
CASEVision™/ClearCase Tutorial

Document Number 007-1614-020



CASEVision™/ClearCase Tutorial
Document Number 007-1614-020

CONTRIBUTORS

Written by John Posner
Engineering contributions by Atria Software, Inc.

© Copyright 1994, Silicon Graphics, Inc.— All Rights Reserved
© Copyright 1994, Atria Software, Inc.— All Rights Reserved
This document contains proprietary and confidential information of Silicon
Graphics, Inc. The contents of this document may not be disclosed to third parties,
copied, or duplicated in any form, in whole or in part, without the prior written
permission of Silicon Graphics, Inc.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure of the technical data contained in this document by
the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS 52.227-7013 and/
or in similar or successor clauses in the FAR, or in the DOD or NASA FAR
Supplement. Unpublished rights reserved under the Copyright Laws of the United
States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd.,
Mountain View, CA 94039-7311.

Silicon Graphics and IRIS are registered trademarks and IRIX is a trademark of
Silicon Graphics, Inc. Apollo is a registered trademark of Apollo Computer, Inc.
ClearCase and Atria are registered trademarks of Atria Software, Inc. FrameMaker is
a registered trademark of Frame technology, Inc. Hewlett-Packard, HP, Apollo,
Domain/OS, DSEE, and HP-UX are trademarks or registered trademarks of the
Hewlett-Packard Company. IBM is a registered trademark of International Business
Machines Corporation. Macintosh is a registered trademark of Apple Computer, Inc.
OPEN LOOK is a trademark of AT&T. OSF and Motif are trademarks of The Open
Software Foundation, Inc.  PostScript is a trademark of Adobe Systems, Inc. Sun,
SunOS, Solaris, SunSoft, SunPro, SPARCworks, NFS, and ToolTalk are trademarks or
registered trademarks of Sun Microsystems, Inc.UNIX is a trademark of AT&T Bell
Laboratories. X Window System is a trademark of the Massachusetts Institute of
Technology.



iii

Contents

Preparing to Use CASEVision/ClearCase    xiii
Verify ClearCase Installation    xiii

Installation at an Alternate Location    xiv
Modify Your Shell Startup Script    xiv

Search Path for Executables    xv
Search Path for Manual Pages    xv
Other ClearCase Search Paths    xvi
Shell Command Prompt    xvii
ClearCase Build Umask    xviii
Create Command Aliases    xix
Log In Again    xix

Verify Connections with ClearCase Server Hosts    xix
License Server Host    xix
Registry Host    xx

Start Using ClearCase    xx
Set Up for Integration Products    xx

1. CASEVision/ClearCase Tutorial:
Developing a ‘Hello World’ Program    1
Overview    2

Abbreviations    2
“Personalizing” the Tutorial    2
Command Output    2



iv

Contents

Setting the Stage: The ‘hello’ Project    3
First Release    3
Second Release    4

Go to an appropriate directory    4
Run the ‘CHECK’ script    5
Create a subdirectory in which all tutorial data will reside    5
Background: ClearCase VOBs    6
Create a new VOB    7
Activate the VOB by Mounting It    8
Run the ‘REL1REL2’ script to create the first two releases    8
Try to access the VOB—oops, you need a ‘view’    9
Background: ClearCase Views    9
Create a ’view’    11
’Set’ the view    11
Change to the source directory    12
List directory contents (UNIX style)    12
List directory contents (ClearCase style)    13
List a version tree    14
Use extended naming to access particular versions    15
Run old executables out of the ‘bin’ directory    16

2. Working on a New Release    19
Get your bearings    19
Is anyone else working on this program?    19
Verify that a file cannot be changed until it is checked out    20
Checkout a source file    20
Revise the checked-out source file    22
Rebuild the program    24
Test the program    24
Get some help on the ‘list checkouts’ command    25
What source files are checked out?    26
Checkin the revised source file(s)    26
Verify the changes resulting from the checkin    27



Contents

v

3. Exploring Derived Objects    29
Get your bearings    29
List the derived objects you just built    29
Examine the config rec of the program just built    30
Verify the contents of the config rec    32
Investigate the wink-in of ‘hello.o’    32
Explore the ‘private’ nature of derived objects    33
Get ready to fix that bug!    34

4. Exploring View Configurations    35
Get your bearings    35
List the elements in the source directory    36
Turn back the clock to Release 2    36
List the source directory again    37
Verify that this view selects different versions of files    37
Switch to Release 1    38
Verify the switch    38
Explore the history of the source directory    39
Return to the present    40
Exit the historical view    40



vi

Contents

5. Fixing a Bug in an Old Release    41
Get your bearings    43
Create a new view for your bugfix work    44
Set the bugfix view    44
Reconfigure the bugfix view to “turn back the clock”    45
There are no derived objects in this new view!    45
Try to make a branch — oops!    45
Create the branch type for bugfix work    46
Make a branch in element ‘util.c’    46
Fix the bug    47
Rebuild the program    48
Run the program to test the fix    48
Examine the build history of ‘hello’    48
Compare the configurations of two builds    49
Checkin the fixed source file    51
Which version does your view select now?    52
Show the updated version tree of the modified source file    52
Exit the bugfix view    52

6. Performing a Merge    53
Get your bearings    54
Plan the completion of development for a new release    54
Return to the ‘tut’ view    54
Determine which source files need to be merged    55
Checkout file ‘util.c’    56
Edit the checked-out file    57
Merge in the changes made on the ‘rel2_bugfix’ branch    57
Examine the merge hyperlink    60
What did the merge change?    61
Rebuild the program    61
Test the change    62
Test the change for the superuser case    62
Checkin the revised file    62



Contents

vii

7. Defining a Release    65
Get your bearings    65
Label the release (part1): create a version label type    66
Label the release (part 2): attach version labels to sources    66
Re-label the release sources (just to make a point)    67
Install the ‘hello’ executable in the ‘bin’ directory    68
Label the release (part 3): attach labels in the ‘bin’ directory    68

8. Revising a Directory Structure    69
Get your bearings    70
Compare versions of a directory    70
Prepare to do some new development    71
Checkout the source directory    71
Create a new file element    72
Checkin the source directory    72
Compare the new directory to its predecessor    73
Modify the new source file    73
Modify the old source files    73
Rebuild the program    75
Test the program    75
What files need to be checked in?    76
Checkin the sources    76

9. Summing Up / Cleaning Up    77
Get your bearings    77
Verify that all binaries are accessible in the ‘bin’ directory    77
Exit the view    78
Unmount the VOB    78
Delete all the views you’ve created    78
Remove the VOB storage area    79
Remove the directory that contained all the storage areas    79
Say good-bye!    79





ix

Figures

Figure 1-1 VOB Storage Directory    6
Figure 1-2 Mounted VOB    7
Figure 1-3 ClearCase view    10
Figure 1-4 Example Version Trees    15
Figure 2-1 Using the checkout Command    21
Figure 6-1 Merging Changes to a File    57





xi

Tables

Table In-1 Setting the Search Path for Executables    xv
Table In-2 Setting the Search Path for Executables    xvi
Table In-3 Information on ClearCase Search Paths    xvii
Table In-4 Setting the Shell Prompt    xviii





xiii

Preparing to Use CASEVision/ClearCase

This chapter is a “quick-start” guide, which will be useful if you’ve just
joined a development group using ClearCase. Here are some assumptions
we’ve made:

• ClearCase is already up and running on your network.

• You’ll be using a particular “home host” for most of your ClearCase
work; ClearCase has already been installed there. (If this is not true, see
the CASEVision/ClearCase Release Notes.)

• You have sufficient access rights to create a ClearCase view, and/or you
have access to at least one existing ClearCase view.

In this chapter, you will:

• verify ClearCase installation

• modify your startup scripts for ClearCase

• verify connections to ClearCase server hosts

Verify ClearCase Installation

ClearCase must be explicitly installed on your “home host”. Check whether
it has been installed at the standard location:

% ls -ld /usr/atria

Depending on installation options, /usr/atria may be an actual directory,
located on your home host or on another host, or a symbolic link.



xiv

Preparing to Use CASEVision/ClearCase

Installation at an Alternate Location

If there is no /usr/atria on your host, check with your system administrator to
see if ClearCase was installed at an alternate location. If this is the case, make
a note of the alternate installation pathname (for example, /opt/ccase); you’ll
need to use this pathname when you modify your shell startup script. If
ClearCase is not installed at all on your host, consult with your system
administrator or see the CASEVision/ClearCase Administration Guide for
step-by-step instructions.

Modify Your Shell Startup Script

Access to ClearCase programs and on-line documentation (manual pages)
depends on certain environment variable settings. The most reliable way to
establish these settings is to edit your shell startup script:

Shell Program Startup Script in Home Directory

C shell .cshrc

Bourne shell profile

Korn shell profile

Note: We recommend that C shell users avoid placing ClearCase settings in
file .login, which is executed only by “login shells”.



Modify Your Shell Startup Script

xv

Search Path for Executables

First, add the ClearCase bin directory to your executables search path, as
shown in Table In-1. The variable ATRIAHOME must be set if ClearCase is
installed at a location other than /usr/atria.

Search Path for Manual Pages

You can skip this section if you won’t be using ClearCase on-line manual
pages at all — for example, if you intend to rely on the help facility built into
the ClearCase graphical user interface. You can also skip the rest of this
section if you will always use the cleartool man subcommand to access
manual pages — it doesn’t require a search path.

Users of UNIX-based operating systems are accustomed to using the man(1)
command to get on-line documentation. ClearCase includes a
comprehensive set of manual pages, accessible in several ways:

• through the standard man command (UNIX® command-line interface)

• through the standard xman command (X Window System™ graphical
interface)

• through the man subcommand built into the cleartool program

The standard man and xman commands can locate manual page files in a
variety of locations. These programs can use — but don’t require — a search
path specified by the environment variable MANPATH. If you wish to read

Table In-1 Setting the Search Path for Executables

.cshrc (C shell) .profile (Bourne/Korn shell)

ClearCase installed at standard
location, /usr/atria

set path=($path /usr/atria/bin) PATH=${PATH}:/usr/atria/bin
export PATH

ClearCase installed at alternate
location, /opt/ccase

setenv ATRIAHOME /opt/ccase
set path=($path $ATRIAHOME/bin)

ATRIAHOME=/opt/ccase
PATH=${PATH}:$ATRIAHOME/bin
export ATRIAHOME PATH



xvi

Preparing to Use CASEVision/ClearCase

ClearCase manual pages using these programs, add the ClearCase man
directory to your manual pages search path, as shown in Table In-2.

Note: If your shell startup file does not set the MANPATH environment
variable, consult the manual page for the man command itself to determine
your system’s default search path for manual pages. Then, set MANPATH
accordingly in your shell startup script, just before the command(s) that
you’ve copied from Table In-2. For example:

% setenv MANPATH /usr/man:/usr/contrib/man:/usr/local/man

Other ClearCase Search Paths

ClearCase uses configuration files and environment variables to find various
other resources that it may require during processing. In particular, some
ClearCase utilities need a way to distinguish different file types (text and
binary files, for example) or to find a text editor. The graphical tools,
particularly xclearcase, also need access to file typing data, icons and bitmaps,
X resource schemes, group files, and text editors.

Unlike the PATH and MANPATH variables, the configuration information
for these additional resources is usually predefined, and you do not need to
do anything. However, if you choose to customize these resources, or if

Table In-2  Setting the Search Path for Executables

.cshrc (C shell) .profile (Bourne/Korn shell)

ClearCase installed at
standard location, /usr/atria

setenv MANPATH \
  ${MANPATH}:/usr/atria/doc/man

MANPATH=\
${MANPATH}:/usr/atria/doc/man
export MANPATH

ClearCase installed at
alternate location

setenv MANPATH \
  ${MANPATH}:$ATRIAHOME/doc/man

MANPATH=\
${MANPATH}:$ATRIAHOME/doc/man
export MANPATH



Modify Your Shell Startup Script

xvii

ClearCase behavior leads you to suspect that some adjustment is required,
use Table In-3 to find more information.

Note: X resource schemes control the overall appearance of the ClearCase
graphical interface.

Shell Command Prompt

You can skip this section if you intend to use ClearCase only through its
graphical user interface (GUI).

When you are working with a UNIX shell program, the current working
directory is a very important context. With ClearCase, your shell’s view
context is equally important. Different views can be configured to “see” your
group’s development data in different ways; moreover, each view has
view-private files that are not visible through any other view.

Confusion and errors are the likely result of entering the right command in
the wrong view. To minimize the chances of such an occurrence, modify
your shell’s prompt string to include the name of the current view, if any.
Table In-4 shows code to include in your shell startup script. In a shell that is

Table In-3 Information on ClearCase Search Paths

Object or Resource Where to Find More Information

File typing data cc.magic manual page

Icons, bitmaps cc.icon manual page, “Customizing the Graphical
Interface” chapter in CASEVision/ClearCase User’s Guide

X resource schemes schemes manual page

group files “Customizing the Graphical Interface” chapter in
CASEVision/ClearCase User’s Guide

text editor env_ccase manual page (VISUAL, EDITOR, WINEDITOR
environment variables)



xviii

Preparing to Use CASEVision/ClearCase

set to a view, the command prompt will begin with the shell’s name (its
view-tag), enclosed in square brackets.

ClearCase Build Umask

The clearmake build program creates derived objects, which are typically
shared by multiple users (who wink-in these objects, rather than rebuild
them, whenever possible). To promote derived object sharing, you must
guarantee adequate permissions (specifically, read and write for group) for
derived objects created during clearmake builds. As an alternative to setting
your umask value, set the environment variable
CLEARCASE_BLD_UMASK:

.cshrc: setenv CLEARCASE_BLD_UMASK 2

.profile: CLEARCASE_BLD_UMASK = 2; export

CLEARCASE_BLD_UMASK

You can also specify CLEARCASE_BLD_UMASK as a makefile macro. For
more information, see CASEVision/ClearCase User’s Guide.

Table In-4 Setting the Shell Prompt

File Setting

.cshrc

(C Shell)

if ( $?prompt ) then
  if ( $?CLEARCASE_ROOT ) then
   set prompt = "[‘basename $CLEARCASE_ROOT`]
$prompt"
  endif
endif

.profile

(Bourne
and Korn
shells)

if [ "$PS1" != "" ] ; then
  echo prompt set
  if [ "$CLEARCASE_ROOT" ] ; then
     PS1="[`basename $CLEARCASE_ROOT`] $PS1"
  fi
fi



Verify Connections with ClearCase Server Hosts

xix

Create Command Aliases

Skip this section if you intend to use ClearCase only through its graphical
user interface (GUI). Otherwise, you may find it helpful to add command
aliases like the following to your shell startup file:

% alias ct cleartool
% alias ctco cleartool checkout
% alias ctci cleartool checkin

Log In Again

After you’ve made all the modifications to your shell startup script, log out,
then log in again. The procedures in the remainder of this chapter will test
and verify the changes you’ve made.

Verify Connections with ClearCase Server Hosts

ClearCase is a distributed application: in addition to running client processes
on your home host, it runs server processes on other hosts in the network. A
network-wide data storage registry is located on one host, which must be
globally accessible.

License Server Host

One particularly important host is the network-wide license server host.
ClearCase programs refuse to work unless they can obtain an available
license from this host; verify your connection with it by entering this
command:

% clearlicense
License server on host "saturn".
Running since ...

If this fails because the program clearlicense cannot be found, you made an
error in setting up your search path (“Search Path for Executables” on
page xv). If clearlicense is invoked, but it does not display a message like the
one above, see the “Licensing Errors” section of its manual page.



xx

Preparing to Use CASEVision/ClearCase

Registry Host

Each ClearCase host in the network has a registry directory: subdirectory rgy
of /usr/adm/atria, the ClearCase administration directory. On one network
host, the registry server host, the registry directory contains access-path
information for all VOBs and views in the local area network. If the
command cleartool lsvob lists one or more VOBs, you are properly
connected to the registry server host.

If cleartool lsvob fails, display the one-line contents of file
/usr/adm/atria/rgy/rgy_hosts.conf. Verify your connection to the named host
using any of various OS utilities or their equivalents: ping, rlogin, rsh and so
on. If you are still not confident of your connection to the registry server host,
consult your system administrator.

Start Using ClearCase

You are now ready to start using ClearCase. We recommend that you work
through the step-by-step instructions in the following chapters. When you
have completed working in this tutorial’s “practice” environment, see the
CASEVision/ClearCase User’s Guide for additional help in setting up your
“real” work environment.

Set Up for Integration Products

ClearCase is designed to work well with other UNIX applications and
software development tools. Interoperability with some third-party
applications has been optimized through integration software. In some cases,
this software is bundled with the base ClearCase product (for example,
H-P® SoftBench). In other cases, it is available separately (for example,
QualTrak DDTS).

Each of the integrations has its own documentation. Determine what
integration software, if any, you’ll be using. Consult the manual for each one
for instructions on installation, and on adjusting your operating
environment. SoftBench and ToolTalk users should read the respective
chapters in the CASEVision/ClearCase User’s Guide.



1

Chapter 1

1. CASEVision/ClearCase Tutorial:
Developing a ‘Hello World’ Program

This tutorial is designed for developers with no previous experience with
ClearCase software. The goal is to provide a “feel” for the product, its
capabilities, and its modes of usage. You will not explore every product
feature—just the ones most commonly used and most characteristic of
ClearCase’s special capabilities.

As you work through this tutorial, feel free to consult other ClearCase
documentation:

CASEVision/ClearCase Concepts Guide
a high-level discussion of product features

CASEVision/ClearCase User’s Guide and Administration Guide
collections of technical notes, many of which provide
“cookbook recipes” for performing common, multiple-step
tasks with ClearCase

CASEVision/ClearCase Reference Pages
printed versions of all the manual pages

ClearCase reference documentation is organized into “manual pages”, in
standard man(1) format. Many of the commands you’ll be using are
subcommands of a single program, called cleartool. Each subcommand has
its own manual page, accessible through cleartool itself. For example, to
display the manual page for the lshistory subcommand, enter this command

% cleartool man lshistory

Each of the ClearCase GUI programs has its own context-sensitive help
facility. Installation instructions, release notes, and supplementary technical
notes are also provided in the ClearCase.



2

Chapter 1: CASEVision/ClearCase Tutorial: Developing a ‘Hello World’ Program

Overview

This tutorial is structured as a sequence of steps. Each step describes the task
to be accomplished, shows what you should type, and shows the
corresponding output.

Abbreviations

Many of the commands in this tutorial involve use of the cleartool command,
which supports many command options. Such options can always be
abbreviated to three characters. For example, you can use –rep instead of
–replace. Likewise, certain subcommand names can be abbreviated (for
example, des for describe). For clarity, we generally uses the spelled-out
forms of subcommand names and options.

“Personalizing” the Tutorial

Data structure naming--You will have some flexibility in naming various
data structures created during the course of this tutorial. We suggest that
you “personalize” these names—for example, by incorporating your
username into a pathname. This will enable many users at your site to work
through the tutorial without interfering with each other.

Tutorial lesson sequence--You can also customize the tutorial by running
only a subset of the available lessons—a refresher course on lessons 5 and 6,
for example. For more information, see the README file in the doc/tutorial
subdirectory of the ClearCase installation directory (/usr/atria, by default).

Command Output

The sample command output shown in this tutorial was created on a SunOS
host by a user with umask 002, using a C shell. Your command output will
differ; to facilitate comparisons, we use these symbols:

USER indicates your username (UNIX login)

GROUP indicates your principal group, as recorded in the password
database



Setting the Stage: The ‘hello’ Project

3

HOST indicates the hostname of the machine you are using to
work through the tutorial

HOME indicates the pathname of your home directory

VOBTAG the location in the file system where you access a ClearCase
versioned object base (VOB). Each VOB is a permanent data
repository.

DATESTRING indicates a date-time string, such as Mar 30 10:23, which
will vary depending on context, and on when you run the
tutorial

Setting the Stage: The ‘hello’ Project

Most programmers don’t join a project at its beginning, but at some later
date. In this tutorial, you will join a project that has just seen its second
release. In the UNIX tradition, this project is a “Hello, World” program.
(Your employer has actually found a way to make customers pay for such a
program!)

First Release

The first release is a “classic” version. The executable is named hello; it is
implemented with a single C-language source file, along with a makefile:

hello.c source file

Makefile makefile (target description file)

Here is some sample output:

% hello
Hello, world!
%



4

Chapter 1: CASEVision/ClearCase Tutorial: Developing a ‘Hello World’ Program

Second Release

The second release of the program adds some “sizzle”—it retrieves the
user’s login name and home directory from environment variables, and
includes these values in an expanded message. For example:

% hello
Hello, USER!
Your home directory is /net/HOST/home/USER.
It is now Fri Jun 18 15:25:01 1993
.
%

The calls to the environment are implemented as functions in an auxiliary
source file, util.c; declarations and required #include statements for these
functions are located in a header file, hello.h:

util.c auxiliary source file

hello.h application header file

Did you notice the bug in this second release? There is a <newline> character
at the end of the date string, which pushes the period at the end of the
sentence onto the next line. You’ll fix this bug in Lesson 5.

Now, it’s time to start work.

Step 1. Go to an appropriate directory

Go to a directory that affords you some privacy. The tutorial will create
ClearCase data structures below this directory; accordingly, it must:

• be a directory for which you have “write” permission

• be in a disk partition with at least 5Mb of free disk storage

• be physically located on a ClearCase installation host (required to
enable creation of ClearCase data structures)

The “preferred” location is your home directory. But you may need to select
another location—for example, if your home directory is located on a
ce%ntral file server host, where ClearCase is not installed.

% cd $HOME



Setting the Stage: The ‘hello’ Project

5

or, possibly

% mkdir /usr/tmp/USER ; cd /usr/tmp/USER

If you select a location outside your home directory, be sure to “personalize”
it, as discussed on page 2.

Note: On some systems (DEC Alpha, for example), files in /tmp and /usr/tmp
are routinely deleted, at reboot time and/or by periodic cron jobs. Some
systems (Solaris 2.x, for example), configure /tmp as swap space, which will
cause Step 5 to fail later in this lesson. Check with your system administrator
before using /tmp or /usr/tmp as a storage location. ♦

Step 2. Run the ‘CHECK’ script

To verify that you’ll be able to work through the tutorial successfully, run
this script:

% /usr/atria/doc/tutorial/CHECK

The CHECK script verifies that:

• ClearCase is installed on the host where you are logged in.

• A ClearCase license is available for use by you.

• A C-language compiler, required for building software during the
tutorial, is accessible through your search path.

• The host on which your current working directory physically resides
supports the creation and management of ClearCase data structures.

• Your search path includes the directory that contains the ClearCase
user-level commands.

If any of these requirements is not satisfied, the CHECK script displays a
message explaining how to remedy the situation. For more information on
these issues, read the comments in the CHECK script itself.

Step 3. Create a subdirectory in which all tutorial data will reside

Create a subdirectory—assumed hereafter to be named tut—then go to that
subdirectory. All ClearCase data structures created during this tutorial
(except for file system mount points) will be stored in the tut subdirectory.

In the command output printed in this
manual, the directory you go to in this
step is indicated by the symbol HOME.



6

Chapter 1: CASEVision/ClearCase Tutorial: Developing a ‘Hello World’ Program

% mkdir tut
% cd tut

Step 4. Background: ClearCase VOBs

With ClearCase, a project’s permanent and/or shared data storage is
organized into versioned object bases (VOBs). Most real-life projects use a
collection of related VOBs, but for this tutorial, a single VOB will suffice.

A VOB is implemented as a directory hierarchy, whose top-level directory is
termed the VOB storage directory. The principal components of a VOB storage
directory are:

• A database subdirectory, db, containing the files maintained by
ClearCase’s embedded database management system.

• Three directories, s, d, and c, under which all of the VOB’s actual
development data will be stored. For example, the versions of all
version-controlled files are stored in source storage pools within the s
subdirectory.

Figure 1-1 VOB Storage Directory

These data structures are managed automatically by ClearCase server
programs. On a day-to-day basis, you don’t even have to know where a VOB
storage directory is located. Instead, you access the VOB through its
VOB-tag, which specifies the VOB’s logical location on your host.

VOB database directory

VOB storage
pool directories

VOB storage directory

ClearCase
meta-data stored
in VOB database

File system data
stored in pools

db

s d c



Setting the Stage: The ‘hello’ Project

7

On UNIX systems, a VOB-tag is actually a mount point, because each a VOB
is mounted and accessed as a separate file system. (A typical UNIX mount
makes an entire disk partition accessible; a type-MVFS mount provides
access to the directory structure created by a mkvob command.) Once a VOB
is activated (mounted), you can access it using ClearCase programs and
standard UNIX programs.

Figure 1-2 Mounted VOB

Step 5. Create a new VOB

Let’s create your tutorial VOB now. The mkvob command, which creates a
VOB, also requires that you specify its VOB-tag. We suggest that you mount
the VOB in directory /tmp, and that you use this “formula” to devise a
VOB-tag:

VOB-tag = /tmp/USER_HOST_hw

(The “hw” stands for “Hello, world”.) It is important to personalize and
localize the VOB-tag—other users may run the tutorial on the same host, and
you may have occasion to run the tutorial on another host.

Throughout this manual, we refer to the location where you’ve mounted the
VOB using the symbol VOBTAG.

UNIX root
directory

VOB

VOB-tag
(VOB mount point)

When mounted as a type-MVFS
file system, a VOB can be
accessed like a standard

directory tree



8

Chapter 1: CASEVision/ClearCase Tutorial: Developing a ‘Hello World’ Program

% cleartool mkvob -tag VOBTAG -c "tutorial VOB" tut.vbs
Created versioned object base.
Host-local path: HOST:HOME/tut/tut.vbs
Global path: VOBTAG
VOB ownership:
  owner USER
  group GROUP
Additional groups:
 ...

Step 6. Activate the VOB by Mounting It

% mkdir VOBTAG
% cleartool mount VOBTAG

(The VOBTAG “mount-over” directory may already exist. If so, mkdir issues a
harmless error message.) The ClearCase mount command makes the VOB
accessible to user-level software at the pathname specified by VOBTAG.

Note: If your VOB-tag directory gets deleted (for example, you put it in /tmp
and a cron job deletes it) don’t worry; the VOB is safe. Simply repeat this step
to reactivate it. ♦

Step 7. Run the ‘REL1REL2’ script to create the first two releases

Your new, empty VOB is now ready to use. Our plan was to join the project
after its second release, so run a script to create the first two releases. You
must specify the VOB-tag as a command-line argument.



Setting the Stage: The ‘hello’ Project

9

% /usr/atria/doc/tutorial/REL1REL2 VOBTAG
 .
 .
 .
*****************************************************
*                                                   *
*   Releases "REL1" and "REL2" have been created.   *
*    You are now ready to create another release,   *
*                to be called "REL3".               *
*                                                   *
*****************************************************

The VOB now contains a considerable amount of development data:

• A src subdirectory, with two versions of Makefile, three versions of
hello.c, one version of hello.h, and one version of util.c.

• A bin subdirectory, with two versions of the compiled program hello.

The VOB stores all the versions of all these files (and, as you’ll see in this
tutorial, a good deal of other information, too).

Step 8. Try to access the VOB—oops, you need a ‘view’

Let’s try to see what all that data looks like.

% cd VOBTAG
% ls -l

Nothing appears because, in some sense, a VOB contains too much data. It is
only on rare occasions that you want to see all of a file’s historical versions.
So instead of showing you a potentially confusing glut of data, ClearCase
blocks out the data completely.

Step 9. Background: ClearCase Views

Most of the time, you wish to see just one version of each of a VOB’s files.
(Often, it’s the most recent version, but sometimes not.) Together, a
consistent, matched set of versions constitute a particular configuration of the
source tree. ClearCase includes a powerful and flexible tool for defining,
viewing, and working with configurations—the view. In essence, a view
makes any VOB appear to be a standard directory tree, by selecting one
version of each version-controlled object.



10

Chapter 1: CASEVision/ClearCase Tutorial: Developing a ‘Hello World’ Program

Figure 1-3 ClearCase view

A view also has some of the characteristics of a “sandbox,” common in
home-grown development environments. Most importantly, it provides
isolation: developers working in different views can modify files (perhaps
even the same files) and rebuild software, without disturbing others’ work.

VOB

View

can use a view to access the
version-controlled data in any VOB,
as if it were a standard directory tree

any user process

versions of an
element

version-controlled elements
(files and directories), each with a

version tree that includes all historical
versions

a VOB is a collection of



Setting the Stage: The ‘hello’ Project

11

It’s often useful to think of the view as being above the file system instead of
within it, an omnipresent lens through which you can see all the data on
your host—in particular, all mounted VOBs.

Step 10. Create a ’view’

The REL1REL2 script you ran in Step 7 created a view, which it used to create
and modify source files, and to build the first two releases of the hello project.
Now, create your own view, in which you’ll continue project development.

Syntactically, creating a view is much like creating a VOB: you specify a view
storage directory (the view’s “real” location), along with a view-tag (the view’s
logical location). On a day-to-day basis, you reference a view using its
view-tag—you can safely forget about the view storage directory itself.

A view-tag takes the form of a simple directory name; use this formula to
devise a tag for this view:

view-tag = USER_HOST_tut

For example, if you are user “eve” working on host “venus”, you would use
view-tag eve_venus_tut. (Be sure to personalize all the ClearCase
view-tags you create—each view-tag you create is globally visible!)

% cd HOME/tut
% cleartool mkview -tag USER_HOST_tut tut.vws
Created view.
Host-local path: HOST:HOME/tut/tut.vws
Global path:     /net/HOST/HOME/tut/tut.vws

Step 11. ’Set’ the view

Once you have created a view, you can use it in several ways. The simplest
way is to create a shell process that accesses all of your host’s data through
that view. Such a process is said to be set to the view.

% cleartool pwv -short
** NONE **
% echo $$
3409
% cleartool setview USER_HOST_tut



12

Chapter 1: CASEVision/ClearCase Tutorial: Developing a ‘Hello World’ Program

% cleartool pwv -short
USER_HOST_tut
% echo $$
3506

The pwv (“print working view”) commands before and after the setview
command show that the new shell is, indeed, set to the view named
USER_HOST_tut. The echo commands display the process number of the
current shell, showing that a new shell process has been created.

Now, let’s get acquainted with the hello project.

Step 12. Change to the source directory

Development environments based on “sandboxes” force you to practice
double-think—where you work (your sandbox) differs from where the
sources are “really” stored (perhaps an SCCS or RCS source tree). With
ClearCase, there is no such artificial distinction. Once you set a view, you
work directly with the “real” source tree. For the most part, you can forget
that you are using a special mechanism (the view) to access the data. We use
the term transparency to describe this property of views.

To summarize, you simply set your view context with a setview command,
and then work directly with your data—“set it and forget it.”

Your VOB is mounted at VOBTAG. Let’s go there.

% cd VOBTAG

Step 13. List directory contents (UNIX style)

The REL1REL2 script created this directory structure (Discussion of a VOB’s
lost+found directory is beyond the scope of this manual.):

VOBTAG
/src
/bin

The src directory stores the hello project’s source files; the bin directory stores
the project’s binaries, as they are to be released to customers. (Actually, each
release consists of just one binary file, named hello.) All the files are all
version-controlled in exactly the same way—ClearCase can handle any kind



Setting the Stage: The ‘hello’ Project

13

of file. (This capability makes it preferable to characterize a VOB as a
“development tree”, rather than a “source tree”.) Let’s see what the VOB’s
source directory contains.

% cd src
% ls -l
total 4
-r--r--r--   1 USER GROUP     134 May 20 15:40 Makefile
-r--r--r--   1 USER GROUP     196 May 20 15:41 hello.c
-r--r--r--   1 USER GROUP     140 May 20 14:46 hello.h
-r--r--r--   1 USER GROUP     223 May 20 17:05 util.c

As far as standard UNIX ls(1) is concerned (along with vi(1), cat(1), cp(1), and
all other standard UNIX programs), this is simply a directory containing
some sources files and a makefile. Note that the files are all read-only.

Step 14. List directory contents (ClearCase style)

Each of the files listed above is a file element, with a hierarchical version tree.
All of the versions of each file element are stored in the VOB; but just one
version is visible through the “lens” of your view. The ClearCase variant of
the ls command shows exactly which version appears.

% cleartool ls -short

Makefile@@/main/2
hello.c@@/main/3
hello.h@@/main/1
util.c@@/main/1

(Directories in a VOB are elements, too, with version trees of their own. We’ll
wait until Lesson 4 to work with this ClearCase feature.)

For example, hello.c@@/main/3 indicates that for file element hello.c, your
view selects version 3 on the main branch.

Why does your view select these particular versions? Because they are the
newest ones in their respective version trees. We will explore
version-selection by views and user-defined configurations in Lesson 4.



14

Chapter 1: CASEVision/ClearCase Tutorial: Developing a ‘Hello World’ Program

Step 15. List a version tree

Although your view selects just one version of an element, you can list the
entire version tree.

% cleartool lsvtree -all hello.c

hello.c@@/main
hello.c@@/main/0
hello.c@@/main/1
hello.c@@/main/2        (REL1)
hello.c@@/main/3        (REL2)

This version tree is very simple: a single “main” branch contains a few
versions, with no subbranches. Version 2 has been assigned a version label,
“REL1”; version 3 has been labeled “REL2”. Version labels play an important
role in ClearCase. They provide mnemonic access to versions—it’s easier to
remember the label “REL2” than it is to remember “version 3 went into the
second release.” More important, when applied throughout a development
tree, a single label can define a collection of versions—for example, version
2 of Makefile, version 3 of hello.c, version 1 of hello.h, and version 1 of util.c.

The use of slash ( / ) characters in the lsvtree listing suggests that an
element’s version tree is analogous to a directory tree. In fact, the structures
are identical. The version tree for hello.c does not make a particularly
interesting picture at this point, so compare the ways in which a fictional
element with many subbranches can be pictured:



Setting the Stage: The ‘hello’ Project

15

Figure 1-4 Example Version Trees

In the “directory tree” format, each “directory” (represented by a rectangle)
is a branch; each “file” (circle) is actually a version.

Step 16. Use extended naming to access particular versions

ClearCase exploits the fact that a version tree is structurally identical to a
directory tree. It extends the UNIX file system, allowing you to access any
version of an element directly, using a version-extended pathname. For
example, you can access version 2 of hello.c, even though your view selects
version 3. Extended pathnames work with any UNIX command—for
example, cat(1) and diff(1).

% cat hello.c@@/main/2
  int main() {
    printf("Hello, world!\n");
    return 0;
  }

main

10 2 43

bugs OSF

10 2
bug404 bug417

3

5

10 2

10 10

1

5

2

3

4

0

1

2

bugs

OSF
0

1bug417

0

1

2

0

1

bug404

0

R2_BETA
R2

R1

3

main

“genealogy” format “directory tree” format



16

Chapter 1: CASEVision/ClearCase Tutorial: Developing a ‘Hello World’ Program

% diff hello.c@@/main/2 hello.c
0a1,2
> #include "hello.h"
>
2c4,6
<     printf("Hello, world!\n");
---
>     printf("Hello, %s!\n", env_user() );
>     printf("Your home directory is %s.\n", env_home() );
>     printf("It is now %s.\n", env_time() );
4a9

The @@ (extended naming symbol) in a version-extended pathname
distinguishes the individual version of an element selected by a view from
the entire element. In this step:

• The simple name hello.c indicates the version selected by your view (in
this case, version 3).

• The extended name hello.c@@ indicates the file element named hello.c.
The extended name hello.c@@/main/2 indicates a particular version of
the element.

In effect, an extended name overrides the view’s version-selection
mechanism. ClearCase often includes the extended naming symbol in its
output for consistency, and to facilitate cut-and-paste operations.

Step 17. Run old executables out of the ‘bin’ directory

You have examined an “old” version of a source file in the src directory. You
can also run “old” versions of the executable, hello, in the bin directory.

% cd ../bin
% hello@@/main/1
Hello, world!
% hello@@/main/2
Hello, USER!
Your home directory is /net/HOST/home/USER.
It is now DATESTRING
.



Setting the Stage: The ‘hello’ Project

17

As in Step 16, a version-extended pathname accesses a particular version of
an element. In this case, the versions are executables, not sources. The
REL1REL2 script checked in the “first release” build of hello as version 1 of
element VOBTAG/bin/hello. Similarly, it checked in the “second release” build
of hello as version 2 of the same element.





19

Chapter 2

2. Working on a New Release

In this lesson, you’ll get a feel for the basic development cycle in a ClearCase
environment: checkout-edit-compile-test-checkin. Your task is to start work
on a third release of the hello program. You will revise the env_user() function
to simplify the pathname reported as the user’s home directory.

Step 18. Get your bearings

At the end of the preceding lesson, you were in the bin directory, in a shell
set to view USER_HOST_tut. Verify that you are still in the same situation.
Then, return to the source directory, src.

% cleartool pwv -short
USER_HOST_tut
% pwd
VOBTAG/bin
% cd ../src

If you’ve gotten lost, you may need to use a full pathname to find the source
directory.

cd VOBTAG/src

If this command fails, it is probably because you exited the shell that was set
to your view. Enter the following commands to reestablish your view
context and your working directory within the VOB.

cleartool setview USER_HOST_tut
cd VOBTAG/src

Step 19. Is anyone else working on this program?

Like SCCS and RCS, ClearCase uses a “checkout-edit-checkin” paradigm to
control creation of new versions of elements. Before you start working, use



20

Chapter 2: Working on a New Release

the lscheckout (“list checkouts”) command to determine whether any other
user, working in another view, is currently using any of the source files.

% cleartool lscheckout
%

It’s unlikely that anyone else would intrude on your tutorial, but not
impossible. Any user working on your host can use the mount(1M)
command to see that a VOB is mounted at VOBTAG. Your umask value at the
time the REL1REL2 script created the VOB determines whether other users
can access the data in your VOB.

Step 20. Verify that a file cannot be changed until it is checked out

Just to be mischievous, let’s try to defeat the system. If you own a standard
file, you can make it writable with chmod(1). But this doesn’t work for a
ClearCase element.

% ls -l util.c
-r--r--r--   1 akp      user         223 May 20 17:05 util.c
% chmod 644 util.c
chmod: util.c: Read-only file system

(The exact text of the error message varies from system to system.)

The only way to make an element writable is to perform a checkout
command. Similarly, you cannot delete util.c, even though you own it and
you own the directory in which it resides. To the standard UNIX rm(1)
command, a VOB is a read-only file system.

Step 21. Checkout a source file

The only way to modify the contents of element util.c is to perform a checkout
command. In ordinary version-control systems, the “double-think” comes
into play here. For example, if util.c were under SCCS control, you would
enter a command that reads one file (s.util.c in the “real” source tree) and
writes another file (util.c in your sandbox).

ClearCase simplifies your life (and your system administrator’s) by
dispensing with the double-think. You name the element itself in the checkout
command; the only apparent change is that the file goes from read-only to
read-write. But ClearCase has done more than a simple chmod(1)—it has



21

made a copy of the read-only file you listed in Step 20, creating a read-write
“checked-out” version. Your view makes this file appear to be located in the
current working directory, VOBTAG/src. In fact, the checked-out version is
stored within your view’s private storage area, under a name that only
ClearCase cares about.

Figure 2-1 Using the checkout Command

% cleartool checkout util.c
Checkout comments for "util.c":
shorten HOME string
.
Checked out "util.c" from version "/main/1".
% ls -l util.c
-rw-rw-r--   1 USER      user         223 DATESTRING util.c
% cleartool ls -short util.c
util.c@@/main/CHECKEDOUT

The cleartool ls command verifies that the checked out version now appears
in your view.

read-only read-write

before checkout:
one version of the element is

selected by the view to appear as a
read-only file

after checkout:
the version that was copied to

view-private storage appears as a
read-write file

View

VOB



22

Chapter 2: Working on a New Release

Note: By default, cleartool prompts you for a comment when you perform a
checkout. This comment gives you a chance to “declare your intentions”. It
will be visible to all other ClearCase users while you have the file checked
out. ♦

Whenever you are prompted for a comment by any cleartool subcommand,
you can type as many lines as you like. The comment ends when you type
<EOF> (typically, <Ctrl-d>) at the beginning of a line, or when you enter a
line that contains a single “.” character.

Step 22. Revise the checked-out source file

The only change to be made in util.c is an update to the env_home() function.
If the pathname in the HOME environment variable starts with the string
“/net/”, we assume that it has the form “/net/hostname/usr/...”. (Such
home directory pathnames are typical of environments using automount(1M)
to access remote file systems.) Accordingly, we strip off the first two
components of the pathname, and return the remainder.

Note: In this step, and throughout this tutorial, you will not edit files using
a text editor. Instead, you’ll overwrite a checked-out version with a file from
a repository of guaranteed-correct files, the doc/tutorial subdirectory of the
ClearCase installation directory (/usr/atria or $ATRIAHOME). ♦



23

% cp /usr/atria/doc/tutorial/ut.2 util.c
% cleartool diff util.c@@/main/1 util.c
********************************
<<< file 1: util.c@@/main/1
>>> file 2: util.c
********************************
--------------[after 15]-----------|------------[inserted 16-17]-----------
                                  -|     char *b,*c;
                                   |
                                   |-
-----------[changed 19-20]---------|-----------[changed to 21-31]----------
    else                           |     else {
      return home_env;             |       if ( strncmp(“/net/”, home_env, +
                                  -|         /* strip prefix from pathname +
                                   |         b = strchr(home_env+1, ‘/’);
                                   |         c = strchr(b+1, ‘/’);
                                   |         return c;
                                   |       } else {
                                   |         /* use pathname as-is */
                                   |         return home_env;
                                   |       }
                                   |     }
                                   |-

This invocation of the cleartool diff command answers the question, “What
changes have I made since I checked out this file?”. How can you determine
which historical version to compare the current version with? The output
from the checkout command in Step 21 indicates that you checked out version
1. Entering a cleartool lscheckout command would verify this. But the best
procedure is to use the –pred option:

cleartool diff -pred util.c

With this option, ClearCase automatically determines the predecessor to the
specified version. The predecessor of the checkedout version of util.c is
defined to be the version from which it was checked out, in this case /main/1.

In the future, we will use diff –pred whenever we need to ask “what’s
changed in this file?”.



24

Chapter 2: Working on a New Release

Step 23. Rebuild the program

To test the revised algorithm, build the program and run it. ClearCase
software builds are performed with clearmake, an upward-compatible
version of the UNIX make(1) utility. When it considers rebuilding object
module hello.o, clearmake determines that it can instead wink-in the instance
of hello.o built for the second release in view USER_HOST_old. That is, it makes
the existing instance of hello.o in view USER_HOST_old appear in your view,
too. (The USER_HOST_old view-tag was created for you automatically by the
REL1REL2 script.)

% clearmake -v hello
No candidate in current view for "hello.o"
Wink in derived object "VOBTAG/src/hello.o"
     (‘wink-in’existing object, instead of rebuilding it)
No candidate in current view for "util.o"
======== Rebuilding "util.o" ========
        cc -c util.c
Will store derived object "VOBTAG/src/util.o"
========================================================

Must rebuild "hello" - due to rebuild of subtarget "util.o"

======== Rebuilding "hello" ========
        cc -o hello hello.o util.o
Will store derived object "VOBTAG/src/hello"
=======================================================

We’ll explore wink-in and other aspects of derived objects in Lesson 3. First,
let’s see if the pathname-truncation algorithm works.

Step 24. Test the program

Run the hello program, using ./ to ensure that you’re getting the one you
just built in the current working directory, rather than one somewhere on
your search path.

% ./hello
Hello, USER!
Your home directory is /home/USER.
It is now DATESTRING
.



25

The good news is that the algorithm works; the bad news is that the bug is
still there! Don’t worry—you’ll get to fix it soon.

Step 25. Get some help on the ‘list checkouts’ command

To complete the checkout-edit-compile-test-checkin cycle conscientiously,
you must checkin all the files that you checked out. Perhaps you know that
the lscheckout command has an option that reports only your view’s
checkouts, but what is the correct syntax? If you’ve forgotten it (or never
knew it!), ClearCase offers two levels of help. First, you can get a syntax
summary.

% cleartool help lscheckout
Usage: lscheckout | lsco [-long | -short | -fmt format]
      [-cview] [-brtype branch-type] [-me | -user login-name]
      [-recurse | -directory | -all | -avobs |-areplicas]
      [pname ...]

If this is not sufficient, you can display the manual page for the lscheckout
command.

% cleartool man lscheckout
cleartool       MISC. REFERENCE MANUAL PAGES        cleartool

NAME
       lscheckout - list checkouts of an element

SYNOPSIS
      lsc/heckout | lsco [ -r/ecurse | -d/irectory | -all |
          -avo/bs | -areplicas] [ -l/ong | -s/hort |
          -fmt format-string ] [ -me | -use/r login-name ]
          [ -cvi/ew ] [ -brt/ype branch-type-name ]
          [ pname ...  ]

DESCRIPTION
       Lists the checkout records (the “checkouts”) for one
or more elements. You can restrict the listing to particular
elements and/or to checkouts made in the current view...
 .
 .
 .

(This is equivalent to the shell command man ct+lscheckout.) The option
you want is –cview. Let’s use it.



26

Chapter 2: Working on a New Release

Step 26. What source files are checked out?

ClearCase differs from some other source-control systems in that it considers
an element to be checked out to a particular view, not to a particular user. This
makes it easy for a small group of developers to work together in a single
view.

% cleartool lscheckout -cview
DATESTRING USER   checkout version "util.c" from /main/1 (reserved)
  "shorten HOME string"

There also is a –me option to lscheckout, which lists all elements checked out
to your login name, across all views.

Reserved and Unreserved Checkouts. The information listed for each
checked-out file includes a (reserved) or (unreserved) annotation. In a
multi-user environment, several users may wish to revise the same source
file at the same time. In general, any number of users (more correctly, any
number of views) can checkout the same version of a file. Each view gets its
own, private checked-out version, so that they can all be revised
independently. ClearCase imposes order on this potential free-for-all by
defining two kinds of checkouts:

• Only one view can have a reserved checkout of a particular version. This
is a guaranteed right to checkin a successor to that version. Several
views can have reserved checkouts of the same element, but each
checkout must be of a version on a different branch of the version tree.
You’ll work on a branch in Lesson 5.

• Any number of views can have unreserved checkouts of a particular
version. If all checkouts of a version are unreserved, the view in which
a checkin is performed first “wins”. That view’s revised version of the
file becomes the successor—the changes made in all the other views
cannot be directly checked in. The ClearCase merger facility allows
users in such “losing” views to enter their revisions into the version tree
in an orderly manner. You’ll perform a merger in Lesson 6.

Step 27. Checkin the revised source file(s)

The checkin command places a copy of your working version of util.c into the
version tree of file element util.c, as a successor to the version you checked
out. You can turn the checkout comment you specified in Step 21 into the



27

checkin comment by typing . followed by <Return>. (Alternatively, you can
enter another comment, effectively discarding the checkout comment.)

% cleartool checkin util.c
Default:
shorten HOME string
Checkin comments for "util.c":  ("." to accept default)
.
Checked in "util.c" version "/main/2".

Step 28. Verify the changes resulting from the checkin

Superficially (for example, to UNIX ls), the only change to a checked-in
element is that the file changes from read-write to read-only. But ClearCase
commands show that much more has happened.

% ls -l util.c
-r--r--r--   1 USER GROUP      357 DATESTRING util.c
% cleartool ls -short util.c
util.c@@/main/2 (no longer checked-out)
% cleartool lshistory util.c
DATESTRING USER       create version "util.c@@/main/2"
  "shorten HOME string"
20-May-1992    cory       create version "util.c@@/main/1"
(REL2)
  "define user, home, time functions"
20-May-1992    cory       create version "util.c@@/main/0"
20-May-1992    cory       create branch "util.c@@/main"
20-May-1992    cory       create file element "util.c@@"
  "define user, home, time functions"
% cleartool lsvtree -all util.c
util.c@@/main
util.c@@/main/0
util.c@@/main/1 (REL2)
util.c@@/main/2 (new version added to branch)

We introduced an additional cleartool command here, lshistory (“list
history”). This command displays a chronological listing of events in the
lifetime of element util.c. Contrast this with lsvtree, which displays the
current structure of the element, without regard to how and when the
structure grew.





29

Chapter 3

3. Exploring Derived Objects

In this lesson, you’ll take a closer look at an important ClearCase feature:
sharing of the derived objects produced in builds.

Step 29. Get your bearings

At the end of the preceding lesson, you were in the src directory, in a shell set
to view USER_HOST_tut. Verify that you are still in the same situation.

% cleartool pwv -short
USER_HOST_tut
% pwd
VOBTAG/src

If you’ve gotten lost, you may need to use a full pathname to find the source
directory.

cd VOBTAG/src

If this command fails, it is probably because you exited the shell that was set
to your view. Enter the following commands to reestablish your view
context and your working directory within the VOB.

cleartool setview USER_HOST_tut
cd VOBTAG/src

Step 30. List the derived objects you just built

A file produced by a build script under control of the clearmake build utility
is called a derived object (or DO). The target hello you specified in Step 23 is a
derived object; so are its sub-targets, hello.o and util.o. (And so are compiler
listing files and other such files that are not even specified anywhere in the
makefile.)

The cleartool ls command provides a simple derived object listing:



30

Chapter 3: Exploring Derived Objects

% cleartool ls -l hello hello.o util.o
derived object    hello@@DATESTRING.nnn  (derive object ID)
derived object    hello.o@@DATESTRING.nnn  (derive object ID)
derived object    util.o@@DATESTRING.nnn (derive object ID)

The -l (“long”) option expands the listing to include the words derived
object,  but the distinctive DO name format makes derived objects easily
recognizable without this annotation. Each DO is assigned a unique derived
object ID, which incorporates its file name and a date-time stamp. These IDs
enable users, and ClearCase, to distinguish the instances of the same files
built in different views.

The three DOs look (and behave) the same, but as you will see shortly, hello.o
is actually shared by multiple views. When first created in some ClearCase
view, a DO is unshared, and it is stored “locally” in the view. Subsequent
executions of clearmake in other views can cause the derived object to become
shared among views. Here is what happened to hello.o to make it a “shared
derived object”:

• The REL1REL2 script used clearmake to build hello.o in view
USER_HOST_old.

• In Step 23, you performed a build in view USER_HOST_tut. During this
build, clearmake determined that rebuilding hello.o in this view would
produce an exact copy of an existing instance in another view.
Accordingly, it saved time and storage space by performing a wink-in of
the existing file. That is, it made the same derived object, hello.o, appear
in both views, USER_HOST_old and USER_HOST_tut.

Step 31. Examine the config rec of the program just built

clearmake used “circumstantial evidence” to decide that rebuilding hello.o
was unnecessary:

• All the source versions that were used to build hello.o in the
USER_HOST_old view are the same as the source versions selected by the
USER_HOST_tut view.

• The build script that was used to build hello.o in the USER_HOST_old
view matches the script that would be used now in the USER_HOST_tut
view.



31

This evidence is provided by ClearCase’s build auditing capability. During
execution of a build script, ClearCase virtual file system code in the UNIX
kernel monitors every open(2) and read(2) system call. This file-system-level
audit guarantees an accurate accounting of which files—and which versions
of those files—are used as build input. clearmake summarizes the audit as a
configuration record (config rec), and stores it in the VOB.

The catcr (“display config rec”) command lists the contents of a config rec.
Note that this command accepts the name of any DO produced during the
build. (The config rec shared by a build’s DOs does not, itself, have a
user-visible name.)

% cleartool catcr -flat hello
----------------------------
MVFS objects:
----------------------------
  1 VOBTAG/src/hello@@DATESTRING.nnn
  1 VOBTAG/src/hello.c@@/main/3 <DATESTRING>
  2 VOBTAG/src/hello.h@@/main/1 <DATESTRING>
  2 VOBTAG/src/hello.o@@DATESTRING.nnn
  1 VOBTAG/src/util.c@@/main/2 <DATESTRING>
  2 VOBTAG/src/util.o@@DATESTRING.nnn

The config rec includes the following:

• pertinent build environment data: hardware architecture, hostname,
username, working directory timestamp, view

• the name and version number of each source file used in the build

• the name and unique identifier of each derived object incorporated
from a build of a sub-target

• a copy of the build script

Notice that only the second and third items in this list appeared in the output
above; use catcr -long to see the remaining information.

Why the –flat option? The build of hello is typical in that one or more levels
of sub-targets must be constructed before the actual target named in the
clearmake command is built. Config recs reflect this hierarchical nature of
makefile-based software builds: a separate config rec is produced for each
build script.



32

Chapter 3: Exploring Derived Objects

By default, the command catcr hello lists the config rec for the top-level
build only. Using the –flat option causes clearmake to combine three config
recs into a single report:

• the config rec for the top-level build
(build script: cc -o hello hello.o util.o)

• the config rec for the build of sub-target hello.o
(build script cc -c hello.c)

• the config rec for the build of sub-target util.o
(build script cc -c util.c)

Step 32. Verify the contents of the config rec

Since this is the first time you’ve examined a config rec, you may be just a
little skeptical of the claim that ClearCase build auditing is guaranteed to
produce a correct listing. So verify that the source file versions reported in
the config rec for hello are, indeed, the versions currently in your view.

% cleartool ls -short *.c
hello.c@@/main/3
util.c@@/main/2

Step 33. Investigate the wink-in of ‘hello.o’

When clearmake built target hello in Step 23, it announced that it was
performing a wink-in of an existing hello.o instead of building a new hello.o.
The lsdo (“list derived objects”) command verifies that your view is now
sharing this file with another view. Displaying the config rec for this file
verifies that it was, indeed, built in another view.

% cleartool lsdo -l hello.o
DATESTRING     (USER.GROUP)
  create derived object "hello.o@@DATESTRING.nnn"
 Getreferences: 2 (shared)
  => HOST:HOME/tut/old.vws (two views now share)
  => HOST:HOME/tut/tut.vws  (this derived object)
% cleartool catcr hello.o
Target hello.o built on host "HOST" by USER.GROUP
Reference Time DATESTRING, this audit started DATESTRING
View was HOST:HOME/tut/old.vws
Initial working directory was HOST:VOBTAG/src
----------------------------



33

MVFS objects:
----------------------------
VOBTAG/src/hello.c@@/main/3 <DATESTRING>
VOBTAG/src/hello.h@@/main/1 <DATESTRING>
VOBTAG/src/hello.o@@DATESTRING
----------------------------
Variables and Options:
----------------------------
MKTUT_CC=cc
----------------------------
Build Script:
----------------------------
cc -c hello.c
----------------------------

Step 34. Explore the ‘private’ nature of derived objects

An element cannot be modified unless you enter a checkout command. (And
it cannot be deleted except with the rmelem (“remove element”) command,
which is beyond the scope of this tutorial.) Such restrictions would be
cumbersome for derived objects—developers like to build, rebuild, clean up,
and rebuild again at will. So ClearCase allows derived objects to be deleted
or overwritten with standard UNIX commands.

Deleting a shared derived object from your view does not simultaneously
remove it from the other views that share it. Rather, deleting the DO merely
reduces its reference count. The other views continue to see the DO—your
view sees no file with that name. And since the DO still exists, it remains a
candidate for wink-in during subsequent rebuilds.

Let’s play with the shared derived object hello.o, verifying that it can be
deleted from your view and then winked-in again.

% rm hello.o (deleted in your view)
% ls hello.o
ls: hello: No such file or directory
% cleartool lsdo -l hello.o
DATESTRING     (USER.GROUP@HOST)
  create derived object "hello.o@@DATESTRING.nnn"
  references: 1 (shared)  => HOST:HOME/tut/old.vws

(survives in other view)



34

Chapter 3: Exploring Derived Objects

% clearmake -v hello.o
No candidate in current view for "hello.o"
Wink in derived object "VOBTAG/src/hello" (shared again!)

The references: 1 (shared) annotation indicates that the derived object
was at one time shared by two or more views, but currently is referenced by
only one view.

Step 35. Get ready to fix that bug!

This concludes our short exploration of derived objects. To prepare for fixing
the bug in the second release (the extra <NL> character in the time string), the
next lesson conducts another exploration. You’ll investigate how to change
the way a view selects versions of elements. This capability will allow you to
“turn back the clock” to a previous release, then fix the bug in that release.



35

Chapter 4

4. Exploring View Configurations

This lesson introduces one of ClearCase’s most powerful features,
rule-based selection of source versions. Each view has a configuration
specification (config spec), an ordered set of rules for selecting versions of
elements. So far, we have not paid close attention to version selection,
because the default config spec was appropriate for the task at hand—new
development. The catcs (“cat config spec”) command shows the current
config spec:

% cleartool catcs
element * CHECKEDOUT (Rule 1)
element * /main/LATEST (Rule 2)

This set of rules says:

“For each element, if a checkout has been performed in this view, use the
checked-out version; otherwise, use the most recent version on the main
branch.”

Each view is assigned the default config spec when it is created with the
mkview command.

The rules in config spec are applied dynamically—every time you access an
element, a view_server process associated with your view decides which
version of that element to use. It does so by consulting the rules in
order—the first rule to provide a “match” selects a version.

Step 36. Get your bearings

At the end of the preceding lesson, you were in the src directory, in a shell set
to view USER_HOST_tut. Verify that you are still in the same situation.

% cleartool pwv -short
USER_HOST_tut



36

Chapter 4: Exploring View Configurations

% pwd
VOBTAG/src

If you’ve gotten lost, you may need to use a full pathname to find the source
directory.

cd VOBTAG/src

If this command fails, it is probably because you exited the shell that was set
to your view. Enter the following commands to reestablish your view
context and your working directory within the VOB.

cleartool setview USER_HOST_tut
cd VOBTAG/src

Step 37. List the elements in the source directory

Start by assessing your view’s current configuration of source versions.

% cleartool ls -vob_only
Makefile@@/main/2                           Rule:/main/LATEST
hello.c@@/main/3                            Rule:/main/LATEST
hello.h@@/main/1                            Rule:/main/LATEST
util.c@@/main/2                             Rule:/main/LATEST

The –vob_only option restricts the listing to elements—it omits the derived
objects you’ve created with clearmake. Previous invocations of the ls
command (for example, Step 28 and Step 32) used the –short option to
suppress the “Rule:” annotations. Since config specs had yet to be
introduced, the annotations would have been distracting and not very
meaningful. Now, however, we want to see how views select versions.

This command shows that for each of the four file elements, your view
selects the most recent version on the main branch.

Step 38. Turn back the clock to Release 2

Now, let’s switch to another view, USER_HOST_old, to see how it selects
versions of elements. The REL1REL2 script created this view for you and
used it to build the first two releases of the hello program. REL1REL2 ended
by reconfiguring the view, using a non-default config spec.



37

% exit
% cleartool setview USER_HOST_old
% cleartool catcs
element * REL2

The catcs command reveals that this view is configured with a single rule,
which says:

“For each element, use the version assigned the REL2 version label.”

Evidently, this is a view that “turns back the clock” to the Release 2 era. Let’s
explore.

Note: Exiting your current shell is not required before you set a new view.
We do so in this tutorial for simplicity—you will never be more than one
shell level away from your starting point. ♦

Step 39. List the source directory again

Go to the source directory, then enter the same command as in Step 37 to
verify that different versions of the elements are selected.

% cd VOBTAG/src
% cleartool ls -vob_only
Makefile@@/main/2                              Rule:  REL2
hello.c@@/main/3                               Rule:  REL2
hello.h@@/main/1                               Rule:  REL2
util.c@@/main/1                                Rule:  REL2

These are the same versions that were most recent when you began this
tutorial (Step 14).

Step 40. Verify that this view selects different versions of files

Just to make sure that this is an old configuration, check that source file util.c,
as seen through this view, has none of the string-manipulation changes you
entered in Step 22.

% tail -7 util.c
   char *
   env_time() {
    time_t clock;
    time(&clock);



38

Chapter 4: Exploring View Configurations

    return ctime(&clock);
  }

And check that the executable, ../bin/hello, is also the old version, which does
not massage the reporting of your home directory.

% ../bin/hello
Hello, USER!
Your home directory is /net/HOST/home/USER.
It is now DATESTRING
.

Step 41. Switch to Release 1

Now, let’s turn back the clock again, to Release 1. This time, instead of setting
a view that already has a different config spec, we’ll change the
configuration of an existing view, USER_HOST_tut. The setcs (“set config
spec”) command performs the reconfiguration, using a config spec stored in
a text file.

% exit
% cleartool setview USER_HOST_tut
% cleartool setcs /usr/atria/doc/tutorial/cs.2
% cleartool catcs
element * REL1

Once again, there is a single rule. It says:

“For each element, use the version assigned the REL1 version label.”

Step 42. Verify the switch

Once again, go to the source directory and enter the ls command to verify the
new view configuration.

% cd VOBTAG/src
% cleartool ls -vob_only
Makefile@@/main/1                                Rule:  REL1
hello.c@@/main/2                                 Rule:  REL1

What happened to hello.h and util.c? You have turned back the clock to a time
before these elements were created in the src directory. In a view configured



39

for Release 1, it is altogether appropriate that these latter-day elements do
not appear. ClearCase implements this feature by allowing directories
themselves to be version-controlled. Each version of a directory element
catalogs (contains a list of) a certain set of names:

• Version 1 of directory element src (labeled REL1) catalogs two element
names: hello.c and Makefile.

• Version 2 of directory element src (labeled REL2) catalogs four element
names: hello.c, hello.h, util.c, and Makefile.

Step 43. Explore the history of the source directory

Your view sees elements hello.c and Makefile only, because it selects the REL1
version of the directory element src, just as it selects the REL1 versions of the
file elements. You can verify this by using the –d (“directory”) option to the
ls command.

% cleartool ls -d .
 .@@/main/1                                     Rule:  REL1

For even more confirmation, examine the version tree of directory element
src, and list the events in this element’s history.

% cleartool lsvtree .
.@@/main
.@@/main/1 (REL1)
.@@/main/2 (REL2)
% cleartool lshistory -d .
DATESTRING USER       import directory element ".@@"
20-May.1416    cory       create directory version ".@@/main/2" @(REL2)
  "Release 2: add hello.h, util.c"
07-May.09:13   akp        create directory version ".@@/main/1" (REL1)
  "Release 1: hello.c, Makefile"
03-May.09:56   akp        create directory version ".@@/main/0"
03-May.09:56   akp        create branch ".@@/main"
03-May.09:56   akp        create directory element ".@@"
  "create source directory and binaries directory
   for "hello world" program"
Verify that the view selects 'Release 1' file versions

To complete your exploration of the Release 1 era, verify that the view selects
the correct (very old) version of source file hello.c, no version at all of file
hello.h, and the correct version of executable hello.



40

Chapter 4: Exploring View Configurations

% cat hello.c
int main() {
    printf("Hello, world!\n");
    return 0;
  }
% cat hello.h
cat: cannot open hello.h: No such file or directory
% ../bin/hello
Hello, world!

Notice that we had you examine, but not change, files with your current
one-rule config spec (element * REL1). It does not make sense to try and
add a new version (or element) with such a config spec. The new version
would be invisible to your view until the REL1 label was applied, and you
must be able to see it to label it!

Step 44. Return to the present

After you fix a bug in Lesson 5, you’ll do additional new development in
Lesson 6. In anticipation of this future need for a “new development” view,
reset your current view, USER_HOST_tut, to use the default config spec.

% cleartool setcs -default
% cleartool catcs
element * CHECKEDOUT
element * /main/LATEST

Step 45. Exit the historical view

Exit the view, so that you revert to the shell you were using when you started
the tutorial.

% exit
% cleartool pwv -short
** NONE **
% pwd
HOME



41

Chapter 5

5. Fixing a Bug in an Old Release

In this lesson, you’ll (finally) fix the bug first discovered in the introduction
to Lesson 1. You’ll work in a new view, created expressly for maintenance
work. This view’s config spec will take advantage of an important ClearCase
feature—the ability to create branches in an element’s version tree.

ClearCase makes it easy to implement this strategy for fixing a bug:

1. You start with the exact version of each source file that was used to
build the “broken” executable.

2. For each source file that must be changed to fix the bug, you create
versions on a subbranch of the element’s version tree, not on the main
branch.

3. The same branch name is used in the version tree for every file element
involved in the bugfix.

Using branches allows two or more projects to “grow” an element’s version
tree independently. For example, it might take you several weeks to fix a
particular bug. (Don’t worry—the bug in this lesson will take about one
minute to fix.) Working on a branch means that the element does not go “out
of play” while you’re implementing the fix. Another developer is free to
modify the same element for a different purpose, as long as he or she works
on a different branch.

At any time, the changes made on one branch can be merged into any other
branch. You’ll perform a merge in Lesson 6.

ClearCase views support the branch-oriented approach to maintenance in a
natural way. When starting your bugfix work, you establish a view that is
configured to meet the guidelines listed above. You’ll create a new view with
the appropriate config spec:



42

Chapter 5: Fixing a Bug in an Old Release

element * CHECKEDOUT
element * .../rel2_bugfix/LATEST
element * REL2

Let’s see how the rules in this config spec meet the three guidelines listed
above.

Guideline #1

You need a view that selects the version of each source file that went into the
building of the second release. When it created that release, the REL1REL2
script attached version label REL2 to the then-current source versions:

cleartool mklabel REL2 Makefile hello.c hello.h util.c . ..

Note that the “.” and “..” at the end of this command name the current
working directory and its parent, the VOB’s top-level directory. You saw in
Lesson 4 that the ability to access different versions of directories plays a
critical role in “turning back the clock” to a previous release.

Now, a single config spec rule selects all those versions:

element * REL2

Since every element involved in the second release was labeled REL2, this
one rule “reconstructs” the entire source environment for the release.

Guidelines #2 and #3

The config spec must also reflect the policy that all bugfixes to a file be made
on a branch off the REL2 version of that file.

If the branch named rel2_bugfix is used in each element to be modified for the
bugfix, a single rule configures your view to see the maintenance work:

element * .../rel2_bugfix/LATEST

You also need one of the rules from the default config spec:

element * CHECKEDOUT

As always, this rule allows you to work with checked-out files. Note that this
rule need not be modified to work with files on a branch.



43

The order of the three rules is important. In particular Rule 2 precedes Rule
3 because your view must “prefer” the maintenance branch (if it exists in a
particular element) to the main branch.

The “...” notation in Rule2 is a ClearCase extension, used here to match
zero or more intervening branch levels. Rule2 matches any element with a
rel2_bugfix branch, whether it “sprouted” from the main branch
(/main/rel2_bugfix) or from some other branch (/main/nt_port/rel2/rel2_bugfix,
for example).

Variations on this Config Spec

You might also include the default config spec’s last rule as your last rule:

element * /main/LATEST

This rule is not required in this tutorial, because every element you need to
access has been labeled REL2 and, thus, is matched by the element * REL2
rule. If you wish to access version-controlled data not involved in the hello
project (and not labeled REL2), you would need this extra rule, too.

Config specs have a feature that both automates the process of creating
branches and ensures consistent naming of those branches. This
“auto-make-branch” feature is turned on by modifying Rule 3:

element * REL2 -mkbranch rel2_bugfix

With this rule, developers do not need to enter mkbranch commands. Instead,
whenever a checkout of a REL2 version is performed, ClearCase
automatically creates a branch with the name specified in the config rule,
and performs a checkout on that branch.

Step 46. Get your bearings

At the end of the preceding lesson, you were in your original directory (we
suggested that you start this tutorial in your home directory), in a shell that
was not set to any view. Verify that you are still in the same situation.

% cleartool pwv -short
** NONE **
% pwd
HOME



44

Chapter 5: Fixing a Bug in an Old Release

In this tutorial, we have instructed you to exit one view before entering
another one. In practice, you would more likely create a new window for
your work with a new view. There is no need to “shut down” a view (or the
shells that are set to it) before you use another one. Using multiple windows
allows you to switch back and forth between views easily.

If you’ve gotten lost, find out whether your current shell is set to a view:

cleartool pwv

If you are set to a view, exit the shell process, in order to return to a shell that
is not set to a view. (Try cleartool pwv again, to make sure!) Then return
to the directory you were in when you started this tutorial (for example, with
the command cd $HOME).

Step 47. Create a new view for your bugfix work

First, create the new view, placing its storage directory next to that of the
existing USER_HOST_tut view (which you created in Step 10).

% cleartool mkview -tag USER_HOST_fix 'pwd'/tut/fix.vws
Created view.
Host-local path: HOST:HOME/tut/fix.vws
Global path: /net/HOST/HOME/tut/fix.vws
It has the following rights:
User : USER       : rwx
Group: GROUP      : rwx
Other:            : r-x

As before, your umask value determines the permissions on the new view.

Step 48. Set the bugfix view

You have created a new view, USER_HOST_fix, but you are not yet using it. Set
the new view with a setview command.

% cleartool setview USER_HOST_fix
% cleartool pwv -short
USER_HOST_fix

You are now in a new shell process, which is set to view USER_HOST_fix.



45

Step 49. Reconfigure the bugfix view to “turn back the clock”

Every view is created with the default config spec, which is stored in file
/usr/atria/default_config_spec. You can edit a view’s config spec with a text
editor (edcs command), or replace the contents of the config spec by copying
an ordinary ASCII file (setcs command). To avoid typing mistakes, use the
copying method.

% cleartool setcs /usr/atria/doc/tutorial/cs.1
% cleartool catcs
element * CHECKEDOUT
element * .../rel2_bugfix/LATEST
element * REL2

Step 50. There are no derived objects in this new view!

The derived objects you built in Step 23 are still in the USER_HOST_tut view,
but you can’t see them from here. A view makes source elements appear
automatically, but it acquires derived objects only when you enter clearmake
commands to build them. Since you are using a newly-created view,
USER_HOST_fix, it contains no derived objects (yet).

To gain another perspective on this situation, consider that a view serves two
functions—it selects versions of elements to appear in development
directories, and it provides an isolated work area. Derived objects pertain to
the isolated-work-area role of a view, not to its version-selection role.

% pwd
HOME
% cd VOBTAG/src
% cleartool ls
Makefile@@/main/2                                 Rule:  REL2
hello.c@@/main/3                                  Rule:  REL2
hello.h@@/main/1                                  Rule:  REL2
util.c@@/main/1                                   Rule:  REL2

Step 51. Try to make a branch — oops!

We’re now going to make a (harmless) mistake, in order to emphasize a
point. The file util.c needs to be edited to fix the bug in the time string.
According to policy, you must make a branch in its version tree.



46

Chapter 5: Fixing a Bug in an Old Release

% cleartool mkbranch rel2_bugfix util.c
cleartool: Error: Type not found: "rel2_bugfix".

What happened? Before a branch can be created in any element’s version
tree, it is first necessary to define the name rel2_bugfix for use in the current
VOB, using the mkbrtype (“make branch type”) command.

Several aspects of ClearCase adhere to this two-step model. For example, the
version labels REL1 and REL2 are attached to the source versions used to
build the first two product releases. The mklabel command attached these
labels, but only after the mklbtype command created a corresponding version
label type.

Separating the definition of information from the application of that
information to source elements allows the establishment of administrative
controls, and facilitates such operations as changing all existing version
labels REL2 to RELEASE2.0.

Step 52. Create the branch type for bugfix work

We re-emphasize here a point made earlier: you should create only one
branch type. The strategy is to make branches with the same name for all
elements that require modifications for the bugfix.

% cleartool mkbrtype -c "fix: date-string bug" rel2_bugfix
Created branch type "rel2_bugfix".

As with checkin, you can (and should) enter a comment describing the
meaning and intended usage of a branch type. Such comments are listed
with the lstype –brtype command.

Step 53. Make a branch in element ‘util.c’

This bugfix is simple—it requires that only one file, util.c, be modified. The
mkbranch command automatically performs a checkout on the branch it
creates. The terminal message indicates this fact, and the ls command
verifies it.

% cleartool mkbranch -nc rel2_bugfix util.c
Created branch "rel2_bugfix" from "util.c" version "/main/1".
Checked out "util.c" from version "/main/rel2_bugfix/0".



47

% cleartool ls util.c
util.c@@/main/rel2_bugfix/CHECKEDOUT from
/main/rel2_bugfix/0     Rule: CHECKEDOUT

You can see that:

• Before the checkout, your view selects the version of util.c labeled REL2
(using Rule 3 in the config spec).

• The mkbranch command creates a branch named rel2_bugfix,
“sprouting” it from the REL2 version. Version 0 on this branch has the
same data as the version at which the branch was created.

• After the checkout, your view selects the checked-out version.

Step 54. Fix the bug

The fix itself is easy: use string-manipulation functions to remove the trailing
newline character from the time string returned by env_time().

% cp /usr/atria/doc/tutorial/ut.3  util.c
% cleartool diff -pred util.c
********************************
<<< file 1:VOBTAG/src/util.c@@/main/rel2_bugfix/0
>>> file 2: util.c
********************************
-------------[after 25]-------|--------[inserted 26]---------
                             -|     char   *s;
                              |-
------------[changed 28]------|-------[changed to 29-31]-----
    return ctime(&clock);     |     s = ctime(&clock);
                             -|     s[ strlen(s)-1 ] = '\0';
                              |     return s;
                              |-

Note: If you are working at a graphics display that is running the X Window
System, you might wish to try this variant of the above command:

cleartool xdiff -pred util.c

This shows the differences between the two versions in a separate, scrollable
X window. You can close the xdiff window with the Quit option on the Panel
pull-down menu.



48

Chapter 5: Fixing a Bug in an Old Release

Step 55. Rebuild the program

That’s all there is to fixing the bug—now let’s test the fix.

% clearmake -v hello
No candidate in current view for "hello.o"
Wink in derived object "VOBTAG/src/hello.o

 (derived object ’hello.o’ built in another view gets winked-in to this view)
No candidate in current view for "util.o"

======== Rebuilding "util.o" ========
        cc -c util.c
Will store derived object "VOBTAG/src/util.o"
========================================================

Must rebuild "hello" - due to rebuild of subtarget "util.o"

======== Rebuilding "hello" ========
        cc -o hello hello.o util.o
Will store derived object "VOBTAG/src/hello"
========================================================

Note that clearmake doesn’t need to build hello.o, even though there is no such
file in this view. Since you made no change to any of the dependencies of
hello.o, the instance previously built in view USER_HOST_tut qualifies for
wink-in.

Step 56. Run the program to test the fix

Did you fix the bug?

% ./hello
Hello, USER!
Your home directory is /net/HOST/home/USER.
It is now DATESTRING.

Yes, you did!

Step 57. Examine the build history of ‘hello’

The VOB now catalogs several builds of the hello program, performed in
several views:



49

• The REL1REL2 script built hello twice in view USER_HOST_old, once for
the REL1 release and once for the REL2 release.

• In Lesson 2, you built a hello in view USER_HOST_tut. This build
modified the string reported as the user’s home directory.

• In this lesson, you built a hello in view USER_HOST_fix, fixing the bug in
the time string.

By default, the lsdo command shows these builds in reverse-chronological
order.

% cleartool lsdo -l -zero hello
DATESTRING-1
(USER.GROUP@HOST) (in the ’fix’ view)
 create derived object "hello@@DATESTRING.nnn"
  references: 1   => HOST:HOME/tut/fix.vws
DATESTRING-2
(USER.GROUP@HOST) (in the ’tut’ view)
  create derived object "hello@@DATESTRING.nnn"
  references: 1   => HOST:HOME/tut/tut.vws
DATESTRING
(USER.GROUP@neptune)  (in the ’old’ view (Release 2))
  create derived object "hello@@DATESTRING.nnn"
  references: 1   => HOST:HOME/tut/old.vws
DATESTRING
(USER.GROUP@neptune)  (in the ’old’ view (Release 1))
  create derived object "hello@@DATESTRING.nnn"
  references: 0   => HOST:HOME/tut/old.vws

The references: 0 annotation means that the data for this instance of hello
is no longer available. The Release 2 build of hello in the USER_HOST_old view
overwrote the Release 1 build. You can still examine its config rec (until
ClearCase automatically “scrubs” it), but there is no longer any file to be
executed.

The lsdo command omits zero-referenced derived objects unless you specify
the -zero option.

Step 58. Compare the configurations of two builds

The diffcr (“diff config recs”) command compares different builds of a
program by their configurations—that is, on the basis of what source
versions were used, what build script, what build options, and so on. For



50

Chapter 5: Fixing a Bug in an Old Release

example, you can compare the configuration of your build of hello with that
of the REL2 version.

% cleartool diffcr -flat hello ../bin/hello@@/main/REL2
MVFS objects:
----------------------------
----------------------------
< First seen in target "hello"
<     1 VOBTAG/src/hello@@DATESTRING.nnn
> First seen in target "hello"
>     1 VOBTAG/src/hello@@DATESTRING.nnn
----------------------------
< First seen in target "util.o"
<     1 VOBTAG/src/util.c <DATESTRING>
> First seen in target "util.o"
>     1 VOBTAG/src/util.c@@/main/1 <DATESTRING>
----------------------------
< First seen in target "hello"
<     2 VOBTAG/src/util.o@@DATESTRING.nnn
> First seen in target "hello"
>     2 VOBTAG/src/util.o@@DATESTRING.nnn

You can see that the only difference between the builds at the source level is
in the one file, util.c. This is a comparison of a derived object in your view
with one that has been checked in as a version of an element. You can also
compare derived objects in two different views. For example, how does your
current build differ from the one you performed in Lesson 2, using view
USER_HOST_tut?

% cleartool diffcr -flat hello /view/USER_HOST_tut/̀ pwd̀ /hello
MVFS objects:
----------------------------
----------------------------
< First seen in target "hello"
<     1 VOBTAG/src/hello@@DATESTRING.nnn
> First seen in target "hello"
>     1 VOBTAG/src/hello@@DATESTRING.nnn
----------------------------
< First seen in target "util.o"
<     1 VOBTAG/src/util.c <DATESTRING>
> First seen in target "util.o"
>     1 VOBTAG/src/util.c@@/main/2 <DATESTRING>
----------------------------



51

< First seen in target "hello"
<     2 VOBTAG/src/util.o@@DATESTRING.nnn
> First seen in target "hello"
>     2 VOBTAG/src/util.o@@DATESTRING.nnn

Note that view-extended naming provides an alternative to the setview
command as a means of accessing a view. setview is ideal if you want to use
just a single view—you can “set it, then forget it.” But the extended naming
scheme enables access to two views at once (in this example, USER_HOST_tut
and USER_HOST_fix), all through the UNIX file system.

Derived objects can also be referenced using their derived object IDs,
irrespective of which view they were created in. For example, you can
essentially repeat the preceding command by comparing the first two
instances of hello in the Step 57 listing—the ones whose timestamps are
DATESTRING-1 and DATESTRING-2.

% cleartool diffcr -flat hello@@DATESTRING-1 hello@@DATESTRING-2
----------------------------
MVFS objects:
----------------------------
----------------------------
< First seen in target "hello"
<     1 VOBTAG/src/hello@@DATESTRING.nnn
> First seen in target "hello"
>     1 VOBTAG/src/hello@@DATESTRING.nnn
----------------------------
< First seen in target "util.o"
<     1 VOBTAG/src/util.c@@/main/rel2_bugfix/1 <DATESTRING>
> First seen in target "util.o"
>     1 VOBTAG/src/util.c@@/main/2 <DATESTRING>
----------------------------
< First seen in target "hello"
<     2 VOBTAG/src/util.o@@DATESTRING.nnn
> First seen in target "hello"
>     2 VOBTAG/src/util.o@@DATESTRING.nnn

Step 59. Checkin the fixed source file

The fix is implemented and tested, so let’s save your work in the version tree.
% cleartool checkin -c "fix bug: extra NL in time string" util.c
Checked in "util.c" version "/main/rel2_bugfix/1".



52

Chapter 5: Fixing a Bug in an Old Release

Step 60. Which version does your view select now?

Since util.c is no longer checked-out, Rule 1 of the config spec no longer
applies. Now, the version-selection process falls through to Rule 2, which
selects the most recent version on the rel2_bugfix branch—that’s the version
you just created.

% cleartool ls util.c
util.c@@/main/rel2_bugfix/1    Rule:  .../rel2_bugfix/LATEST

Step 61. Show the updated version tree of the modified source file

To get an idea of what you’ve done so far, examine the version tree of util.c.
In Lesson 2, you created version /main/2. In this lesson, you created version
/main/rel2_bugfix/1.

% cleartool lsvtree -all util.c
util.c@@/main/0
util.c@@/main/1 (REL2)
util.c@@/main/rel2_bugfix (name of branch)
util.c@@/main/rel2_bugfix/0 (same as version /main/1)
util.c@@/main/rel2_bugfix/1  (version you just created)
util.c@@/main/2

Step 62. Exit the bugfix view

Your bugfixing days are over (at least for now...). In the next lesson, you’ll
return to doing new development work in the USER_HOST_tut view. So exit
the USER_HOST_fix view, returning to your original shell process.

% exit
% cleartool pwv -short
** NONE **
% pwd
HOME



53

Chapter 6

6. Performing a Merge

In preceding lessons, you performed two different development tasks, using
two different views:

• In Lesson 2, you did some new development using view
USER_HOST_tut, starting from the source base for the REL2 release. Since
this is a tutorial, not “real life”, the development involved changing a
single source file, util.c.

• In Lesson 5, you fixed a bug in the REL2 release, using view
USER_HOST_fix. Once again, the change involved a single source
file—and once again, it was util.c.

In this lesson, you’ll resume your new development work, having fixed the
bug. The diversion wasn’t a waste of time, however. The bug in the time
string still exists in your new-development version (the most recent version
on the main branch). As you move the hello program into the future, you can
(and should) also cleanse it of its past sins. ClearCase makes this easy—the
process of merging changes made on subbranches (for example, rel2_bugfix)
into the main line of development (the main branch) is highly automated.

The merge facility encourages frequent use of branches for development
tasks, and frequent resynchronizing of the branches. This methodology
allows people to keep working: for example, a release engineer might
require that a file be “frozen” at a particular version. Furthermore, a
developer might need the frozen version’s branch for last-minute fixes or
workarounds. In such situations, a developer can simply make a branch off
the frozen version, and keep working. After the release engineer has
relinquished control of the branch, the developer can merge his or her
changes back into it.



54

Chapter 6: Performing a Merge

Step 63. Get your bearings

At the end of the preceding lesson, you were in your original directory (we
suggested that you start this tutorial in your home directory), in a shell that
was not set to any view. Verify that you are still in the same situation.

% cleartool pwv -short
** NONE **
% pwd
HOME

If you’ve gotten lost, find out whether your current shell is set to a view:

cleartool pwv

If you are set to a view, exit the shell process, in order to return to a shell that
is not set to a view. (Try cleartool pwv again, to make sure!) Then return
to the directory you were in when you started this tutorial (for example, with
the command cd $HOME).

Step 64. Plan the completion of development for a new release

Let’s suppose that the only new feature to be added is an enhancement to the
env_user() function in file util.c—if the user happens to be root, an
appropriately respectful message is to be substituted for the standard
message:

Hello, Your Excellency.

... instead of:

Hello, root.

Step 65. Return to the ‘tut’ view

To resume your new development work, return to the USER_HOST_tut view,
and go to the source directory.

% cleartool setview USER_HOST_tut
% cd VOBTAG/src



55

Step 66. Determine which source files need to be merged

For each file with a rel2_bugfix branch, you must merge the changes on this
branch back into the main branch. The introduction to this lesson indicated
that the only such file is util.c. Let’s make sure. The cleartool findmerge
command provides the answer.

% cleartool findmerge . -fversion /main/rel2_bugfix/LATEST -print
Needs Merge "util.c" [to /main/2 from /main/rel2_bugfix/1 base /main/1]
A 'findmerge' log has been written to "findmerge.log.03-Apr-94.13:39:44"
% cat findmerge.log.03-Apr-94.13:39:44
cleartool findmerge ./util.c@@/main/2 -fver /main/rel2_bugfix/1
   -log /dev/null -merge

This is an elegant way to answer the “what’s changed” question. For each
VOB element in the current directory, findmerge compared the version
selected by the current view to the LATEST version on the rel2_bugfix branch
(ignoring elements without a rel2_bugfix branch).

The log file produced by findmerge includes the actual command that would
perform the required merge. In fact, we could have had findmerge go ahead
and perform the merge, but we chose the -print option instead, as we have
a change to make on the “mainline” before we merge in the bug fix changes.

Here are two additional ways to verify that only util.c has changed:

Derived object comparison--you’ve used this technique already. In Step 58,
you compared two instances of hello:

cleartool diffcr hello /view/USER_HOST_tut/'pwd'/hello

This command compared the derived object instance you had just built in
view USER_HOST_fix (Step 55) with the instance you had built earlier in view
USER_HOST_tut (Step 23). The comparison showed that the only source-level
difference was in file util.c.

View-based source tree comparison--you can compare the views
USER_HOST_fix and USER_HOST_tut (your current view) on the basis of what
source versions they select.



56

Chapter 6: Performing a Merge

% cleartool ls -vob_only -short
Makefile@@/main/2
hello.c@@/main/3
hello.h@@/main/1
util.c@@/main/2
% cleartool ls -vob_only -short /view/USER_HOST_fix/'pwd'
/view/USER_HOST_fix/VOBTAG/src/Makefile@@/main/2
/view/USER_HOST_fix/VOBTAG/src/hello.c@@/main/3
/view/USER_HOST_fix/VOBTAG/src/hello.h@@/main/1
/view/USER_HOST_fix/VOBTAG/src/util.c@@/main/rel2_bugfix/1

The listing corroborates the fact that only file util.c was changed for the
bugfix. Similarly, we can use findmerge with the -ftag option (rather than
-fversion) to find the files modified for the Rel2 bugfix. The -ftag
argument compares versions in different views, rather than versions on
different branches. (The -whynot option explains why the other files do not
need to be merged.)

% cleartool findmerge . -ftag USER_HOST_fix -whynot -print
No merge "." [to/from same version /main/2]
No merge "./Makefile" [to/from same version /main/2]
No merge "./hello.c" [to/from same version /main/3]
No merge "./hello.h" [to/from same version /main/1]
Needs Merge "util.c" [to /main/2 from /main/rel2_bugfix/1
base /main/1]
A 'findmerge' log has been written to
"findmerge.log.04-Apr-94.10:22:37"
% cat findmerge.log.04-Apr-94.10:22:37
cleartool findmerge ./util.c@@/main/2 -fver
  /main/rel2_bugfix/1
   -log /dev/null -merge

Let’s go ahead and add the new development changes to util.c, then merge
in the bugfix changes.

Step 67. Checkout file ‘util.c’

As always, the first step in modifying a source file is to perform a checkout.
Since you have returned to a view with the default config spec, the checkout
occurs on the main branch.

% cleartool checkout -nc util.c
Checked out "util.c" from version "/main/2".



57

Step 68. Edit the checked-out file

Now, put in the change to the message displayed to a superuser.

% cp /usr/atria/doc/tutorial/ut.4 util.c
% cleartool diff -pred util.c
********************************
<<< file 1: VOBTAG/util.c@@/main/2
>>> file 2: util.c
********************************
---------[changed 7-8]--|-------[changed to 7-12]------
  if (user_env)         | if (user_env) {
    return user_env;    |   if ( strcmp(user_env,"root") == +
                       -|      return "Your Excellency";
                        |    else
                        |      return user_env;
                        |  }
                        |-

You would typically compile and test this change, but let’s go ahead and
merge in the bugfix change first.

Step 69. Merge in the changes made on the ‘rel2_bugfix’ branch

The merge compares three versions of the file element: the two versions to
be merged and their “common ancestor”:

Figure 6-1 Merging Changes to a File

1

2

0

1

0

main
branch

rel2_bugfix
branch

Contributor

contributor

base version

(checked-out
version)



58

Chapter 6: Performing a Merge

The versions to be merged are termed contributors. Their common ancestor
is termed the base version--it is automatically determined by the merge or
findmerge command.

The merge algorithm involves comparing each contributor with the base
version separately. For a given section of code, if just one of the contributors
differs from the base version, that change is adopted automatically. If each
contributor has a different change from the base version (a conflict), you are
prompted to decide which change to use.

The merge process typically overwrites the contents of contributor util.c
with the merged result. The overwritten data is not lost, however; it is saved
as util.c.contrib.

% cleartool findmerge . -fversion /main/rel2_bugfix/LATEST -merge -xmerge
Needs Merge "./util.c" [to /main/CHECKEDOUT from /main/rel2_bugfix/1 base /main/1]
********************************
<<< file 1: VOBTAG/src/util.c@@/main/1
>>> file 2: VOBTAG/src/util.c@@/main/rel2_bugfix/1
>>> file 3: util.c
********************************

 (See Step 68 for the following)
---------[changed 7-8 file 1]--------|-------[changed to 7-12 file 3]-------
    if (user_env)                    |    if (user_env) {
      return user_env;               |      if ( strcmp(user_env,"root") == +
                                    -|        return "Your Excellency";
                                     |      else
                                     |        return user_env;
                                     |    }
                                     |-
*** Automatic: Applying CHANGE from file 3 [lines 7-12]
============
============



59

(See Step 22 for the following)
----------[after 15 file 1]----------|-------[inserted 20-21 file 3]--------
                                    -|    char *b,*c;
                                     |
                                     |-
*** Automatic: Applying INSERT from file 3 [lines 20-21]
============
============
--------[changed 19-20 file 1]-------|------[changed to 25-35 file 3]-------
    else                             |    else {
      return home_env;               |      if ( strncmp("/net/", home_env, +
                                    -|        /* strip prefix from pathname +
                                     |        b = strchr(home_env+1, '/');
                                     |        c = strchr(b+1, '/');
                                     |        return c;
                                     |      } else {
                                     |        /* use pathname as-is */
                                     |        return home_env;
                                     |      }
                                     |    }
                                     |-
*** Automatic: Applying CHANGE from file 3 [lines 25-35]
============
============

(See Step 54 for the following)
----------[after 25 file 1]----------|---------[inserted 26 file 2]---------
                                    -|    char   *s;
                                     |-
*** Automatic: Applying INSERT from file 2 [line 26]
============
============
---------[changed 28 file 1]---------|------[changed to 29-31 file 2]-------
    return ctime(&clock);            |    s = ctime(&clock);
                                    -|    s[ strlen(s)-1 ] = '\0';
                                       |     return s;
                                       |-
*** Automatic: Applying CHANGE from file 2 [lines 29-31]
============
============
Moved contributor "./util.c" to "./util.c.contrib".
Output of merge is in "./util.c".
Recorded merge of "./util.c".                                                             (hyperlink of type Merge)
A 'findmerge' log has been written to "findmerge.log.22-Mar-94.10:27:31"



60

Chapter 6: Performing a Merge

The -merge option says “do the merge.” The -xmerge option says to bring
up the interactive X window system utility xcleardiff to process any conflicts
that require human intervention.

In this case, all the changes are applied automatically, since there were no
conflicts between the changes made on the rel2_bugfix branch and the
changes made on the main branch. If you had changed the same section of
code both on the main branch and on the rel2_bugfix branch, cleartool would
prompt you to select one of the changes (or neither).

Note that these four commands (and some others) would have performed
the merge as well:

cleartool findmerge . -ftag USER_HOST_fix
  /main/rel2_bugfix/LATEST -merge -xmerge
cleartool xmerge  -to util.c  -ver /main/rel2_bugfix/1
cleartool merge  -to util.c  util.c@@/main/rel2_bugfix/LATEST
cleartool findmerge ./util.c@@/main/CHECKEDOUT
  -fver /main/rel2_bugfix/1  -log /dev/null  -merge

Note, also, that the last of these commands is not identical to the one stored
in the log file from our earlier findmerge (Step 66). Having checked out and
modified util.c since then, merging to util.c@@/main/2 would have been a
mistake.

Step 70. Examine the merge hyperlink

The merge of data from the /main/rel2_bugfix/1 version to the currently
checked-out version is recorded as a hyperlink of type Merge between the
versions. Conceptually, a hyperlink is an arrow connecting two VOB objects.
The describe command shows all meta-data attached to an object, including
hyperlinks.

% cleartool describe util.c
version "util.c@@/main/CHECKEDOUT" from /main/2 (reserved)
  checked out DATESTRING by USER.GROUP@HOST
  by view: "HOST:HOME/tut/tut.vws"
  element type: text_file
  predecessor version: /main/2
  Hyperlinks:
    Merge@nnn@VOBTAGVOBTAG/src/util.c@@/main/rel2_bugfix/1 ->

VOBTAG/src/util.c@@/main/CHECKEDOUT.nnn



61

If you are running the X Window System, you can also use the command
xlsvtree util.c to display a graphical version tree for util.c. The xlsvtree
utility uses arrows to display hyperlinks. (To exit xlsvtree, use the Tool
menu.)

Step 71. What did the merge change?

To determine the effect of the merge, compare the new contents of util.c with
its former contents, now stored in util.c.contrib.

% cleardiff util.c.contrib util.c
********************************
<<< file 1: util.c.contrib
>>> file 2: util.c
********************************
-----------[after 40]-------|----------[inserted 41]--------
                           -|     char   *s;
                            |-
----------[changed 43]------|---------[changed to 44-46]-----
    return ctime(&clock);   |     s = ctime(&clock);
                           -|     s[ strlen(s)-1 ] = '\0';
                            |     return s;
                            |-

Note: If you are using X Windows, you might try:

xcleardiff util.c.contrib util.c

Step 72. Rebuild the program

Let’s see if the merge has produced a correct version of util.c.

% clearmake -v hello
Cannot reuse "util.o" - version mismatch for "util.c"
======== Rebuilding "util.o" ========
        cc -c util.c
Will store derived object "VOBTAG/src/util.o"
========================================================
Must rebuild "hello" - due to rebuild of subtarget "util.o"
======== Rebuilding "hello" ========
        cc -o hello hello.o util.o
Will store derived object "VOBTAG/src/hello"
========================================================



62

Chapter 6: Performing a Merge

So far, so good—the program recompiles.

Step 73. Test the change

Now, let’s see if the merged util.c has produced a hello program that executes
correctly.

% ./hello
Hello, USER!
Your home directory is /home/USER.
It is now DATESTRING.

It does!

Step 74. Test the change for the superuser case

Recall that you put in a change that handles a superuser differently from an
ordinary user. A look at the code (Step 68) indicates that you can fool the hello
program into thinking you are a superuser simply by changing the value of
the USER environment variable. Do it in a short-lived Bourne shell, to
minimize the risk to the current shell.

% env USER=root hello
Hello, Your Excellency!
Your home directory is /home/USER.
It is now DATESTRING.

Everything is working fine.

Step 75. Checkin the revised file

You’ve enhanced the hello program, and you’ve integrated a bugfix change.
Now, the boss says, “Ship it!”, so let’s package your work as an official
“release”.

As always, the first thing to do is to make sure all source files are checked in.

% cleartool lscheckout
DATESTRING USER   checkout version "util.c" from /main/2
  (reserved)



63

% cleartool checkin util.c
Checkin comments for "util.c":
special form of username message for root user
merge in fix to time string from bugfix branch
.
Checked in "util.c" version "/main/3".





65

Chapter 7

7. Defining a Release

Each development shop has its own approach to defining, administering,
and producing customer releases. ClearCase does not force you to adopt one
approach over all others. In this tutorial, we explain the facilities that make
certain approaches particularly natural and easy.

Having progressed this far in the tutorial, you have been exposed to the
ClearCase method of defining the source base for a release. At the beginning
of the tutorial, we spoke of the “first release” and the “second release” of the
hello program. We soon switched, however, to describing these as the “REL1
release” and the “REL2 release”. That is, we switched to considering a
release to be a particular set of source versions—those versions that have
been labeled with a particular version label.

Thus, the “REL2 release” is defined by the versions of elements hello.c, hello.h,
util.c, and Makefile that are labeled REL2. And we are about to define a third
release by attaching the label REL3 to a set of source versions.

It may occur to you that this method of defining a release is circular. How do
you keep track of all the particular versions, so that you can attach a label to
them? You’ll see that ClearCase has good facilities in this regard, both for
simple situations (like the one in this tutorial) and for complex ones,
involving many programs and development trees.

Step 76. Get your bearings

At the end of the preceding lesson, you were in the src directory, in a shell set
to view USER_HOST_tut. Verify that you are still in the same situation.

% cleartool pwv -short
USER_HOST_tut
% pwd
VOBTAG/src



66

Chapter 7: Defining a Release

If you’ve gotten lost, you may need to use a full pathname to find the source
directory.

cd VOBTAG/src

If this command fails, it is probably because you exited the shell that was set
to your view. Enter the following commands to reestablish your view
context and your working directory within the VOB.

cleartool setview USER_HOST_tut
cd VOBTAG/src

Step 77. Label the release (part1): create a version label type

Defining version labels works in much the same way as defining names for
branches of version trees (Step 52). There are two steps:

• Create a version label type, using the mklbtype (“make version label
type”) command. This is an administrative object that defines a
particular version label for subsequent use in this VOB.

• Attach the version label to one or more element versions, using the
mklabel (“make version label”) command.

% cleartool mklbtype REL3
Comments for "REL3":
Release 3 version label
.
Created label type "REL3".

Having defined version label REL3 for use within this VOB, you can now
attach it to elements.

Step 78. Label the release (part 2): attach version labels to sources

This is a very simple product release. It consists of a single executable
program, hello, whose source tree consists of a single directory (the one you
are in), VOBTAG/src. You have just built the instance of hello that will be
shipped, so your view’s versions of the sources are the ones that should get
the REL3 label.



67

% cleartool mklabel REL3 Makefile hello.c hello.h util.c . ..

Created label "REL3" on "Makefile" version "/main/2".
Created label "REL3" on "hello.c" version "/main/3".
Created label "REL3" on "hello.h" version "/main/1".
Created label "REL3" on "util.c" version "/main/3".
Created label "REL3" on "." version "/main/2".
Created label "REL3" on ".." version "/main/1".

As discussed in the introduction to Lesson 5, the “.” and “..” arguments
include the current working directory and the parent directory in the list of
elements whose current version is to be labeled. In general, version labels
should be applied to the entire chain of directories between the current
directory and the VOB mount point. In this example, the parent directory is
the VOB mount point.

Since every source file and directory is now labeled REL3, anyone can
reconstruct the source base for this release with a single config spec rule:
element * REL3.

Step 79. Re-label the release sources (just to make a point)

That was easy, but not particularly realistic. In real life, an individual
developer often is not the person who decides when a program is good
enough to release. It is more likely that a QA manager or development
manager will make such decisions, having tested a particular build of the
program.

ClearCase supports this kind of release policy easily. After some build of the
hello program is finally approved for release by the powers-that-be, the
config rec of that build can drive the assignment of version labels to sources.
Exercise this feature now, using an alternative form of the mklabel command.
The output shows that the work of the preceding step is repeated.

% cleartool mklabel -replace -config hello REL3
Label "REL3" already on "VOBTAG" version "/main/1".
Label "REL3" already on "VOBTAG/src" version "/main/2".
Label "REL3" already on "VOBTAG/src/hello.c" version "/main/3".
Label "REL3" already on "VOBTAG/src/hello.h" version "/main/1".
Label "REL3" already on "VOBTAG/src/util.c" version "/main/3".



68

Chapter 7: Defining a Release

Note that this version of the command did not attempt to label the Makefile.
This is because the config rec does not list a version of the Makefile. Instead,
the config rec includes the text of the build script that was executed.

This strategy allows a Makefile to support many targets independently. A
Makefile-level change requires a rebuild only of the target whose build script
or dependencies are modified—all other targets are still “up-to-date”. (If the
config rec listed a version of the Makefile, the entire Makefile would be a
dependency of each of its targets. Each time the Makefile changed, every
target would be rendered “out-of-date”.)

Step 80. Install the ‘hello’ executable in the ‘bin’ directory

You have taken care of the sources. Now for the executable in the bin
directory.

% cleartool checkout -nc ../bin/hello
Checked out "../bin/hello" from version "/main/2".
% cleartool checkin -from ./hello -rm ../bin/hello
Checkin comments for "../bin/hello":
Release 3 version
.
Checked in "../bin/hello" version "/main/3".

Your new executable is checked in. (The -rm option deletes the checked-out
copy of ../bin/hello, suppressing the Save private copy? prompt that
otherwise appears when you check in a version from an alternate location
with -from.)

Now let’s apply the REL3 label the release directory (../bin) and its contents
(../bin/hello).

Step 81. Label the release (part 3): attach labels in the ‘bin’ directory

% cleartool mklabel REL3 ../bin ../bin/hello
Created label "REL3" on "../bin" version "/main/1".
Created label "REL3" on "../bin/hello" version "/main/3".

Note that, like Step 78, this step attaches a version label to the
currently-selected version of a directory—this time, it is ../bin. (There is no
need to “walk up the tree” to the VOB mount point—the parent directory of
../bin is the VOB mount point, which has already been labeled.)



69

Chapter 8

8. Revising a Directory Structure

In preceding lessons, you saw that ClearCase provides version-control of
directory elements as well as file elements. Ordinary version-control systems
handle the fact that the contents of source files change from release to release.
ClearCase directory elements enable handling of additional kinds of
release-to-release changes: files added, deleted, and renamed; files moved to
a different directory; even major directory tree overhauls.

In this lesson, you’ll do some new development that involves creating a new
version of directory element src. Before going on, however, let’s take a few
moments to clarify what a version of a directory element contains. Like a
standard UNIX directory, a version of a ClearCase directory element
contains a list of names. The following kinds of objects can be named in a
directory version:

• file element

• directory element (sometimes called a “subdirectory” to emphasize the
relationship to its parent directory element)

• VOB symbolic link (this kind of object is beyond the scope of this
tutorial)

Whenever you wish to change a directory’s list of names, you must create a
new version of the directory. This means checking out the directory,
modifying it, and checking it back in. Modifications to a directory include:

• creating new file and directory elements

• removing names of file and directory elements

• renaming file and directory elements

• creating additional VOB hard links to existing file elements



70

Chapter 8: Revising a Directory Structure

Step 82. Get your bearings

At the end of the preceding lesson, you were in the src directory, in a shell set
to view USER_HOST_tut. Verify that you are still in the same situation.

% cleartool pwv -short
USER_HOST_tut
% pwd
VOBTAG/src

If you’ve gotten lost, you may need to use a full pathname to find the source
directory.

cd VOBTAG/src

If this command fails, it is probably because you exited the shell that was set
to your view. Enter the following commands to reestablish your view
context and your working directory within the VOB.

cleartool setview USER_HOST_tut
cd VOBTAG/src

Step 83. Compare versions of a directory

In Lesson 4, you changed config specs in order to access “old” versions of the
src source directory. An alternative method is to use version-extended
pathname to reach directly into the version tree of a directory element. For
example, you can examine the Release 1 contents of src and its Release 3
contents without having to change your config spec at all.

% cd ..
% cleartool ls -vob_only src@@/main/REL1
src@@/main/REL1/Makefile@@
src@@/main/REL1/hello.c@@
% cleartool ls -vob_only src@@/main/REL3
src@@/main/REL3/Makefile@@
src@@/main/REL3/hello.c@@
src@@/main/REL3/hello.h@@
src@@/main/REL3/util.c@@

Several times during this tutorial, you have used syntax like
src@@/main/REL1 to name a version of a file element. Version-extended
pathnames for file and directory versions have exactly the same format.
Since src is a directory element, ls is the appropriate command for examining



71

the contents of one of its versions. For versions of file elements, cat or more is
appropriate.

As always, the -vob_only option excludes view-private objects and derived
objects. Without this option, the ls listing would include both the currently
existing view-private and derived objects and the “old” versions selected by
the view.

Were you expecting to see particular versions of the source files in these
listings? This would be incorrect—a directory version does not contain
versions of elements; it only contains names of elements.

Note: There was no need to change to the parent directory in this step. You
can “dive into” the version tree of the current directory with a
version-extended pathname like .@@/main/REL1. Similar comments apply
to performing a checkout of the current working directory (which you’ll do
soon). Since this format is a bit confusing at first, we used a more intuitive
command sequence.

Step 84. Prepare to do some new development

The new development work involves splitting the work of file hello.c into
two parts. In previous releases, hello.c both composed a message and
displayed it. Now, the job of composing the message will be implemented by
a hello_msg() function, whose source code is in a new file, msg.c. The main()
function in hello.c will now simply display whatever message is composed
by hello_msg().

(This change might by motivated by the desire to create variants of the hello
program, which present their messages in different ways. For example, an
xhello variant might display the message in an X Window System window.)

Step 85. Checkout the source directory

Your work involves creating a new source file, msg.c, which you (naturally)
wish to place under source control. In other words, you wish to modify the
src directory element by adding the name msg.c. Before you make this
modification, you must first checkout the directory.

% cleartool checkout -nc src
Checked out "src" from version "/main/2".



72

Chapter 8: Revising a Directory Structure

Step 86. Create a new file element

The mkelem (“make element”) command creates a new element.

% cd src
% cleartool mkelem msg.c
Creation comments for "msg.c":
new file to generate message
.
Created element "msg.c" (type "text_file").
Checked out "msg.c" from version "/main/0".

ClearCase automatically chooses text_file as the element type, because it
recognizes the .c file name suffix on msg.c. Versions of text_file elements are
stored efficiently, as deltas in a single data container file, in much the same way
as SCCS or RCS versions.

The mkelem command automatically performs a checkout of the new file
element, so that you can edit it immediately.

Step 87. Checkin the source directory

The creation of the msg.c file element is the only change you need to make to
the current directory, so check it in.

% cleartool checkin .
Default:
Added file element "msg.c".
Checkin comments for ".":  ("." to accept default)
.
Checked in "." version "/main/3".

You need not keep the src directory checked-out in order to modify the files
within it. (Remember that you modified files often in the preceding lessons,
all without having to checkout the src directory.) Directories and files are
closely related, but they evolve independently:

• Checking out a file allows you to change its contents (for example, with
a text editor).

• Checking out a directory allows you to change its contents—the names
of file elements (and other directory elements)—for example, by
creating new elements, renaming elements, and removing elements.



73

Step 88. Compare the new directory to its predecessor

ClearCase includes the ability to diff directories. Let’s confirm our change to
the src directory.

% cleartool diff -predecessor .
********************************
<<< directory 1: /_tmp/gdvob/src@@/main/2
>>> directory 2: .
********************************
-----------------------------|---------------[ added ]-------
                            -| msg.c  09-Feb.16:31 USER

Step 89. Modify the new source file

The new source file, msg.c, is currently empty. Let’s “write” some code in the
usual way (for this tutorial), by copying it from the repository.

% cp /usr/atria/doc/tutorial/ms.1 msg.c
% cat msg.c
#include "hello.h"

  char *
  hello_msg() {
   static char msg[256];

   sprintf (msg,
   "Hello, %s!\nYour home directory is %s.\nIt is now %s.\n",
             env_user(),
             env_home(),
             env_time() );

    return msg;
  }

Step 90. Modify the old source files

In addition to creating msg.c, your task involves modifying hello.c, hello.h,
and the Makefile. Since this is ground that we’ve covered before, let’s do it
without much ceremony.



74

Chapter 8: Revising a Directory Structure

% cleartool checkout -nc hello.c hello.h Makefile
Checked out "hello.c" from version "/main/3".
Checked out "hello.h" from version "/main/1".
Checked out "Makefile" from version "/main/2".

% cp /usr/atria/doc/tutorial/hc.4 hello.c
% cleartool diff -pred hello.c
********************************
<<< file 1: VOBTAG/src/hello.c@@/main/3
>>> file 2: hello.c
********************************
---------[changed 4-6]-------------|-------[changed to 4]------
printf("Hello, %s!\n", env_user() +|     printf(hello_msg());
printf("Your home directory is %s.+|-
printf("It is now %s.\n", env_time+|
% cp /usr/atria/doc/tutorial/hh.2 hello.h
% cleartool diff -pred hello.h
********************************
<<< file 1: VOBTAG/src/hello.h@@/main/1
>>> file 2: hello.h
********************************
-----------[after 7]----------|----------[inserted 8]---------
                             -|   extern char *hello_msg();
                              |-
% cp /usr/atria/doc/tutorial/mk.3 Makefile
% cleartool diff -pred Makefile
********************************
<<< file 1: VOBTAG/src/Makefile@@/main/2
>>> file 2: Makefile
********************************
------------[changed 3-4]------------|-------[changed to 3-4]--------
hello: hello.o util.o                | hello: hello.o util.o msg.o
    $(MKTUT_CC) -o hello hello.o u+  |   $(MKTUT_CC) -o hello hello.o u+
                                    -|-
-------------[after 11]--------------|----------[inserted 12-14]-----
                                    -| msg.o:
                                     |         $(MKTUT_CC) -c msg.c
                                     |

                                     |-
------------[changed 13]-------------|----------[changed to 16]------
     rm -f hello hello.o util.o      |   rm -f hello hello.o util.o msg+

These commands prove (once again) that a directory need not be
checked-out when you modify the contents of its files.



75

Step 91. Rebuild the program

That’s all the editing to be done. Let’s compile.

% clearmake -v hello
Cannot reuse "hello.o" - version mismatch for "hello.c"

======== Rebuilding "hello.o" ========
        cc -c hello.c
Will store derived object "VOBTAG/src/hello.o"
========================================================

Cannot reuse "util.o" - version mismatch for "hello.h"

======== Rebuilding "util.o" ========
        cc -c util.c
Will store derived object "VOBTAG/src/util.o"
========================================================

No candidate in current view for "msg.o"

======== Rebuilding "msg.o" ========
        cc -c msg.c
Will store derived object "VOBTAG/src/msg.o"
========================================================

Must rebuild "hello" - due to rebuild of subtarget "hello.o"

======== Rebuilding "hello" ========
        cc -o hello hello.o util.o msg.o
Will store derived object "VOBTAG/src/hello"
========================================================

Note that clearmake rebuilds all the object modules, since you’ve edited all
the source files for this program.

Step 92. Test the program

Make sure that the hello program still runs correctly.

% ./hello
Hello, USER!
Your home directory is /home/USER.
It is now DATESTRING.



76

Chapter 8: Revising a Directory Structure

Step 93. What files need to be checked in?

You’ve made quite a few source changes. It may be difficult to recall exactly
which files you have checked out. The command lscheckout –cview

–short saves you the trouble of having to remember.

% cleartool lscheckout -cview -short
Makefile
hello.c
hello.h
msg.c

Compare this listing with that in Step 26, when you used the –cview option,
but not the –short option.

Step 94. Checkin the sources

The file name list displayed by the preceding command is exactly what you
need to specify to the next command, checkin. The C shell ‘!!‘ idiom
incorporates this list into the checkin command, as the list of files to be
checked in.

% cleartool checkin -c "modularize msg generation + display"
‘!!‘
Checked in "Makefile" version "/main/3".
Checked in "hello.c" version "/main/4".
Checked in "hello.h" version "/main/2".
Checked in "msg.c" version "/main/1".



77

Chapter 9

9. Summing Up / Cleaning Up

We hope that you have gotten the “feel” of using ClearCase. Numerically,
you have used only a small fraction of the product’s commands and features.
But these are the commands that you will use most often in your day-to-day
development work. Before cleaning up, take a few moments to review what
you have accomplished.

Step 95. Get your bearings

At the end of the preceding lesson, you were in the src directory, in a shell set
to view USER_HOST_tut. Verify that you are still in the same situation.

% cleartool pwv -short
USER_HOST_tut
% pwd
VOBTAG/src

If you’ve gotten lost, you may need to use a full pathname to find the source
directory.

cd VOBTAG/src

If this command fails, it is probably because you exited the shell that was set
to your view. Here’s how to reestablish your view context, and then go to the
right source directory in the VOB.

cleartool setview USER_HOST_tut
cd VOBTAG/src

Step 96. Verify that all binaries are accessible in the ‘bin’ directory

The bin directory contains all three releases of the hello program. Each is
checked-in as a version of element ../bin/hello. Let’s execute all the versions,
just to see how far the project has progressed.



78

Chapter 9: Summing Up / Cleaning Up

% cd ../bin
% hello@@/main/REL1
Hello, world!
% hello@@/main/REL2
Hello, USER!
Your home directory is /net/HOST/home/USER.
It is now DATESTRING
.
% hello@@/main/REL3
Hello, USER!
Your home directory is /home/USER.
It is now DATESTRING.

Note: The remaining steps guide you through a cleanup process that returns
your machine to its state when you began this tutorial. If you wish to work
further with the data and views you’ve created, you can stop right here. ♦

Step 97. Exit the view

There is no further use for the views you’ve created, so you can delete them.
First, however, exit your shell process, which is set to the USER_HOST_tut
view.

% exit
% cleartool pwv -short
** NONE **
% pwd
HOME

You are now back where you started, in a shell that is not set to any view.

Step 98. Unmount the VOB

Unmount the VOB that you have used in this tutorial, and remove the
mount-over directory.

% cleartool umount VOBTAG
% rmdir VOBTAG

Step 99. Delete all the views you’ve created

The REL1REL2 script you executed at the start of this tutorial created a view
with view-tag USER_HOST_old. You created two additional views,



79

USER_HOST_tut and USER_HOST_fix. Use rmview (“remove view”) commands
to delete the storage areas of these views and to remove their view-tag and
view storage entries in the ClearCase registry files.

% cleartool rmview -force -tag USER_HOST_tut
% cleartool rmview -force -tag USER_HOST_old
% cleartool rmview -force -tag USER_HOST_fix

The -force option suppresses error conditions related to the fact that a VOB
associated with a view still holds derived objects created in that view.

Step 100. Remove the VOB storage area

Having unmounted the VOB, you can delete its storage area (which you
created back at Step 5 in HOME/tut or /usr/tmp/USER/tut).

% cleartool rmvob HOME/tut/tut.vbs

Remove versioned object base "HOME/tut/tut.vbs"?  [no] yes
Removed versioned object base "HOME/tut/tut.vbs".

Confirmation is required for this step, unless you use the -force option.

Step 101. Remove the directory that contained all the storage areas

The tut directory is now empty, since the three view storage areas and the
VOB storage area are all gone. You can now remove this empty directory.

% rmdir tut

That completes the cleanup!

Step 102. Say good-bye!

This concludes the ClearCase Tutorial. We hope that you have enjoyed the
trip, and have gotten a good idea of how ClearCase can help you get your
work done more easily and more reliably.





Tell Us About This Manual

As a user of Silicon Graphics products, you can help us to better understand your needs
and to improve the quality of our documentation.

Any information that you provide will be useful. Here is a list of suggested topics:

• General impression of the document

• Omission of material that you expected to find

• Technical errors

• Relevance of the material to the job you had to do

• Quality of the printing and binding

Please send the title and part number of the document with your comments. The part
number for this document is 007-1614-020.

Thank you!

Three Ways to Reach Us

• To send your comments by electronic mail, use either of these addresses:

– On the Internet: techpubs@sgi.com

– For UUCP mail (through any backbone site): [your_site]!sgi!techpubs

• To fax your comments (or annotated copies of manual pages), use this
fax number: 650-965-0964

• To send your comments by traditional mail, use this address:

Technical Publications
Silicon Graphics, Inc.
2011 North Shoreline Boulevard, M/S 535
Mountain View, California  94043-1389




