently nonportable, particularly if they are used in situations—in a
union, for example—where the underlying object may be accessed by
another data type.

The first bitfield encountered in a struct is not necessarily allocated on a unit
boundary and is packed into the current unit, if possible. A bitfield cannot
span a unit boundary. Bits for bitfields are allocated from left (most
significant) to right.

In the 64-bit implementation, bitfields are packed into as small a unit as
possible, where the smallest unit is 0 bytes in size and the largest unit is 8
bytes in size. The alignment requirements of the struct are influenced only
by the units used to pack bitfields, not by the type of the bitfields. This is
quite different from 32-bit mode, which is described next.

In the 32-bit implementation, the size of a unit for bitfields is equal to the size
of the type of the bitfield that started the unit. A new unit is allocated when
the alignment of the type of the next bitfield differs from the alignment of the
current unit, even if the number of bits in the next bitfield would fit into the
current unit. For example, if the current unit has char alignment and the next
bitfield has type int, then a new int-sized unit is allocated.
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In this implementation, for example, the following structure is two units in
size:

struct {
   char c;
   int k:9,
        :12;
   signed int j:5;
} s;

The first unit consists of the char c in its eight bits. The alignment of an int
differs from that of a char; hence, the next 24 bits are padding, followed by
an int unit. The (signed) int bitfield k is in the most significant 9 bits of the
int unit, followed by 12 pad bits and the 5 bits of the signed int j. The size of
this struct is eight bytes.

There are no arrays of bitfields. Since the address-of operator, &, cannot be
applied to bitfields, there are no pointers to bitfields.

Enumeration Declarations

Enumeration variables and constants have integral type. The syntax is:

enum-specifier:

enum {enum-list}

enum identifier {enum-list}

enum identifier

enum-list:

enumerator

enum-list , enumerator

enumerator:

identifier

identifier = constant-expression

The identifiers in an enum-list are declared as int constants and can appear
wherever such constants are allowed. If no enumerators with = appear, then
the values of the corresponding constants begin at 0 and increase by 1 as the
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declaration is read from left to right. An enumerator with = gives the
associated identifier the value indicated; subsequent identifiers continue the
progression from the assigned value. Note that the use of = may result in
multiple enumeration constants having the same integral value, even
though they are declared in the same enumeration declaration.

Enumerators are in the ordinary identifiers name space (see “Name Spaces”
on page 39). Thus, an identifier used as an enumerator may conflict with
identifiers used for objects, functions, and user-defined types in the same
scope.

The role of the identifier in the enum-specifier is entirely analogous to that
of the structure tag in a struct-specifier; it names a particular enumeration.
For example:

enum color { chartreuse, burgundy, claret=20, winedark };
...
enum color *cp, col;
...
col = claret;
cp = &col;
...
if (*cp == burgundy) ...

This example makes color the enumeration-tag of a type describing various
colors, and then declares cp as a pointer to an object of that type and col as an
object of that type. The possible values are drawn from the set {0,1,20,21}.
The tags of enumeration declarations are members of the single tag name
space, and thus must be distinct from tags of struct and union declarations.

Type Qualifiers

Type qualifiers have the syntax shown below:

type-qualifier:

const

volatile

The same type qualifier cannot appear more than once in the same specifier
list either directly or indirectly (through typedefs). The value of an object
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declared with the const type qualifier is constant. It cannot be modified,
although it can be initialized following the same rules as the initialization of
any other object. (See the discussion in “Initialization.”) Implementations
are free to allocate const objects, which are not also declared volatile, in
read-only storage.

An object declared with the volatile type qualifier may be accessed in
unknown ways or have unknown side effects. For example, a volatile object
may be a special hardware register. Expressions referring to objects qualified
as volatile must be evaluated strictly according to the semantics. When
volatile objects are involved, an implementation is not free to perform
optimizations that would otherwise be valid. At each sequence point, the
value of all volatile objects must agree with that specified by the semantics.

If an array is specified with type qualifiers, the qualifiers are applied to the
elements of the array. If a struct or union is qualified, the qualification
applies to each member.

Two qualified types are compatible if they are identically qualified versions
of compatible types. The order of qualifiers in a list has no effect on their
semantics.

The syntax of pointers allows the specification of qualifiers that affect either
the pointer itself or the underlying object. Qualified pointers are covered in
“Pointer Declarators” on page 86.

Declarators

Declarators have the syntax shown below:

declarator:

pointeropt direct-declarator

direct-declarator:

identifier

(declarator)

direct-declarator (parameter-type-listopt)

direct-declarator (identifier-listopt)
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direct-declarator [constant-expressionopt]

Portions of the list above are reproduced in the sections following, along
with expansions of their constituent parts. The grouping is the same as in
expressions.

Meaning of Declarators

Each declarator is an assertion that when a construction of the same form as
the declarator appears in an expression, it designates a function or object
with the scope, storage duration, and type indicated by the
declaration.

Each declarator contains exactly one identifier; it is this identifier that is
declared. If, in the declaration

T D1

D1 is simply an identifier, then the type of the identifier is T. If D1 has the form
(D)  then the underlying identifier has the type specified by the declaration
T D . Thus, a declarator in parentheses is identical to the unparenthesized
declarator. The binding of complex declarators can, however, be altered by
parentheses.

Pointer Declarators

Pointer declarators have the form
pointer:

* type-qualifier-listopt

* type-qualifier-listopt pointer

The following is an example of a declaration:

T D1

In this declaration, the identifier has type .. T , where the ..  is empty if D1

is just a plain identifier (so that the type of x in “int x” is just int). Then if D1

has the form *type-qualifier-listopt D, the type of the contained identifier is
.. (possibly-qualified) pointer to T.
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Qualifiers and Pointers

It is important to be aware of the distinction between a qualified pointer to
<type> and a pointer to <qualified type>. In the declarations below, ptr_to_const
is a pointer to const long.

const long *ptr_to_const;
long * const const_ptr;
volatile int * const const_ptr_to_volatile;

Thus, the long pointed to cannot be modified by the pointer. The pointer
itself, however, can be altered. const_ptr can be used to modify the long that
it points to, but the pointer itself cannot be modified. In the last example,
const_ptr_to_volatile is a constant pointer to a volatile int and can be used to
modify it. The pointer itself, however, cannot be modified.

Array Declarators

If D1 has the form

D[constant-expressionopt]

then the contained identifier has type “.. array of T.” The expression enclosed
in square brackets, if it exists, must be an integral constant expression whose
value is greater than zero. (See “Primary Expressions” on page 57.) When
several “array of” specifications are adjacent, a multi-dimensional array is
created; the constant expressions that specify the bounds of the arrays can be
missing only for the first member of the sequence.

The absence of the first array dimension is allowed if the array is external
and the actual definition (which allocates storage) is given elsewhere, or if
the declarator is followed by initialization. In the latter case, the size is
calculated from the number of elements supplied.

In order for two array types to be compatible, their element types must be
compatible. In addition, if both of their size specifications are present, they
must have the same value.

An array can be constructed from one of the basic types, from a pointer, from
a structure or union, or from another array (to generate a multi-dimensional
array).



88

Chapter 8: Declarations

The example below declares an array of float numbers and an array of
pointers to float numbers:

float fa[17], *afp[17];

Finally, this example declares a static three-dimensional array of integers,
with rank 3x5x7.

static int x3d[3][5][7];

In complete detail, x3d is an array of three items; each item is an array of five
items; each of the latter items is an array of seven integers. Any of the
expressions x3d, x3d[i], x3d[i][j], x3d[i][j][k] can reasonably appear in an
expression. The first three have type “array” and the last has type int.

Function Declarators and Prototypes

The syntax for function declarators is shown below:
direct-declarator (parameter-type-listopt)

direct-declarator (identifier-list
opt

)

parameter-type-list:

parameter-list

parameter-list , …

parameter-list:

parameter-declaration

parameter-list , parameter-declaration

parameter-declaration:

declaration-specifiers declarator

declaration-specifiers abstract-declarator
opt

identifier-list:

identifier

identifier-list , identifier
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Function declarators cannot specify a function or array type as the return
type. In addition, the only storage-class specifier that can be used in a
parameter declaration is register. For example, the declaration T D1, D1 has
the form:

D(parameter-type-list
opt

)

Or it has the form:

D(identifier-list
opt

)

The contained identifier has the type .. function returning T, and is possibly a
prototype, as discussed below.

A parameter-type-list declares the types of, and can declare identifiers for, the
formal parameters of a function. The absence of a parameter-type-list
indicates that no typing information is given for the function. A
parameter-type-list consisting only of the keyword void indicates that the
function takes zero parameters. If the parameter-type-list ends in ellipses (…),
the function can have one or more additional arguments of variable or
unknown type. (See <stdarg.h>.)

The semantics of a function declarator are determined by its form and
context. The possible combinations are:

• The declarator is not part of the function definition. The function is
defined elsewhere. In this case, the declarator cannot have an
identifier-list.

– If the parameter-type-list is absent, the declarator is an old-style
function declaration. Only the return type is significant.

– If the parameter-type-list is present, the declarator is a function
prototype.

• The declarator is part of the function definition:

– If the declarator has an identifier-list, the declarator is an old-style
function definition. Only the return type is significant.

– If the declarator has a parameter-type-list, the definition is in
prototype form. If no previous declaration for this function has been
encountered, a function prototype is created for it that has file
scope.
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If two declarations (one of which can be a definition) of the same function in
the same scope are encountered, they must match, both in type of return
value and in parameter-type-list. If one and only one of the declarations has a
parameter-type-list, the behavior varies between ANSI C and Traditional C, as
described below.

In traditional C, most combinations pass without any diagnostic messages.
However, an error message is emitted for cases where an incompatibility is
likely to lead to a run-time failure (e.g., a float type in a parameter-type-list of
a function prototype is totally incompatible with any old-style declaration
for the same function; therefore, Silicon Graphics considers such
redeclarations erroneous).

In ANSI C, if the type of any parameter declared in the parameter-type-list is
other than that which would be derived using the default argument
promotions, an error is posted. Otherwise, a warning is posted and the
function prototype remains in scope.

In all cases, the type of the return value of duplicate declarations of the same
function must match, as must the use of ellipses.

When a function is invoked for which a function prototype is in scope, an
attempt is made to convert each actual parameter to the type of the
corresponding formal parameter specified in the function prototype,
superseding the default argument promotions. In particular, floats specified in
the type list are not converted to double before the call. If the list terminates
with an ellipsis (...), only the parameters specified in the prototype have their
types checked; additional parameters are converted according to the default
argument promotions (discussed in “Type Qualifiers” on page 84).
Otherwise, the number of parameters appearing in the parameter list at the
point of call must agree in number with those in the function prototype.

The following are two examples of function prototypes:

double foo(int *first, float second, ... );
int *fip(int a, long l, int (*ff)(float));

The first prototype declares a function foo(), returning a double, that has (at
least) two parameters: a pointer to an int and a float. Further parameters can
appear in a call of the function and are unspecified. The default argument
promotions are applied to any unspecified arguments. The second prototype
declares a function fip(), that returns a pointer to an int. The function fip() has
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three parameters: an int, a long, and a pointer to a function returning an int
that has a single (float) argument.

Prototyped Functions Summarized

When a function call occurs, each argument is converted using the default
argument promotions unless that argument has a type specified in a
corresponding in-scope prototype for the function being called. It is easy to
envision situations that may prove disastrous if some calls to a function were
made with a prototype in-scope and some were not. Unexpected results can
also occur if a function was called with different prototypes in-scope. Thus,
if a function is prototyped, it is extremely important to make sure that all
invocations of the function use the prototype.

In addition to adding a new syntax for external declarations of functions,
prototypes have added a new syntax for external definitions of functions.
This syntax is termed function prototype form. It is highly important to define
prototyped functions using a parameter-type-list rather than a simple
identifier-list if the parameters are to be received as intended.

In ANSI C, unless the function definition has a parameter-type-list, it is
assumed that arguments have been promoted according to the default
argument promotions. Specifically, an in-scope prototype for the function at
the point of its definition has no effect on the type of the arguments that the
function expects.

In traditional C, if a function definition includes an identifier-list (that is, is
not in function-prototype form) and a prototype for the function is in scope
at the point of its definition, then earlier versions of the compilers merged
the two so that the function prototype took precedence. Since this worked
only for very simple cases, Silicon Graphics chose not to do so in this version
of the C compiler. Instead, the compilers issue error diagnostics when
argument-type mismatches are likely to result in faulty run-time behavior.

Restrictions on Declarators

Not all the possibilities allowed by the syntax of declarators are actually
permitted. The restrictions are as follows:



92

Chapter 8: Declarations

• functions cannot return arrays or functions although they can return
pointers

• no arrays of functions exist although arrays of pointers to functions can
exist

• a structure or union cannot contain a function, but it can contain a
pointer to a function.

As an example, the following declaration declares an integer i, a pointer ip to
an integer, a function f returning an integer, a function fip returning a pointer
to an integer, and a pointer pfi to a function, which returns an integer.

int i, *ip, f(), *fip(), (*pfi)();

It is especially useful to compare the last two. The binding of *fip() is *(pfi()).
The declaration suggests, and the same construction in an expression
requires, the calling of a function fip, and then using indirection through the
(pointer) result to yield an integer. In the declarator (*pfi)(), the extra
parentheses are necessary, as they are also in an expression, to indicate that
indirection through a pointer to a function yields a function, which is then
called; it returns an integer.

Type Names

In several contexts (for example, to specify type conversions explicitly by
means of a cast, in a function prototype, and as an argument of sizeof), it is
best to supply the name of a data type. This naming is accomplished using a
“type name,” whose syntax is a declaration for an object of that type without
the identifier. The syntax for type names is shown below:

type-name:

specifier-qualifier-list abstract-declarator
opt

abstract-declarator:

pointer

pointer
opt

 direct-abstract-declarator

direct-abstract-declarator:

(abstract-declarator)
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direct-abstract-declarator
opt

[constant-expression
opt

]

direct-abstract-declarator
opt

(parameter-type-list
opt

)

The type-name created can be used as a synonym for the type that the omitted
identifier would have. The syntax indicates that a set of empty parentheses
in a type name is interpreted as function with no parameter information rather
than as redundant parentheses surrounding the (omitted) identifier.
Examples of type names are shown in Table 8-1.

Implicit Declarations

It is not always necessary to specify both the storage class and the type of
identifiers in a declaration. The storage class is supplied by the context in
external definitions, and in declarations of formal parameters and structure
members. Missing storage class specifiers appearing in declarations outside
of functions are assumed to be extern (see “External Name Changes” on
page 25 for details). Missing type specifiers in this context are assumed to be
int. In a declaration inside a function, if a type but no storage class is
indicated, the identifier is assumed to be auto. An exception to the latter rule
is made for functions because auto functions do not exist. If the type of an
identifier is function returning <type>, it is implicitly declared to be extern.

Table 8-1 Examples of Type Names

Type Description

int integer

int * pointer to integer

int *[3] array of three pointers to integers

int (*)[3] pointer to an array of three integers

int *(void) function with zero arguments returning pointer to integer

int (*)(float, ...) pointer to function returning an integer, that has a
variable number of arguments the first of which is a float

int (*[3])() array of three pointers to functions returning an integer
for which no parameter type information is given
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In an expression, an identifier followed by a left parenthesis (indicating a
function call) that is not already declared, is implicitly declared to be of type
function returning int.

typedef

Declarations with the storage class specifier typedef do not define storage.
A typedef has the syntax shown below:

typedef-name:

identifier

Rather than becoming an object with the given type, an identifier appearing
in a typedef declaration becomes a synonym for the type. For example:

int intarray[10];

If, in the above example, the int type specifier were preceded with typedef,
the identifier declared as an object would instead be declared as a synonym
for the array type. This can appear as shown below:

typedef int intarray[10];

This example could be used as if it were a basic type. For example:

intarray ia;

After

typedef int MILES, *KLICKSP;
typedef struct {
double re, im;
}
complex;

the constructions

MILES distance;
extern KLICKSP metricp;
complex z, *zp;



Initialization

95

are all legal declarations. The type of distance  is int, that of metricp  is
pointer to int, and that of z  is the specified structure. The zp  is a pointer to
such a structure.

The typedef does not introduce brand-new types, only synonyms for types
that could be specified in another way. Thus, in the example above,
distance  is considered to have exactly the same type as any other int object.

Initialization

A declaration of an object or of an array of unknown size can specify an
initial value for the identifier being declared. The initializer is preceded by =
and consists of an expression or a list of values enclosed in nested braces.

initializer:

assignment-expression

{initializer-list}

{initializer-list ,}

initializer-list:

initializer

initializer-list , initializer

There cannot be more initializers than there are objects to be initialized. All
the expressions in an initializer for an object of static storage duration must
be constant expressions (see “Primary Expressions” on page 57.) Objects
with automatic storage duration can be initialized by arbitrary expressions
involving constants and previously declared variables and functions, except
for aggregate initialization, which can only include constant expressions.

Identifiers declared with block scope and either external or internal linkage
(that is, objects declared in a function with the storage-class specifier extern)
cannot be initialized.

Variables of static storage duration that are not explicitly initialized are
implicitly initialized to zero. The value of automatic and register variables
that are not explicitly initialized is undefined.



96

Chapter 8: Declarations

When an initializer applies to a scalar (a pointer or an object of arithmetic
type; see “Derived Types” on page 47), it consists of a single expression,
perhaps in braces. The initial value of the object is taken from the expression.
With the exception of type qualifiers associated with the scalar, which are
ignored during the initialization, the same conversions as for assignment are
performed.

Initialization of Aggregates

In traditional C it is illegal to initialize a union. It is also illegal to initialize a
struct of automatic storage duration.

In ANSI C, objects that are struct or union types can be initialized, even if
they have automatic storage duration. unions are initialized using the type
of the first named element in their declaration. The initializers used for a
struct or union of automatic storage duration must be constant expressions.

When the declared variable is a struct or array, the initializer consists of a
brace-enclosed, comma-separated list of initializers for the members of the
aggregate written in increasing subscript or member order. If the aggregate
contains subaggregates, this rule applies recursively to the members of the
aggregate.

If the initializer of a subaggregate or union begins with a left brace, its
initializers consist of all the initializers found between the left brace and the
matching right brace. If, however, the initializer does not begin with a left
brace, then only enough elements from the list are taken to account for the
members of the subaggregate; any remaining members are left to initialize
the next member of the aggregate of which the current subaggregate is a
part.

Within any brace-enclosed list, there should not be more initializers than
members. If fewer initializers occur in the list than there are members of the
aggregate, then the aggregate is padded with zeros.

Unnamed struct or union members are ignored during initialization.

In ANSI C, if the variable is a union, the initializer consists of a
brace-enclosed initializer for the first member of the union. Initialization of
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struct or union objects with automatic storage duration can be abbreviated
as a simple assignment of a compatible struct or union object.

A final abbreviation allows a char array to be initialized by a string literal. In
this case successive characters of the string literal initialize the members of
the array.

In ANSI C, an array of wide characters (that is, whose element type is
compatible with wchar_t) can be initialized with a wide string literal (see
“String Literals” on page 34).

Examples of Initialization

For example,

int x[] = { 1, 3, 5 };

declares and initializes x as a one-dimensional array that has three members,
since no size was specified and there are three initializers.

float y[4][3] =
{
{ 1, 3, 5 },
{ 2, 4, 6 },
{ 3, 5, 7 },
};

is a completely bracketed initialization: 1, 3, and 5 initialize the first row of
the array y[0], namely y[0][0], y[0][1], and y[0][2]. Likewise, the next two
lines initialize y[1] and y[2]. The initializer ends early, and therefore y[3] is
initialized with 0. The next example achieves precisely the same effect.

float y[4][3] =
{
1, 3, 5, 2, 4, 6, 3, 5, 7
};
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The initializer for y begins with a left brace but that for y[0] does not;
therefore, three elements from the list are used. Likewise, the next three are
taken successively for y[1] and y[2]. Also,

float y[4][3] = {
{ 1 }, { 2 }, { 3 }, { 4 }
};

initializes the first column of y (regarded as a two-dimensional array) and
leaves the rest 0.

The following example demonstrates the ANSI C rules. A union object

union dc_u {
double d;
char *cptr;
};

is initialized by using the first element only, as in

union dc_u dc0 = { 4.0 };

Finally,

char msg[] = "Syntax error on line %s\n";

shows a character array whose members are initialized with a string literal.
The length of the string (or size of the array) includes the terminating NULL
character, \0.
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9. Statements

A statement is a complete instruction to the computer. Except as indicated,
statements are executed in sequence. Statements have the form:

statement:

expression-statement

compound-statement

selection-statement

iteration-statement

jump-statement

labeled-statement

Expression Statement

Most statements are expression statements, which have the form:

expression-statement:

expressionopt;

Usually expression statements are expressions evaluated for their side
effects, such as assignments or function calls. A special case is the null
statement, which consists of only a semicolon.
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Compound Statement or Block

A compound statement (or block) groups a set of statements into a syntactic
unit. The set can have its own declarations and initializers, and has the
form:

compound-statement:

       {declaration-list
opt

  statement-list
opt

}

declaration-list:

        declaration

        declaration-list declaration

statement-list:

        statement

        statement-list statement

Declarations within compound statements have block scope. If any of the
identifiers in the declaration-list were previously declared, the outer
declaration is hidden for the duration of the block, after which it resumes its
force. In traditional C, however, function declarations always have file scope
whenever they appear.

Initialization of identifiers declared within the block is restricted to those
that have no linkage. Thus, the initialization of an identifier declared within
the block using the extern specifier is not allowed. These initializations are
performed only once, prior to the first entry into the block, for identifiers
with static storage duration. For identifiers with automatic storage duration,
it is performed each time the block is entered at the top. It is currently
possible (but a bad practice) to transfer into a block; in that case, no
initializations are performed.

Selection Statements

Selection statements include if and switch statements and have the form:

selection-statement:

if (expression) statement
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if (expression) statement else statement

switch (expression) statement

Selection statements choose one of a set of statements to execute, based on
the evaluation of the expression. The expression is referred to as the
controlling expression.

The if Statement

The controlling expression of an if statement must have scalar type.

For both forms of the if statement, the first statement is executed if the
controlling expression evaluates to nonzero. For the second form, the second
statement is executed if the controlling expression evaluates to zero. An else
clause that follows multiple sequential else-less if statements is associated
with the most recent if statement in the same block (that is, not in an
enclosed block).

The switch Statement

The controlling expression of a switch statement must have integral type.
The statement is typically a compound statement, some of whose
constituent statements are labeled case statements (see “Labeled
Statements” on page 106). In addition, at most one labeled default statement
can occur in a switch. The expression on each case label must be an integral
constant expression. No two expressions on case labels in the same switch
can evaluate to the same constant.

A compound statement attached to a switch can include declarations. Due
to the flow of control in a switch, however, initialization of identifiers so
declared are not performed if these initializers have automatic storage
duration.

The integral promotions are performed on the controlling expression, and
the constant expression of each case statement is converted to the promoted
type. Control is transferred to the labeled case statement whose expression
value matches the value of the controlling expression. If no such match
occurs, control is transferred either past the end of the switch or to the
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labeled default statement, if one exists in the switch. Execution continues
sequentially once control has been transferred.
In particular, the flow of control is not altered upon encountering another
case label. The switch statement is exited, however, upon encountering a
break or continue statement (see “The break Statement” on page 105 and
“The continue Statement” on page 104, respectively).

A simple example of a complete switch statement is:

switch (c) {
case 'o':
oflag = TRUE;
break;
case 'p':
pflag = TRUE;
break;
case 'r':
rflag = TRUE;
break;
default :
(void) fprintf(stderr,
        "Unknown option\n");
exit(2);
}

Iteration Statements

Iteration statements execute the attached statement (called the body)
repeatedly until the controlling expression evaluates to zero. In the for
statement, the second expression is the controlling expression. The format is:

iteration-statement:

while (expression) statement

do statement while (expression) ;

for (expressionopt  ; expressionopt  ; expressionopt) statement

The controlling expression must have scalar type.

The flow of control in an iteration statement can be altered by a
jump-statement (see “Jump Statements” on page 104).
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The while Statement

The controlling expression of a while statement is evaluated before each
execution of the body.

The do Statement

The controlling expression of a do statement is evaluated after each
execution of the body.

The for Statement

The for statement has the form:

for (expression
opt

 ; expression
opt

 ; expression
opt

)

statement

The first expression specifies initialization for the loop. The second
expression is the controlling expression, which is evaluated before each
iteration. The third expression often specifies incrementation. It is evaluated
after each iteration.

This statement is equivalent to:

expression-1;

while (expression-2)

{

        statement

        expression-3;

}

One exception exists, however. If a continue statement (see “The continue
Statement” on page 104) is encountered, expression-3 of the for statement is
executed prior to the next iteration.
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Any or all of the expressions can be omitted. A missing expression-2 makes
the implied while clause equivalent to while (1). Other missing expressions
are simply dropped from the expansion above.

Jump Statements

Jump statements cause unconditional transfer of control. The syntax is:

jump-statement:

goto identifier;

continue;

break;

return expression
opt

;

The goto  Statement

Control can be transferred unconditionally by means of a goto statement:

goto identifier;

The identifier must name a label located in the enclosing function. If the label
has not yet appeared, it is implicitly declared. (See “Labeled Statements” on
page 106 for more information.)

The continue Statement

The continue statement can appear only in the body of an iteration
statement. It causes control to pass to the loop-continuation portion of the
smallest enclosing while, do, or for statement—that is, to the end of the loop.
More precisely, consider each of the following statements:

while (...)
{
..
contin: ;
}
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do {
   ...
   contin: ;
} while (...) ;

for (...) {
   ...
   contin: ;
}

A continue is equivalent to goto contin. Following the contin:  is a null
statement.

The break Statement

The break statement can appear only in the body of an iteration statement
or code attached to a switch statement. It transfers control to the statement
immediately following the smallest enclosing iteration or switch statement,
terminating its execution.

The return Statement

A function returns to its caller by means of the return statement. The value
of the expression is returned to the caller after conversion, as if by
assignment, to the declared type of the function, as the value of the function
call expression. The return statement cannot have an expression if the type
of the current function is void.

If the end of a function is reached prior to the execution of an explicit return,
an implicit return (with no expression) is executed. If the value of the
function call expression is used when none is returned, the behavior is
undefined.
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Labeled Statements

Labeled statements have the following syntax:

labeled-statement:

identifier : statement

case constant-expression : statement

default : statement

A case or default label can appear only on statements that are part of a
switch.

Any statement can have a label attached as a simple identifier. The scope of
such a label is the current function. Thus, labels must be unique within a
function. In traditional C, identifiers used as labels and in object declarations
share a name space. Thus, use of an identifier as a label hides any declaration
of that identifier in an enclosing scope. In ANSI C, identifiers used as labels
are placed in a different name space from all other identifiers, and do not
conflict. Thus the following code fragment is legal in ANSI C, but not in
traditional C.

{
   int foo;
   foo = 1;
   …
   goto foo;
   …
   foo: ;
}
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10. External Definitions

A C program consists of a sequence of external definitions. An external
declaration becomes an external definition when it reserves storage for the
object or function indicated. Within the entire program, all external
declarations of the same identifier with external linkage refer to the same
object or function. Within a particular translation unit, all external
declarations of the same identifier with internal linkage refer to the same
object or function. The syntax is shown below:

external declaration:

function-definition

declaration

The syntax for external definitions that are not functions is the same as the
syntax for the corresponding external declarations. The syntax for the
corresponding external function definition differs somewhat from that of the
declaration, since the definition includes the code for the function itself.

External Function Definitions

Function definitions have the form:

function-definition:

declaration-specifiersopt declarator declaration-list
opt

compound statement

The form of a declarator used for a function definition can be:
pointer

opt
 direct-declarator ( parameter-type-list

opt
 )

pointer
opt

 direct-declarator ( identifier-list
opt

)
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In this syntax, the simplest instance of a direct-declarator is an identifier. (For
the exact syntax, see “Declarators” on page 85.)

The only storage-class specifiers allowed in a function definition are extern
and static.

If the function declarator has a parameter-type-list (see “Declarators” on
page 85), it is in function prototype form (as discussed in “Function
Declarators and Prototypes” on page 88), and the function definition cannot
have a declaration-list. Otherwise, the function declarator has a possibly
empty identifier-list, and the declaration-list declares the types of the formal
parameters. register is the only storage-class specifier permitted in
declarations that are in the declaration-list. Any identifiers in the identifier-list
of the function declarator that do not have their types specified in the
declaration-list are assumed to have type int.

Each parameter has block scope and automatic storage duration. ANSI C
and traditional C place parameters in different blocks. See “Scope” on
page 38 for details. Each parameter is also an lvalue, but since function calls
in C are by value, the modification of a parameter of arithmetic type cannot
affect the corresponding argument. Pointer parameters, while unmodifiable
for this reason, can be used to modify the objects to which they point.

Argument promotion rules are discussed in “Function Calls” on page 58.

The type of a function must be either void or an object type that is not an
array.

External Object Definitions

A declaration of an object with file scope that has either an initializer or static
linkage is an external object definition.

In ANSI C, a file-scope object declaration with external linkage that is
declared without the storage-class specifier extern, and also without an
initializer, results in a definition of the object at the end of the translation
unit. See the discussion in “Preprocessor Changes” on page 11 for more
information.
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A. Implementation-Defined Behavior

The following sections describe implementation-defined behavior. Each
section is keyed to the ANSI C Standard (ANSI X3.159-1989), Appendix F,
and each point is keyed to the section number of the ANSI C Standard. The
italicized lines, usually marked with bullets, are items from Appendix F of
the ANSI C Standard. Text following the italic lines describes the Silicon
Graphics implementation.

Translation (F.3.1)

• Whether each nonempty sequence of white-space characters other than newline
is retained or replaced by one space character (2.1.1.2).

A nonempty sequence of white-space characters (other than newline) is
retained.

• How a diagnostic is identified (2.1.1.3).

Successful compilations are silent. Diagnostics are, in general, emitted
to standard error. Diagnostic messages have the general pattern of
file-name,line-number:severity(number): message in 64-bit mode.
Diagnostics have a slightly different pattern in 32-bit mode. Also, the
range of numbers in 32-bit mode are disjointed from the range 64-bit
mode.

For example, typical messages from the ANSI C compiler front end in
64-bit mode look like this:

"t4.c”, line 4: error(1020):identifier "x” is undefined
"t4.c”, line 5: warning(1551):variable "y” is used before its value is set

Messages can also be issued by other internal compiler passes.
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• Classes of diagnostic messages, their return codes and control over them

Basically two classes of messages exist: warning and error. Warning
messages include the notation “warning” (which can be capitalized),
and allow the compilation to continue (return code 0). Error messages
cause the compilation to fail (return code 1).

Warning messages from the compiler front end have a unique
diagnostic number. You can suppress these messages individually by
putting the number in the numberlist of a -woff numberlist switch to
cc(1). numberlist is a comma-separated list of warning numbers and
ranges of warning numbers. For example, to suppress the warning
message in the previous example, type:

-woff 1551

To suppress warning messages numbered 1642, 1643, 1644, and 1759,
type:

-woff 1642-1644,1759

Environment (F.3.2)

• Support of freestanding environments.

No support is provided for a freestanding environment.
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• The semantics of the arguments to main (2.1.2.2.1).

main is defined to have the two required parameters argc and argv. A
third parameter, envp, is provided as an extension. That is, main would
have the equivalent of the prototype int main(int argc, char *argv[],
char *envp[]). The parameters have the following semantics:

– argc is the number of arguments on the command line.

– argv[0..argc-1] are pointers to the command-line arguments
(strings).

– argv[0] is the program name, as it appeared on the command line.

– argv[argc] is a null pointer.

– envp is an array of pointers to strings of the form NAME=value,
where NAME is the name of an environment variable and value is
its value. The array is terminated by a null pointer.

• What constitutes an interactive device (2.1.2.3).

Asynchronous terminals, including windows, are interactive devices
and are, by default, line buffered. In addition, the standard error device,
stderr, is unbuffered by default.

Identifiers (F.3.3)

• The number of significant initial characters (beyond 31) in an identifier
without external linkage (3.1.2).

All characters are significant.

• The number of significant initial characters (beyond 6) in an identifier with
external linkage (3.1.2).

All characters are significant.

• Whether case distinctions are significant in an identifier with external linkage
(3.1.2).

Case distinctions are always significant.
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Characters (F.3.4)

• The members of the source and execution character sets, except as explicitly
specified in the standard (2.2.1).

Only the mandated characters are present. The source character set
includes all printable ASCII characters, hexadecimal 0x20 through 0x7e,
and 0x7 through 0xc (the standard escape sequences).

• The values to which the standard escape sequences are translated (2.2.2).

The escape sequences are translated as specified for standard ASCII: \a
= 0x7, \b = 0x8, \f = 0xc, \n = 0xa, \r = 0xd, \t = 0x9, \v=0xb

• The shift states used for the encoding of multibyte characters (2.2.1.2)

The multibyte character set is identical to the source and execution
character sets. There are no shift states.

• The number of bits in a character in the execution character set (2.2.4.2.1).

There are eight bits per character.

• The mapping of members of the source character set (in character constants
and string literals) to members of the execution character set (3.1.3.4).

The mapping is the identity mapping.

• The value of an integer character constant that contains a character or escape
sequence not represented in the basic execution character set or in the extended
character set for a wide character constant (3.1.3.4).

With the exception of newline (0xa), backslash (’\’), and 0xff
(end-of-file), eight-bit values appearing in an integer character constant
are placed in the resultant integer in the same fashion as are characters
which are members of the execution character set (see below). A
backslash, newline, or 0xff can be placed in a character constant by
preceding it with a backslash (that is, “escaping” it).

• The value of an integer character constant that contains more than one
character or a wide character constant that contains more than one multibyte
character (3.1.3.4).

You can assign up to four characters to an int using a character
constant. The encoding of multiple characters in an integer consists of
the assignment of the corresponding character values of the n
characters in the constant to the least-significant n bytes of the integer,
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filling any unused bytes with zeros. The most significant byte assigned
contains the value of the lexically first character in the constant. For
example:

int t = 'a'; /* integer value 0x61 */
int t2 = 'ab'; /* integer value 0x6162 */
int t4 = 'abcd'; /* integer value 0x61626364 */
int t4 = 'abcde'; /* error: too many characters for */
 /* character constant */

Since the multibyte character set is identical to the source and execution
character sets, the above discussion applies to the assignment of more
than one multibyte character to a wide character constant.

• The current locale used to convert multibyte characters into corresponding
wide character (codes) for a wide character constant (3.1.3.4).

The mapping is the identity mapping to the standard ASCII character
set. The C locale is used.

• Whether a “plain” char has the same range of values as signed char or
unsigned char.

Plain char is the same as unsigned char by default. Use the –signed
option to cc to switch the range to be that of signed char.

Integers (F.3.5)

• The representations and sets of values of the various types of integers (3.1.2.5).

Integers are two’s complement binary. Table A-1 lists the sizes and
ranges of the various types of integer. The use of long long results in a
warning in –ansi and –ansiposix modes.

In the 32-bit implementation, to take full advantage of the support for
64 bits integral values in –ansi and –ansiposix modes, you can define
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the macro _LONGLONG on the cc(1) command line when using the
types __uint64_t, __int64_t, or library routines that are prototyped in
terms of these types.

• The result of converting an integer to a shorter signed integer, or the result of
converting an unsigned integer to a signed integer of equal length, if the value
cannot be represented (3.2.1.2).

The least significant n bits (n being the length of the result integer) of
the source are copied to the result.

• The results of bitwise operations on signed integers (3.3).

Table A-1 Integer Types and Ranges

type range: low high size (bits)

signed char –128 127 8

char, unsigned char 0 255 8

short, signed short –32768 32767 16

unsigned short int 0 65535 16

int, signed int –2147483648 2147483647 32

unsigned int 0 4294967295 32

long, signed long int –2147483648

(–32 mode)

–9223372036854775808
(–64 mode)

2147483647

(–32 mode)

9223372036854775807

(–64 mode)

32

64

unsigned long int 0 4294967295

(–32 mode)

18446744073709551615

(–64 mode)

32

64

long long
signed long
long int

–9223372036854775808 9223372036854775807 64

unsigned long long int 0 18446744073709551615 64
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With the exception of right-shift of a negative signed integer (defined
below), operations on signed and unsigned integers produce the same
bitwise results.

• The sign of the remainder on integer division (3.3.5)

The sign of the remainder is that of the numerator.

• The result of a right shift of a negative-valued signed integral type (3.3.7).

The sign bit is propagated, so the result value is still negative.

Floating Point (F.3.6)

• The representations and sets of values of the various types of floating-point
numbers (3.1.2.5).

The representation is IEEE:

– single (for float values)

– double (for double values and for long double values in 32-bit
mode)

– quad precision (for long double values in 64-bit mode).

See ANSI/IEEE Standard 754-1985 and IEEE Standard for Binary
Floating-Point Arithmetic. Table A-2 lists ranges of floating-point types.

• The type of rounding or truncation used when representing a floating-point
constant which is within its range.

Per IEEE, the rounding is round-to-nearest (IEEE Standard 754, sections
4.1 and 5.5). If the two values are equally near, then the one with the
least significant bit zero is chosen.

Table A-2 Ranges of Floating-Point Types

type range: min max size (bits)

float 1.1755e-38 3.4028e+38 32

double 2.225e-308 1.7977e+308 64

long double 2.225e-308 1.7977e+308 128 (–64 mode)
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• The direction of truncation when an integral number is converted to a
floating-point number that cannot exactly represent the original value
(3.2.1.3).

Conversion of an integral type to a float type, if the integral value is too
large to be exactly represented, gives the next higher value.

• The direction of truncation or rounding when a floating-point number is
converted to a narrower floating-point number.

Per IEEE, the rounding is round-to-nearest (IEEE Standard 754, Section
4.1 and 5.5). If the two values are equally near, then the one with the
least significant bit zero is chosen.

Arrays and Pointers (F.3.7)

• The type of integer required to hold the maximum size of an array— that is, the
type of the sizeof operator, size_t (3.3.3.4,4.1.1).

An unsigned long holds the maximum array size.

• The size of integer required for a pointer to be converted to an integer type
(3.3.4).

long ints are large enough to hold pointers in –32 mode. Both are 32 bits
wide.

long ints are large enough to hold pointers in –64 mode. Both are 64 bits
wide.

• The result of casting a pointer to an integer or vice versa (3.3.4).

The result is bitwise exact provided the integer type is large enough to
hold a pointer.

• The type of integer required to hold the difference between two pointers to
elements of the same array, ptrdiff_t (3.3.6, 4.1.1).

An int is large enough to hold the difference between two pointers to
elements of the same array in –32 mode.

A long int is large enough to hold the difference between two pointers
to elements of the same array in both –32 and –64 modes.
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Registers (F.3.8)

• The extent to which objects can actually be placed in registers by use of the
register storage-class specifier (3.5.1).

The compilation system can use up to eight of the register storage-class
specifiers for nonoptimized code in –32 mode, and it ignores register
specifiers for formal parameters. Use of register specifiers is not
recommended.

The register storage-class specifier is always ignored and the
compilation system makes its own decision about what should be in
registers for optimized code (–O2 and above).

Structures, Unions, Enumerations, and Bitfields (F.3.9)

• What is the result if a member of a union object is accessed using a member of a
different type (3.3.2.3).

The bits of the accessed member are interpreted according to the type
used to access the member. For integral types, the N bits of the type are
simply accessed. For floating types, the access might cause a trap if the
bits are not a legal floating-point value. For pointer types, the 32 bits (64
bits if in –64 mode) of the pointer are picked up. The usability of the
pointer depends on whether it points to a valid object or function, and
whether it is used appropriately. For example, a pointer whose
least-significant bit is set can point to a character, but not to an integer.

• The padding and alignment of members of structures (3.5.2.1).

This should present no problem unless binary data written by one
implementation are read by another.
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Members of structures are on the same boundaries as the base data type
alignments anywhere else. A word is 32 bits and is aligned on an
address, which is a multiple of 4. Unsigned and signed versions of a
basic type use identical alignment. Type alignments are given in
Table A-3.

• Whether a “plain” int bit-field is treated as a signed int bit-field or as an
unsigned int bit-field (3.5.2.1).

A “plain” int bit-field is treated as a signed int bit-field.

• The order of allocation of bitfields within a unit (3.5.2.1).

Bits in a bitfield are allocated with the most-significant bit first within a
unit.

• Whether a bitfield can straddle a storage-unit boundary (3.5.2.1).

Bitfields cannot straddle storage unit boundaries (relative to the
beginning of the struct or union), where a storage unit can be of size 8,
16, 32, or 64 bits.

Table A-3 Alignment of Structure Members

type alignment

long double double- word boundary (–32 mode)

quad-word boundary (–64 mode)

double double-word boundary

float word boundary

long long double-word boundary

long word boundary (–32 mode)

double-word boundary (–64 mode)

int word boundary

pointer word boundary

short half-word boundary

char byte boundary
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• The integer type chosen to represent the values of an enumeration type
(3.5.2.2).

The int type is always used. Note that long or long long enumerations
are not supported.

Qualifiers (F.3.10)

• What constitutes an access to an object that has volatile-qualified type (3.5.3).

Objects of volatile-qualified type are accessed only as specified by the
abstract semantics, and as would be expected on a RISC architecture.
No complex instructions exist (for example, read-modify-write).
volatile objects appearing on the left side of an assignment expression
are accessed once for the write. If the assignment is not simple, an
additional read access is performed. volatile objects appearing in other
contexts are accessed once per instance. Incrementation and
decrementation require both a read and a write access.

volatile objects that are memory-mapped are accessed only as
specified: if such an object is of size char, for example, adjacent bytes are
not accessed. If the object is a bitfield, a read may access the entire
storage unit containing the field. A write of an unaligned field
necessitates a read and write of the storage unit that contains it.

Declarators (F.3.11)

• The maximum number of declarators that can modify an arithmetic, structure,
or union type (3.5.4).

There is no limit.

Statements (F.3.12)

• The maximum number of case values in a switch statement (3.6.4.2).

There is no limit.
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Preprocessing Directives (F.3.13)

• Whether the value of a single-character character constant in a constant
expression that controls conditional inclusion matches the value of the same
character constant in the execution character set. Whether such a character
constant can have a negative value (3.8.1).

The preprocessing and execution phases use exactly the same meanings
for character constants.

A single-character character constant is always positive.

• The method for locating includable source files (3.8.2).

For file names surrounded by <>, the includable source files are
searched for in /usr/include.

The default search list includes /usr/include. You can change this list
with various compiler options. See cc(1), the –I, and –nostdinc options.

• The support of quoted names for includable source files (3.8.2).

Quoted names are supported for includable source files. For file names
surrounded by ““, the includable source files are searched for in the
directory of the current include file, then in /usr/include.

The default search list includes /usr/include. You can change this list
with various compiler options. See cc(1), the –I, and –nostdinc options.

• The mapping of source file character sequences (3.8.2).

The mapping is the identity mapping.

• The behavior on each recognized #pragma directive.

#pragma weak weak_symbol = strong_symbol

The weak_symbol is an alias that denotes the same function or data
object denoted by the strong_symbol, unless a defining declaration for
the weak_symbol is encountered at static link time. If encountered, the
defining declaration preempts the weak denotation.

You must define the strong_symbol within the same compilation unit in
which the pragma occurs. You should also declare the weak_symbol with
extern linkage in the same compilation unit. The extern declaration of
the weak symbol is not required, unless the symbol is referenced within
the compilation unit, but Silicon Graphics recommends it for
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type-checking purposes. The weak and strong symbols must be
declared with compatible types. When the strong symbol is a data
object, its declaration must be initialized.

Weak extern declarations are typically used to export non-ANSI C
symbols from a library without polluting the ANSI C name-space. As
an example, libc may export a weak symbol read(), which aliases a
strong symbol _read(), where _read() is used in the implementation of
the exported symbol fread(). You can either use the exported (weak)
version of read(), or define your own version of read() thereby
preempting the weak denotation of this symbol. This will not alter the
definition of fread(), since it only depends on the (strong) symbol
_read(), which is outside the ANSI C name-space.

#pragma weak weak_symbol

The pragma weak weak_symbol tells the link editor not to complain if it
does not find a defining declaration of the weak_symbol. References to
the symbol use the appropriate lvalue if the symbol is defined;
otherwise, it uses memory location zero (0).

#pragma once

This pragma has no effect in –32 mode, but will ensure idempotent
include files in –64 mode (i.e. that an include file is included at most once
in one compilation unit). Silicon Graphics recommends enclosing the
contents of an include file afile.h with an #ifdef directive similar to:

#ifndef afile_INCLUDED
#define afile_INCLUDED
<contents of afile.h>
#endif

#pragma pack(n)

This pragma controls the layout of structure offsets, such that the
strictest alignment for any structure member will be n bytes, where n is
0, 1, 2, 4, 8, or 16. When n is 0, the compiler returns to default alignment
for any subsequent struct definitions.

A struct type defined in the scope of a #pragma pack(n) has at most an
alignment of n bytes, and the packed characteristics of the type apply
wherever the type is used, even outside the scope of the pragma in
which the type was declared. The scope of a #pragma pack ends with
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the next #pragma pack, hence this pragma does not nest: There is no
way to “return” from one instance of the pragma to a lexically earlier
instance of the pragma.

A structure declaration must be subjected to identical instances of a
#pragma pack in all files, or else misaligned memory accesses and
erroneous struct member dereferencing may ensue.

Silicon Graphics strongly discourages the use of #pragma pack, since it
is a nonportable feature, may result in less efficient field dereferencing,
and it may not be supported in future compiler releases.

#pragma intrinsic(a_function)

This pragma allows certain preselected functions from math.h, stdio.h,
and string.h to be inlined at a call-site for execution efficiency. The
#pragma intrinsic has no effect on functions other than the preselected
ones. Exactly which functions may be inlined, how they are inlined,
and under what circumstances inlining occurs is implementation
defined and may vary from one release of the compilers to the next. The
inlining of intrinsics may violate some aspect of the ANSI C standard
(e.g., the errno setting for math.h functions). All intrinsics are activated
through pragmas in the respective standard header files and only when
the preprocessor symbol __INLINE_INTRINSICS is defined and the
appropriate include files are included. __INLINE_INTRINSICS is
predefined by default only in –cckr and –xansi mode.

The MIPSpro compilers also silently recognize many commonly used
pragmas; however, they have no effect. Some of these include:

#pragma no side effect(a_function)

Tells the compiler that a call to a function of the given name does not
cause any modifications to objects accessible outside the function body.
Such information can be useful for optimization and parallelization
purposes. In –64 mode, the syntax for this pragma is changed to
#pragma no_side_effect(a_function).

#pragma ident version

Adds a .comment section in the object file and puts the revision string
inside it.
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#pragma int_to_unsigned identifier

Identifies identifier as a function whose type was int in a previous
releases of the compilation system, but whose type is unsigned int in
the MIPSpro compiler release. The declaration of the identifier must
precede the pragma:

unsigned int strlen(const char*);
#pragma int_to_unsigned strlen

This declaration makes it possible for the compiler to identify where the
changed type may affect the evaluation of expressions.

Other #pragmas are used for C multiprocessing. They are described in
the Power C User’s Guide.

• The definitions for __DATE__ and __TIME__ when, respectively, the
date and time of translation are not available.

The date and time of translation are always available in this
implementation.

• What is the maximum nesting depth of include files (3.8.2).

The maximum nesting of include files is 200.

Library Functions (F.3.14)

• The null pointer constant to which the macro NULL expands (4.1.5)

The NULL pointer constant expands to an int with value zero. That is,

#define NULL 0

• The diagnostic printed by and the termination behavior of the assert function
(4.2).

If an assertion given by assert(EX)  fails, the following message is
printed on stderr using a _write to its underlying fileno.

Assertion failed: EX, file <filename>, line <linenumber>

This is followed by a call to abort(3c) (which exits with a SIGABRT).
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• The sets of characters tested for by the isalnum, isalpha, iscntrl, islower,
isprint, and isupper functions (4.3.1).

The following is true when operating in the C locale. The C locale is in
effect at program startup for programs compiled for pure ANSI C (that
is, -ansi), or by invoking setlocale(LC_ALL,”C”). The C locale can be
overridden at startup for any program that does not explicitly invoke
setlocale by setting the value of the environment variable CHRCLASS.
(See the man page ctype(3C).)

– isalnum is nonzero for the 26 letters a–z and the 26 letters A–Z and
the digits 0–9.

– isalpha is nonzero for the 26 letters a–z and the 26 letters A–Z.

– islower is nonzero for the 26 letters a–z.

– isupper is nonzero for the 26 letters A–Z.

– isprint is nonzero for the ASCII characters space through tilde (~)
(0x20 through 0x7e).

– iscntrl is nonzero for the ASCII characters NUL through US (0x0
through 0x1f).

• The values returned by the mathematics functions on domain errors (4.5.1).

The value returned by the math functions on domain errors is the
default IEEE Quiet NaN in all cases except the following:

– The functions pow and powf return -HUGE_VAL when the first
argument is zero and the second argument is negative. When both
arguments are zero, pow and powf return 1.0.

– The functions atan2 and atan2f return zero when both arguments
are zero.

• Whether mathematics functions set the integer expression errno to the value of
the macro ERANGE on underflow range errors (4.5.1).

Yes, except intrinsic functions that have been inlined. Note that fabs,
fabsf, sqrt, sqrtf, hypotf, fhypot, pow, and powf are intrinsic by default in
–xansi and –cckr modes and can be made intrinsic in –ansi mode by
using the compiler option D__INLINE_INTRINSICS.
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• Whether a domain error occurs or zero is returned when the fmod function has
a second argument of zero (4.5.6.4).

fmod(x,0)  gives a domain error and returns the default IEEE Quiet
NaN.

Signals

• The set of signals for the signal function (4.7.1.1).

The signal set is listed in Table A-4, which is from the signal(2) man
page. The set of signals conforms to the SVR4 ABI. Note that some of
the signals are not defined in –ansiposix mode. References in square
brackets beside the signal numbers are described under ‘”Signal Notes”
in the discussion of signal semantics.

Table A-4 Signals

Signal Number[Note] Meaning

SIGHUP 01 hangup

SIGINT 02 interrupt

SIGQUIT 03[1] quit

SIGILL 04[1] illegal instruction (not reset
when caught)

SIGTRAP 05[1][5] race trap (not reset when
caught)

SIGIOT 06 IOT instruction

SIGABRT 06[1] abort

SIGEMT 07[1][4] MT instruction

SIGFPE 08[1] floating point exception

SIGKILL 09 kill (cannot be caught or
ignored)

SIGBUS 10[1] bus error

SIGSEGV 11[1] segmentation violation
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SIGSYS 12[1] bad argument to system call

SIGPIPE 13 write on a pipe with no one to
read it

SIGALRM 14 alarm clock

SIGTERM 15 software termination signal

SIGUSR1 16 user-defined signal 1

SIGUSR2 17 user-defined signal 2

SIGCLD 18[2] termination of a child process

SIGGHLD 18 4.3 BSD/POSIX name

SIGPWR 19[2] power fail (not reset when
caught)

SIGWINCH 20[2] window size changes

SIGURG 21[2] urgent condition on I/O
channel

SIGIO 22[2] input/output possible

SIGPOLL 22[3] selectable event pending

SIGSTOP 23[6] stop (cannot be caught or
ignored)

SIGTSTP 24[6] stop signal generated from
keyboard

SIGCONT 25[6] continue after stop (cannot be
ignored)

SIGTTIN 26[6] background read from control
terminal

SIGTTOU 27[6] background write to control
terminal

SIGVTALRM 28 virtual time alarm

Table A-4 (continued) Signals

Signal Number[Note] Meaning
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• The semantics for each signal recognized by the signal function (4.7.1.1).

In the signal invocation signal(sig, func) , func can be the address of a
signal handler, handler, or one of the two constant values (defined in
<sys/signal.h>) SIG_DFL or SIG_IGN. The semantics of these values are:

SIG_DFL terminate process upon receipt of signal sig
(This is the default if no call to signal for signal sig occurs.)
Upon receipt of the signal sig, the receiving process is to be
terminated with all of the consequences outlined in exit(2).
See note 1 under “Signal Notes” on page 129.

SIG_IGN ignore signal
The signal sig is to be ignored.

handler catch signal
func is the address of function handler.

Note: The signals SIGKILL, SIGSTOP, and SIGCONT cannot be ignored.

If func is the address of handler, upon receipt of the signal sig, the receiving
process is to invoke handler as follows:

handler (int sig, int code, struct sigcontext *sc);

SIGPROF 29 profiling alarm

SIGXCPU 30 cpu time limit exceeded [see
setrlimit(2)]

SIGXFSZ 31 file size limit exceeded [see
setrlimit(2)]

SIG32 32 reserved for kernel usage

Table A-4 (continued) Signals

Signal Number[Note] Meaning
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The remaining arguments are supplied as extensions and are optional. The
value of the second argument code is meaningful only in the cases shown in
Table A-5.

The third argument, sc, is a pointer to a struct sigcontext (defined in
<sys/signal.h>) that contains the processor context at the time of the signal.
Upon return from handler, the receiving process resumes execution at the
point that it was interrupted.

Before entering the signal-catching function, the value of func for the caught
signal is set to SIG_DFL, unless the signal is SIGILL, SIGTRAP, or SIGPWR.
This means that before exiting the handler, a call to signal is necessary to
catch future signals.

Suppose a signal that is to be caught occurs during:

• a read(2), a write(2), an open(2)

• an ioctl(2) system call on a slow device (like a terminal; but not a file)

• a pause(2) system call

• a wait(2) system call that does not return immediately due to the
existence of a previously stopped or zombie process

Table A-5 Valid Codes in a Signal-Catching Function

Condition Signal Code

User breakpoint SIGTRAP BRK_USERBP

User breakpoint SIGTRAP BRK_SSTEPBP

Integer overflow SIGTRAP BRK_OVERFLOW

Divide by zero SIGTRAP BRK_DIVZERO

Multiply overflow SIGTRAP BRK_MULOVF

Invalid virtual address SIGSEGV EFAULT

Read-only address SIGSEGV EACCESS

Read beyond mapped
object

SIGSEGV ENXIO
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The signal catching function is executed and then the interrupted system call
returns a –1 to the calling process with errno set to EINTR.

Note: The signals SIGKILL and SIGSTOP cannot be caught.

Signal Notes

1. If SIG_DFL is assigned for SIGQUIT, SIGILL, SIGTRAP, SIGABRT,
SIGEMT, SIGFPE, SIGBUS, SIGSEGV, or SIGSYS, in addition to the
process being terminated, a “core image” is constructed in the current
working directory of the process, if the following conditions are met:

The effective user ID and the real user ID of the receiving process are
equal. An ordinary file named core exists and is writable or can be
created. If the file must be created, it has the following properties:

• a mode of 0666 modified by the file creation mask [see umask(2)]

• a file owner ID that is the same as the effective user ID of the
receiving process

• a file group ID that is the same as the effective group ID of the
receiving process

Note: The core file can be truncated if the resultant file size would
exceed either ulimit [see ulimit(2)] or the process's maximum core file
size [see setrlimit(2)].

2. For the signals SIGCLD, SIGWINCH, SIGPWR, SIGURG, and SIGIO,
the actions associated with each of the three possible values for func are:

SIG_DFL ignore signal
The signal is to be ignored.

SIG_IGN ignore signal
The signal is to be ignored. Also, if sig is SIGCLD, the
calling process's child processes do not create zombie
processes when they terminate [see exit(2)].

handler catch signal
If the signal is SIGPWR, SIGURG, SIGIO, or
SIGWINCH, the action to be taken is the same as that
described above when func is the address of a function.
The same is true if the signal is SIGCLD with one
exception: while the process is executing the
signal-catching function, all terminating child processes
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are queued. The wait system call removes the first entry
of the queue. If the signal system call is used to catch
SIGCLD, the signal handler must be reattached when
exiting the handler, and at that time—if the queue is not
empty—SIGCLD is raised again before signal returns.
See wait(2).

In addition, SIGCLD affects the wait and exit system calls as follows:

wait If the handler parameter of SIGCLD is set to SIG_IGN
and a wait is executed, the wait blocks until all of the
calling process's child processes terminate; it then
returns a value of -1 with errno set to ECHILD.

exit If in the exiting process's parent process the handler
parameter of SIGCLD is set to SIG_IGN, the exiting
process does not create a zombie process.

When processing a pipeline, the shell makes the last process in the
pipeline the parent of the preceding processes. A process that can be
piped into in this manner (and thus become the parent of other
processes) should take care not to set SIGCLD to be caught.

3. SIGPOLL is issued when a file descriptor corresponding to a STREAMS
[see intro(2)] file has a “selectable” event pending. A process must
specifically request that this signal be sent using the I_SETSIG ioctl call.
Otherwise, the process never receives SIGPOLL.

4. SIGEMT is never generated on an IRIS 4D system.

5. SIGTRAP is generated for breakpoint instructions, overflows, divide by
zeros, range errors, and multiply overflows. The second argument code
gives specific details of the cause of the signal. Possible values are
described in <sys/signal.h>.

6. The signals SIGSTOP, SIGTSTP, SIGTTIN, SIGTTOU, and SIGCONT are
used by command interpreters like the C shell [see csh(1)] to provide job
control. The first four signals listed stop the receiving process unless the
signal is caught or ignored. SIGCONT resumes a stopped process.
SIGTSTP is sent from the terminal driver in response to the SWTCH
character being entered from the keyboard [see termio(7)]. SIGTTIN is
sent from the terminal driver when a background process attempts to
read from its controlling terminal. If SIGTTIN is ignored by the process,
then the read returns EIO. SIGTTOU is sent from the terminal driver
when a background process attempts to write to its controlling terminal
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when the terminal is in TOSTOP mode. If SIGTTOU is ignored by the
process, then the write succeeds, regardless of the state of the
controlling terminal.

Signal does not catch an invalid function argument, func, and results are
undefined when an attempt is made to execute the function at the bad
address.

SIGKILL immediately terminates a process, regardless of its state.

Processes stopped via job control (typically <Ctrl>-Z) do not act upon any
delivered signals other than SIGKILL until the job is restarted. Processes
blocked via a blockproc(2) system call unblock if they receive a signal that is
fatal (that is, a non-job-control signal that they are not catching). These
processes remained stopped, however, if the job they are a part of is stopped.
Only upon restart do they die. Any non-fatal signals received by a blocked
process do not cause the process to be unblocked. An unblockproc(2) or
unblockprocall(2) system call is necessary.

If an instance of signal sig is pending when signal(sig,func) is executed, the
pending signal is cancelled unless it is SIGKILL.

signal() fails if sig is an illegal signal number, including SIGKILL and
SIGSTOP, or if an illegal operation is requested (such as ignoring SIGCONT,
which is ignored by default). In these cases, signal() returns SIG_ERR and
sets errno to EINVAL.

After a fork(2), the child inherits all handlers and signal masks. If any signals
are pending for the parent, they are not inherited by the child.

The exec(2) routines reset all caught signals to the default action; ignored
signals remain ignored; the blocked signal mask is unchanged and pending
signals remain pending.

These man pages contain other relevant information: intro(2), blockproc(2),
kill(2), pause(2), ptrace(2), sigaction(2), sigset(2), wait(2), setjmp(3C), sigvec(3B),
and kill(1).
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Diagnostics

Upon successful completion, signal returns the previous value of func for the
specified signal sig. Otherwise, a value of SIG_ERR is returned and errno is
set to indicate the error. SIG_ERR is defined in the header file <sys/signal.h>.

Caution: Signals raised by the instruction stream—SIGILL, SIGEMT,
SIGBUS, SIGSEGV—will cause infinite loops if their handler returns, or the
action is set to SIG_IGN. The POSIX signal routines (sigaction(2),
sigpending(2), sigprocmask(2), sigsuspend(2), sigsetjmp(3)), and the 4.3BSD
signal routines (sigvec(3B), signal(3B), sigblock(3B), sigpause(3B),
sigsetmask(3B)) must never be used with signal(2) or sigset(2).

Before entering the signal-catching function, the value of func for the caught
signal is set to SIG_DFL, unless the signal is SIGILL, SIGTRAP, or SIGPWR.
This means that before exiting the handler, a signal call is necessary to again
set the disposition to catch the signal.

Note that handlers installed by signal execute with no signals blocked, not
even the one that invoked the handler.

• The default handling and the handling at program startup for each signal
recognized by the signal function (4.7.1.1).

Each signal is set to SIG_DFL at program startup.

• If the equivalent of signal(sig, SIG_DFL); is not executed prior to the call of a
signal handler, the blocking of the signal that is performed(4.7.1.1).

The equivalent of signal(sig, SIG_DFL); is executed prior to the call of
a signal handler unless the signal is SIGILL, SIGTRAP, or SIGPWR. See
the signal(3B) man page for information on the support for the BSD 4.3
signal facilities.

• Whether the default handling is reset if the SIGILL signal is received by a
handler specified to the signal function (4.7.1.1).

No.
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Streams and Files

• Whether the last line of a text stream requires a terminating newline character
(4.9.2).

There is no requirement that the last line of a text stream have a
terminating newline: the output is flushed when the program
terminates, if not earlier (as a result of fflush() call). However,
subsequent processes/programs reading the text stream or file might
expect the newline to be present; it customarily is in IRIX text files.

• Whether space characters that are written out to a text stream immediately
before a newline character appear when read in (4.9.2).

All text characters (including spaces before a newline character) written
out to a text stream appear exactly as written when read back in.

• The number of null characters that can be appended to data written to a binary
stream (4.9.2).

The library never appends nulls to data written to a binary stream.
Only the characters written by the application are written to the output
stream, whether binary or text. Text and binary streams are identical:
there is no distinction.

• Whether the file position indicator of an append mode stream is initially
positioned at the beginning or end of the file (4.9.2).

The file position indicator of an append stream is initially positioned at
the end of the file.

• Whether a write on a text stream causes the associated file to be truncated
beyond that point (4.9.3).

A write on a text stream does not cause the associated file to be
truncated.

• The characteristics of file buffering (4.9.3).

Files are fully buffered, as described in paragraph 3, section 4.9.3, of
ANSI X3.159-1989.

• Whether a zero-length file actually exists (4.9.3).

Zero-length files exist, but have no data, so a read on such a file gets an
immediate EOF.
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• The rules for composing valid file names (4.9.3).

Filenames consist of 1 to FILENAME_MAX characters. These
characters can be selected from the set of all character values excluding
\0 (null) and the ASCII code for / (slash).

Note that it is generally unwise to use *, ?, [, or ] as part of file names
because of the special meaning attached to these characters by the shell
(see sh(1)). Although permitted, the use of unprintable characters
should be avoided.

• Whether the same file can be opened multiple times (4.9.3).

A file can be open any number of times.

• The effect of the remove function on an open file (4.9.4.1).

For local disk files, a remove removes a directory entry pointing to the
file but has no effect on the file or the program with the file open. For
files remotely mounted via NFS software, the effect is unpredictable
(the file might be removed making further I/O impossible through
open streams, or it might behave like a local disk file) and might
depend on the version(s) of NFS involved.

• The effect if a file with the new name exists prior to a call to the rename
function (4.9.4.2).

If the new name exists, the file with that new name is removed (See
rm(1)) before the rename is done.

• The output for %p conversion in the fprintf function (4.9.6.1).

%p is treated the same as %x.

• The input for %p conversion in the fscanf function (4.9.6.2).

%p is treated the same as %x.

• The interpretation of a – character that is neither the first nor the last character
in the scanlist for %[ conversion in the fscanf function (4.9.6.2).

A – character that does not fit the pattern mentioned above is used as a
shorthand for ranges of characters. For example, [xabcdefgh] and
[xa-h] mean that characters a through h and the character x are in the
range (called a scanset in 4.9.6.2).
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Temporary Files

• Whether a temporary file is removed if a program terminates abnormally
(4.9.4.3).

Temporary files are removed if a program terminates abnormally.

errno  and perror

• The value to which the macro errno is set by the fgetpos or ftell function on
failure (4.9.9.1, 4.9.9.4).

errno is set to EBADF (9) by the fgetpos or ftell function on failure.

• The messages generated by the perror function (4.9.10.4).

The message generated is simply a string. The content of the message
given for each legal value of errno is given in the list below, which is of
the format errno_value:message.

 1: No permission match (–32 mode)
 1: Not privileged (–64 mode)

 2: No such file or directory

 3: No such process

 4: Interrupted system call

 5: I/O error

 6: No such device or address

 7: Arg list too long

 8: Exec format error

 9: Bad file number

 10: No child processes

 11: Resource temporarily unavailable

 12: Not enough space

 13: Permission denied

 14: Bad address

 15: Block device required
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 16: Device or resource busy (–32 mode)
 16: Device busy (–64 mode)

 17: File exists

 18: Cross-device link

 19: No such device

 20: Not a directory

 21: Is a directory

 22: Invalid argument

 23: Too many open files in system (–32 mode)
 23: File table overflow (–64 mode)

 24: Too many open files in a process (–32 mode)
 24: Too many open files (–64 mode)

 25: Inappropriate IOCTL operation (–32 mode)
 25: Not a typewriter (–64 mode)

 26: Text file busy

 27: File too large

 28: No space left on device

 29: Illegal seek

 30: Read-only file system

 31: Too many links

 32: Broken pipe

 33: Argument out of domain

 34: Result too large

 35: No message of desired type

 36: Identifier removed

 37: Channel number out of range

 38: Level 2 not synchronized

 39: Level 3 halted

 40: Level 3 reset
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 41: Link number out of range

 42: Protocol driver not attached

 43: No CSI structure available

 44: Level 2 halted

 45: Deadlock situation detected/avoided

 46: No record locks available

 47: Error 47

 48: Error 48

 49: Error 49

 50: Bad exchange descriptor

 51: Bad request descriptor

 52: Message tables full

 53: Anode table overflow

 54: Bad request code

 55: Invalid slot

 56: File locking deadlock

 57: Bad font file format

 58: Error 58

 59: Error 59

 60: Not a stream device

 61: No data available

 62: Timer expired

 63: Out of stream resources

 64: Machine is not on the network

 65: Package not installed

 66: Object is remote

 67: Link has been severed
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 68: Advertise error

 69: Srmount error

 70: Communication error on send

 71: Protocol error

 72: Error 72

 73: Error 73

 74: Multihop attempted

 75: Error 75

 76: Error 76

 77: Not a data message

 78: Error 78 (–32 mode)
 78: File name too long (–64 mode)

 79: Error 79 (–32 mode)
 79: Value too large for defined data type (–64 mode)

 80: Name not unique on network

 81: File descriptor in bad state

 82: Remote address changed

 83: Cannot access a needed shared library

 84: Accessing a corrupted shared library

 85: .lib section in a.out corrupted

 86: Attempting to link in more shared libraries than system limit

 87: Cannot exec a shared library directly

 88: Invalid System Call (–32 mode)
 88: Illegal byte sequence (–64 mode)

 89: Error 89 (–32 mode)
 89: Operation not applicable

 90: Error 90 (–32 mode)
 90: Too many symbolic links in path name traversal (–64 mode)
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 91: Error 91 (–32 mode)
 91: Restartable system call (–64 mode)

 92: Error 92 (–32 mode)
 92: If pipe/FIFO, don't sleep in stream head (–64 mode)

 93: Error 93 (–32 mode)
 93: Directory not empty (–64 mode)

 94: Error 94 (–32 mode)
 94: Too many users (–64 mode)

 95: Error 95 (–32 mode)
 95: Socket operation on non-socket (–64 mode)

 96: Error 96 (–32 mode)
 96: Destination address required (–64 mode)

 97: Error 97 (–32 mode)
 97: Message too long (–64 mode)

 98: Error 98 (–32 mode)
 98: Protocol wrong type for socket (–64 mode)

 99: Error 99 (–32 mode)
 99: Option not supported by protocol (–64 mode)

100: Error 100

101: Operation would block (–32 mode)
101: Error 101 (–64 mode)

102: Operation now in progress (–32 mode)
102: Error 102 (–64 mode)

103: Operation already in progress (–32 mode)
103: Error 103 (–64 mode)

104: Socket operation on non-socket (–32 mode)
104: Error 104 (–64 mode)

105: Destination address required (–32 mode)
105: Error 105 (–64 mode)

106: Message too long (–32 mode)
106: Error 106 (–64 mode)

107: Protocol wrong type for socket (–32 mode)
107: Error 107 (–64 mode)
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108: Option not supported by protocol (–32 mode)
108: Error 108 (–64 mode)

109: Protocol not supported (–32 mode)
109: Error 109 (–64 mode)

110: Socket type not supported (–32 mode)
110: Error 110 (–64 mode)

111: Operation not supported on socket (–32 mode)
111: Error 111 (–64 mode)

112: Protocol family not supported (–32 mode)
112: Error 112 (–64 mode)

113: Address family not supported by protocol family (–32 mode)
113: Error 113 (–64 mode)

114: Address already in use (–32 mode)
114: Error 114 (–64 mode)

115: Can't assign requested address (–32 mode)
115: Error 115 (–64 mode)

116: Network is down (–32 mode)
116: Error 116 (–64 mode)

117: Network is unreachable (–32 mode)
117: Error 117 (–64 mode)

118: Network dropped connection on reset (–32 mode)
118: Error 118 (–64 mode)

119: Software caused connection abort (–32 mode)
119: Error 119 (–64 mode)

120: Connection reset by peer (–32 mode)
120: Protocol not supported (–64 mode)

121: No buffer space available (–32 mode)
121: Socket type not supported (–64 mode)

122: Socket is already connected (–32 mode)
122: Operation not supported on transport endpoint (–64 mode)

123: Socket is not connected (–32 mode)
123: Protocol family not supported (–64 mode)
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124: Can't send after socket shutdown (–32 mode)
124: Address family not supported by protocol family (–64 mode)

125: Too many references: can't splice (–32 mode)
125: Address already in use (–64 mode)

126: Connection timed out (–32 mode)
126: Cannot assign requested address (–64 mode)

127: Connection refused (–32 mode)
127: Network is down (–64 mode)

128: Host is down (–32 mode)
128: Network is unreachable (–64 mode)

129: Host is unreachable (–32 mode)
129: Network dropped connection because of reset (–64 mode)

130: Too many levels of symbolic links (–32 mode)
130: Software caused connection abort (–64 mode)

131: File name too long (–32 mode)
131: Connection reset by peer (–64 mode)

132: Directory not empty (–32 mode)
132: No buffer space available (–64 mode)

133: Disk quota exceeded (–32 mode)
133: Transport endpoint is already connected (–64 mode)

134: Stale NFS file handle (–32 mode)
133: Transport endpoint is already connected (–64 mode)

 134: Transport endpoint is not connected (–64 mode)

 135: Structure needs cleaning (–64 mode)

 136: Error 136 (–64 mode)

 137: Not a name file (–64 mode)

 138: Not available (–64 mode)

 139: Is a name file (–64 mode)

 140: Remote I/O error (–64 mode)

 141: Reserved for future use (–64 mode)

 142: Error 142 (–64 mode)
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 143: Cannot send after socket shutdown (–64 mode)

 144: Too many references: cannot splice (–64 mode)

 145: Connection timed out (–64 mode)

 146: Connection refused (–64 mode)

 147: Host is down (–64 mode)

 148: No route to host (–64 mode)

 149: Operation already in progress (–64 mode)

 150: Operation now in progress (–64 mode)

 151: Stale NFS file handle (–64 mode)

See the perror(3C) man page for further information.

Memory Allocation

The behavior of the calloc, malloc, or realloc function if the size requested is zero
(4.10.3).

The malloc in libc.a returns a pointer to a zero-length space if a size of zero is
requested. Successive calls to malloc return different zero-length pointers. If
the library libmalloc.a is used, malloc returns 0 (the NULL pointer).

The abort  Function

The behavior of the abort function with regard to open and temporary files
(4.10.4.1).

Open files are not flushed, but are closed. Temporary files are removed.
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The exit  Function

The status returned by the exit function if the value of the argument is other than
zero, EXIT_SUCCESS or EXIT_FAILURE (4.10.4.3).

The status returned to the environment is the least significant eight bits of
the value passed to exit.

The getenv  Function

The set of environment names and the method for altering the environment list used
by the getenv function (4.10.4.4).

Any string can be used as the name of an environment variable, and any
string can be used for its value. The function putenv alters the environment
list of the application. For example,

putenv("MYNAME=foo")

This sets the value of the environment variable MYNAME to “foo.” If the
environment variable MYNAME already existed, its value is changed. If it
did not exist, it is added. The string passed to putenv actually becomes part
of the environment, and changing it later alters the environment. Further, the
string should not be space that was automatically allocated (for example, an
auto array); rather, it should be space that is either global or malloced. For
more information, see the putenv(3C) man page.

It is not wise to alter the value of well-known environment variables. For the
current list, see the man page for environ(3c).

The system  Function

The contents and mode of execution of the string passed to the system function
(4.10.4.5).

The contents of the string should be a command string, as if typed to a
normal IRIX shell, such as sh(1). A shell (sh(1)) is forked, and the string is
passed to it. The current process waits until the shell has completed and
returns the exit status of the shell as the return value.
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The strerror  Function

The contents of the error message strings returned by the strerror function
(4.11.6.2).

The string is exactly the same as the string output by perror, which is
documented in “errno and perror” on page 135.

Timezones and the clock  Function.

• The local time zone and daylight saving time (4.12.1).

Local time and daylight saving time are determined by the value of the
TZ environment variable. TZ is set by init(1) to the default value
indicated in the file /etc/TIMEZONE, and this value is inherited in the
environment of all processes. If TZ is unset , the local time zone
defaults to GMT (Greenwich mean time, or coordinated universal
time), and daylight saving time is not in effect. See the man pages
ctime(3C), time(2), timezone(4), environ(5), getenv(3), and other related
man pages for the format of TZ.

• The era for the clock function (4.12.2.1).

clock counts seconds from 00:00:00: GMT, January 1, 1970. What was
once known as Greenwich mean time (GMT) is now known as
coordinated universal time, though the man pages do not reflect this
change yet. See the ctime(3C) man page for further information.

Locale-Specific Behavior (F.4)

For information on locale-specific behavior, refer to the X/Open Portability
Guide, Volume 3, “XSI Supplementary Definitions,” published by Prentice Hall,
Englewood Cliffs, New Jersey 07632, ISBN 0-13-685-850-3.

Common Extensions (F.5)

The following extensions are widely used in many systems, but are not
portable to all implementations. The inclusion of any extension that can
cause a strictly conforming program to become invalid renders an
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implementation nonconforming. Examples of such extensions are new
keywords, or library functions declared in standard headers or predefined
macros with names that do not begin with an underscore. The Standard’s
description of each extension is followed by a definition of any Silicon
Graphics support/nonsupport of each common extension.

Environment Arguments (F.5.1)

In a hosted environment, the main function receives a third argument, char
*envp[], that points to a null-terminated array of pointers to char. Each of these
pointers points to a string that provides information about the environment for this
execution of the process (2.1.2.1.1).

This extension is supported.

Specialized Identifiers

Characters other than the underscore _, letters, and digits, that are not defined in the
required source character set (such as dollar sign $, or characters in national
character sets) can appear in an identifier.

If the –dollar option is given to cc, then the dollar sign ($) is allowed in
identifiers.

Lengths and Cases of Identifiers

All characters in identifiers (with or without external linkage) are significant and
case distinctions are observed (3.1.2).

All characters are significant. Case distinctions are observed.
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Scopes of Identifiers (F.5.4)

A function identifier, or the identifier of an object (the declaration of which contains
the keyword extern) has file scope.

This is true of the compiler when invoked with cc –cckr (that is, when
requesting traditional C). When compiling in ANSI mode (by default or with
one of the ANSI options) function identifiers (and all other identifiers) have
block scope when declared at block level.

Writable String Literals (F.5.5)

String literals are modifiable. Identical string literals shall be distinct (3.1.4).

All string literals are distinct and writable when the –use_readwrite_const
option is in effect. Otherwise, string literals may not be writable.

Other Arithmetic Types (F.5.6)

Other arithmetic types, such as long long int and their appropriate conversions, are
defined (3.2.2.1).

Yes.

Function Pointer Casts (F.5.7)

A pointer to an object or to void can be cast to a pointer to a function, allowing data
to be invoked as a function (3.3.4). A pointer to a function can be cast to a pointer to
an object, or to void, allowing a function to be inspected or modified (for example,
by a debugger) (3.3.4).

Function pointers can be cast to a pointer to an object, or to void, and vice
versa.

Data can be invoked as a function.
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Casting a pointer to a function to a pointer to an object or void does allow a
function to be inspected. Normally, functions cannot be written to, since text
space is read-only. Dynamically loaded functions are loaded (by a user
program) into data space and can be written to.

Non-int Bit-Field Types (F.5.8)

Types other than int, unsigned int, and signed int can be declared as bitfields, with
appropriate maximum widths (3.5.2.1).

A bitfield can be any integral type in –xansi and –cckr modes. However,
bitfields of types other than int, signed int, and unsigned int result in a
warning diagnostic in –ansi mode.

The fortran  Keyword (F.5.9)

The fortran declaration specifier can be used in a function declaration to indicate
that calls suitable for Fortran should be generated, or that different representations
for external names are to be generated (3.5.4.3).

The fortran keyword is not supported in this ANSI C. With cc –cckr, that
keyword is accepted but ignored.

The asm Keyword (F.5.10)

The asm keyword can be used to insert assembly language code directly into the
translator output. The most common implementation is via statement of the form
asm (character-string-literal)  (3.6).

The asm keyword is not supported.
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Multiple External Definitions (F.5.11)

There can be more than one external definition for the identifier of an object, with or
without the explicit use of the keyword extern. If the definitions disagree, or more
than one is initialized, the behavior is undefined (3.7.2).

With ANSI C, only one external definition of the object is permitted. If more
than one is present, the linker (ld(1) gives a warning message. The Strict
Ref/Def model is followed (ANSI C Rationale, 3.1.2.2, page 23).

With cc –cckr, the Relaxed Ref/Def model is followed (ANSI C Rationale,
3.1.2.2, page 23): multiple definitions of the same identifier of an object in
different files are accepted and all but one of the definitions are treated
(silently) as if they had the extern  keyword.

If the definitions in different source units disagree, the mismatch is not
currently detected by the linker (ld), and the resulting program will probably
not work correctly.

Empty Macro Arguments (F.5.12)

A macro argument can consist of no preprocessing tokens (3.8.3).

This extension is supported. For example, one could define a macro such as

#define notokargs() macrovalue

Predefined Macro Names (F.5.13)

Macro names that do not begin with an underscore, describing the translation and
execution environments, may be defined by the implementation before translation
begins (3.8.8).

This is not true for cc -ansi, which defines ANSI C. Only macro names
beginning with two underscores or a single underscore followed by a capital
letter are predefined by the implementation before translation begins. The
name space is not polluted.
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With cc –cckr (traditional C), a C preprocessor is used with a full set of the
predefined symbols. For example, sgi is predefined.

With cc –xansi (which is the default for cc), an ANSI C preprocessor and
compiler are used and a full set of predefined symbols is defined (including
sgi, for example).

Extra Arguments for Signal Handlers (F.5.14)

Handlers for specific signals can be called with extra arguments in addition
to the signal number.

Silicon Graphics supports System V, POSIX, and BSD signal handlers. Extra
arguments to the handler are available for your use. See the signal man page.

Additional Stream Types and File-Opening Modes (F.5.15)

Additional mappings from files to streams may be supported (4.9.2), and additional
file-opening modes may be specified by characters appended to the mode argument
of the fopen function (4.9.5.3).

There are no additional modes supported. There are no additional
mappings. The UNIX approach is used, as mentioned in the ANSI C
Rationale, Section 4.9.2, page 90.

Defined File Position Indicator (F.5.16)

The file position indicator is decremented by each successful call to the ungetc
function for a text stream, except if its value was zero before a call (4.9.7.11).

Only the one character of pushback guaranteed by the standard is
supported.



150

Appendix A: Implementation-Defined Behavior



151

Index

Symbols

, 67
/ operator, 65
! operator, 63
!= operator, 68
#pragma ident version, 122
#pragma int_to_unsigned identifier, 123
#pragma intrinsic, 122
#pragma no_side_effect, 122
#pragma once, 121
#pragma pack, 121
#pragma weak, 120
% operator, 65
%p conversion

in fprintf function, 134
in fscanf function, 134

& operator, 62, 69
fields and, 83

&& operator, 70
* operator, 65
+ operator, 63, 66
++ operator, 61, 63
+= operator, 73
, operator, 73
- character

in fscanf function, 134
- operator, 63, 66
-- operator, 61, 63

-= operator, 73
= operator, 72
== operator, 68
> operator, 67
>= operator, 67
>> operator, 67
? operator, 71
^ operator, 69
__DATE__, 123
__TIME__, 123
| operator, 70
|| operator, 70
–32 mode, 31
–ansi compiler option

external names and, 26
macros, 12
string literals, 12
tokens, 14

–ansi switch to cc, 6
–cckr compiler option, 7, 12

external names and, 26
tokens, 14

–common compiler option, 18
–float compiler option, 49

effect on conversions, 49
type promotions, 19

–fullwarn compiler option, 7
scope, 16
type promotions, 20

–I compiler option, 120
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–lc switch to cc, 7
–lm switch to cc, 7
–nostdinc compiler option, 120
–use_readwrite_const, 146
–wlint compiler option, 7
–xansi compiler option

external names and, 26
–xansi switch to cc, 6

Numbers

32-bit mode, 11
bitfields, 82
diagnostics, 109
double-word boundary, 118
integer, 116
integer sizes, 113
long double, 118
LONGLONG macro, 113
pointers, 66, 116
register specifier, 117
sizeof, 64
type differences, 46
unions, 117

64-bit mode, 65
bitfields, 82
diagnostics, 109
integer, 116
integer sizes, 113
long double, 118
pointers, 66, 116
pragmas, 122
quad-word boundary, 118
register specifier, 117
sizeof, 64
type differences, 46
unions, 117

A

abort function
effect on temporary files, 142

acpp
changes, 11

additive operators
pointers and, 66

address constant, 74
address-of operator, 62

fields and, 83
alignment

structures, 118
AND operator

bitwise, 69
logical, 70

ANSI C, 121
conversion rules, 53
value preserving integer promotion, 49

ANSI C standard header files, 27
append mode stream

initial file position, 133
argc, 111
argument promotions, 59
argument type promotions

changes, 22
arguments

passing, 60
side effects, 8

argv, 111
arithmetic constant expressions, 74
arithmetic conversions, 51, 52
arithmetic expressions, 19
arithmetic types, 47
arithmetic value

64-bit mode, 65



153

array
type required to hold maximum size, 116

array declarators, 87
assert, 123

diagnostic, 123
assignment operators, 72

+=, 73
-=, 73
=, 72

atan2, 124
atan2f, 124
auto, 77
auto keyword, 77
auto storage class, 77
automatic storage duration, 44

B

binary streams
null characters in, 133

bitfield
diagnostics, 147
integral type, 147

bitfields, 82
32-bit mode, 82
64-bit mode, 82
integer types, 8
order of allocation, 118
signedness of, 118
spanning unit boundary, 82
straddling int boundaries, 118

bits
bitfields, 82

bits per character, 112
bitwise AND operator, 69
bitwise operations

signed integers, 115

bitwise OR operator
exclusive, 69
inclusive, 70

blanks, 29
block scope, 38
block statements, 100
break statements, 102, 105

C

C library
ANSI, 7
shared, 7

calloc, 142
case distinctions

in identifiers, 111
case label, 101
case values

maximum number of, 119
cast operators, 64
casting

pointer to a function, 147
cc

–ansi mode, 6
–cckr option, 7
–fullwarn option, 7
–lc option, 7
–lm option, 7
–wlint option, 7
–xansi mode, 6
traditional C option, 7

cc switches, 6
char, 45, 77

default sign, 113
unsigned vs. "plain", 113

character
space, 109
white space, 109
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character constant, 120
character constants, 32

wide, 32
character set, 112
characters, 112

conversions to integer, 49
integer constants, 112
multibyte, 45, 112, 113
non-graphical, 32
number of bits, 112
shift states, 112
source set vs. execution set, 112
special, 32
type, 45
wide, 113

initialization, 97
CHRCLASS environment variable, 124
clock function, 144
coding hints, 7
coding practices

discouraged, 8
recommended, 8

comma operator, 73
comment, 29
compatibility rules

changes, 9
compatible types

changes, 22
compilation, 6, 26
compound assignment, 73
compound statements, 100

scope of declarations, 100
conditional operator, 71
conforming programs, 5
const, 84
const object, 8
const type qualifier

qualifiers

const, 85
constant expression, 120

arithmetic, 74
constant expressions, 31

address constant, 74
integral, 74

constants, 29, 57
character, 32
enumeration, 34
floating, 34
integer, 31
long double precision, 50
types of, 30
wide character, 32

continue statements, 102, 103, 104
controlling expression

definition, 101
conversions, 49

arithmetic, 51, 52
character, 49
floating-point, 49
function designators, 53
integer, 51

promotions, 51
lvalues, 53
pointer, 51
pointers, 54
rules

ANSI C, 53
traditional C, 52

void, 54
cpp

changes, 11

D

data area
names

changes, 26
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date
availability, 123

daylight saving time, 144
declarations

as definitions, 76
enumerations, 83
implicit, 93
multiple, 76
structure, 79
union, 79

declarators
array, 87
maximum number of, 119
meaning, 86
pointer, 86
restrictions, 92
syntax, 86

decrement operator, 63
default argument promotions, 59
default labels, 101
definition

declaration, 76
definitions

external, 107
denoting a bitfield, 64
derived types, 47
device

interactive, 111
diagnostics

classes, 110
control, 110
identification errors, 109
return codes, 110

directives
preprocessing, 120

disambiguating identifiers
changes, 15

disambiguating names
changes, 9

discouraged coding practices, 8
division

sign of remainder, 115
division by zero, 56
do statements, 103
domain errors

return values, 124
double, 46, 77, 115

representation of, 115
double precision, 50

E

else statements, 101
enum, 81

changes, 17
enumeration constants, 34, 47, 83

changes, 17
enumeration types

type of int used, 119
enumeration variables, 83
environment

altering, 143
names, 143
variables, 143

environments, 110
freestanding, 110

envp, 111
equality operators, 68
ERANGE macro, 124
errno, 124
errno macro, 135
escape sequences, 32, 112

hexadecimal, 33
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exception handling, 56, 57
exclusive OR operator, 69
exit function, 143
export

non-ANSI, 121
expression statements, 99
expressions

++, 61
– –, 61
constant, 74
parenthesized, 57
postfix, 57

function calls, 59
structure references, 60
union references, 60

primary, 57
side effects, 8

extensions, 6
extern, 77

definitions, 17
function definitions, 108

extern declarations, 121
external definitions, 107
external function definitions, 107
external linkage, 41
external names

changes, 25
compiler options and, 26

external object definitions, 108

F

fgetpos function
errno on failure, 135

file buffering, 133
file names, 134

file position indicator
initial position, 133

file scope, 39
files

opening multiple times, 134
remove on an open file, 134
renaming, 134
temporary, 142
valid names, 134
zero-length, 133

float, 77
representation of, 115

float variables, 18
floating constants, 34
floating types, 47
floating-point, 46

conversions, 49
exception handling, 56
sizes, 46
types, 115

fmod, 125
fpc, 57
fprintf, 134
fscanf, 134
ftell function

errno on failure, 135
function pointer casts, 146
function prototype scope, 15, 39
function prototypes

changes, 9, 23
incompatible types, 24
inconsistent, 24

function scope, 16, 39
functions

calls, 59
declarators, 88
definition, 107
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designators
conversions, 53

external
definition, 107

mixed use, 23
non-void, 8
nonprototyped, 60
prototyped, 60
prototypes, 88, 91
storage-class specifiers, 108
type, 108

G

getenv function, 143
goto statements, 104

H

handle_sigfpes, 57
header files

changes, 27
headers, standard, 27
hexadecimal escape sequences, 33

I

identifiers, 29, 111
case distinctions, 111
definition, 30
disambiguating

changes, 15
length, 30
linkage, 41
name space, 40
scope

changes, 15

if statements, 100, 101
implicit declarations, 93
include files, 120

maximum nesting depth, 123
quoted names, 120

inclusive OR operator, 70
incompatibility

traditional C, 90
incompatible types

function prototypes and, 24
increment operator, 63
indirect references, 61
indirection operator, 62
init-declarator-list

definition, 75
initialization, 95

aggregates, 96
and storage duration, 77
examples, 97
structs, 96
unions, 96

INLINE_INTRINSICS, 122
int, 46, 77

pointer conversion, 65
integer, 46

conversions to character, 49
divide-by-zero, 56
sizes, 46

integer character constants, 112
integer constants, 31
integer division

sign of remainder, 115
integers

bitwise operations, 115
conversions, 114
exception conditions, 56
pointers, 51
ranges, 113
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representations, 113
sizes, 113
unsigned

conversions, 51
integral constant expressions, 74
integral promotions, 51, 52
integral types, 47
interactive device, 111
internal linkage, 41
isalnum, 124
isalpha, 124
iscntrl, 124
islower, 124
isprint, 124
isupper, 124
iteration statements, 102

controlling expression, 102
flow of control, 102

J

jump statements, 104

K

keywords, 29
list of, 30

L

labels
case, 101
default, 101
name space, 40

libmalloc.a, 142

libraries
shared C, 7
specifying, 7

library functions, prototypes, 27
linkage, 76

external, 41
identifiers, 41

changes, 17
internal, 41
none, 41

linker-defined names
changes, 25

literals, 34
local time, 144
logical operators

AND, 70
OR, 70

long, 77
long double, 34, 46, 115
long double precision, 50
long int, 46
long long, 46
LONGLONG macro, 113
lvalue

conversions, 53
definition, 48

lvalues, 64

M

macros, 12
arguments, 12
in –ansi mode, 12
in –cckr mode, 12
in strings, 12
LONGLONG, 113
replacement of arguments, 12
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arguments to, 111

malloc, 142
math library

ANSI, 7
mathematics functions

domain errors, 124
underflow range errors, 124

maximum array size
type required to hold, 116

members
name space, 40

messages
diagnostic, 109
error, 109
multiple definition, 18

multibyte characters, 45, 112, 113
multiple definition messages, 18
multiplicative operators, 65

N

name
definition, 30

name spaces, 39
changes, 16, 40
identifiers, 40
labels, 40
members, 40
tags, 40

names
data area

changes, 26
disambiguating

changes, 9
external

changes, 25

linker-defined
changes, 25

namespaces, 6
negation, 63
negative integers

right shift on, 115
new-line

in text streams, 133
new-lines, 29
non-graphical characters, 32
non-void function, 8
nonprototyped function declarations, 60
NUL character, 32
null, 32
null characters

in binary streams, 133
NULL pointer, 123
NULL pointer constant, 54
null statement, 99

O

object
definition, 48

objects
definitions

external, 108
external, 108
type, 45

offsetof() macro, 8
one’s complement, 63
operators, 29

, 67
/, 65
!, 63
%, 65
&, 69
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*, 65
+, 66

unary, 63
++

prefix, 63
-, 66

unary, 63
--

postfix, 63
>>, 67
~, 63
additive, 66
address-of, 62
AND, 69
assignment, 72

+=, 73
-=, 73
=, 72

associativity, 55
bitwise

AND, 69
cast, 64
comma, 73
conditional, 71
conversions, 49
equality, 68
evaluation, 56
exclusive OR, 69
grouping, 55
inclusive OR, 70
indirection, 62
list of, 35
logical

AND, 70
multiplicative, 65
OR

exclusive, 69
inclusive, 70
logical, 70

order of evaluation, 56
precedence, 55

relational, 67
shift, 67
sizeof, 64
unary, 62

OR operator
exclusive, 69
inclusive, 70
logical, 70

order of evaluation
operators, 56

overflow handling, 57

P

parenthesized expressions, 57
passing arguments, 60
perror function, 135
pointer

convert to int, 65
truncation of values, 65

pointer constant
NULL, 54

pointer declarators, 86
pointers

additive operators on, 66
casting to int, 116
conversion to int, 116
conversions, 54
differences of, 116
integer additions and, 51
qualifiers, 87
to qualified types, 87
to void, 54

postfix expressions, 57
++, 61
– –, 61
function calls, 59
indirect references, 61
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structure references, 60
union references, 60

pow, 124
powf, 124
pragmas, 120

ignored, 122
precedence of operators, 55
precision, 34
preprocessing directives, 120
preprocessor

changes, 11
primary expressions, 57
programming hints, 7
programming practices

discouraged, 8
recommended, 8

programs
conforming, 5

promotions
arguments, 59

changes, 22
arithmetic expressions, 19
changes, 9, 18
floating-point, 19
integral, 19, 51

prototyped function declarations, 60
prototyped functions, 91
prototypes, 88

changes, 9, 23
incompatible types, 24
inconsistent, 24

ptrdiff_t, 116
punctuators, 29

definition, 35
list of, 35

putenv function, 143

Q

quad precision, 115
qualified objects, 8
qualified types

changes, 9
qualifiers, 84

access to volatile, 119
volatile, 85

R

realloc, 142
recommended coding practices, 8
register, 89

–32 mode, 117
function declaration lists, 108
nonoptimized code, 117
optimized code, 117

register keyword, 77
register storage-class specifier, 117
relational operators, 67
remainder

sign of, 115
remove function

on an open file, 134
rename function, 134
reserved keywords, 30
result type

definition, 52
return statements, 105
right shift

on negative integers, 115
rounding

type used, 115
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S

scalar types, 47
scope

block, 38
changes, 16
definition, 38
file, 39
function, 39
function prototype, 15, 39

scoping
changes, 15

selection statements, 100
setlocale, 124
shared C library, 7
shift operators, 67
shift states, 112
short, 77
short int, 46
signal function, 125
signal-catching functions

valid codes, 129
signals

default handling, 132
semantics, 127

signed, 77
simple assignment, 72
single precision, 50
size_t, 64, 116
sizeof, 64, 92, 116

type of result, 64
space character, 109
special characters, 32
standard header files

changes, 27
statements

block, 100

break, 102, 105
compound, 100

scope of declarations, 100
continue, 103
do, 103
else, 101
expression, 99
for, 103
goto, 104
if, 101
jump, 104
null, 99
return, 105
selection, 100
switch, 101, 102
while, 103

static
function definitions, 108

static keyword, 77
static storage duration, 44, 77
stdarg, 9, 89

recommended practice, 9
stderr, 111
storage class sizes, 46
storage class specifiers, 76
storage duration, 44, 76

auto, 77
automatic, 44
static, 44, 77

strictly conforming programs, 5
string literals, 12, 29, 34, 57, 146

recommended practice, 9
wide, 35
wide characters, 97

strings
macro arguments, 12

struct, 79
name space of members, 40
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changes, 16

structure
declaration, 79
indirect references, 61
members

restrictions, 80
references, 60

structures
initialization, 96
padding, 118

switch statements, 100, 101
maximum number of case values, 119

system function, 143

T

tabs, 29
tags

name space, 40
temporary files, 135, 142
text stream

last line, 133
new-line, 133

text streams
writes on, 133

time
availability, 123
daylight savings, 144
local, 144

timezone, 144
token concatenation, 14
tokens

classes of, 29
in –ansi mode, 14
in –cckr mode, 14

traditional C
compiler option, 7
conversion rules, 52
incompatibilities, 90
unsigned preserving integer promotion, 49

trigraph sequences, 33
truncation

direction of, 116
pointer value, 65
type used, 115

type names, 92
type qualifiers, 84
type specifiers, 77

list of, 78
typedef, 76, 78, 81, 84, 94
types, 45

32-bit mode, 46
64-bit mode, 46
arithmetic, 47
changes, 9, 18
character, 45
compatibility

changes, 18, 22
derived, 47
differences, 46
double, 47
float, 47, 50
floating-point, 46
int, 66
integer, 46
integral, 47
long double, 34
multibyte characters, 45
promotion in arithmetic expressions, 19
promotions

arguments, 22
changes, 18, 22
floating-point, 19
integral, 19
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scalar, 47
sizes, 46
unsigned char, 45
void, 47

TZ environment variable, 144

U

unary operators, 62
underflow handling, 57
underflow range errors

math functions, 124
union, 79

32-bit mode, 117
64-bit mode, 117
accessing members, 117
declaration, 79
indirect references, 61
initialization, 96
members

restrictions, 80
name space of members, 40
namespace

changes, 16
references, 60

unqualified types
changes, 9

unsigned, 77
unsigned char, 45

default, 113
unsigned integers

conversions, 51
user namespace, 6

V

valid file names, 134
variables

float, 18
void, 47, 77, 89

conversions, 54
pointers to, 54
return statements, 105

volatile, 84, 85
volatile object, 8
volatile-qualified types

access to, 119

W

weak_signal=strong_symbol, 120
while statements, 103
white space, 29, 109
wide characters, 113
wide string literals, 35
words

alignment, 118
size, 118

Z

zero-length files, 133
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