
IRIX™ Device Driver
Reference Pages

Document Number 007-2183-003



IRIX™ Device Driver Reference Pages
Document Number 007-2183-003

CONTRIBUTORS

Written by Susan Ellis
Production by Gloria Ackley

© Copyright 1994, Silicon Graphics, Inc.— All Rights Reserved
This document contains proprietary and confidential information of Silicon
Graphics, Inc. The contents of this document may not be disclosed to third parties,
copied, or duplicated in any form, in whole or in part, without the prior written
permission of Silicon Graphics, Inc.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure of the technical data contained in this document by
the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS 52.227-7013
and/or in similar or successor clauses in the FAR, or in the DOD or NASA FAR
Supplement. Unpublished rights reserved under the Copyright Laws of the United
States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd.,
Mountain View, CA 94043-1389.

Silicon Graphics is a registered trademark and IRIX is a trademark of Silicon
Graphics, Inc. UNIX is a registered trademark in the United States and other
countries, licensed exclusively through X/Open Company, Ltd.



iii

Contents

Introduction    xv
About This Guide    xv
Audience    xv
Reference Material    xvi
Notation and Syntax Conventions    xvi
Document Overview    xvii
Functions, Data Structures, and Defines    xvii

Driver Data Definitions (D1)    xviii
Driver Entry Points and Memory Mapping Extensions
(D2 and D2X)    xviii
Kernel Utilities and Utility Extensions (D3 and D3X)    xx
Kernel Data Structures and Extensions (D4 and D4X)    xxx
Kernel Definitions (D5)    xxxi

Driver Data Definitions (D1)    1
intro(D1)    3
devflag(D1)    4
info(D1)    5
prefix(D1)    6

Driver Entry Points and Memory Mapping Extensions (D2 and D2X)    7
intro(D2)    9
close(D2)    10
halt(D2)    13
init(D2)    14
intr(D2)    16
ioctl(D2)    18



iv

Contents

map(D2X)    20
mmap(D2)    22
open(D2)    24
poll(D2)    28
print(D2)    30
put(D2)    31
read(D2)    34
size(D2)    35
srv(D2)    36
start(D2)    39
strategy(D2)    40
unload(D2)    42
unmap(D2X)    43
write(D2)    44

Kernel Utilities and Utility Extensions (D3 and D3X)    47
intro(D3)    49
adjmsg(D3)    50
allocb(D3)    51
ASSERT(D3)    53
badaddr(D3X)    54
bcanput(D3)    55
bcopy(D3)    56
biodone(D3)    58
bioerror(D3)    60
biowait(D3)    61
bptophys(D3X)    62
bp_mapin(D3)    63
bp_mapout(D3)    64
brelse(D3)    65
btod(D3X)    66
btop(D3)    67
btopr(D3)    68



v

bufcall(D3)    69
bzero(D3)    72
canput(D3)    73
clrbuf(D3)    74
cmn_err(D3)    75
copyb(D3)    78
copyin(D3)    80
copymsg(D3)    82
copyout(D3)    84
cpsema(D3X)    86
cvsema(D3X)    87
datamsg(D3)    88
delay(D3)    90
dki_dcache_inval(D3X)    91
dki_dcache_wb(D3X)    92
dki_dcache_wbinval(D3X)    93
dma_map(D3X)    94
dma_mapaddr(D3X)    95
dma_mapalloc(D3X)    96
dma_mapfree(D3X)    97
drv_getparm(D3)    98
drv_hztousec(D3)    100
drv_priv(D3)    101
drv_setparm(D3)    102
drv_usectohz(D3)    104
drv_usecwait(D3)    105
dtimeout(D3)    106
dupb(D3)    108
dupmsg(D3)    110
eisa_dma_disable(D3X)    111
eisa_dma_enable(D3X)    112
eisa_dma_free_buf(D3X)    113
eisa_dma_free_cb(D3X)    114



vi

Contents

eisa_dma_get_buf(D3X)    115
eisa_dma_get_cb(D3X)    116
eisa_dma_prog(D3X)    117
eisa_dma_stop(D3X)    118
eisa_dma_swstart(D3X)    119
enableok(D3)    120
esballoc(D3)    121
esbbcall(D3)    123
etoimajor(D3)    124
flushband(D3)    125
flushbus(D3X)    126
flushq(D3)    127
freeb(D3)    128
freemsg(D3)    129
freerbuf(D3)    130
freesema(D3X)    131
fubyte(D3X)    132
fuword(D3X)    133
geteblk(D3)    134
getemajor(D3)    136
geteminor(D3)    137
geterror(D3)    138
getmajor(D3)    139
getminor(D3)    140
getnextpg(D3X)    141
getq(D3)    142
getrbuf(D3)    143
hwcpin(D3X)    145
hwcpout(D3X)    146
initnsema(D3X)    147
initnsema_mutex(D3X)    148
insq(D3)    149
itimeout(D3)    151



vii

itoemajor(D3)    153
kern_calloc(D3X)    154
kern_free(D3X)    155
kern_malloc(D3X)    156
kmem_alloc(D3)    157
kmem_free(D3)    159
kmem_zalloc(D3)    160
kvtophys(D3X)    162
linkb(D3)    163
LOCK(D3)    164
LOCK_ALLOC(D3)    166
LOCK_DEALLOC(D3)    168
makedevice(D3)    169
max(D3)    171
min(D3)    172
msgdsize(D3)    173
msgpullup(D3)    174
ngeteblk(D3)    175
noenable(D3)    177
OTHERQ(D3)    178
pcmsg(D3)    180
phalloc(D3)    182
phfree(D3)    183
physiock(D3)    184
pio_andb_rmw(D3X)    186
pio_andh_rmw(D3X)    187
pio_andw_rmw(D3X)    188
pio_badaddr(D3X)    189
pio_bcopyin(D3X)    190
pio_bcopyout(D3X)    191
pio_mapaddr(D3X)    192
pio_mapalloc(D3X)    193
pio_mapfree(D3X)    194



viii

Contents

pio_orb_rmw(D3X)    195
pio_orh_rmw(D3X)    196
pio_orw_rmw(D3X)    197
pio_wbadaddr(D3X)    198
pollwakeup(D3)    199
pptophys(D3X)    200
proc_ref(D3)    201
proc_signal(D3)    202
proc_unref(D3)    203
psema(D3X)    204
ptob(D3)    205
putbq(D3)    206
putctl(D3)    207
putctl1(D3)    209
putnext(D3)    210
putq(D3)    211
qenable(D3)    212
qreply(D3)    213
qsize(D3)    214
RD(D3)    215
rmalloc(D3)    216
rmallocmap(D3)    219
rmalloc_wait(D3)    220
rmfree(D3)    221
rmfreemap(D3)    223
rmvb(D3)    224
rmvq(D3)    226
SAMESTR(D3)    227
scsi_alloc(D3X)    228
scsi_command(D3X)    229
scsi_free(D3X)    230
scsi_info(D3X)    231
sgset(D3X)    232



ix

sleep(D3)    233
SLEEP_ALLOC(D3)    235
SLEEP_DEALLOC(D3)    236
SLEEP_LOCK(D3)    237
SLEEP_LOCKAVAIL(D3)    238
SLEEP_LOCK_SIG(D3)    239
SLEEP_TRYLOCK(D3)    241
SLEEP_UNLOCK(D3)    242
spl(D3)    243
strcat(D3)    245
strcpy(D3)    246
streams_interrupt(D3X)    247
STREAMS_TIMEOUT(D3X)    248
strlog(D3)    249
strqget(D3)    251
strqset(D3)    253
subyte(D3X)    254
suword(D3X)    255
TRYLOCK(D3)    256
uiomove(D3)    257
uiophysio(D3X)    259
unbufcall(D3)    261
undma(D3X)    263
unlinkb(D3)    264
UNLOCK(D3)    265
untimeout(D3)    266
untimeout_func(D3X)    267
ureadc(D3)    268
userdma(D3X)    270
uwritec(D3)    271
valusema(D3X)    273
vme_adapter(D3X)    274
vme_ivec_alloc(D3X)    275



x

Contents

vme_ivec_free(D3X)    276
vme_ivec_set(D3X)    277
volatile(D3X)    278
vpsema(D3X)    279
vsema(D3X)    280
v_getaddr(D3X)    281
v_gethandle(D3X)    282
v_getlen(D3X)    283
v_mapphys(D3X)    284
wakeup(D3)    285
wbadaddr(D3X)    286
WR(D3)    287

Kernel Data Structures and Extensions (D4 and D4X)    289
intro(D4)    291
buf(D4)    292
copyreq(D4)    296
copyresp(D4)    298
datab(D4)    299
eisa_dma_cb(D4X)    300
eisa_dma_buf(D4X)    304
free_rtn(D4)    306
iocblk(D4)    307
iovec(D4)    309
linkblk(D4)    310
module_info(D4)    311
msgb(D4)    313
qinit(D4)    315
queue(D4)    317
streamtab(D4)    319
stroptions(D4)    320
uio(D4)    323



xi

Kernel Definitions (D5)    325
intro(D5)    327
errnos(D5)    328
messages(D5)    330
signals(D5)    332

Index    333





xiii

Tables

Table i Driver Data Definitions (D1)    xviii
Table ii Driver Entry Points (D2)    xix
Table iii Memory Mapping Extensions (D2X)    xx
Table iv Kernel Utilities (D3)    xx
Table v Utility Extensions (D3X)    xxvi
Table vi Kernel Data Structures (D4)    xxx
Table vii Data Structure Extensions (D4X)    xxxi
Table viii Kernel Definitions (D5)    xxxi





xv

Introduction

About This Guide

This manual, the IRIX™ Device Driver Reference Pages, provides reference
page (man page) information for developing UNIX® device drivers for IRIX
5.3 and later releases.

Audience

This manual is a guide to writing device drivers for Silicon Graphics®
workstations and servers. It is intended for experienced C programmers
who have a good working knowledge of UNIX internals and computer
architecture.



xvi

Introduction

Reference Material

For further references and background on writing device drivers, you may
want to consult:

• IRIX Device Driver Programming Guide, Silicon Graphics, Inc., Part
Number 007-0911-050

• Kernighan, Brian W., and Dennis M. Ritchie. The C Programming
Language, Second Edition. Prentice Hall, 1988

• Kane, Gerry, and Joe Heinrich. MIPS RISC ARCHITECTURE, Prentice
Hall, 1992

• Egan, Janet I., and Thomas J. Teixeira. Writing a UNIX Device Driver.
John Wiley & Sons, 1992

• Hines, Robert M., and Spence Wilcox. Device Driver Programming, UNIX
SVR4.2, UNIX Press, 1992

• STREAMS Modules and Drivers, UNIX SVR4.2, UNIX Press, 1992

Notation and Syntax Conventions

This guide uses the following notation and syntax conventions:

italic In code it indicates arguments that you must replace with a
valid value. In text, it is used to indicate commands,
document titles, file names, and variables.

courier bold Indicates functions, routines, and entry points names, for
example read (D2).

courier Indicates computer output and program listings.



Document Overview

xvii

Document Overview

This manual lists the functions, data structures, and kernel defines available
for writing device drivers. It contains the following five sections:

• Driver Data Definitions (D1)

• Driver Entry Points and Memory Mapping Extensions (D2 and D2X)

• Kernel Utilities and Utility Extensions (D3 and D3X)

• Kernel Data Structures and Extensions (D4 and D4X)

• Kernel Definitions (D5)

Within each section, reference pages are arranged in alphabetical order
except for the intro reference page, which appears first.

The remainder of this Introduction describes the reference pages included in
each section.

Functions, Data Structures, and Defines

This section lists the functions and data structures that are used to develop
a device driver.

Each driver is uniquely identified by a prefix string specified in its
configuration file. The name of all the driver-supplied functions and global
variables should begin with this prefix. This reduces the chance of a symbol
collision with another driver. Any private functions defined by a driver that
are not entry point functions should be declared as static. Also, any global
variables that are private to the driver should be declared as static.



xviii

Introduction

Driver Data Definitions (D1)

Table i lists the data definition functions used by a device driver.

Driver Entry Points and Memory Mapping Extensions (D2
and D2X)

This section describes the “entry point functions” that provide the interfaces
that the kernel needs from drivers. The kernel calls them when needed.
Some are called at well-defined times, such as system start up and system
shut down. Others are called as a result of I/O-related system calls or
external events, such as interrupts from peripheral devices.

Each driver is organized into two logical parts:

• Base level – interacts with the kernel and the device on behalf of
processes performing I/O operations.

• Interrupt level – interacts with the device and the kernel as a result of
an event such as data arrival, and usually cannot be associated with any
particular process. Each driver is uniquely identified by a prefix string
specified in its configuration file.

Table i Driver Data Definitions (D1)

Function Description

intro Introduction to driver data

devflag Driver flags

info STREAMS driver and module information

prefix Driver prefix



Functions, Data Structures, and Defines

xix

Table ii is a list of the driver entry point functions.

Table ii Driver Entry Points (D2)

Function Description

intro Introduction to driver entry point routines

close Relinquish access to a device

halt Shut down the driver when the system shuts down

init Initialize a device

intr Process a device interrupts

ioctl Control a character device

mmap Support virtual mapping for memory-mapped device

open Gain access to a device

poll Poll entry point for a non-stream character driver

print Display a driver message on the system console

put Receive messages from the preceding queue

read Read data from a device

size Return size of logical block device

srv Service queued messages

start Initialize a device at system start-up

strategy Perform block I/O

unload Clean up a loadable kernel module

write Write data to a device



xx

Introduction

Table iii lists the Silicon Graphics-specific memory mapping functions used
by a device driver.

Kernel Utilities and Utility Extensions (D3 and D3X)

This section describes the kernel utility functions available for use by device
drivers. Drivers must not call any kernel functions other than the ones
described in this section. Unless otherwise stated, any kernel utility function
that sleeps will do so such that signals will not interrupt the sleep.

Table iv is a list of the kernel utility functions.

Table iii Memory Mapping Extensions (D2X)

Function Description

map Support virtual mapping for memory-mapped device

unmap Support virtual unmapping for memory-mapped device

Table iv Kernel Utilities (D3)

Function Description

intro Introduction to kernel utility routines

adjmsg Trim bytes from a message

allocb Allocate a message block

ASSERT Verify assertion

bcanput Test for flow control in a specified priority band

bcopy Copy data between address locations in the kernel

biodone Release buffer after block I/O and wakeup processes

bioerror Manipulate error field within a buffer header

biowait Suspend processes pending completion of block I/O

bp_mapin Allocate virtual address space for buffer page list

bp_mapout Deallocate virtual address space for buffer page list



Functions, Data Structures, and Defines

xxi

brelse Return a buffer to the system's free list

btop Convert size in bytes to size in pages (round down)

btopr Convert size in bytes to size in pages (round up)

bufcall Call a function when a buffer becomes available

bzero Clear memory for a given number of bytes

canput Test for room in a message queue

clrbuf Erase the contents of a buffer

cmn_err Display an error message or panic the system

copyb Copy a message block

copyin Copy data from a user buffer to a driver buffer

copymsg Copy a message

copyout Copy data from a driver buffer to a user buffer

datamsg Test whether a message is a data message

delay Delay process execution for a specified of clock ticks

drv_getparm Retrieve kernel state information

dvr_hztousec Convert clock ticks to microseconds

drv_priv Determine whether credentials are privileged

drv_setparm Set kernel state information

drv_usectohz Convert microseconds to clock ticks

drv_usecwait Busy-wait for specified interval

dtimeout Execute a function on a specified processor, after a specified
length of time

dupb Duplicate a message block

dupmsg Duplicate a message

Table iv (continued) Kernel Utilities (D3)

Function Description



xxii

Introduction

enableok Allow a queue to be serviced

esballoc Allocate a message block using an externally-supplied
buffer

esbbcall Call a function when an externally-supplied buffer can be
allocated

etoimajor Convert external to internal major device number

flushband Flush messages in a specified priority band

flushq Flush messages on a queue

freeb Free a message block

freemsg Free a message

freerbuf Free a raw buffer header

geteblk Get an empty buffer

getemajor Get external major device number

geteminor Get external minor device number

geterror Retrieve error number from a buffer header

getmajor Get internal major device number

getminor Get internal minor device number

getq Get the next message from a queue

getrbuf Get a raw buffer header

insq Insert a message into a queue

itimeout Execute a function after a specified length of time

itoemajor Convert internal to external major device number

kmem_alloc Allocate space from kernel free memory

kmem_free Free previously allocated kernel memory

kmem_zalloc Allocate and clear space from kernel free memory

Table iv (continued) Kernel Utilities (D3)

Function Description



Functions, Data Structures, and Defines

xxiii

linkb Concatenate two message blocks

LOCK Acquire a basic lock

LOCK_ALLOC Allocate and initialize a basic lock

LOCK_DEALLOC Deallocate an instance of a basic lock

makedevice Make device number from major and minor numbers

max Return the larger of two integers

min Return the lesser of two integers

msgdsize Return number of bytes of data in a message

msgpullup Concatenate bytes in a message

ngeteblk Get an empty buffer of the specified size

noenable Prevent a queue from being scheduled

OTHERQ Get a pointer to queue’s partner queue

pcmsg Test whether a message is a priority control message

phalloc Allocate and initialized a pollhead structure

phfree Free a pollhead structure

physiock Validate and issue raw I/O request

pollwakeup Inform polling process that an event has occurred

proc_ref Obtain a reference to a process for signaling

proc_signal Send a signal to a process

proc_unref Release a reference to a process

ptob Convert size in pages to size in bytes

putbq Place a message at the head of a queue

putctl Send a control message to a queue

Table iv (continued) Kernel Utilities (D3)

Function Description



xxiv

Introduction

putctl1 Send a control message with a one-byte parameter to a
queue

putnext Send a message to the next queue

putq Put a message on a queue

qenable Schedule a queue’s service routine to be run

qreply Send a message in the opposite direction in a stream

qsize Find the number of message on a queue

RD Get a pointer to the read queue

rmalloc Allocate space from a private space management map

rmallocmap Allocate and initialize a private space management map

rmalloc_wait Allocate space from a private space management map

rmfree Free space into a private space management map

rmfreemap Free private space management map

rmvb Remove a message block from a message

rmvq Remove a message from a queue

SAMESTR Test if next queue is of the same type

sleep Suspend process execution pending occurrence of an event

SLEEP_ALLOC Allocate and initialize a sleep lock

SLEEP_DEALLOC Deallocate an instance of a sleep lock

SLEEP_LOCK Acquire a sleep lock

SLEEP_LOCKAVAIL Query whether a sleep lock is available

SLEEP_LOCK_SIG Acquire a sleep lock

SLEEP_TRYLOCK Try to acquire a sleep lock

SLEEP_UNLOCK Release a sleep lock

Table iv (continued) Kernel Utilities (D3)

Function Description



Functions, Data Structures, and Defines

xxv

spl Block/allow interrupts on a processor

strcat Concatenate strings

strcpy Copy a string

strlog Submit messages to the log driver

strqget Get information about a queue or band of the queue

strqset Change information about a queue or band of the queue

TRYLOCK Try to acquire a basic lock

uiomove Copy data using uio structure

unbufcall Cancel a pending bufcall request

unlinkb Remove a message block from the head of a message

UNLOCK Release a basic lock

untimeout Cancel previous timeout request

ureadc Copy a character to space described by uio  structure

uwritec Return a character from space described by uio  structure

wakeup Resume suspended process execution

WR Get a pointer to the write queue

Table iv (continued) Kernel Utilities (D3)

Function Description



xxvi

Introduction

Table v lists utility functions that are specific to Silicon Graphics. These
functions are probably different than functions of the same name in another
device driver reference page book, such as the UNIX “red book,” so read
them carefully.

Table v Utility Extensions (D3X)

Function Description

badaddr Check for bus error when reading an address

bptophys Get physical address of buffer data

btod Convert from bytes to disk sectors

cpsema Conditionally perform a “P” or wait semaphore operation

cvsema Conditionally perform a “V” or wait semaphore operation

dki_dcache_inval Invalidate the data cache for a given range of virtual
addresses

dki_dcache_wb Write back the data cache for a given range of virtual
addresses

dki_dcache_wbinval Write back and invalidate the data cache for a given range
of virtual addresses

dma_map Load DMA mapping registers for an imminent transfer

dma_mapaddr Return the “bus virtual” address for a given map and
address

dma_mapalloc Allocate a DMA map

dma_mapfree Free a DMA map

eisa_dma_disable Disable recognition of hardware requests on a DMA
channel

eisa_dma_enable Enable recognition of hardware requests on a DMA
channel

eisa_dma_free_buf Free a previously allocated DMA buffer descriptor

eisa_dma_free_cb Free a previously allocated DMA command block

eisa_dma_get_buf Allocated DMA buffer descriptor



Functions, Data Structures, and Defines

xxvii

eisa_dma_get_cb Allocated a DMA command block

eisa_dma_prog Program a DMA operation for a subsequent software
request

eisa_dma_stop Stop software-initiated DMA operation on a channel and
release it

eisa_dma_swstart Initiate a DMA operation via software request

flushbus Make sure contents of the write buffer are flushed to the
system bus

freesema Free the resources associated with a semaphore

fubyte Fetch (read) a byte from user space

fuword Fetch (read) a word from user space

getnextpg Get next page pointer

hwcpin Copy data from device memory to main memory using
16-bit reads

hwcpout Copy data from main memory to device memory using
16-bit writes

initnsema Allocate a semaphore and initialize it to a given value

initnsema_mutex Initialize a mutex semaphore to one

kern_calloc Allocate storage for objects of a specified size

kern_free Free kernel memory space

kern_malloc Allocate kernel virtual memory

kvtophys Get physical address of buffer data

pio_andb_rmw Byte VME-bus read-modify-write cycle routines

pio_andh_rmw Half-word VME-bus read-modify-write cycle routine

pio_andw_rmw Word VME-bus read-modify-write cycle routines

pio_badaddr Check for bus error when reading an address

Table v (continued) Utility Extensions (D3X)

Function Description



xxviii

Introduction

pio_bcopyin Copy data from VME bus address to kernel’s virtual space

pio_bcopyout Copy data from kernel’s virtual space to VME bus address

pio_mapaddr Used with FIXED maps to generate a kernel pointer to
VME bus space

pio_mapalloc Allocate a PIO map

pio_mapfree Free up a previously allocated PIO map

pio_orb_rmw VME-bus read-modify-write cycle routines

pio_orh_rmw VME-bus read-modify-write cycle routines

pio_orw_rmw VME-bus read-modify-write cycle routines

pio_wbadaddr Check for bus error when writing to an address

pptophys Convert page pointer to physical address

psema Perform a “P” or wait semaphore operation

scsi_alloc Allocate communication channel between host adapter
driver and a kernel level SCSI device driver

scsi_command Issue a command to a SCSI device

scsi_free Free communication channel between host adapter driver
and a kernel level SCSI device driver

scsi_info Get information about a SCSI device

sgset Assign physical addresses to a vector of software
scatter-gather registers

streams_interrupt Synchronize interrupt-level function with STREAMS
mechanism

STREAMS_TIMEOUT Synchronize timeout with STREAMS mechanism

subyte Set (write) a byte to user space

suword Set (write) a word to user space

uiophysio Set up user data space for I/O

Table v (continued) Utility Extensions (D3X)

Function Description



Functions, Data Structures, and Defines

xxix

undma Unlock physical memory in user space

untimeout_func Cancel a previous invocation of timeout by function

userdma Lock, unlock physical memory in user space

valusema Return the value associated with a semaphore

vme_adapter Determine VME adapter

vme_ivec_alloc Allocate a VME bus interrupt VECTOR

vme_ivec_free Free up a VME bus interrupt VECTOR

vme_ivec_set Register a VME bus interrupt handler

volatile Inform the compiler of volatile variables

vpsema Perform an atomic “V” and “P” semaphore operation on
two semaphores

vsema Perform a “V” or signal semaphore operation

v_getaddr Get the user address associated with virtual handle

v_gethandle Get unique identifier associated with virtual handle

v_getlen Get length of user address space associated with virtual
handle

v_mapphys Map physical addresses into user address space

wbadaddr Check for bus error when writing to an address

Table v (continued) Utility Extensions (D3X)

Function Description



xxx

Introduction

Kernel Data Structures and Extensions (D4 and D4X)

This section describes the kernel data structures a developer might need to
use in a device driver. Driver developers should not declare arrays of these
structures, as the size of any structure might change between releases. Two
exceptions to this are the iovec (D4) and uio (D4) structures.

Drivers can only reference those structure members described on the
reference page. The actual data structures may have additional structure
members beyond those described, but drivers must not reference them.

Some structure members are flags fields that consist of a bitmask of flags.
Drivers must never directly assign values to these structure members.
Drivers should only set and clear flags they are interested in, since the actual
implementation may contain unlisted flags.

Data structures that are “black boxes” to drivers are not described in this
section. These structures are referenced on the reference pages where they
are used. Drivers should not be written to use any of their structure
members. Their only valid use is passing pointers to the structures to the
particular kernel functions.

Table vi is a list of the Silicon Graphics kernel data structures.

Table vi Kernel Data Structures (D4)

Function Description

intro Introduction to kernel data structures

buf Block I/O data transfer structure

copyreq STREAMS transparent ioctl  copy request structure

copyresp STREAMS transparent ioctl  copy response structure

datab STREAMS data block structure

free_rtn STREAMS driver’s message free routine structure

iocblk STREAMS ioctl  structure

iovec data storage structure for I/O using uio

linkblk STREAMS multiplexor link structure



Functions, Data Structures, and Defines

xxxi

Table vii is a list of data structure extensions supported by Silicon Graphics.

Kernel Definitions (D5)

Table viii is a list of kernel defines supported by Silicon Graphics.

module_info STREAMS driver and module information structure

msgb STREAMS message block structure

qinit STREAMS queue initialization structure

queue STREAMS queue structure

streamstab STREAMS driver and module declaration structure

stroptions STREAMS head option structure

uio Scatter/gather I/O request structure

Table vii Data Structure Extensions (D4X)

Function Description

eisa_dma_buf EISA DMA buffer descriptor structure

eisa_dma_cb DMA command block structure

Table viii Kernel Definitions (D5)

Function Description

intro Introduction to kernel #define's

errnos Error numbers

messages STREAMS messages

signals Signal numbers

Table vi (continued) Kernel Data Structures (D4)

Function Description





Driver Data Definitions (D1)

Chapter 1





intro(D1)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
intro − introduction to driver data

SYNOPSIS
#include <sys/types.h>
#include <sys/ddi.h>

DESCRIPTION
This section describes the data definitions a developer needs to include in a device driver. The system
finds this information in an implementation-specific manner, usually tied to the way system configuration
is handled.

USAGE
Each driver is uniquely identified by a prefix string specified in its configuration file. The name of all the
driver-supplied routines and global variables should begin with this prefix. This will reduce the chance
of a symbol collision with another driver. Any private routines defined by a driver that are not entry
point routines should be declared as static. Also, any global variables that are private to the driver
should be declared as static.

3



devflag(D1)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
devflag − driver flags

SYNOPSIS
#include <sys/conf.h>
#include <sys/ddi.h>

int prefixdevflag = 0;

DESCRIPTION
Every driver must define a global integer variable called prefixdevflag. This variable contains a bitmask
of flags used to specify the driver’s characteristics to the system.

The valid flags that may be set in prefixdevflag are:

D_MP The driver is multithreaded (it handles its own locking and serialization).

D_WBACK Writes back cache before strategy routine.

D_OLD The driver uses the old-style interface (pre-5.0 release).

If no flags are set for the driver, then prefixdevflag should be set to 0. If this is not done, then lboot
will assume that this is an old style drive, and it will set D_OLD flag as a default.

REFERENCES
physiock(D3)

4



info(D1)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
info − STREAMS driver and module information

SYNOPSIS
#include <sys/stream.h>
#include <sys/ddi.h>

struct streamtab prefixinfo = { . . . };

DESCRIPTION
Every STREAMS driver and module must define a global streamtab(D4) structure so that the system
can identify the entry points and interface parameters.

REFERENCES
streamtab(D4)

5



prefix(D1)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
prefix − driver prefix

SYNOPSIS
int prefixclose();
int prefixopen();
. . .

DESCRIPTION
Every driver must define a unique prefix. This enables driver entry points to be identified by
configuration software and decreases the possibility of global symbol collisions in the kernel.

USAGE
The prefix is usually specified in a configuration file. The maximum length of the prefix is
implementation-defined. Driver entry points names are created by concatenating the driver prefix with
the name for the entry point.

Examples
An ETHERNET driver might use a driver prefix of ‘‘en.’’ It would define the following entry points:
enclose, eninit, enintr, enopen,
enwput, enrsrv, and enwsrv. It would also define the data symbols endevflag and eninfo.

REFERENCES
devflag(D1), info(D1), chpoll(D2), close(D2), halt(D2), init(D2), intr(D2), ioctl(D2),
mmap(D2), open(D2), print(D2), put(D2), read(D2), size(D2), srv(D2), start(D2),
strategy(D2), unload(D2), write(D2)

6



Driver Entry Points and Memory
Mapping Extensions (D2 and D2X)

Chapter 1





intro(D2)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
intro − introduction to driver entry point routines

SYNOPSIS
#include <sys/types.h>
#include <sys/ddi.h>

DESCRIPTION
This section describes the routines a developer needs to include in a device driver or STREAMS module.

USAGE
The routines described in this section are called ‘‘entry point routines’’ because they provide the interfaces
that the kernel needs from drivers and STREAMS modules. The kernel calls these routines when needed.
Some are called at well-defined times, such as system start up and system shut down. Others are called
as a result of I/O-related system calls or external events, such as interrupts from peripheral devices.

Each driver or module is organized into two logical parts: the base level and the interrupt level. The base
level interacts with the kernel and the device on behalf of processes performing I/O operations. The
interrupt level interacts with the device and the kernel as a result of an event such as data arrival, and
usually cannot be associated with any particular process.

Each driver or module is uniquely identified by a prefix string specified in its configuration file. The
name of all the driver-supplied routines and global variables should begin with this prefix. This will
reduce the chance of a symbol collision with another driver or module. Any private routines defined by a
driver or module that are not entry point routines should be declared as static. Also, any global vari-
ables that are private to the driver or module should be declared as static.

In general, any number of instances of the same driver (or module) entry point routine can be running
concurrently. It is the responsibility of the driver or module to synchronize access to its private data
structures.

9



close(D2)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
close − relinquish access to a device

SYNOPSIS
Block and Character Synopsis

#include <sys/types.h>
#include <sys/file.h>
#include <sys/errno.h>
#include <sys/open.h>
#include <sys/cred.h>
#include <sys/ddi.h>

int prefixclose(dev_t dev, int flag, int otyp, cred_t *crp);

Block and Character Arguments
dev Device number.

flag File status flags.

otyp Parameter supplied so that the driver can determine how many times a device was opened
and for what reasons.

crp Pointer to the user credential structure.

STREAMS Synopsis
#include <sys/types.h>
#include <sys/stream.h>
#include <sys/file.h>
#include <sys/errno.h>
#include <sys/cred.h>
#include <sys/ddi.h>

int prefixclose(queue_t *q, int flag, cred_t *crp);

STREAMS Arguments
q Pointer to queue used to reference the read side of the driver.

flag File status flag.

crp Pointer to the user credential structure.

DESCRIPTION
Block and Character Description

The close routine ends the connection between the user process and the device, and prepares the device
(hardware and software) so that it is ready to be opened again.

Valid values for flag and their definitions can be found in open(D2).

10



close(D2)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

The values for otyp are mutually exclusive:

OTYP_BLK Close was through the block interface for the device.

OTYP_CHR Close was through the raw/character interface for the device.

OTYP_LYR Close a layered device. This flag is used when one driver calls another driver’s
close routine.

For OTYP_BLK and OTYP_CHR, a device may be opened simultaneously by multiple processes and the
driver open routine is called for each open, but the kernel will only call the close routine when the last
process using the device issues a close(2) system call or exits.

There is one exception to this rule. If a device is opened through both its character and its block inter-
faces, then there will be one close per interface. For example, if the same device is opened twice through
its block interface and three times through its character interface, then there will be two calls to the
driver’s close routine; one when the block interface is finished being used, and one when the character
interface is finished being used.

For OTYP_LYR, there will be one such close for every corresponding open. Here, the driver should count
each open and close based on the otyp parameter to determine when the device should really be closed.

STREAMS Description
The close routines of STREAMS drivers and modules are called when a stream is dismantled or a
module popped. The steps for dismantling a stream are performed in the following order. First, any
non-persistent multiplexor links present are unlinked and the lower streams are closed. Next, the follow-
ing steps are performed for each module or driver on the stream, starting at the head and working
toward the tail:

1. The write queue is given a chance to drain.

2. Interrupts from STREAMS devices are blocked.

3. The close routine is called.

4. The module or driver is removed from the stream.

5. Any remaining messages on the queues are freed.

Return Values
The close routine should return 0 for success, or the appropriate error number. Refer to errnos(D5)
for a list of DDI/DKI error numbers. Return errors rarely occur, but if a failure is detected, the driver
should still close the device and then decide whether the severity of the problem warrants displaying a
message on the console.

USAGE
This entry point is required in all drivers and STREAMS modules.

A close routine could perform any of the following general functions, depending on the type of device
and the service provided:

11



close(D2)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

disable device interrupts

hang up phone lines

rewind a tape

deallocate buffers from a private buffering scheme

unlock an unsharable device (that was locked in the open routine)

flush buffers

notify a device of the close

cancel any pending timeout or bufcall routines that access data that are deinitialized or deallo-
cated during close

deallocate any resources allocated on open

Synchronization Constraints
The close routine has user context and can sleep. However, STREAMS drivers and modules must sleep
such that signals do not cause the sleep to longjump [see sleep(D3)]. Also, if a close routine does
sleep, it is important that the driver writer synchronize the driver’s open and close routines, since a
driver can be reopened while being closed.

If the FNDELAY or FNONBLOCK flags are specified in the flag argument, the driver should try to avoid
sleeping, if possible, during close processing.

REFERENCES
drv_priv(D3), errnos(D5), open(D2), queue(D4), unbufcall(D3), untimeout(D3), sleep(D3)

12



halt(D2)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
halt − shut down the driver when the system shuts down

SYNOPSIS
void prefixhalt(void);

DESCRIPTION
The halt routine if present, is called to shut down the driver when the system is shut down. After the
halt routine is called, no more calls will be made to the driver entry points.

Return Values
None

USAGE
This entry point is optional.

The device driver shouldn’t assume that the interrupts are enabled. The driver should make sure that no
interrupts are pending from its device, and inform the device that no more interrupts should be gen-
erated.

Synchronization Constraints
User context is not available, so the driver’s halt routine should not sleep.

13



init(D2)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
init − initialize a device

SYNOPSIS
void prefixinit(void);

DESCRIPTION
The init routine executes during system initialization to initialize drivers and the devices they control.

Return Values
None

USAGE
This entry point is optional.

Although init and start routines both perform initialization tasks, they execute at different times
during system start-up. For this reason, they should be used to handle different types of initialization
tasks.

init routines:

execute during system initialization

handle any driver and device setup and initialization that must take place before system services
are initialized (for example, perform any setup and initialization that must be done before device
interrupts are enabled)

may only call the kernel functions listed below

start routines:

execute after system services are initialized

handle all driver and device setup and initialization that can take place after system services are
initialized (most driver setup and initialization tasks can be performed at this time, using a
start routine)

handle any driver and device setup and initialization that can only take place after system ser-
vices are initialized (for example, perform any setup and initialization that must be done after
device interrupts are enabled)

Types of activities performed by the init routine include initializing data structures, allocating memory
for private data, mapping the device into virtual address space, and initializing hardware.

14



init(D2)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

The following kernel functions can be called from the driver’s init routine:
ASSERT eisa_dma_get_buf getmajor
bcmp eisa_dma_get_cb getminor
bcopy eisa_dma_prog itoemajor
bioreset eisa_dma_stop kmem_alloc
btop eisa_dma_swstart kmem_free
btopr drv_getparm kmem_zalloc
bzero drv_hztousec makedevice
cmn_err drv_usectohz max
eisa_dma_disable drv_usecwait min
eisa_dma_enable etoimajor rmalloc
eisa_dma_free_buf getemajor rminit
eisa_dma_free_cb geteminor rmfree

On multiprocessor systems, the following additional kernel functions can be called from the driver’s
init routine:

LOCK_ALLOC phfree rmfreemap
phalloc rmallocmap SLEEP_ALLOC

init routines for dynamically loadable modules are not called during system start-up as they are for
statically linked modules. A loadable module’s initialization is called each time the module is loaded into
a running system.

Synchronization Constraints
Functions that can result in the caller sleeping, or that require user context, such as sleep(D3), may not
be called from init. Any function that provides a flag to prevent it from sleeping must be called such
that the function does not sleep.

REFERENCES
start(D2)

15



intr(D2)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
intr − process a device interrupt

SYNOPSIS
void prefixintr(int ivec);

Arguments
ivec Number used by the operating system to associate a driver’s interrupt handler with an inter-

rupting device. For a VME device, this number can be the logical device number, the interrupt
vector number, or the address which is set by vme_ivec_set(). For a SCSI device, this
number is a pointer to a scsi_request_t type structure.

DESCRIPTION
The intr routine is the interrupt handler for both block and character hardware drivers, as well as for
non-driver hardware modules.

Return Values
None

USAGE
This entry point is only required for those modules that interface to hardware that interrupts the host
computer. It is not used with software drivers.

The interrupt handler is responsible for determining the reason for an interrupt, servicing the interrupt,
and waking up any base-level driver processes sleeping on any events associated with the interrupt.

For example, when a disk drive has transferred information to the host to satisfy a read request, the disk
drive’s controller generates an interrupt. The CPU acknowledges the interrupt and calls the interrupt
handler associated with that controller and disk drive. The interrupt routine services the interrupt and
then wakes up the driver base-level process waiting for data. The base-level portion of the driver then
conveys the data to the user.

In general, most interrupt routines do the following tasks:

keep a record of interrupt occurrences

return immediately if no devices controlled by a driver caused the interrupt (only for systems
supporting shared interrupts)

interpret the interrupt routine argument ivec

reject requests for devices that are not served by the device’s controller

process interrupts that happen without cause (called spurious interrupts)

handle all possible device errors

wake processes that are sleeping on any events associated with the interrupt

16



intr(D2)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

There are also many tasks the intr routine must perform that are driver-type and device specific. For
example, the following types of drivers require different functions from their intr routines:

A block driver dequeues requests and wakes up processes sleeping on an I/O request.

A terminal driver receives and sends characters.

A printer driver ensures that characters are sent.

In addition, the functions of an intr routine are device dependent. You should know the exact chip set
that produces the interrupt for your device. You need to know the exact bit patterns of the device’s con-
trol and status register and how data is transmitted into and out of your computer. These specifics differ
for every device you access.

The intr routine for an intelligent controller that does not use individual interrupt vectors for each sub-
device must access the completion queue to determine which subdevice generated the interrupt. It must
also update the status information, set/clear flags, set/clear error indicators, and so forth to complete the
handling of a job. The code should also be able to handle a spurious completion interrupt identified by an
empty completion queue. When the routine finishes, it should advance the unload pointer to the next
entry in the completion queue.

If the driver called biowait(D3) or sleep(D3) to await the completion of an operation, the intr rou-
tine must call biodone(D3) or wakeup(D3) to signal the process to resume.

The interrupt routine runs at the processor level associated with the interrupt level for the given device.
Lower priority interrupts are deferred while the interrupt routine is active. Certain processor levels can
block different interrupts. See spl(D3) for more information.

uiomove(D3), ureadc(D3), and uwritec(D3) cannot be used in an interrupt routine when the
uio_segflg member of the uio(D4) structure is set to UIO_USERSPACE (indicating a transfer between
user and kernel space).

Synchronization Constraints
The intr routine must never:

use functions that sleep

drop the interrupt priority level below the level at which the interrupt routine was entered

call any function or routine that requires user context (that is, if it accesses or alters information
associated with the running process)

REFERENCES
biodone(D3), biowait(D3), spl(D3), wakeup(D3), vme_ivec_set(D3X)

17



ioctl(D2)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
ioctl − control a character device

SYNOPSIS
#include <sys/types.h>
#include <sys/cred.h>
#include <sys/file.h>
#include <sys/errno.h>
#include <sys/ddi.h>

int prefixioctl(dev_t dev, int cmd, void *arg,
int mode, cred_t *crp, int *rvalp);

Arguments
dev Device number.

cmd Command argument the driver ioctl routine interprets as the operation to be per-
formed.

arg Passes parameters between the user and the driver. The interpretation of the argument is
dependent on the command and the driver. For example, the argument can be an integer,
or it can be the address of a user structure containing driver or hardware settings.

mode Contains the file modes set when the device was opened. The driver can use this to deter-
mine if the device was opened for reading (FREAD), writing (FWRITE), and so on. See
open(D2) for a description of the values.

crp Pointer to the user credential structure.

rvalp Pointer to the return value for the calling process. The driver may elect to set the value if
the ioctl(D2) succeeds.

DESCRIPTION
The ioctl(D2) routine provides non-STREAMS character drivers with an alternate entry point that can
be used for almost any operation other than a simple transfer of data.

The ioctl routine is basically a switch statement, with each case definition corresponding to a dif-
ferent ioctl command identifying the action to be taken.

Return Values
The ioctl routine should return 0 on success, or the appropriate error number on failure. The system
call will usually return 0 on success or −1 on failure. However, the driver can choose to have the system
call return a different value on success by passing the value through the rvalp pointer.

USAGE
This entry point is optional, and is valid for character device drivers only.

Most often, ioctl is used to control device hardware parameters and establish the protocol used by the
driver in processing data. I/O control commands are used to implement terminal settings, to format disk
devices, to implement a trace driver for debugging, and to flush queues.

18



ioctl(D2)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

If the third argument, arg, is a pointer to user space, the driver can use copyin(D3) and copyout(D3)
to transfer data between kernel and user space.

STREAMS drivers do not have ioctl routines. The stream head converts I/O control commands to
M_IOCTL messages, which are handled by the driver’s put(D2) or srv(D2) routine.

Synchronization Constraints
The ioctl routine has user context and can sleep.

Warnings
An attempt should be made to keep the values for driver-specific I/O control commands distinct from
others in the system. Each driver’s I/O control commands are unique, but it is possible for user-level
code to access a driver with an I/O control command that is intended for another driver, which can have
serious results.

A common method to assign I/O control command values that are less apt to be duplicated is to compose
the commands from some component unique to the driver (such as a module name or ID), and a counter,
as in:

#define PREFIX (’h’<<16|’d’<<8)
#define COMMAND1 (PREFIX|1)
#define COMMAND2 (PREFIX|2)
#define COMMAND3 (PREFIX|3)

REFERENCES
copyin(D3), copyout(D3), drv_priv(D3), errnos(D5), open(D2)

19



map(D2X)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
map − support virtual mapping for memory-mapped device

SYNOPSIS
#include <sys/types.h>
#include <sys/mman.h>
#include <sys/ddi.h>

int prefixmap(dev_t dev, vhandl_t *vt, off_t off, int len, int prot);

Arguments
dev Device whose memory is to be mapped.

vt A pointer to the kernel-resident data structure that describes the virtual space to which the device
memory will be mapped. Your driver needs this pointer when calling kernel service routines (i.e.,
v_mapphys(D3X)).

off Offset within device memory at which mapping begins.

len The length of the device memory to be mapped into the user’s address space.

prot Protection flags from mman.h.

DESCRIPTION
The map entry point provides a way to support drivers for memory-mapped devices. A memory-mapped
device has memory that can be mapped into a process’s address space. The mmap(2) system call allows
this device memory to be mapped into user space for direct access by the user application (this way no
kernel buffering or system call overhead is incurred).

Return Values
If the protection and offset are valid for the device, the driver should return 0. Otherwise, the appropriate
error number should be returned.

USAGE
This entry point is optional, and valid for memory-mapped device drivers only.

Valid values for prot are:

PROT_READ
Page can be read.

PROT_WRITE
Page can be written.

PROT_EXEC
Page can be executed.

PROT_ALL
All of the above.

20



map(D2X)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Your driver should treat vt as an opaque and should not try to directly set any of the member values. To
map physical addresses into user address space, drivers should use the v_mapphys(D3X) function. Use
v_gethandle(D3X) if your driver must remember several virtual handles.

Synchronization Constraints
The map routine has user context and can sleep.

REFERENCES
unmap(D2X), v_getaddr(D3X), v_getlen(D3X), v_gethandle(D3X), v_mapphys(D3X)

21



mmap(D2)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
mmap − support virtual mapping for memory-mapped device

SYNOPSIS
#include <sys/types.h>
#include <sys/mman.h>
#include <sys/ddi.h>

int prefixmmap(dev_t dev, off_t off, int prot);

Arguments
dev Device whose memory is to be mapped.

off Offset within device memory at which mapping begins.

prot Protection flags from mman.h.

DESCRIPTION
The mmap entry point provides a way to support character drivers for memory-mapped devices. A
memory-mapped device has memory that can be mapped into a process’s address space. The mmap(2)
system call, when applied to a character special file, allows this device memory to be mapped into user
space for direct access by the user application (this way no kernel buffering or system call overhead is
incurred).

The mmap routine checks if the offset is within the range of pages supported by the device. For example,
a device that has 32K bytes of memory that can be mapped into user space should not support offsets
greater than, or equal to, 32K. If the offset does not exist, then NOPAGE is returned. If the offset does
exist, the mmap routine returns the physical page ID for the page at offset off in the device’s memory.

Return Values
If the protection and offset are valid for the device, the driver should return the physical page ID. Other-
wise, NOPAGE should be returned.

USAGE
This entry point is optional, and valid for memory-mapped character device or character pseudo-device
drivers only.

Valid values for prot are:

PROT_READ Page can be read.

PROT_WRITE Page can be written.

PROT_EXEC Page can be executed.

PROT_ALL All of the above.

Synchronization Constraints
The mmap routine has user context and can sleep.

22



mmap(D2)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

REFERENCES
map(D2X), unmap(D2X)

23



open(D2)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
open − gain access to a device

SYNOPSIS
Block and Character Synopsis

#include <sys/types.h>
#include <sys/file.h>
#include <sys/errno.h>
#include <sys/open.h>
#include <sys/cred.h>
#include <sys/ddi.h>

int prefixopen(dev_t *devp, int oflag, int otyp, cred_t *crp);

Block and Character Arguments
devp Pointer to a device number.

oflag Information passed from the user that instructs the driver on how to open the file.

otyp Parameter supplied so that the driver can determine how many times a device was opened and
for what reasons.

crp Pointer to the user credential structure.

STREAMS Synopsis
#include <sys/types.h>
#include <sys/file.h>
#include <sys/stream.h>
#include <sys/errno.h>
#include <sys/cred.h>
#include <sys/ddi.h>

int prefixopen(queue_t *q, dev_t *devp, int oflag, int sflag, cred_t *crp);

STREAMS Arguments
q Pointer to the queue used to reference the read side of the driver.

devp Pointer to a device number. For modules, devp always points to the device number associated
with the driver at the end (tail) of the stream.

oflag Open flags.

sflag STREAMS flag.

crp Pointer to the user credential structure.

Return Values
The open routine should return 0 for success, or the appropriate error number.

24



open(D2)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

DESCRIPTION
Block and Character Description

The driver’s open routine is called to prepare a device for further access. It is called by the kernel during
an open(2) or a mount(2) of the device special file. For non-STREAMS drivers, it can also be called
from another (layered) driver.

The bit settings for oflag are found in file.h. Valid settings are:

FEXCL Interpreted in a driver-dependent manner. Some drivers interpret this flag to mean
open the device with exclusive access (fail all other attempts to open the device.)

FNDELAY Open the device and return immediately without sleeping (do not block the open
even if there is a problem.)

FNONBLOCK Open the device and return immediately without sleeping (do not block the open
even if there is a problem.)

FREAD Open the device with read access permission.

FWRITE Open the device with write access permission.

Valid values for otyp are defined in open.h. The values are mutually exclusive:

OTYP_BLK Open occurred through block interface for the device.

OTYP_CHR Open occurred through the raw/character interface for the device.

OTYP_LYR Open a layered device. This flag is used when one driver calls another driver’s
open routine.

STREAMS Description
The STREAMS module open routine is called by the kernel during an I_PUSH ioctl(2).

Values for oflag are the same as those described for the block and character open flags above.

The values for sflag are mutually exclusive:

CLONEOPEN Indicates a clone open (see below.) If the driver supports cloning, it must assign
and return a device number of an unused device by changing the value of the dev-
ice number to which devp points.

MODOPEN Indicates that an open routine is being called for a module, not a driver. This is
useful in detecting configuration errors and in determining how the driver is being
used, since STREAMS drivers can also be configured as STREAMS modules.

0 Indicates a driver is being opened directly, without cloning.

USAGE
This entry point is required in all drivers and STREAMS modules.

The open routine could perform any of the following general functions, depending on the type of device
and the service provided:

25



open(D2)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

enable device interrupts

allocate buffers or other resources needed to use the device

lock an unsharable device

notify the device of the open

change the device number if this is a clone open

enable put and service procedures for multithreaded drivers

The open routine should verify that the minor number component of devp is valid, that the type of access
requested by otyp and oflag is appropriate for the device, and, if required, check permissions using the
user credentials pointed to by crp [see drv_priv(D3)].

For STREAMS drivers and modules, the open routine is called with interrupts blocked from all
STREAMS devices. If the driver sets stream head options by sending an M_SETOPTS message upstream
from the open routine, then the changes are guaranteed to take effect when the system call completes.

Support of cloning is optional. Cloning is the process of the driver selecting an unused device for the
user. It eliminates the need to poll many devices when looking for an unused one. Both STREAMS and
Non-STREAMS drivers may implement cloning behavior by changing the device number pointed to by
devp. A driver may designate certain minor devices as special clone entry points into the driver. When
these are opened, the driver searches for an unused device and returns the new device number by chang-
ing the value of the device number to which devp points. Both the major device number and the minor
device number can be changed, although usually just the minor number is changed. The major number is
only changed when the clone controls more than one device.

Using this method of cloning, a STREAMS driver will never see sflag set to CLONEOPEN. A different
method makes use of this flag. STREAMS drivers can take advantage of a special driver, known as the
clone driver, to perform clone opens. This frees the driver from having to reserve special minors for the
clone entry points. Here, the device node is actually that of the clone driver (the major number is the
major number from the clone driver and the minor number is the major number from the real driver.)
When the clone driver is opened, it will call the real driver open routine with sflag set to CLONEOPEN.

For STREAMS drivers and modules, for a given device number (queue), only one instance of the open
routine can be running at any given time. However, multiple opens on any two different device numbers
(queues) can be running concurrently. It is the responsibility of the driver or module to synchronize
access to its private data structures in this case. For clone opens, multiple clone opens can run con-
currently, and it is the driver’s responsibility to synchronize access to its private data structures, as well as
allocation and deallocation of device numbers.

Synchronization Constraints
The open routine has user context and can sleep. However, STREAMS drivers and modules must sleep
such that signals do not cause the sleep to longjump [see sleep(D3)].

26



open(D2)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

REFERENCES
close(D2), drv_priv(D3), errnos(D5), queue(D4)

27



poll(D2)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
poll − poll entry point for a non-STREAMS character driver

SYNOPSIS
#include <sys/poll.h>
#include <sys/ddi.h>

int prefixpoll(dev_t dev, short events, int anyyet, short *reventsp,
struct pollhead **phpp);

Arguments
dev The device number for the device to be polled.

events Mask (bit-wise OR) indicating the events being polled.

anyyet A flag that indicates whether the driver should return a pointer to its pollhead structure to
the caller.

reventsp A pointer to a bitmask of the returned events satisfied.

phpp A pointer to a pointer to a pollhead structure (defined in sys/poll.h).

DESCRIPTION
The poll entry point indicates whether certain I/O events have occurred on a given device. It must be
provided by any non-STREAMS character device driver that wishes to support polling [see poll(2)].

Return Values
The poll routine should return 0 for success, or the appropriate error number.

USAGE
This entry point is optional, and is valid for character device drivers only.

Valid values for events are:

POLLIN Data is available to be read (either normal or out-of-band).

POLLOUT Data may be written without blocking.

POLLPRI High priority data are available to be read.

POLLHUP A device hangup.

POLLERR A device error.

POLLRDNORM Normal data is available to be read.

POLLWRNORM Normal data may be written without blocking (same as POLLOUT).

POLLRDBAND Out-of-band data is available to be read.

POLLWRBAND Out-of-band data may be written without blocking.

A driver that supports polling must provide a pollhead structure for each minor device supported by
the driver. On systems where they are available, the driver should use the phalloc(D3) function to
allocate the pollhead structure, and use the phfree(D3) function to free the pollhead structure, if
necessary.

28



poll(D2)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

The pollhead structure must be initialized to zeros prior to its first use (when phalloc is used to allo-
cate the structure, this is done automatically).

The definition of the pollhead structure is not included in the DDI/DKI, and can change across
releases. It should be treated as a ‘‘black box’’ by the driver; none of its fields may be referenced.
Although the size of the pollhead structure is guaranteed to remain the same across releases, it is good
practice for drivers not to depend on the size of the structure.

The driver must implement the polling discipline itself. Each time the driver detects a pollable event, it
should call pollwakeup(D3), passing to it the event that occurred and the address of the pollhead
structure associated with the device. Note that pollwakeup should be called with only one event at a
time.

When the driver’s poll entry point is called, the driver should check if any of the events requested in
events have occurred. The driver should store the mask, consisting of the subset of events that are
pending, in the short pointed to by reventsp. Note that this mask may be 0 if none of the events are
pending. In this case, the driver should check the anyyet flag and, if it is zero, store the address of the
device’s pollhead structure in the pointer pointed at by phpp. The canonical poll algorithm is:

if (events_are_satisfied_now) {
*reventsp = events & mask_of_satisfied_events;

} else {
*reventsp = 0;
if (!anyyet)

*phpp = my_local_pollhead_pointer;
}
return (0);

Synchronization Constraints
On uniprocessor systems, user context is available in the poll routine, but if the driver sleeps, it must do
so such that signals do not cause the sleep to longjump [see sleep(D3)].

On multiprocessor systems, the poll routine may not call any function that sleeps.

REFERENCES
bzero(D3), phalloc(D3), phfree(D3), poll(2), pollwakeup(D3), select(2)

29



print(D2)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
print − display a driver message on the system console

SYNOPSIS
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/ddi.h>

int prefixprint(dev_t dev, char *str);

Arguments
dev Device number.

str Pointer to a NULL-terminated character string describing the problem.

DESCRIPTION
The print routine is called indirectly by the kernel for the block device when the kernel has detected an
exceptional condition (such as out of space) in the device. The driver should print the message on the
console along with any driver-specific information.

Return Values
Ignored

USAGE
This entry point is optional, and is valid for block device drivers only.

To display the message on the console, the driver should use the cmn_err(D3) function.

The driver should not try to interpret the text string passed to it.

Synchronization Constraints
The print routine should not call any functions that sleep.

REFERENCES
cmn_err(D3)

30



put(D2)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
put − receive messages from the preceding queue

SYNOPSIS
#include <sys/types.h>
#include <sys/stream.h>
#include <sys/stropts.h>
#include <sys/ddi.h>

int prefixrput(queue_t *q, mblk_t *mp); /* read side */

int prefixwput(queue_t *q, mblk_t *mp); /* write side */

Arguments
q Pointer to the queue.

mp Pointer to the message block.

DESCRIPTION
The primary task of the put routine is to coordinate the passing of messages from one queue to the next
in a stream. The put routine is called by the preceding component (module, driver, or stream head) in
the stream. put routines are designated ‘‘write’’ or ‘‘read’’ depending on the direction of message flow.

Return Values
Ignored

USAGE
This entry point is required in all STREAMS drivers and modules.

Both modules and drivers must have write put routines. Modules must have read put routines, but
drivers don’t really need them because their interrupt handler can do the work intended for the read put
routine. A message is passed to the put routine. If immediate processing is desired, the put routine
can process the message, or it can enqueue it so that the service routine [see srv(D2)] can process it later.

The put routine must do at least one of the following when it receives a message:

pass the message to the next component in the stream by calling the putnext(D3) function

process the message, if immediate processing is required (for example, high priority messages)

enqueue the message with the putq(D3) function for deferred processing by the service routine

Typically, the put routine will switch on the message type, which is contained in mp->b_datap-
>db_type, taking different actions depending on the message type. For example, a put routine might
process high priority messages and enqueue normal messages.

The putq function can be used as a module’s put routine when no special processing is required and
all messages are to be enqueued for the service routine.

Although it can be done in the service routine, drivers and modules usually handle queue flushing in
their put routines.

31



put(D2)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

The canonical flushing algorithm for driver write put routines is as follows:

queue_t *q; /* the write queue */
if (*mp->b_rptr & FLUSHBAND) { /* if driver recognizes bands */

if (*mp->b_rptr & FLUSHW) {
flushband(q, FLUSHDATA, *(mp->b_rptr + 1));
*mp->b_rptr &= ˜FLUSHW;

}
if (*mp->b_rptr & FLUSHR) {

flushband(RD(q), FLUSHDATA, *(mp->b_rptr + 1));
qreply(q, mp);

} else {
freemsg(mp);

}
} else {

if (*mp->b_rptr & FLUSHW) {
flushq(q, FLUSHDATA);
*mp->b_rptr &= ˜FLUSHW;

}
if (*mp->b_rptr & FLUSHR) {

flushq(RD(q), FLUSHDATA);
qreply(q, mp);

} else {
freemsg(mp);

}
}

The canonical flushing algorithm for module write put routines is as follows:

queue_t *q; /* the write queue */
if (*mp->b_rptr & FLUSHBAND) { /* if module recognizes bands */

if (*mp->b_rptr & FLUSHW)
flushband(q, FLUSHDATA, *(mp->b_rptr + 1));

if (*mp->b_rptr & FLUSHR)
flushband(RD(q), FLUSHDATA, *(mp->b_rptr + 1));

} else {
if (*mp->b_rptr & FLUSHW)

flushq(q, FLUSHDATA);
if (*mp->b_rptr & FLUSHR)

flushq(RD(q), FLUSHDATA);
}
if (!SAMESTR(q)) {

switch (*mp->b_rptr & FLUSHRW) {
case FLUSHR:

*mp->b_rptr = (*mp->b_rptr & ˜FLUSHR) | FLUSHW;
break;

case FLUSHW:
*mp->b_rptr = (*mp->b_rptr & ˜FLUSHW) | FLUSHR;

32



put(D2)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

break;
}

}
putnext(q, mp);

The algorithms for the read side are similar. In both examples, the FLUSHBAND flag need only be
checked if the driver or module cares about priority bands.

Drivers and modules should not call put routines directly.

Drivers should free any messages they do not recognize.

Modules should pass on any messages they do not recognize.

Drivers should fail any unrecognized M_IOCTL messages by converting them into M_IOCNAK messages
and sending them upstream.

Modules should pass on any unrecognized M_IOCTL messages.

Synchronization Constraints
put routines do not have user context and so may not call any function that sleeps.

REFERENCES
datab(D4), flushband(D3), flushq(D3), msgb(D4), putctl(D3), putctl1(D3), putnext(D3),
putq(D3), qreply(D3), queue(D4), srv(D2)

33



read(D2)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
read − read data from a device

SYNOPSIS
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/uio.h>
#include <sys/cred.h>
#include <sys/ddi.h>

int prefixread(dev_t dev, uio_t *uiop, cred_t *crp);

Arguments
dev Device number.

uiop Pointer to the uio(D4) structure that describes where the data is to be stored in user space.

crp Pointer to the user credential structure for the I/O transaction.

DESCRIPTION
The driver read routine is called during the read(2) system call. The read routine is responsible for
transferring data from the device to the user data area.

Return Values
The read routine should return 0 for success, or the appropriate error number.

USAGE
This entry point is optional, and is valid for character device drivers only.

The pointer to the user credentials, crp, is available so the driver can check to see if the user can read
privileged information, if the driver provides access to any. The uio structure provides the information
necessary to determine how much data should be transferred. The uiomove(D3) function provides a
convenient way to copy data using the uio structure.

Block drivers that provide a character interface can use physiock(D3) to perform the data transfer with
the driver’s strategy(D2) routine.

Synchronization Constraints
The read routine has user context and can sleep.

REFERENCES
drv_priv(D3), errnos(D5), physiock(D3), strategy(D2), uio(D4), uiomove(D3), ureadc(D3),
write(D2)

34



size(D2)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
size − return size of logical block device

SYNOPSIS
#include <sys/types.h>
#include <sys/param.h>
#include <sys/ddi.h>

int prefixsize(dev_t dev);

Arguments
dev The logical device number.

DESCRIPTION
The size entry point returns the number of NBPSCTR-byte units on a logical block device (partition).
NBPSCTR, defined in param.h, is the number of bytes per logical disk sector.

Return Values
On success, the size routine should return the number of NBPSCTR-byte units on the logical block dev-
ice specified by dev; on failure, size should return −1.

USAGE
This entry point is required in all block device drivers.

size(D2) is called only when the device is open.

Synchronization Constraints
The size routine has user context and can sleep. However, it should be careful not to spend much time
sleeping, especially if the routine is called when the logical device is not open.

35



srv(D2)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
srv − service queued messages

SYNOPSIS
#include <sys/types.h>
#include <sys/stream.h>
#include <sys/stropts.h>
#include <sys/ddi.h>

int prefixrsrv(queue_t *q); /* read side */

int prefixwsrv(queue_t *q); /* write side */

Arguments
q Pointer to the queue.

DESCRIPTION
The srv (service) routine may be included in a STREAMS module or driver for a number of reasons. It
provides greater control over the flow of messages in a stream by allowing the module or driver to
reorder messages, defer the processing of some messages, or fragment and reassemble messages. The
service routine also provides a way to recover from resource allocation failures.

Return Values
Ignored

USAGE
This entry point is optional, and is valid for STREAMS drivers and modules only.

A message is first passed to a module’s or driver’s put(D2) routine, which may or may not process it.
The put routine can place the message on the queue for processing by the service routine.

Once a message has been enqueued, the STREAMS scheduler calls the service routine at some later time.
Drivers and modules should not depend on the order in which service procedures are run. This is an
implementation-dependent characteristic. In particular, applications should not rely on service pro-
cedures running before returning to user-level processing.

Every STREAMS queue [see queue(D4)] has limit values it uses to implement flow control. High and
low water marks are checked to stop and restart the flow of message processing. Flow control limits
apply only between two adjacent queues with service routines. Flow control occurs by service routines
following certain rules before passing messages along. By convention, high priority messages are not
affected by flow control.

STREAMS messages can be defined to have up to 256 different priorities to support some networking
protocol requirements for multiple bands of data flow. At a minimum, a stream must distinguish
between normal (priority band zero) messages and high priority messages (such as M_IOCACK). High
priority messages are always placed at the head of the queue, after any other high priority messages
already enqueued. Next are messages from all included priority bands, which are enqueued in decreas-
ing order of priority. Each priority band has its own flow control limits. By convention, if a band is
flow-controlled, all lower priority bands are also stopped.

36



srv(D2)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Once a service routine is called by the STREAMS scheduler it must provide for processing all messages
on its queue, restarting itself if necessary. Message processing must continue until either the queue is
empty, the stream is flow-controlled, or an allocation error occurs. Typically, the service routine will
switch on the message type, which is contained in mp->b_datap->db_type, taking different actions
depending on the message type.

For singlethreaded modules and drivers, the framework for the canonical service procedure algorithm is
as follows:
queue_t *q;
mblk_t *mp;

while ((mp = getq(q)) != NULL) {
if (mp->b_datap->db_type > QPCTL ||

canput(q->q_next)) {
/* process the message */
putnext(q, mp);

} else {
putbq(q, mp);
return;

}
}

If the singlethreaded module or driver cares about priority bands, the algorithm becomes:
queue_t *q;
mblk_t *mp;

while ((mp = getq(q)) != NULL) {
if (mp->b_datap->db_type > QPCTL ||

bcanput(q->q_next, mp->b_band)) {
/* process the message */
putnext(q, mp);

} else {
putbq(q, mp);
return;

}
}

Each STREAMS module and driver can have a read and write service routine. If a service routine is not
needed (because the put routine processes all messages), a NULL pointer should be placed in the
module’s qinit(D4) structure.

If the service routine finishes running because of any reason other than flow control or an empty queue,
then it must explicitly arrange for its rescheduling. For example, if an allocation error occurs during the
processing of a message, the service routine can put the message back on the queue with putbq, and,
before returning, arrange to have itself rescheduled [see qenable(D3)] at some later time [see
bufcall(D3) and itimeout(D3)].

37



srv(D2)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Service routines can be interrupted by put routines, unless the processor interrupt level is raised.

Only one copy of a queue’s service routine will run at a time.

Drivers and modules should not call service routines directly. qenable(D3) should be used to schedule
service routines to run.

Drivers (excepting multiplexors) should free any messages they do not recognize.

Modules should pass on any messages they do not recognize.

Drivers should fail any unrecognized M_IOCTL messages by converting them into M_IOCNAK messages
and sending them upstream.

Modules should pass on any unrecognized M_IOCTL messages.

Service routines should never put high priority messages back on their queues.

Synchronization Constraints
Service routines do not have user context and so may not call any function that sleeps.

REFERENCES
bcanput(D3), bufcall(D3), canput(D3), datab(D4), getq(D3), msgb(D4), pcmsg(D3), put(D2),
putbq(D3), putnext(D3), putq(D3), qenable(D3), qinit(D4), queue(D4), itimeout(D3)

38



start(D2)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
start − initialize a device at system start-up

SYNOPSIS
void prefixstart(void);

DESCRIPTION
The start routine is called at system boot time (after system services are available and interrupts have
been enabled) to initialize drivers and the devices they control.

Return Values
None

USAGE
This entry point is optional.

The start routine can perform the following types of activities:

initialize data structures

allocate buffers for private buffering schemes

map the device into virtual address space

initialize hardware

initialize timeouts

A driver that needs to perform setup and initialization tasks that must take place before system services
are available and interrupts are enabled should use the init(D2) routine to perform such tasks. The
start routine should be used for all other initialization tasks.

Synchronization Constraints
Functions that can result in the caller sleeping, or that require user context, such as sleep(D3), may not
be called from the start routine.

REFERENCES
init(D2)

39



strategy(D2)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
strategy − perform block I/O

SYNOPSIS
#include <sys/types.h>
#include <sys/buf.h>
#include <sys/errno.h>
#include <sys/ddi.h>

int prefixstrategy(struct buf *bp);

Arguments
bp Pointer to the buffer header structure.

DESCRIPTION
The strategy routine is called by the kernel to read and write blocks of data on the block device.
strategy may also be called directly or indirectly (via a call to the physiock(D3) function) to support
the raw character interface of a block device from read(D2), write(D2) or ioctl(D2). The stra-
tegy routine’s responsibility is to set up and initiate the data transfer.

Return Values
Ignored. Errors are returned by using the bioerror(D3) function to mark the buffer as being in error.
On systems where the bioerror function is not available, errors can be returned by setting the
B_ERROR flag in the b_flags field of the buf structure, and setting the error number in the b_error
field of the buf structure.

USAGE
This entry point is required in all block device drivers.

Generally, the first validation test performed by the strategy routine is to see if the I/O is within the
bounds of the device. If the starting block number, given by bp->b_blkno, is less than 0 or greater than
the number of blocks on the device, the error number in the buffer header should be set to ENXIO, and
the B_ERROR flag should be set in bp->b_flags. If the bioerror routine is available, bioerror
should be used to set the buffer error number to ENXIO. Then, the buffer should be marked done by cal-
ling biodone(D3), and the driver should return. If bp->b_blkno is equal to the number of blocks on
the device and the operation is a write, indicated by the absence of the B_READ flag in bp->b_flags
(!(bp->b_flags & B_READ)), then the same action should be taken. However, if the operation is a
read and bp->b_blkno is equal to the number of blocks on the device, then the driver should set bp-
>b_resid equal to bp->b_bcount, mark the buffer done by calling biodone, and return. This will
cause the read to return 0.

Once the I/O request has been validated, the strategy routine should queue the request. If there is not
already a transfer under way, the I/O is started. Then the strategy routine returns. When the I/O is
complete, the driver will call biodone to free the buffer and notify anyone who has called
biowait(D3) to wait for the I/O to finish.

40



strategy(D2)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

There are two kinds of I/O requests passed to strategy routines: normal block I/O requests and
paged-I/O requests. Normal block I/O requests are identified by the absence of the B_PAGEIO flag or
the presence of the B_MAPPED in bp->b_flags. Here, the starting kernel virtual address of the data
transfer will be found in bp->b_un.b_addr. Paged-I/O requests are identified by the presence of the
B_PAGEIO flag in bp->b_flags. The driver has several ways to perform a paged-I/O request.

If the driver wants to use virtual addresses, it can call bp_mapin(D3) to get a virtually contiguous map-
ping for the pages. The physical address can be obtained by calling kvtophys(D3X) for each page in the
virtual address range. However, a more efficient way is to use bptophys(D3X) for each page in the list.
bptophys will return the physical page that corresponds to bp->b_bcount minus bp->b_resid.

If the amount of data to be transferred is more than can be transferred, the driver can transfer as much as
possible (if it supports partial reads and writes), and then use the bioerror function to set the buffer
error number to EIO. If the bioerror function is not available, the driver should then set the B_ERROR
flag, and set bp->b_resid equal to the number of bytes not transferred (if all of the data were
transferred, bp->b_resid should be set to 0).

Synchronization Constraints
The strategy entry point has the necessary context to sleep, but it cannot assume it is called from the
same context of the process that initiated the I/O request. Furthermore, the process that initiated the I/O
might not even be in existence when the strategy routine is called.

REFERENCES
biodone(D3), bioerror(D3), biowait(D3), bptophys(D3X), bp_mapin(D3), buf(D4),
devflag(D1), errnos(D5), kvtophys(D3X), physiock(D3), read(D2), write(D2)

41



unload(D2)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
unload − unload a loadable kernel module

SYNOPSIS
int prefixunload(void);

DESCRIPTION
The module unload routine handles any cleanup a loadable kernel module must perform before it can
be dynamically unloaded from a running system.

Return Values
The unload routine should return 0 for success, or the appropriate error number.

USAGE
This entry point is optional.

The unload routine can perform activities such as:

deallocate memory acquired for private data

cancel any outstanding itimeout(D3) or bufcall(D3) requests made by the module

Synchronization Constraints
The unload routine should not sleep, and should not call any functions that sleep.

42



unmap(D2X)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
unmap − support virtual unmapping for memory-mapped device

SYNOPSIS
#include <sys/types.h>
#include <sys/mman.h>
#include <sys/ddi.h>

int prefixunmap(dev_t dev, vhandl_t *vt);

Arguments
dev Device whose memory is to be mapped.

vt Handle to caller’s virtual address space

DESCRIPTION
To unmap a device, the user program calls munmap(2) system call. After performing device-independent
unmapping in the user’s space, the munmap system call calls your driver’s prefixunmap to remove the
mapping.

Return Values
On success, 0 is returned. An error number is returned on failure.

USAGE
If a driver provides a map(D2X) routine but does not provide an unmapping routine, the munmap sys-
tem call returns the ENODEV error condition to the user. Therefore, it is a good idea for your driver to
provide a dummy unmapping routine even if your driver does not need to perform any action to unmap
the device.

Synchronization Constraints
The unmap routine has user context and can sleep.

REFERENCES
map(D2X), v_getaddr(D3X), v_getlen(D3X), v_gethandle(D3X), v_mapphys(D3X)

43



write(D2)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
write − write data to a device

SYNOPSIS
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/uio.h>
#include <sys/cred.h>
#include <sys/ddi.h>

int prefixwrite(dev_t dev, uio_t *uiop, cred_t *crp);

Arguments
dev Device number.

uiop Pointer to the uio(D4) structure that describes where the data is to be fetched from user
space.

crp Pointer to the user credential structure for the I/O transaction.

DESCRIPTION
The driver write routine is called during the write(2) system call. The write routine is responsible
for transferring data from the user data area to the device.

Return Values
The write routine should return 0 for success, or the appropriate error number.

USAGE
This entry point is optional, and is valid for character device drivers only.

The pointer to the user credentials, crp, is available so the driver can check to see if the user can write
privileged information, if the driver provides access to any. The uio structure provides the information
necessary to determine how much data should be transferred. The uiomove(D3) function provides a
convenient way to copy data using the uio structure.

Block drivers that provide a character interface can use physiock(D3) to perform the data transfer with
the driver’s strategy(D2) routine.

Synchronization Constraints
The write routine has user context and can sleep.

The write operation is intended to be synchronous from the caller’s perspective. Minimally, the driver
write routine should not return until the caller’s buffer is no longer needed. For drivers that care about
returning errors, the data should be committed to the device. For others, the data might only be copied to
local staging buffers. Then the data will be committed to the device asynchronously to the user’s request,
losing the ability to return an error with the associated request.

44



write(D2)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

REFERENCES
drv_priv(D3), errnos(D5), physiock(D3), read(D2), strategy(D2), uio(D4), uiomove(D3),
uwritec(D3)

45



Chapter 1



Kernel Utilities and Utility
Extensions (D3 and D3X)

Chapter 1



Chapter 1



intro(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
intro − introduction to kernel utility routines

SYNOPSIS
#include <sys/types.h>
#include <sys/ddi.h>

DESCRIPTION
This section describes the kernel utility functions available for use by device drivers and STREAMS
modules.

USAGE
Drivers and STREAMS modules must not call any kernel routines other than the ones described in this
section.

Unless otherwise stated, any kernel utility routine that sleeps will do so such that signals will not inter-
rupt the sleep.

49



adjmsg(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
adjmsg − trim bytes from a message

SYNOPSIS
#include <sys/stream.h>
#include <sys/ddi.h>

int adjmsg(mblk_t *mp, int len);

Arguments
mp Pointer to the message to be trimmed.

len The number of bytes to be removed.

DESCRIPTION
adjmsg removes bytes from a message.

Return Values
If the message can be trimmed successfully, 1 is returned. Otherwise, 0 is returned.

USAGE
|len | (the absolute value of len) specifies how many bytes are to be removed. If len is greater than 0, bytes
are removed from the head of the message. If len is less than 0, bytes are removed from the tail.
adjmsg fails if |len | is greater than the number of bytes in mp. If len spans more than one message block
in the message, the messages blocks must be the same type, or else adjmsg will fail.

If len is greater than the amount of data in a single message block, that message block is not freed. Rather,
it is left linked in the message, and its read and write pointers are set equal to each other, indicating no
data present in the block.

Level
Base or Interrupt.

Synchronization Constraints
Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across calls to this function.

REFERENCES
msgb(D4)

50



allocb(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
allocb − allocate a message block

SYNOPSIS
#include <sys/types.h>
#include <sys/stream.h>
#include <sys/ddi.h>

mblk_t *allocb(int size, uint_t pri);

Arguments
size The number of bytes in the message block.

pri Priority of the request.

DESCRIPTION
allocb tries to allocate a STREAMS message block.

Return Values
If successful, allocb returns a pointer to the allocated message block of type M_DATA (defined in
sys/stream.h). If a block cannot be allocated, a NULL pointer is returned.

USAGE
Buffer allocation fails only when the system is out of memory. If no buffer is available, the bufcall(D3)
function can help a module recover from an allocation failure.

The psi argument is no longer used, but is retained for compatibility.

The following figure identifies the data structure members that are affected when a message block is allo-
cated.

cc
c
c
c
hhhhhhhhhhhh

cc
c
c
chhhhhhhhhhhh

hhhhhhhhh
hhhh
hhhh

cc
c
c

b_cont (0)
b_rptr
b_wptr
b_datap

message block
(mblk_t)

data block
(dblk_t)

data buffer

hhhhhhhhh
hhhhhhhhh

cc
c
c
c
hhhhhhhhhhhhhhhhhh

cc
c
c
chhhhhhhhhhhhhhhhhh cc

c
c
c
hhhhhhhhhh

cc
c
c
chhhhhhhhhh

.................

.................

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
c
c

db_base
db_lim
db_type (M_DATA)

Level
Base or Interrupt.

Synchronization Constraints
Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across calls to this function.

51



allocb(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Example
Given a pointer to a queue (q) and an error number (err), the send_error routine sends an M_ERROR
type message to the stream head.

If a message cannot be allocated, 0 is returned, indicating an allocation failure (line 8). Otherwise, the
message type is set to M_ERROR (line 9). Line 10 increments the write pointer (bp->b_wptr) by the size
(one byte) of the data in the message.

A message must be sent up the read side of the stream to arrive at the stream head. To determine
whether q points to a read queue or a write queue, the q->q_flag member is tested to see if QREADR is
set (line 12). If it is not set, q points to a write queue, and on line 13 the RD(D3) function is used to find
the corresponding read queue. In line 14, the putnext(D3) function is used to send the message
upstream. Then send_error returns 1 indicating success.

1 send_error(q, err)
2 queue_t *q;
3 uchar_t err;
4 {
5 mblk_t *bp;
6 long fl=0;

7 if ((bp = allocb(1, BPRI_HI)) == NULL)
8 return(0);
9 bp->b_datap->db_type = M_ERROR;
10 *bp->b_wptr++ = err;
11 (void) strqget(q, QFLAG, 0, &fl);
12 if (fl & QREADR))
13 q = RD(q);
14 putnext(q, bp);
15 return(1);
16 }

REFERENCES
bufcall(D3), esballoc(D3), esbbcall(D3), freeb(D3), msgb(D4)

52



ASSERT(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
ASSERT − verify assertion

SYNOPSIS
#include <sys/debug.h>
#include <sys/ddi.h>

void ASSERT(int expression);

Arguments
expression Expression to be evaluated.

DESCRIPTION
ASSERT is a debugging interface for verifying program invariants within code that is compiled with the
DEBUG compilation option defined.

Return Values
If expression evaluates to non-zero, ASSERT returns no value. If expression evaluates to zero, ASSERT
panics the system.

USAGE
expression is a boolean expression that the caller expects to evaluate to non-zero (that is, the caller is assert-
ing that the expression has a non-zero value). If expression evaluates to non-zero, the ASSERT call has no
effect. If expression evaluates to zero, ASSERT causes the system to panic with the following message:

PANIC: assertion failed: expression, file: filename, line: lineno

where filename is the name of the source file in which the failed assertion appears and lineno is the line
number of the ASSERT call within the file.

When the DEBUG compilation option is not defined, ASSERT calls are not compiled into the code, and
therefore have no effect, including the fact that expression is not evaluated.

Level
Initialization, Base or Interrupt.

Synchronization Constraints
Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across calls to this function.

REFERENCES
cmn_err(D3)

53



badaddr(D3X)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
badaddr − check for bus error when reading an address

SYNOPSIS
badaddr(char *addr, int size);

Arguments
addr The address of the location to be read.

size The size in bytes of the location to be read. size can be:
1 (one byte),
2 (two bytes equals short or half word), or
4 (four bytes equals long word).

DESCRIPTION
Call badaddr to determine whether you can read the specified address location. Typically, you call
badaddr from a VME device’s edtinit() function to determine whether a device is still on the present
system.

Return Values
If the addressed location is accessible, badaddr returns 0. Otherwise, badaddr returns 1.

See Also
wbadaddr(D3X)

54



bcanput(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
bcanput − test for flow control in a specified priority band

SYNOPSIS
#include <sys/types.h>
#include <sys/stream.h>
#include <sys/ddi.h>

int bcanput(queue_t *q, uchar_t pri);

Arguments
q Pointer to the message queue.

pri Message priority.

DESCRIPTION
Like the canput(D3) function, bcanput searches through the stream (starting at q) until it finds a
queue containing a service routine, or until it reaches the end of the stream. If found, the queue contain-
ing the service routine is tested to see if a message of priority pri can be enqueued. If the band is full,
bcanput marks the queue to automatically back-enable the caller’s service routine when the amount of
data in messages on the queue has reached its low water mark.

Return Values
bcanput returns 1 if a message of priority pri can be sent in the stream, or 0 if the priority band is flow-
controlled. If bcanput reaches the end of the stream without finding a queue with a service routine,
then it returns 1.

USAGE
The driver is responsible for both testing a queue with bcanput and refraining from placing a message
on the queue if bcanput fails.

It is possible because of race conditions to test for room using bcanput and get an indication that there
is room for a message, and then have the queue fill up before subsequently enqueuing the message, caus-
ing a violation of flow control. This is not a problem, since the violation of flow control in this case is
bounded.

If pri is 0, the bcanput call is equivalent to a call to canput.

Level
Base or Interrupt.

Synchronization Constraints
Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across calls to this function.

REFERENCES
canput(D3), putbq(D3)

55



bcopy(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
bcopy − copy data between address locations in the kernel

SYNOPSIS
#include <sys/types.h>
#include <sys/ddi.h>

void bcopy(caddr_t from, caddr_t to, size_t bcount);

Arguments
from Source address from which the copy is made.

to Destination address to which the copy is made.

bcount Number of bytes to be copied.

DESCRIPTION
bcopy copies bcount bytes from one kernel address to another. It chooses the best algorithm based on
address alignment and number of bytes to copy.

Return Values
None

USAGE
If the input and output addresses overlap, the function executes, but the results are undefined.

The source and destination address ranges must both be within the kernel address space and must be
memory resident. No range checking is done. Since there is no mechanism by which drivers that con-
form to the rules of the DDI/DKI can obtain and use a kernel address which is not memory resident (an
address which is paged out), DDI/DKI conforming drivers can assume that any address to which they
have access is memory resident and therefore a valid argument to bcopy. Addresses within user
address space are not valid arguments, and specifying such an address may cause the driver to corrupt
the system in an unpredictable way. For copying between kernel and user space, drivers must use an
appropriate function defined for that purpose (for example, copyin(D3), copyout(D3), uiomove(D3),
ureadc(D3), or uwritec(D3)).

Level
Initialization, Base or Interrupt.

Synchronization Constraints
Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across calls to this function.

Examples
An I/O request is made for data stored in a RAM disk. If the I/O operation is a read request, data are
copied from the RAM disk to a buffer (line 9). If it is a write request, data are copied from a buffer to the
RAM disk (line 15). The bcopy function is used since both the RAM disk and the buffer are part of the
kernel address space.

56



bcopy(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

1 #define RAMDNBLK 1000 /* number of blocks in RAM disk */
2 #define RAMDBSIZ NBPSCTR /* bytes per block */
3 char ramdblks[RAMDNBLK][RAMDBSIZ]; /* blocks forming RAM disk */

...
4
5 if (bp->b_flags & B_READ) {
6 /*
7 * read request - copy data from RAM disk to system buffer
8 */
9 bcopy(ramdblks[bp->b_blkno], bp->b_un.b_addr, bp->b_bcount);
10
11 } else {
12 /*
13 * write request - copy data from system buffer to RAM disk
14 */
15 bcopy(bp->b_un.b_addr, ramdblks[bp->b_blkno], bp->b_bcount);
16 }

REFERENCES
copyin(D3), copyout(D3), uiomove(D3), ureadc(D3), uwritec(D3)

57



biodone(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
biodone − release buffer after block I/O and wakeup processes

SYNOPSIS
#include <sys/types.h>
#include <sys/buf.h>
#include <sys/ddi.h>

void biodone(buf_t *bp);

Arguments
bp Pointer to the buffer header structure.

DESCRIPTION
The biodone function is called by the driver to indicate that block I/O associated with the buffer header
fp is complete, and that it can be reused.

Return Values
None

USAGE
biodone is usually called from the driver’s strategy(D2) routine or I/O completion handler [usually
intr(D2)].

If the driver (or the kernel) had specified an iodone handler by initializing the b_iodone field of the
buf(D4) structure to the address of a function, that function is called with the single argument, bp. Then
biodone returns.

If an iodone handler had not been specified, biodone sets the B_DONE flag in the b_flags field of the
buffer header. Then, if the B_ASYNC flag is set, the buffer is released back to the system. If the B_ASYNC
flag is not set, any processes waiting for the I/O to complete are awakened.

If the buffer was allocated via getrbuf(D3), the driver must have specified an iodone handler.

Level
Base or Interrupt.

Synchronization Constraints
Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across calls to this function.

Examples
Generally, the first validation test performed by any block device strategy routine is a check to verify
the bounds of the I/O request. If a read request is made for one block beyond the limits of the device
(line 8), it will report an end-of-media condition (line 10). Otherwise, if the request is outside the limits of
the device, the routine will report an error condition (line 12). In either case, the I/O operation is com-
pleted by calling biodone (line 14) and the driver returns.

58



biodone(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

1 #define RAMDNBLK1000 /* Number of blocks in RAM disk */
2 #define RAMDBSIZ 512 /* Number of bytes per block */
3 char ramdblks[RAMDNBLK][RAMDBSIZ]; /* Array containing RAM disk */

4 ramdstrategy(bp)
5 struct buf *bp;
6 {
7 daddr_t blkno = bp->b_blkno;

8 if ((blkno < 0) || (blkno >= RAMDNBLK)) {
9 if ((blkno == RAMDNBLK) && (bp->b_flags & B_READ)) {
10 bp->b_resid = bp->b_bcount; /* nothing read */
11 } else {
12 bioerror(bp, ENXIO);
13 }
14 biodone(bp);
15 return;
16 }

. . .

On systems where the function bioerror(D3) is not available, line 12 could read:

bp->b_error = ENXIO; bp->b_flags |= B_ERROR;

REFERENCES
bioerror(D3), biowait(D3), brelse(D3), buf(D4), freerbuf(D3), getrbuf(D3), intr(D2),
strategy(D2)

59



bioerror(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
bioerror − manipulate error fields within a buffer header

SYNOPSIS
#include <sys/types.h>
#include <sys/buf.h>
#include <sys/ddi.h>

void bioerror(buf_t *bp, int errno);

Arguments
bp Pointer to the buffer header structure.

errno Error number to be set, or zero to indicate that the error fields within the buffer header should
be cleared.

DESCRIPTION
bioerror is used to manipulate the error fields within a buffer header (buf(D4) structure).

Return Values
None

USAGE
Driver code (for example, a strategy(D2) routine) that wishes to report an I/O error condition associ-
ated with the buffer pointed to by bp should call bioerror with errno set to the appropriate error
number. This will set the appropriate fields within the buffer header so that higher level code can detect
the error and retrieve the error number using geterror(D3).

The error fields within the buffer header can be cleared by calling bioerror with errno set to zero.

On multiprocessor systems, DDI/DKI conforming drivers are no longer permitted to manipulate the
error fields of the buf structure directly. bioerror must be used for this purpose.

Level
Base or Interrupt.

Synchronization Constraints
Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across calls to this function.

REFERENCES
buf(D4), errnos(D5), geteblk(D3), geterror(D3), getrbuf(D3), ngeteblk(D3),
strategy(D2)

60



biowait(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
biowait − suspend processes pending completion of block I/O

SYNOPSIS
#include <sys/types.h>
#include <sys/buf.h>
#include <sys/ddi.h>

int biowait(buf_t *bp);

Arguments
bp Pointer to the buffer header structure.

DESCRIPTION
The biowait function suspends process execution during block I/O.

Return Values
If an error occurred during the I/O transfer, the error number is returned. Otherwise, on success, 0 is
returned.

USAGE
Block drivers that have allocated their own buffers with geteblk(D3), getrbuf(D3), or
ngeteblk(D3) can use biowait to suspend the current process execution while waiting for a read or
write request to complete.

Drivers using biowait must use biodone(D3) in their I/O completion handlers to signal biowait
when the I/O transfer is complete.

Level
Base only.

Synchronization Constraints
Can sleep.

Driver-defined basic locks and read/write locks may not be held across calls to this function.

Driver-defined sleep locks may be held across calls to this function.

REFERENCES
biodone(D3), buf(D4), geteblk(D3), getrbuf(D3), intr(D2), ngeteblk(D3), strategy(D2)

61



bptophys(D3X)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
bptophys − get physical address of buffer data

SYNOPSIS
#include <sys/types.h>
#include <sys/ddi.h>

paddr_t bptophys(void *bp);

Arguments
bp Pointer to buffer header structure.

DESCRIPTION
This function returns a pointer to the physical address of the data mapped starting at bp->b_bcount minus
bp->b_resid. The driver routine must set b_resid to the number of bytes outstanding to transfer before cal-
ling bptophys. The returned value is valid only up to the next page boundary.

Return Values
On success, a pointer to the physical address of the mapped page is returned. If the end of the list is
reached, NULL is returned.

Level
Base or Interrupt.

Notes
Does not sleep.

Driver defined basic locks, read/write locks, and sleep locks may be held across calls to this function.

See Also
getpagesize(2), strategy(D2), bp_mapin(D3), bp_mapout(D3), buf(D4)

Warnings
This interface is deprecated; the function getnextpg(D3X) should be used to access the data of a
paged-I/O buffer header.

62



bp_mapin(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
bp_mapin − allocate virtual address space for buffer page list

SYNOPSIS
#include <sys/types.h>
#include <sys/buf.h>
#include <sys/ddi.h>

void bp_mapin(struct buf_t *bp);

Arguments
bp Pointer to the buffer header structure.

DESCRIPTION
The bp_mapin function is used to map virtual address space to a page list maintained by the buffer
header [see buf(D4)] during a paged-I/O request.

Return Values
None

USAGE
A paged-I/O request is identified by the B_PAGEIO flag being set in the b_flags field of the buffer
header passed to a driver’s strategy(D2) routine.

bp_mapin allocates system virtual address space, maps that space to the page list, and returns the new
virtual address in the b_un.b_addr field of the buf structure. This address is the virtual address of
the start of the page mappings, plus the offset given by the original value of bp->b_un.b_addr. After
the I/O completes, the virtual address space can be deallocated using the bp_mapout(D3) function.

Level
Base only.

Synchronization Constraints
This routine may sleep if virtual space is not immediately available.

Driver-defined basic locks and read/write locks may not be held across calls to this function.

Driver-defined sleep locks may be held across calls to this function.

REFERENCES
bp_mapout(D3), buf(D4), strategy(D2)

63



bp_mapout(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
bp_mapout − deallocate virtual address space for buffer page list

SYNOPSIS
#include <sys/types.h>
#include <sys/buf.h>
#include <sys/ddi.h>

void bp_mapout(struct buf_t *bp);

Arguments
bp Pointer to the buffer header structure.

DESCRIPTION
The bp_mapout function deallocates the system virtual address space associated with a buffer header
page list.

Return Values
None

USAGE
The virtual address space must have been allocated by a previous call to bp_mapin(D3). Drivers should
not reference any virtual addresses in the mapped range after bp_mapout has been called.

Level
Base or Interrupt.

Synchronization Constraints
Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across calls to this function.

REFERENCES
bp_mapin(D3), buf(D4)

64



brelse(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
brelse − return a buffer to the system’s free list

SYNOPSIS
#include <sys/types.h>
#include <sys/buf.h>
#include <sys/ddi.h>

void brelse(struct buf_t *bp);

Arguments
bp Pointer to the buffer header structure.

DESCRIPTION
The brelse function returns the buffer specified by bp to the system’s buffer free list. If there were any
processes waiting for this specific buffer to become free, or for any buffer to become available on the free
list, one is awakened.

Return Values
None

USAGE
The buffer specified by bp must have been previously allocated by a call to geteblk(D3) or
ngeteblk(D3). brelse may not be called to release a buffer which has been allocated by any other
means.

Level
Base or Interrupt.

Synchronization Constraints
Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across calls to this function.

REFERENCES
biodone(D3), biowait(D3), buf(D4), clrbuf(D3), geteblk(D3), ngeteblk(D3)

65



btod(D3X)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
btod − convert from bytes to disk sectors

SYNOPSIS
#include "sys/types.h"
#include "sys/param.h"
#include "sys/immu.h"

btod(int num_bytes);

DESCRIPTION
btod is a macro that converts from a byte count to a disk sector count, where a disk sector is defined as
512 bytes. The btod macro rounds the byte count up to a full sector size before conversion.

66



btop(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
btop − convert size in bytes to size in pages (round down)

SYNOPSIS
#include <sys/types.h>
#include <sys/ddi.h>

ulong_t btop(ulong_t numbytes);

Arguments
numbytes Size in bytes to convert to equivalent size in pages.

DESCRIPTION
btop returns the number of pages that are contained in the specified number of bytes, with downward
rounding if the byte count is not a page multiple.

Return Values
The return value is the number of pages. There are no invalid input values, and therefore no error return
values.

USAGE
Level

Initialization, Base or Interrupt.

Synchronization Constraints
Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across calls to this function.

Examples
If the page size is 2048, then btop(4096) and btop(4097) both return 2, and btop(4095) returns 1.
btop(0) returns 0.

REFERENCES
btopr(D3), ptob(D3)

67



btopr(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
btopr − convert size in bytes to size in pages (round up)

SYNOPSIS
#include <sys/types.h>
#include <sys/ddi.h>

ulong_t btopr(ulong_t numbytes);

Arguments
numbytes Size in bytes to convert to equivalent size in pages.

DESCRIPTION
btopr returns the number of pages that are contained in the specified number of bytes, with upward
rounding if the byte count is not a page multiple.

Return Values
The return value is the number of pages. There are no invalid input values, and therefore no error return
values.

USAGE
Level

Initialization, Base or Interrupt.

Synchronization Constraints
Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across calls to this function.

Examples
If the page size is 2048, then btopr(4096) and btopr(4095) both return 2, and btopr(4097)
returns 3. btopr(0) returns 0.

REFERENCES
btop(D3), ptob(D3)

68



bufcall(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
bufcall − call a function when a buffer becomes available

SYNOPSIS
#include <sys/types.h>
#include <sys/stream.h>
#include <sys/ddi.h>

toid_t bufcall(uint_t size, int pri, void (*func)(), long arg);

Arguments
size Number of bytes in the buffer to be allocated (from the failed allocb(D3) request).

pri Priority of the allocb allocation request.

func Function or driver routine to be called when a buffer becomes available.

arg Argument to the function to be called when a buffer becomes available.

DESCRIPTION
When a buffer allocation request fails, the function bufcall can be used to schedule the routine, func, to
be called with the argument, arg, when a buffer of at least size bytes becomes available. bufcall
serves, in effect, as a timeout call of indeterminate length.

Return Values
On success, bufcall returns a non-zero value that identifies the scheduling request. On failure, buf-
call returns 0.

USAGE
When func runs, all interrupts from STREAMS devices will be blocked. On multiprocessor systems, when
func runs all interrupts from STREAMS devices will be blocked on the processor on which func is running.
func will have no user context and may not call any function that sleeps.

Even when func is called, allocb can still fail if another module or driver had allocated the memory
before func was able to call allocb.

The pri argument is no longer used but is retained for compatibility.

The non-zero identifier returned by bufcall may be passed to unbufcall(D3) to cancel the request.

Level
Base or Interrupt.

Synchronization Constraints
Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across calls to this function.

Example
The purpose of this service routine [see srv(D2)] is to add a header to all M_DATA messages. We
assume only M_DATA messages are added to its queue. Service routines must process all messages on
their queues before returning, or arrange to be rescheduled.

69



bufcall(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

While there are messages to be processed (line 19), we check to see if we can send the message on in the
stream. If not, we put the message back on the queue (line 21) and return. The STREAMS flow control
mechanism will re-enable us later when messages can be sent. If canput(D3) succeeded, we try to allo-
cate a buffer large enough to hold the header (line 24). If no buffer is available, the service routine must
be rescheduled later, when a buffer is available. We put the original message back on the queue (line 26)
and use bufcall to attempt the rescheduling (lines 27 and 28). If bufcall succeeds, we set the
m_type field in the module’s private data structure to BUFCALL. If bufcall failed, we use
itimeout(D3) to reschedule us instead (line 30). modcall will be called in about a half second
[drv_usectohz(500000)]. When the rescheduling has been done, we return.

When modcall runs, it will set the m_type field to zero, indicating that there is no outstanding request.
Then the queue’s service routine is scheduled to run by calling qenable(D3).

If the buffer allocation is successful, we initialize the header (lines 37−39), make the message type
M_PROTO (line 41), link the M_DATA message to it (line 42), and pass it on (line 43).

See unbufcall(D3) for the other half of this example.

1 struct hdr {
2 uint_t h_size;
3 int h_version;
4 };
5 struct mod {
6 long m_id;
7 char m_type;

...
8 };
9 #define TIMEOUT 1
10 #define BUFCALL 2

...
11 modsrv(q) /* assume only M_DATA messages enqueued here */
12 queue_t *q;
13 {
14 mblk_t *bp;
15 mblk_t *mp;
16 struct hdr *hp;
17 struct mod *modp;

18 modp = (struct mod *)q->q_ptr;
19 while ((mp = getq(q)) != NULL) {
20 if (!canput(q->q_next)) {
21 putbq(q, mp);
22 return;
23 }
24 bp = allocb(sizeof(struct hdr), BPRI_MED);
25 if (bp == NULL) {
26 putbq(q, mp);
27 modp->m_id = bufcall(sizeof(struct hdr), BPRI_MED,

70



bufcall(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

28 modcall, (long)q);
29 if (modp->m_id == 0) {
30 modp->m_id = itimeout(modcall, (long)q,
31 drv_usectohz(500000), plstr);
32 modp->m_type = TIMEOUT;
33 } else {
34 modp->m_type = BUFCALL;
35 }
36 return;
37 }
38 hp = (struct hdr *)bp->b_wptr;
39 hp->h_size = msgdsize(mp);
40 hp->h_version = 1;
41 bp->b_wptr += sizeof(struct hdr);
42 bp->b_datap->db_type = M_PROTO;
43 bp->b_cont = mp;
44 putnext(q, bp);
45 }
46 }

47 modcall(q)
48 queue_t *q;
49 {
50 struct mod *modp;

51 modp = (struct mod *)q->q_ptr;
52 modp->m_type = 0;
53 qenable(q);
54 }

REFERENCES
allocb(D3), esballoc(D3), esbbcall(D3), itimeout(D3), unbufcall(D3)

71



bzero(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
bzero − clear memory for a given number of bytes

SYNOPSIS
#include <sys/types.h>
#include <sys/ddi.h>

void bzero(caddr_t addr, size_t bytes);

Arguments
addr Starting virtual address of memory to be cleared.

bytes The number of bytes to clear.

DESCRIPTION
The bzero function clears a contiguous portion of memory by filling the memory with zeros. It chooses
the best algorithm based on address alignment and number of bytes to clear.

Return Values
None

USAGE
There are no alignment restrictions on addr, and no length restrictions on bytes, other than the address
range specified must be within the kernel address space and must be memory resident. No range check-
ing is done. Since there is no mechanism by which drivers that conform to the rules of the DDI/DKI can
obtain and use a kernel address that is not memory resident (an address that is paged out), DDI/DKI con-
forming drivers can assume that any address to which they have access is memory resident and therefore
a valid argument to bzero. An address within user address space is not a valid argument, and specify-
ing such an address may cause the driver to corrupt the system in an unpredictable way.

Level
Initialization, Base or Interrupt.

Synchronization Constraints
Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across calls to this function.

Examples
In a driver close(D2) routine, rather than clear each individual member of its private data structure, the
driver could use bzero as shown here:

bzero((caddr_t)&drv_dat[getminor(dev)], sizeof(struct drvr_data));

REFERENCES
bcopy(D3), clrbuf(D3), kmem_zalloc(D3)

72



canput(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
canput − test for room in a message queue

SYNOPSIS
#include <sys/stream.h>
#include <sys/ddi.h>

int canput(queue_t *q);

Arguments
q Pointer to the message queue.

DESCRIPTION
canput tests if there is room for a message in the queue pointed to by q. The queue must have a service
procedure.

Return Values
canput returns 1 if a message can be placed on the queue. 0 is returned if a message cannot be enqueued
because of flow control.

USAGE
The driver is responsible for both testing a queue with canput and refraining from placing a message on
the queue if canput fails.

It is possible because of race conditions to test for room using canput and get an indication that there is
room for a message, and then have the queue fill up before subsequently enqueuing the message, causing
a violation of flow control. This is not a problem, since the violation of flow control in this case is
bounded.

Level
Base or Interrupt.

Synchronization Constraints
Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across calls to this function.

Examples
See bufcall(D3) for an example of canput.

REFERENCES
bcanput(D3), putbq(D3), putnext(D3)

73



clrbuf(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
clrbuf − erase the contents of a buffer

SYNOPSIS
#include <sys/types.h>
#include <sys/buf.h>
#include <sys/ddi.h>

void clrbuf(buf_t *bp);

Arguments
bp Pointer to the buffer header structure.

DESCRIPTION
The clrbuf function zeros a buffer and sets the b_resid member of the buf(D4) structure to 0. Zeros
are placed in the buffer starting at the address specified by b_un.b_addr for a length of b_bcount
bytes.

Return Values
None

USAGE
If the buffer has the B_PAGEIO or the B_PHYS flag set in the b_flags field, then clrbuf should not
be called until the proper virtual space has been allocated by a call to bp_mapin(D3).

Level
Base or Interrupt.

Synchronization Constraints
Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across calls to this function.

REFERENCES
bp_mapin(D3), buf(D4)

74



cmn_err(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
cmn_err − display an error message or panic the system

SYNOPSIS
#include <sys/cmn_err.h>
#include <sys/ddi.h>

void cmn_err(int level, char *format, ... /* args */);

Arguments
level Indicates the severity of the error condition.

format The message to be displayed.

args The set of arguments passed with the message being displayed.

DESCRIPTION
cmn_err displays a specified message on the console and/or stores it in the kernel buffer putbuf.
cmn_err can also panic the system.

Return Values
None

USAGE
level Argument

Valid values for level are:

CE_CONT Used to continue a previous message or to display an informative message not con-
nected with an error.

CE_NOTE Used to display a message preceded with ‘‘NOTICE: .’’ This message is used to
report system events that do not necessarily require action, but may interest the sys-
tem administrator. For example, a message saying that a sector on a disk needs to be
accessed repeatedly before it can be accessed correctly might be noteworthy.

CE_WARN Used to display a message preceded with ‘‘WARNING: .’’ This message is used to
report system events that require immediate attention, such as those where if an
action is not taken, the system may panic. For example, when a peripheral device
does not initialize correctly, this level should be used.

CE_PANIC
Used to display a message preceded with ‘‘PANIC: ,’’ and panic the system. Drivers
should use this level only for debugging or in the case of severe errors that indicate
that the system cannot continue to function. This level halts processing.

format Argument
By default, the message is sent both to the system console and to the circular kernel buffer putbuf. If
the first character in format is an exclamation point (‘‘!’’), the message goes only to putbuf. If the first
character in format is a circumflex (‘‘ˆ’’), the message goes only to the console. The size of the kernel
buffer putbuf is defined by the kernel variable putbufsz. Driver developers or administrators can
read the putbuf buffer using appropriate debugging or administrative tools [for example, idbg(1M)].

75



cmn_err(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

cmn_err appends \n to each format string, even when a message is sent to putbuf, except
when level is CE_CONT.

Valid conversion specifications are %s, %u, %d, %o, and %x. The cmn_err function is other-
wise similar to the printf(3S) library subroutine in its interpretation of the format string, except
that cmn_err does not accept length specifications in conversion specifications. For example,
%3d is invalid and will be treated as a literal string, resulting in a mismatch of arguments.

args Argument
Any argument within the range of supported conversion specifications can be passed.

General Considerations
At times, a driver may encounter error conditions requiring the attention of a system console monitor.
These conditions may mean halting the system; however, this must be done with caution. Except during
the debugging stage, or in the case of a serious, unrecoverable error, a driver should never stop the sys-
tem.

The cmn_err function with the CE_CONT argument can be used by driver developers as a driver code
debugging tool. However, using cmn_err in this capacity can change system timing characteristics.

Level
Initialization, Base or Interrupt.

Synchronization Constraints
Does not sleep.

If level is CE_PANIC, then driver-defined basic locks, read/write locks, and sleep locks may not be held
across calls to this function. For other levels, locks may be held.

76



cmn_err(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Examples
The cmn_err function can record tracing and debugging information only in the putbuf buffer (lines
12 and 13) or display problems with a device only on the system console (lines 17 and 18).
1 struct device { /* device registers layout */

...
2 int status; /* device status word */
3 };

4 extern struct device xx_dev[]; /* physical device registers */
5 extern int xx_cnt; /* number of physical devices */

...
6 int
7 xxopen(dev_t *devp, int flag, int otyp, cred_t *crp)
8 {
9 struct device *dp;

10 dp = xx_dev[getminor(*devp)]; /* get dev registers */
11 #ifdef DEBUG /* in debugging mode, log function call */
12 cmn_err(CE_NOTE, "!xxopen function call, dev = 0x%x", *devp);
13 cmn_err(CE_CONT, "! flag = 0x%x", flag);
14 #endif

15 /* display device power failure on system console */
16 if ((dp->status & POWER) == OFF)
17 cmn_err(CE_WARN, "ˆxxopen: Power is OFF on device %d port %d",
18 getemajor(*devp), geteminor(*devp));

REFERENCES
print(D2), printf(3S)

77



copyb(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
copyb − copy a message block

SYNOPSIS
#include <sys/stream.h>
#include <sys/ddi.h>

mblk_t *copyb(mblk_t *bp);

Arguments
bp Pointer to the message block from which data are copied.

DESCRIPTION
copyb allocates a new message block, and copies into it the data from the block pointed to by bp. The
new block will be at least as large as the block being copied. The b_rptr and b_wptr members of the
message block pointed to by bp are used to determine how many bytes to copy.

Return Values
On success, copyb returns a pointer to the newly allocated message block containing the copied data.
On failure, it returns a NULL pointer.

USAGE
Level

Base or Interrupt.

Synchronization Constraints
Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across calls to this function.

Example
This example illustrates how copyb can be used during message retransmission. If there are no mes-
sages to retransmit, we return (line 18). For each retransmission record in the list, we test to see if the
downstream queue is full with the canput(D3) function (line 21). If it is full, we skip the current
retransmission record and continue searching the list. If it is not full, we use copyb(D3) to copy a header
message block (line 25), and dupmsg(D3) to duplicate the data to be retransmitted (line 28). If either
operation fails, we clean up and break out of the loop.

Otherwise, we update the new header block with the correct destination address (line 34), link the mes-
sage to be retransmitted to it (line 35), and send it downstream (line 36). At the end of the list, we
reschedule a itimeout at the next valid interval (line 39) and return.

1 struct retrns {
2 mblk_t *r_mp; /* message to retransmit */
3 long r_address; /* destination address */
4 queue_t *r_outq; /* output queue */
5 struct retrns *r_next; /* next retransmission */
6 };
7 struct protoheader {
8 long h_address; /* destination address */

78



copyb(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

...
9 };
10 mblk_t *header;
11 struct retrns *rlist;

...
12 retransmit()
13 {
14 mblk_t *bp, *mp;
15 struct retrns *rp;
16 struct protoheader *php;

17 if (!rlist)
18 return;
19 rp = rlist;
20 while (rp) {
21 if (!canput(rp->r_outq->q_next)) {
22 rp = rp->r_next;
23 continue;
24 }
25 bp = copyb(header);
26 if (bp == NULL)
27 break;
28 mp = dupmsg(rp->r_mp);
29 if (mp == NULL) {
30 freeb(bp);
31 break;
32 }
33 php = (struct protoheader *)bp->b_rptr;
34 php->h_address = rp->r_address;
35 bp->bp_cont = mp;
36 putnext(rp->r_outq, bp);
37 rp = rp->r_next;
38 }
39 (void) itimeout(retransmit, 0, RETRNS_TIME, plstr);
40 }

REFERENCES
allocb(D3), copymsg(D3), msgb(D4)

79



copyin(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
copyin − copy data from a user buffer to a driver buffer

SYNOPSIS
#include <sys/types.h>
#include <sys/ddi.h>

int copyin(caddr_t userbuf, caddr_t driverbuf, size_t count);

Arguments
userbuf User source address from which copy is made.

driverbuf Driver destination address to which copy is made.

count Number of bytes to copy.

DESCRIPTION
copyin copies count bytes of data from the user virtual address specified by userbuf to the kernel virtual
address specified by driverbuf.

Return Values
If the copy is successful, 0 is returned. Otherwise, −1 is returned to indicate that the specified user
address range is not valid.

USAGE
The driver must ensure that adequate space is allocated for the destination address.

copyin chooses the best algorithm based on address alignment and number of bytes to copy. Although
the source and destination addresses are not required to be word aligned, word aligned addresses may
result in a more efficient copy.

Drivers usually convert a return value of −1 into an EFAULT error.

Level
Base only.

Synchronization Constraints
Can sleep.

Driver-defined basic locks and read/write locks may not be held across calls to this function.

Driver-defined sleep locks may be held across calls to this function.

Warnings
The driver source buffer must be completely within the kernel address space, or the system can panic.

When holding sleep locks across calls to this function, multithreaded drivers must be careful to avoid
creating a deadlock. During the data transfer, page fault resolution might result in another I/O to the
same device. For example, this could occur if the driver controls the disk drive used as the swap device.

80



copyin(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Examples
A driver ioctl(D2) routine (line 5) can be used to get or set device attributes or registers. If the
specified command is XX_SETREGS (line 9), the driver copies user data to the device registers (line 11).
If the user address is invalid, an error code is returned.
1 struct device { /* device registers layout */

...
2 int command; /* device command word */
3 };

4 extern struct device xx_dev[]; /* physical device registers */
...

5 xxioctl(dev_t dev, int cmd, void *arg, int mode, cred_t *crp, int *rvp)
6 {
7 struct device *dp;

8 switch (cmd) {
9 case XX_SETREGS: /* copy user program data to device registers */
10 dp = &xx_dev[getminor(dev)];
11 if (copyin(arg, (caddr_t)dp, sizeof(struct device)))
12 return (EFAULT);
13 break;

REFERENCES
bcopy(D3), copyout(D3), uiomove(D3), ureadc(D3), uwritec(D3)

81



copymsg(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
copymsg − copy a message

SYNOPSIS
#include <sys/stream.h>
#include <sys/ddi.h>

mblk_t *copymsg(mblk_t *mp);

Arguments
mp Pointer to the message to be copied.

DESCRIPTION
copymsg forms a new message by allocating new message blocks, copies the contents of the message
referred to by mp (using the copyb(D3) function), and returns a pointer to the new message.

Return Values
On success, copymsg returns a pointer to the new message. On failure, it returns a NULL pointer.

USAGE
Level

Base or Interrupt.

Synchronization Constraints
Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across calls to this function.

Examples
The routine lctouc converts all the lower case ASCII characters in the message to upper case. If the
reference count is greater than one (line 8), then the message is shared, and must be copied before chang-
ing the contents of the data buffer. If the call to copymsg fails (line 9), we return NULL (line 10). Other-
wise, we free the original message (line 11). If the reference count was equal to one, the message can be
modified. For each character (line 16) in each message block (line 15), if it is a lower case letter, we con-
vert it to an upper case letter (line 18). When done, we return a pointer to the converted message (line 21).

1 mblk_t *lctouc(mp)
2 mblk_t *mp;
3 {
4 mblk_t *cmp;
5 mblk_t *tmp;
6 uchar_t *cp;
7
8 if (mp->b_datap->db_ref > 1) {
9 if ((cmp = copymsg(mp)) == NULL)
10 return(NULL);
11 freemsg(mp);
12 } else {
13 cmp = mp;
14 }

82



copymsg(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

15 for (tmp = cmp; tmp; tmp = tmp->b_next) {
16 for (cp = tmp->b_rptr; cp < tmp->b_wptr; cp++) {
17 if ((*cp <= ’z’) && (*cp >= ’a’))
18 *cp -= 0x20;
19 }
20 }
21 return(cmp);
22 }

REFERENCES
allocb(D3), copyb(D3), msgb(D4)

83



copyout(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
copyout − copy data from a driver buffer to a user buffer

SYNOPSIS
#include <sys/types.h>
#include <sys/ddi.h>

int copyout(caddr_t driverbuf, caddr_t userbuf, size_t count);

Arguments
driverbuf Driver source address from which copy is made.

userbuf User destination address to which copy is made.

count Number of bytes to copy.

DESCRIPTION
copyout copies count bytes of data from the kernel virtual address specified by driverbuf to the user vir-
tual address specified by userbuf.

Return Values
On success, copyout returns 0. On failure, it returns −1 to indicate that the specified user address range
is not valid.

USAGE
copyout chooses the best algorithm based on address alignment and number of bytes to copy. Although
the source and destination addresses are not required to be word aligned, word aligned addresses may
result in a more efficient copy.

Drivers usually convert a return value of −1 into an EFAULT error.

Level
Base only.

Synchronization Constraints
Can sleep.

Driver-defined basic locks and read/write locks may not be held across calls to this function.

Driver-defined sleep locks may be held across calls to this function.

Warnings
The driver source buffer must be completely within the kernel address space, or the system can panic.

When holding sleep locks across calls to this function, drivers must be careful to avoid creating a
deadlock. During the data transfer, page fault resolution might result in another I/O to the same device.
For example, this could occur if the driver controls the disk drive used as the swap device.

Examples
A driver ioctl(D2) routine (line 5) can be used to get or set device attributes or registers. If the
specified command is XX_GETREGS (line 9), the driver copies the current device register values to a user
data area (line 11). If the user address is invalid, an error code is returned.

84



copyout(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

1 struct device { /* device registers layout */
...

2 int status; /* device status word */
3 };

4 extern struct device xx_dev[]; /* physical device registers */
...

5 xxioctl(dev_t dev, int cmd, void *arg, int mode, cred_t *crp, int *rvp)
6 {
7 struct device *dp;

8 switch (cmd) {
9 case XX_GETREGS: /* copy device registers to user program */
10 dp = &xx_dev[getminor(dev)];
11 if (copyout((caddr_t)dp, arg, sizeof(struct device)))
12 return (EFAULT);
13 break;

REFERENCES
bcopy(D3), copyin(D3), uiomove(D3), ureadc(D3), uwritec(D3)

85



cpsema(D3X)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
cpsema − conditionally perform a "P" or wait semaphore operation

SYNOPSIS
#include "sys/types.h"
#include "sys/sema.h"

cpsema(sema_t *semap);

Arguments
semap Expects a pointer to the semaphore you want cpsema to conditionally decrement.

DESCRIPTION
cpsema conditionally performs a "P" operation depending on the current value of the semaphore. If the
semaphore value is less than or equal to 0, cpsema returns without altering the semaphore. Otherwise,
cpsema decrements the semaphore value by 1 and returns. cpsema effectively performs a "P" operation
if it does not cause the process to sleep; otherwise, it simply returns. To initialize semaphores before using
them, call initnsema(D3X) or initnsema_mutex(D3X).

Return Values
cpsema returns 0 if the semaphore value is less than or equal to 0. (If cpsema returns 0, psema(D3X)
would have slept.) Otherwise cpsema returns 1.

See Also
initnsema(D3X), initnsema_mutex(D3X), psema(D3X), SLEEP_TRYLOCK(D3)

86



cvsema(D3X)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
cvsema − conditionally perform a "V" or wait semaphore operation

SYNOPSIS
#include "sys/types.h"
#include "sys/sema.h"

cvsema(sema_t *semap);

Arguments
semap Expects a pointer to the semaphore you want to conditionally.

DESCRIPTION
cvsema routine conditionally performs a "V" operation depending on the current value of the semaphore.
If the semaphore value is strictly less than 0, cvsema increments the semaphore value by 1 and wakes up
a sleeping process. Otherwise, cvsema simply returns. cvsema effectively performs a "V" operation if
there is a process asleep on the semaphore; otherwise, it does nothing. To initialize semaphores before
you use them, call initnsema(D3X) or initnsema_mutex(D3X).

Return Values
cvsema returns 1 if the semaphore value is less than 0 and a process is awakened. Otherwise cvsema
returns 0.

See Also
initnsema(D3X), initnsema_mutex(D3X), vsema(D3X)

87



datamsg(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
datamsg − test whether a message is a data message

SYNOPSIS
#include <sys/types.h>
#include <sys/stream.h>
#include <sys/ddi.h>

int datamsg(uchar_t type);

Arguments
type The type of message to be tested.

DESCRIPTION
The datamsg function tests the type of message to determine if it is a data message type (M_DATA,
M_DELAY, M_PROTO, or M_PCPROTO).

Return Values
datamsg returns 1 if the message is a data message and 0 if the message is any other type.

USAGE
The db_type field of the datab structure contains the message type. This field may be accessed
through the message block using mp->b_datap->db_type.

Level
Base or Interrupt.

Synchronization Constraints
Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across calls to this function.

Examples
The put(D2) routine enqueues all data messages for handling by the srv(D2) (service) routine. All
non-data messages are handled in the put routine.

1 xxxput(q, mp)
2 queue_t *q;
3 mblk_t *mp;
4 {
5 if (datamsg(mp->b_datap->db_type)) {
6 putq(q, mp);
7 return;
8 }
9 switch (mp->b_datap->db_type) {
10 case M_FLUSH:

...
11 }
12 }

88



datamsg(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

REFERENCES
allocb(D3), datab(D4), messages(D5), msgb(D4)

89



delay(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
delay − delay process execution for a specified number of clock ticks

SYNOPSIS
void delay(long ticks);

Arguments
ticks The number of clock ticks to delay.

DESCRIPTION
delay causes the caller to sleep for the amount of time specified by ticks, which is in units of clock ticks.
The exact length of the delay is not guaranteed but it will not be less than ticks -1 clock ticks.

Return Values
None

USAGE
The length of a clock tick can vary across different implementations and therefore drivers should not
include any hard-coded assumptions about the length of a tick. The drv_usectohz(D3) and
drv_hztousec(D3) functions can be used, as necessary, to convert between clock ticks and
microseconds (implementation independent units).

The delay function calls itimeout(D3) to schedule a wakeup after the specified amount of time has
elapsed. delay then goes to sleep until itimeout wakes up the sleeping process.

Level
Base only.

Synchronization Constraints
Can sleep.

Driver-defined basic locks and read/write locks may not be held across calls to this function.

Driver-defined sleep locks may be held across calls to this function, but this is discouraged because it can
adversely affect performance by forcing any other processes contending for the lock to sleep for the dura-
tion of the delay.

REFERENCES
drv_hztousec(D3), drv_usectohz(D3), drv_usecwait(D3), itimeout(D3), sleep(D3),
untimeout(D3), wakeup(D3)

90



dki_dcache_inval(D3X)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
dki_dcache_inval − invalidate the data cache for a given range of virtual addresses

SYNOPSIS
#include "sys/types.h"

dki_dcache_inval(caddr_t v_addr, unsigned len);

Arguments
v_addr Can be either a user or kernel virtual address. If v_addr is a user virtual address, it is assumed to

be that of the current mapped process. If, however, v_addr is a k1seg address, or if it is a user vir-
tual or k2seg address and the page table entry specifies that the page is not cacheable, no opera-
tion is performed on the data cache for that page.

len Gives the number of bytes over which to perform the operation.

DESCRIPTION
dki_dcache_inval invalidates the data cache starting at v_addr address. This function, along with the
dki_dcache_wb(D3X) and dki_dcache_wbinval(D3X) functions, allow drivers to manage the data
cache for DMA buffers or other purposes.

Return Values
None

See Also
The "Data Cache Write Back and Invalidation" section of the IRIX Device Driver Programming Guide

Note
The dki_dcache_inval, dki_dcache_wb(D3X), and dki_dcache_wbinval(D3X) functions
replace vflush(D3X). On machines where a particular operation does not make sense, such as cache
write back on a machine with a write through cache, the routine is provided as a stub routine which per-
forms no operation. This allows drivers using these routines to work on all Silicon Graphics machines.

91



dki_dcache_wb(D3X)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
dki_dcache_wb − write back the data cache for a given range of virtual addresses

SYNOPSIS
#include "sys/types.h"

dki_dcache_wb(caddr_t v_addr, unsigned len);

Arguments
v_addr Can be either a user or kernel virtual address. If v_addr is a user virtual address, it is assumed to

be that of the current mapped process. If, however, v_addr is a k1seg address, or if it is a user vir-
tual or k2seg address and the page table entry specifies that the page is not cacheable, no opera-
tion is performed on the data cache for that page.

len Gives the number of bytes over which to perform the operation.

DESCRIPTION
dki_dcache_wb writes back the data cache starting at v_addr address. This function, along with the
dki_dcache_inval(D3X) and dki_dcache_wbinval(D3X) functions provide a sufficient set of func-
tions to allow drivers to manage the data cache for DMA buffers or other purposes.

Return Values
None

See Also
The "Data Cache Write Back and Invalidation" section of the IRIX Device Driver Programming Guide

Note
The dki_dcache_wb, dki_dcache_inval(D3X), and dki_dcache_wbinval(D3X) functions
replace vflush(D3X). On machines where a particular operation does not make sense, such as cache
write back on a machine with a write through cache, the routine is provided as a stub routine which per-
forms no operation. This allows drivers using these routines to work on all Silicon Graphics machines.

92



dki_dcache_wbinval(D3X)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
dki_dcache_wbinval − write back and invalidate the data cache for a given range of virtual addresses

SYNOPSIS
#include "sys/types.h"

dki_dcache_wbinval(caddr_t v_addr, unsigned len);

Arguments
len Gives the number of bytes over which to perform the operation.

v_addr Can be either a user or kernel virtual address. If v_addr is a user virtual address, it is assumed to
be that of the current mapped process. If, however, v_addr is a k1seg address, or if it is a user vir-
tual or k2seg address and the page table entry specifies that the page is not cacheable, no opera-
tion is performed on the data cache for that page.

DESCRIPTION
dki_dcache_wbinval writes back and invalidates the data cache starting at v_addr address. This func-
tion, along with the dki_dcache_wb and dki_dcache_inval functions provide a sufficient set of
functions to allow drivers to manage the data cache for DMA buffers or other purposes.

Return Values
None

See Also
The "Data Cache Write Back and Invalidation" section of the IRIX Device Driver Programming Guide

Note
The dki_dcache_inval, dki_dcache_wb, and dki_dcache_wbinval functions replace
vflush(D3X). On machines where a particular operation does not make sense, such as cache write back
on a machine with a write through cache, the routine is provided as a stub routine which performs no
operation. This allows drivers using these routines to work on all Silicon Graphics machines.

93



dma_map(D3X)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
dma_map − load DMA mapping registers for an imminent transfer

SYNOPSIS
#include "sys/types.h"
#include "sys/sema.h"
#include "sys/dmamap.h"

dma_map(dmamap_t *dmamap, caddr_t kernel_vaddr, int num_bytes);

DESCRIPTION
dma_map attempts to map num_bytes of main memory starting at the kernel virtual address kernel_vaddr,
using the previously allocated DMA map dmamap. dma_map determines the actual physical memory
locations for the given address and range and loads them into the mapping registers corresponding to the
map. These mapping registers remain undisturbed until another call to dma_map.

Return Values
dma_map returns the actual number of bytes mapped. This number may be less than that requested if the
number of map registers required exceeds the size of the given DMA map. 0 is returned if the arguments
are invalid, for instance, if a kernel_vaddr is not word aligned.

See Also
dma_mapaddr(D3X), dma_mapalloc(D3X), dma_mapfree(D3X), vme_adapter(D3X)

94



dma_mapaddr(D3X)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
dma_mapaddr − return the "bus virtual" address for a given map and address

SYNOPSIS
#include "sys/types.h"
#include "sys/sema.h"
#include "sys/dmamap.h"

unsigned int dma_mapaddr(dmamap_t *dmamap, caddr_t kernel_vaddr);

DESCRIPTION
dma_mapaddr returns the bus virtual address corresponding to the given DMA map and kernel virtual
address. This is the address that you should give to the device as the beginning "physical" address of the
transfer. Before using dma_mapaddr, you should make a call to dma_map, to load the DMA mapping
registers.

Return Values
The bus virtual address described above.

See Also
dma_map(D3X), dma_mapalloc(D3X), dma_mapfree(D3X), vme_adapter(D3X)

95



dma_mapalloc(D3X)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
dma_mapalloc − allocate a DMA map

SYNOPSIS
#include "sys/types.h"
#include "sys/sema.h"
#include "sys/dmamap.h"

dmamap_t *dma_mapalloc(int type, int adapter, int num_pages, int flags);

Arguments
type Must be either DMA_A32VME or DMA_A24VME depending on the transfer desired. (The

DMA_SCSI type is reserved for exclusive use by the SCSI host adapter driver.)

adapter Specifies the I/O adapter to use, and should always be 0.

num_pages
Specifies the maximum number of mapping registers to allocate. Alternatively, you can think of
num_pages as the maximum number of 4096 byte pages per transfer. You need to allocate an extra
page for non-page aligned transfers-for example, a transfer of 4096 bytes starting at a non-aligned
address actually requires two mapping registers.

flags Reserved for future development. For now, you should always set it to 0.

DESCRIPTION
dma_mapalloc allocates DMA mapping registers on multiprocessor models and returns a pointer to a
structure, of type dmamap_t, for later use by the mapping routine, dma_map. You need DMA maps to
access main memory through VME A24 space. In addition, because DMA maps give you the ability to
perform transfers to non-contiguous physical memory, you also want them for A32 access.

Use dma_mapfree to free the DMA mapping registers and other resources associated with a given map.

To determine which VME adapter a device is connected to, use the vme_adapter(D3X) function, where
+k is the base address of the VME device, usually specified on the vector line of the device in the master.d/
system file.

This call can block (it calls psema) if no maps are available, so it must never be called at interrupt time.

Return Values
dma_mapalloc returns a pointer to the DMA map structure on models that support DMA maps. On
other models, dma_mapalloc returns −1 to indicate that DMA mapping is not possible on that model.

See Also
dma_map(D3X), dma_mapaddr(D3X), vme_adapter(D3X), dma_mapfree(D3X)

96



dma_mapfree(D3X)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
dma_mapfree − free a DMA map

SYNOPSIS
#include "sys/types.h"
#include "sys/sema.h"
#include "sys/dmamap.h"

dma_mapfree(dmamap_t *dmamap);

DESCRIPTION
dma_mapfree frees the DMA mapping registers and other resources associated with a given map. To
determine which VME adapter a device is connected to, use the vme_adapter(D3X) function, where +k
is the base address of the VME device, usually specified on the vector line of the device in the master.d/
system file.

This call can block (it calls psema(D3X)) if no maps are available, so it must never be called at interrupt
time.

Return Values
The returned value of dma_mapfree conveys no useful information.

See Also
dma_map(D3X), dma_mapaddr(D3X), dma_mapalloc(D3X), vme_adapter(D3X)

97



drv_getparm(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
drv_getparm − retrieve kernel state information

SYNOPSIS
#include <sys/types.h>
#include <sys/ddi.h>

int drv_getparm(ulong_t parm, ulong_t *value_p);

Arguments
parm The kernel parameter to be obtained.

value_p A pointer to the data space into which the value of the parameter is to be copied.

DESCRIPTION
drv_getparm returns the value of the parameter specified by parm in the location pointed to by value_p.

Return Values
On success, drv_getparm returns 0. On failure it returns −1 to indicate that parm specified an invalid
parameter.

USAGE
drv_getparm does not explicitly check to see whether the driver has the appropriate context when the
function is called. It is the responsibility of the driver to use this function only when it is appropriate to
do so and to correctly declare the data space needed.

Valid values for parm are:

LBOLT Read the number of clock ticks since the last system reboot. The difference between
the values returned from successive calls to retrieve this parameter provides an indi-
cation of the elapsed time between the calls in units of clock ticks. The length of a
clock tick can vary across different implementations, and therefore drivers should not
include any hard-coded assumptions about the length of a tick. The
drv_hztousec(D3) and drv_usectohz(D3) functions can be used, as necessary, to
convert between clock ticks and microseconds (implementation independent units).

TIME Read the time in seconds. This is the same time value that is returned by the time(2)
system call. The value is defined as the time in seconds since 00:00:00 GMT, January 1,
1970. This definition presupposes that the administrator has set the correct system
date and time.

UPROCP Retrieve a pointer to the process structure for the current process. The value returned
in *value_p is of type (proc_t *) and the only valid use of the value is as an argu-
ment to vtop(D3), or when calling psignal(D3) on those systems which do not
have the new proc_signal(D3) interfaces. Since this value is associated with the
current process, the caller must have process context (that is, must be at base level)
when attempting to retrieve this value. Also, this value should only be used in the
context of the process in which it was retrieved.

98



drv_getparm(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

UCRED Retrieve a pointer to the credential structure describing the current user credentials
for the current process. The value returned in *value_p is of type (cred_t *) and
the only valid use of the value is as an argument to drv_priv(D3). Since this value
is associated with the current process, the caller must have process context (that is,
must be at base level) when attempting to retrieve this value. Also, this value should
only be used in the context of the process in which it was retrieved.

PGRP Read the process group identification number. This number determines which
processes should receive a HANGUP or BREAK signal when detected by a driver.

PPID Read process identification number.

PSID Read process identification number.

Level
Base only when using the UPROCP or UCREDP argument values.
Initialization, Base, or Interrupt when using the LBOLT or TIME argument
values.

Synchronization Constraints
Does not sleep.
Driver-defined basic locks, read/write locks, and sleep locks may be held across calls to this function

REFERENCES
drv_hztousec(D3), drv_priv(D3), drv_usectohz(D3)

99



drv_hztousec(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
drv_hztousec − convert clock ticks to microseconds

SYNOPSIS
#include <sys/types.h>
#include <sys/ddi.h>

clock_t drv_hztousec(clock_t ticks);

Arguments
ticks The number of clock ticks to convert to equivalent microseconds.

DESCRIPTION
drv_hztousec converts the length of time expressed by ticks, which is in units of clock ticks, into units
of microseconds.

Return Values
drv_hztousec returns the number of microseconds equivalent to the ticks argument. No error value is
returned. If the microsecond equivalent to ticks is too large to be represented as a clock_t, then the
maximum clock_t value is returned.

USAGE
Several functions either take time values expressed in clock ticks as arguments [itimeout(D3),
delay(D3)] or return time values expressed in clock ticks [drv_getparm(D3)]. The length of a clock tick
can vary across different implementations, and therefore drivers should not include any hard-coded
assumptions about the length of a tick. drv_hztousec and the complementary function
drv_usectohz(D3) can be used, as necessary, to convert between clock ticks and microseconds.

Note that the time value returned by drv_getparm with an LBOLT argument will frequently be too
large to represent in microseconds as a clock_t. When using drv_getparm together with
drv_hztousec to time operations, drivers can help avoid overflow by converting the difference between
return values from successive calls to drv_getparm instead of trying to convert the return values them-
selves.

Level
Initialization, Base or Interrupt.

Synchronization Constraints
Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across calls to this function.

REFERENCES
delay(D3), drv_getparm(D3), drv_usectohz(D3), itimeout(D3)

100



drv_priv(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
drv_priv − determine whether credentials are privileged

SYNOPSIS
int drv_priv(cred_t *crp);

Arguments
crp Pointer to the user credential structure.

DESCRIPTION
The drv_priv function determines whether the credentials specified by the credential structure pointed
to by crp identify a privileged process.

Return Values
drv_prv returns 0 if the specified credentials identify a privileged process and EPERM otherwise.

USAGE
This function should only be used when file access modes and special minor device numbers are
insufficient to provide the necessary protection for the driver operation being performed. Calls to
drv_priv should replace all calls to suser and any explicit checks for effective user ID equal to zero in
driver code.

A credential structure pointer is passed into various driver entry point functions [open(D2), close(D2),
read(D2), write(D2), and ioctl(D2)] and can also be obtained by calling drv_getparm(D3) from
base level driver code.

Level
Base or Interrupt.

Synchronization Constraints
Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across calls to this function.

Warnings
The only valid use for a credential structure pointer is as an argument to drv_priv. The contents of a
credential structure are not defined by the DDI/DKI and a driver may not examine the contents of the
structure directly.

101



drv_setparm(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
drv_setparm − set kernel state information

SYNOPSIS
#include <sys/types.h>
#include <sys/ddi.h>

int drv_setparm(ulong_t parm, ulong_t value);

Arguments
parm The kernel parameter to be updated.

value The value to be added to the parameter.

DESCRIPTION
drv_setparm verifies that parm corresponds to a kernel parameter that may be modified. If the value of
parm corresponds to a parameter that may not be modified, −1 is returned. Otherwise, the parameter is
incremented by value.

Return Values
If the function is successful, 0 is returned. Otherwise, −1 is returned to indicate that parm specified an
invalid parameter.

USAGE
No checking is performed to determine the validity of value. It is the driver’s responsibility to guarantee
the correctness of value.

Valid values for parm are:

SYSCANC Add value to sysinfo.canch. sysinfo.canch is a count of the number of char-
acters received from a terminal device after the characters have been processed to
remove special characters such as break or backspace.

SYSMINT Add value to sysinfo.mdmint. sysinfo.mdmint is a count of the number of
modem interrupts received.

SYSOUTC Add value to sysinfo.outch. sysinfo.outch is a count of the number of char-
acters output to a terminal device.

SYSRAWC Add value to sysinfo.rawc. sysinfo.rawc is a count of the number of charac-
ters received from a terminal device, before canonical processing has occurred.

SYSRINT Add value to sysinfo.rcvint. sysinfo.rcvint is a count of the number of
interrupts generated by data ready to be received from a terminal device.

SYSXINT Add value to sysinfo.xmtint. sysinfo.xmtint is a count of the number of
interrupts generated by data ready to be transmitted to a terminal device.

Level
Base or Interrupt.

102



drv_setparm(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Synchronization Constraints
Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across calls to this function.

REFERENCES
drv_getparm(D3)

103



drv_usectohz(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
drv_usectohz − convert microseconds to clock ticks

SYNOPSIS
#include <sys/types.h>
#include <sys/ddi.h>

clock_t drv_usectohz(clock_t microsecs);

Arguments
microsecs The number of microseconds to convert to equivalent clock ticks.

DESCRIPTION
drv_usectohz converts the length of time expressed by microsecs, which is in units of microseconds,
into units of clock ticks.

Return Values
The value returned is the smallest number of clock ticks that represent a time interval equal to or greater
than the microsecs argument. No error value is returned. If the number of ticks equivalent to the microsecs
argument is too large to be represented as a clock_t, then the maximum clock_t value will be
returned.

USAGE
Several functions either take time values expressed in clock ticks as arguments [itimeout(D3),
delay(D3)] or return time values expressed in clock ticks [drv_getparm(D3)]. The length of a clock tick
can vary across different implementations, and therefore drivers should not include any hard-coded
assumptions about the length of a tick. drv_usectohz and the complementary function
drv_hztousec(D3) can be used, as necessary, to convert between microseconds and clock ticks.

Level
Initialization, Base or Interrupt.

Synchronization Constraints
Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across calls to this function.

REFERENCES
delay(D3), drv_getparm(D3), drv_hztousec(D3), itimeout(D3)

104



drv_usecwait(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
drv_usecwait − busy-wait for specified interval

SYNOPSIS
#include <sys/types.h>
#include <sys/ddi.h>

void drv_usecwait(clock_t microsecs);

Arguments
microsecs The number of microseconds to busy-wait.

DESCRIPTION
drv_usecwait causes the caller to busy-wait for at least the number of microseconds specified by
microsecs. The amount of time spent busy-waiting may be greater than the time specified by microsecs but
will not be less.

Return Values
None

USAGE
drv_usecwait should only be used to wait for short periods of time (less than a clock tick) or when it is
necessary to wait without sleeping (for example, at interrupt level). When the desired delay is at least as
long as clock tick and it is possible to sleep, the delay(D3) function should be used instead since it will
not waste processor time busy-waiting as drv_usecwait does.

Because excessive busy-waiting is wasteful the driver should only make calls to drv_usecwait as
needed, and only for as much time as needed. drv_usecwait does not raise the interrupt priority
level; if the driver wishes to block interrupts for the duration of the wait, it is the driver’s responsibility to
set the priority level before the call and restore it to its original value afterward.

Level
Initialization, Base or Interrupt.

Synchronization Constraints
Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across calls to this function.

Warnings
Busy-waiting can increase the preemption latency experienced by high priority processes. Since short and
bounded preemption latency can be critical in a real time environment, drivers intended for use in such
an environment should not use this interface or should limit the length of the wait to an appropriately
short length of time.

REFERENCES
delay(D3), drv_hztousec(D3), drv_usectohz(D3), itimeout(D3), untimeout(D3)

105



dtimeout(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
dtimeout − execute a function on a specified processor after a specified length of time

SYNOPSIS
#include <sys/types.h>
#include <sys/ddi.h>

toid_t dtimeout(void (*fn)(), void *arg, long ticks, pl_t pl,
processorid_t processor, arg2, arg3, arg4);

Arguments
fn Function to execute on the specified processor when the time increment expires.

arg, arg2, arg3, arg4
Argument to the function.

ticks Number of clock ticks to wait before the function is called.

pl The interrupt priority level at which the function will be called.

processor Processor on which the function must execute.

DESCRIPTION
dtimeout causes the function specified by fn to be called after the time interval specified by ticks, on the
processor specified by processor, at the interrupt priority level specified by pl. arg will be passed as the
only argument to function fn. The dtimeout call returns immediately without waiting for the specified
function to execute.

Return Values
If the function specified by fn is successfully scheduled, dtimeout returns a non-zero identifier that can
be passed to untimeout to cancel the request. If the function could not be scheduled on the specified
processor, dtimeout returns a value of 0.

USAGE
This directed timeout capability provides a form of dynamic processor binding for driver code.

Drivers should be careful to cancel any pending dtimeout functions that access data structures before
these structures are de-initialized or deallocated.

fn Argument
The function specified by fn must neither sleep, reference process context, nor lower the interrupt priority
level below pl.

After the time interval has expired, fn only runs if the processor is at base level. Otherwise, fn is deferred
until some time in the near future.

If dtimeout is called holding a lock that is contended for by fn, the caller must hold the lock at a proces-
sor level greater than the base processor level.

106



dtimeout(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

ticks Argument
The length of time before the function is called is not guaranteed to be exactly equal to the requested time,
but will be at least ticks−1 clock ticks in length.

A ticks argument of 0 has the same effect as a ticks argument of 1. Both will result in an approximate wait
of between 0 and 1 tick (possibly longer).

pl Argument
pl must specify a priority level greater than or equal to pltimeout; thus, plbase cannot be used. See
LOCK_ALLOC(D3) for a list of values for pl. Your driver should treat pl as an "opaque" and should not try
to compare or do any operation

Level
Base or Interrupt.

Synchronization Constraints
Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across calls to this function.

REFERENCES
itimeout(D3), LOCK_ALLOC(D3), untimeout(D3)

107



dupb(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
dupb − duplicate a message block

SYNOPSIS
#include <sys/stream.h>
#include <sys/ddi.h>

mblk_t *dupb(mblk_t *bp);

Arguments
bp Pointer to the message block to be duplicated.

DESCRIPTION
dupb creates a new message block structure that references the same data block that is referenced by bp.
Unlike copyb(D3), dupb does not copy the information in the data block, but creates a new structure to
point to it.

Return Values
On success, dupb returns a pointer to the new message block. On failure, it returns a NULL pointer.

USAGE
The following figure shows how the db_ref field of the data block structure has been changed from 1 to
2, reflecting the increase in the number of references to the data block. The new message block contains
the same information as the first. Note that b_rptr and b_wptr are copied from bp, and that db_ref
is incremented.

hhhhhhhhh

c
c
c
c
c
c

cc
chhhh . . . . . . . . . . . .

. . . . . . . . . . . .
cc
c
c
c
hhhhhhhhh

cc
c
c
chhhhhhhhh

. . . . . . . . . . . .

. . . . . . . . . . . .
cc
c
c
c
hhhhhhhhh

cc
c
c
chhhhhhhhh

c
c
c
c
c
c
c
c

nbp=dupb(bp);

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
chhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhBefore After

db_base

db_ref (2)

cc
c
c
c
hhhhhhhhhhhhh

cc
c
c
chhhhhhhhhhhhhcc

c
c
c
hhhhhhhhhhhhh

cc
c
c
chhhhhhhhhhhhh

db_base

db_ref (1)

bp

cc
c
c
c
hhhhhhhhhh

cc
c
c
chhhhhhhhhh

b_datap

b_rptr
b_wptrcc

c
c
c
hhhhhhhhhh

cc
c
c
chhhhhhhhhh

b_datap

b_rptr
b_wptrcc

c
c
c
hhhhhhhhhh

cc
c
c
chhhhhhhhhh

b_datap

b_rptr
b_wptr

hhhhhhhhhhhhh

c
c
c
c
c

nbp

hhhhhhhhhhhh

c
c
c

hhhhhhhhhhhhh

c
c
c
c
c

hhhhhhhhhhhh

c
c
c

bp

Level
Base or Interrupt.

108



dupb(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Synchronization Constraints
Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across calls to this function.

REFERENCES
copyb(D3), dupmsg(D3), datab(D4), msgb(D4)

109



dupmsg(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
dupmsg − duplicate a message

SYNOPSIS
#include <sys/stream.h>
#include <sys/ddi.h>

mblk_t *dupmsg(mblk_t *mp);

Arguments
mp Pointer to the message.

DESCRIPTION
dupmsg forms a new message by duplicating the message blocks in the message pointed to by mp and
linking them via their b_cont pointers.

Return Values
On success, dupmsg returns a pointer to the new message. On failure, it returns a NULL pointer.

USAGE
Level

Base or Interrupt.

Synchronization Constraints
Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across calls to this function.

Examples
See the copyb(D3) manual page for an example of dupmsg.

REFERENCES
copyb(D3), copymsg(D3), dupb(D3), datab(D4), msgb(D4)

110



eisa_dma_disable(D3X)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
eisa_dma_disable − disable recognition of hardware requests on a DMA channel

SYNOPSIS
#include <sys/eisa.h>

void eisa_dma_disable(vint_t adap, init chan);

Arguments
adap Bus adapter number (zero on an Indigo2).

chan Channel to be disabled.

DESCRIPTION
The eisa_dma_disable routine disables recognition of hardware requests on the DMA channel chan.
The channel is then released and made available for other use.

The caller must ensure that it is acting on behalf of the channel owner, and that it makes sense to release
the channel. The caller must ensure that the channel is in use for hardware-initiated DMA transfers and
not software-initiated transfers.

Return Values
None

Level
Base or Interrupt

Notes
Does not sleep

111



eisa_dma_enable(D3X)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
eisa_dma_enable − enable recognition of hardware requests on a DMA channel

SYNOPSIS
#include <sys/eisa.h>

void eisa_dma_enable(vint_t adap, init chan);

Arguments
adap Bus adapter number (zero on an Indigo2).

chan Channel to be enabled.

DESCRIPTION
The eisa_dma_enable routine enables recognition of hardware requests on the DMA channel chan.

After enabling the channel for a hardware initiated transfer, this function calls the procedure proc()
from the command block used to program the DMA hardware start sequence. It will then sleep awaiting
completion of the dma operation specified by the command block, depending on the value of mode. Note
that mode must be EISA_DMA_NOSLEEP in Release 5.1.

The caller must ensure that it is acting on behalf of the channel owner, and that it makes sense to release
the channel. The caller must also ensure that the channel is in use for hardware-initiated DMA transfers
and not software-initiated transfers.

Return Values
None

Level
Base or Interrupt

Notes
Does not sleep

112



eisa_dma_free_buf(D3X)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
eisa_dma_free_buf − free a previously allocated DMA buffer descriptor

SYNOPSIS
#include <sys/eisa.h>

void eisa_dma_free_buf(struct eisa_dma_buf *dmabufptr);

Arguments
dmabufptr

Address of the allocated DMA buffer descriptor to be returned.

DESCRIPTION
eisa_dma_free_buf frees a DMA buffer descriptor. The dmabufptr argument must specify the address
of a DMA buffer descriptor previously allocated by eisa_dma_get_buf().

Return Values
None

Level
Base or Interrupt

Notes
Does not sleep

113



eisa_dma_free_cb(D3X)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
eisa_dma_free_cb − free a previously allocated DMA command block

SYNOPSIS
#include <sys/eisa.h>

void eisa_dma_free_cb(struct dma_cb *dmacbptr);

Arguments
dmacbptr

Address of the allocated DMA command block to be returned.

DESCRIPTION
eisa_dma_free_cb frees a DMA command block. The dmacbptr argument must specify the address of a
DMA command block previously allocated by eisa_dma_get_cb().

Return Values
None

Level
Base or Interrupt

Notes
Does not sleep

114



eisa_dma_get_buf(D3X)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
eisa_dma_get_buf − allocated DMA buffer descriptor

SYNOPSIS
#include <sys/types.h>
#include <sys/eisa.h>

struct eisa_dma_buf *eisa_dma_get_buf(uchar_t mode);

Arguments
mode Specifies whether the caller is willing to sleep waiting for memory. If mode is set to

EISA_DMA_SLEEP, the caller will sleep if necessary until the memory for a dma_buf() is avail-
able. If mode is set to EISA_DMA_NOSLEEP, the caller will not sleep, but eisa_dma_get_buf
will return NULL if memory for a dma_buf(D4X) is not immediately available.

DESCRIPTION
eisa_dma_get_buf allocates memory for a DMA command block structure (see eisa_dma_buf(),
zeros it out, and returns a pointer to the structure.

Return Values
eisa_dma_get_buf returns a pointer to the allocated DMA control block. If EISA_DMA_NOSLEEP is
specified and memory for a eisa_dma_buf() is not immediately available, eisa_dma_get_buf
returns a NULL pointer.

Level
Base only if mode is set to EISA_DMA_SLEEP. Base or Interrupt if mode is set to EISA_DMA_NOSLEEP.

Notes
Can sleep if mode is set to DMA_SLEEP.

115



eisa_dma_get_cb(D3X)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
eisa_dma_get_cb − allocated a DMA command block

SYNOPSIS
#include <sys/types.h>
#include <sys/eisa.h>

struct dma_cb *eisa_dma_get_cb(uchar_t mode);

Arguments
mode Specifies whether the caller is willing to sleep waiting for memory. If mode is set to

EISA_DMA_SLEEP, the caller will sleep if necessary until the memory for a eisa_dma_cb() is
available. If mode is set to EISA_DMA_NOSLEEP, the caller will not sleep, but
eisa_dma_get_cb will return NULL if memory for a eisa_dma_buf() is not immediately
available.

DESCRIPTION
eisa_dma_get_cb allocates memory for a DMA command block structure (see eisa_dma_cb(), zeros
it out, and returns a pointer to the structure.

Return Values
eisa_dma_get_cb returns a pointer to the allocated DMA control block. If EISA_DMA_NOSLEEP is
specified and memory for a eisa_dma_cb() is not immediately available, eisa_dma_get_cb returns a
NULL pointer.

Level
Base only if mode is set to EISA_DMA_SLEEP. Base or Interrupt if mode is set to EISA_DMA_NOSLEEP.

Notes
Can sleep if mode is set to EISA_DMA_SLEEP.

116



eisa_dma_prog(D3X)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
eisa_dma_prog − program a DMA operation for a subsequent software request

SYNOPSIS
#include <sys/eisa.h>

void eisa_dma_prog(vint_t adap, struct eisa_dma_cb *dmacbptr, init chan, uchar_t mode

Arguments
adap Bus adapter number (zero on an Indigo2).

dmacbptr
Pointer to the DMA command block specifying the DMA operation.

chan Channel over which the DMA operation is to take place.

mode Specifies whether the caller is willing to sleep waiting for to allocate the desired DMA channel. If
mode is set to EISA_DMA_NOSLEEP, then the caller will sleep if necessary until the requested
channel becomes available for its use. If mode is set to EISA_DMA_SLEEP, then the caller will not
sleep, but eisa_dma_prog will return FALSE if the requested DMA channel is not immediately
available.

DESCRIPTION
The eisa_dma_prog routine programs the DMA channel chan for the operation specified by the DMA
command block whose address is given by dmacbptr. Note that eisa_dma_prog does not initiate the
DMA transfer. Instead, the transfer will be initiated by a subsequent request initiated by
eisa_dma_swstart() or eisa_dma_enable().

To program the operation, eisa_dma_prog requires exclusive use of the specified DMA channel. The
caller may specify, via the mode argument, whether eisa_dma_prog should sleep waiting for a busy
channel to become available. If the specified channel is in use and mode is set to EISA_DMA_SLEEP, then
eisa_dma_prog will sleep until the channel becomes available for its use. Otherwise, if
EISA_DMA_NOSLEEP is specified and the requested channel is not immediately available, eisa_d
ma_prog will not program the channel, but will simply return a value of FALSE.

Return Values
eisa_dma_prog returns the value TRUE on success and FALSE otherwise.

Level
Base only if either mode is set to EISA_DMA_SLEEP.

Notes
Can sleep if mode is set to DMA_SLEEP or the routine specified by the proc field of the eisa_dma_cb
structure sleeps.

117



eisa_dma_stop(D3X)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
eisa_dma_stop − stop software-initiated DMA operation on a channel and release it

SYNOPSIS
#include <sys/eisa.h>

void eisa_dma_stop(vint_t adap, init chan);

Arguments
adap Bus adapter number (zero on an Indigo2).

chan Channel on which the DMA operation is to be stopped.

DESCRIPTION
eisa_dma_stop stops a software-initiated DMA operation in progress on the channel chan. The channel
is then released and made available for other use.

The caller must ensure that it is acting on behalf of the channel owner, and that it makes sense to release
the channel. The caller must also ensure that the channel is in use for software-initiated DMA transfers
and not hardware-initiated transfers.

Return Values
None

Level
Base or Interrupt

Notes
Does not sleep.

118



eisa_dma_swstart(D3X)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
eisa_dma_swstart − initiate a DMA operation via software request

SYNOPSIS
#include <sys/eisa.h>

void eisa_dma_swstart(struct dma_cb *dmacbptr, init chan, uchar_t mode);

Arguments
dmacbptr

Address of the allocated DMA command block to be returned.

chan Channel over which the DMA operation is to take place.

mode Specifies whether the caller is willing to sleep waiting for the operation to complete. If mode is set
to EISA_DMA_NOSLEEP, then eisa_dma_swstart starts the operation but does not wait for
the operation to complete and instead returns to the caller immediately. If mode is set to
EISA_DMA_SLEEP, then eisa_dma_swstart starts the operation and then waits for the opera-
tion to complete, and returns to the caller after the operation has finished.

DESCRIPTION
The eisa_dma_swstart routine initiates a DMA operation previously programmed by
eisa_dma_prog(). If mode is set to DMA_SLEEP, then eisa_dma_swstart returns to the caller after
the operation completes. If mode is set to EISA_DMA_NOSLEEP, then eisa_dma_swstart returns to
the caller immediately after starting the operation.

Return Values
None

Level
Base only if mode is set to EISA_DMA_SLEEP. Base or Interrupt if mode is set to EISA_DMA_NOSLEEP.

Notes
The operation being initiated must have already been programmed on the specified channel by
eisa_dma_prog().

Will sleep if mode is set to EISA_DMA_SLEEP; mode must be EISA_DMA_NOSLEEP in Release 5.1.

119



enableok(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
enableok − allow a queue to be serviced

SYNOPSIS
#include <sys/stream.h>
#include <sys/ddi.h>

void enableok(queue_t *q);

Arguments
q Pointer to the queue.

DESCRIPTION
The enableok function allows the service routine of the queue pointed to by q to be rescheduled for ser-
vice. It cancels the effect of a previous use of the noenable(D3) function on q.

Return Values
None

USAGE
Level

Base or Interrupt.

Synchronization Constraints
Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across calls to this function.

The caller cannot have the stream frozen [see freezestr(D3)] when calling this function.

Examples
The qrestart routine uses two STREAMS functions to re-enable a queue that has been disabled. The
enableok function removes the restriction that prevented the queue from being scheduled when a mes-
sage was enqueued. Then, if there are messages on the queue, it is scheduled by calling qenable(D3).

1 void
2 qrestart(q)
3 queue_t *q;
4 {
5 enableok(q);
6 if (q->q_first)
7 qenable(q);
8 }

REFERENCES
noenable(D3), qenable(D3), queue(D4), srv(D2)

120



esballoc(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
esballoc − allocate a message block using an externally-supplied buffer

SYNOPSIS
#include <sys/types.h>
#include <sys/stream.h>
#include <sys/ddi.h>

mblk_t *esballoc(uchar_t *base, int size, int pri, frtn_t *fr_rtnp);

Arguments
base Address of driver-supplied data buffer.

size Number of bytes in data buffer.

pri Priority of allocation request (used to allocate the message and data blocks).

fr_rtnp Pointer to the free-routine data structure.

DESCRIPTION
esballoc creates a STREAMS message and attaches a driver-supplied data buffer in place of a
STREAMS data buffer. It allocates a message and data block header only. The driver-supplied data
buffer, pointed to by base, is used as the data buffer for the message.

When freeb(D3) is called to free the message, on the last reference to the message, the driver’s free-
routine, specified by the free_func field in the free_rtn(D4) structure, is called with one argument,
specified by the free_arg field, to free the data buffer.

Return Values
On success, a pointer to the newly allocated message block is returned. On failure, NULL is returned.

USAGE
Instead of requiring a specific number of arguments, the free_arg field is defined of type char *.
This way, the driver can pass a pointer to a structure if more than one argument is needed.

When the free_func function runs, interrupts from all STREAMS devices will be blocked. It has no
user context and may not call any routine that sleeps. The function may not access any dynamically allo-
cated data structures that might no longer exist when it runs.

The pri argument is no longer used, but is retained for compatibility. Some implementations may choose
to ignore this argument.

Level
Base or Interrupt.

Synchronization Constraints
Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across calls to this function.

121



esballoc(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

REFERENCES
allocb(D3), esbbcall(D3), freeb(D3), free_rtn(D4)

122



esbbcall(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
esbbcall − call a function when an externally-supplied buffer can be allocated

SYNOPSIS
#include <sys/types.h>
#include <sys/stream.h>
#include <sys/ddi.h>

toid_t esbbcall(int pri, void (*func)(), long arg);

Arguments
pri Priority of the esballoc(D3) allocation request.

func Function to be called when a buffer becomes available.

arg Argument to the function to be called when a buffer becomes available.

DESCRIPTION
If esballoc(D3) is unable to allocate a message block header and a data block header to go with its
externally supplied data buffer, the function esbbcall can be used to schedule the routine func, to be
called with the argument arg when memory becomes available. esbbcall, like bufcall(D3), serves,
in effect, as a timeout call of indeterminate length.

Return Values
On success, esbbcall returns a non-zero value that identifies the scheduling request. On failure,
esbbcall returns 0.

USAGE
When func runs, all interrupts from STREAMS devices will be blocked. On multiprocessor systems, the
interrupts will be blocked only on the processor on which func is running. func will have no user context
and may not call any function that sleeps.

Even when func is called, esballoc can still fail if another module or driver had allocated the memory
before func was able to call allocb.

The pri argument is no longer used, but is retained for compatibility.

The non-zero identifier returned by esballoc may be passed to unbufcall(D3) to cancel the request.

Level
Base or Interrupt.

Synchronization Constraints
Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across calls to this function.

REFERENCES
allocb(D3), bufcall(D3), esballoc(D3), itimeout(D3), unbufcall(D3)

123



etoimajor(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
etoimajor − convert external to internal major device number

SYNOPSIS
#include <sys/types.h>
#include <sys/ddi.h>

int etoimajor(major_t emaj);

Arguments
emaj External major number.

DESCRIPTION
etoimajor converts the external major number emaj to an internal major number.

Return Values
etoimajor returns the internal major number or NODEV if the external major number is invalid.

USAGE
See getemajor(D3) for a description of external and internal major numbers.

Level
Initialization, Base or Interrupt.

Synchronization Constraints
Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across calls to this function.

REFERENCES
getemajor(D3), geteminor(D3), getmajor(D3), getminor(D3), itoemajor(D3),
makedevice(D3)

124



flushband(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
flushband − flush messages in a specified priority band

SYNOPSIS
#include <sys/types.h>
#include <sys/stream.h>
#include <sys/ddi.h>

void flushband(queue_t *q, uchar_t pri, int flag);

Arguments
q Pointer to the queue.

pri Priority band of messages to be flushed.

flag Determines messages to flush.

DESCRIPTION
The flushband function flushes messages associated with the priority band specified by pri. If pri is 0,
only normal and high priority messages are flushed. Otherwise, messages are flushed from the band pri
according to the value of flag.

If the band’s count falls below the low water mark and someone wants to write to the band, the nearest
upstream or downstream service procedure is enabled.

Return Values
None

USAGE
Valid values for flag are:

FLUSHDATA Flush only data messages (types M_DATA, M_DELAY, M_PROTO, and
M_PCPROTO).

FLUSHALL Flush all messages.

Level
Base or Interrupt.

Synchronization Constraints
Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across calls to this function.

Examples
See put(D2) for an example of flushband.

REFERENCES
flushq(D3), put(D2), queue(D4)

125



flushbus(D3X)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
flushbus − make sure contents of the write buffer are flushed to the system bus

SYNOPSIS
flushbus();

DESCRIPTION
flushbus performs the necessary actions to ensure that any writes in the write buffer have actually been
flushed to the system bus. This is sometimes necessary when a device requires delays between PIOs, par-
ticularly between a write and a read, since they might otherwise arrive at the device back-to-back.

126



flushq(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
flushq − flush messages on a queue

SYNOPSIS
#include <sys/stream.h>
#include <sys/ddi.h>

void flushq(queue_t *q, int flag);

Arguments
q Pointer to the queue to be flushed.

flag Determines messages to flush.

DESCRIPTION
flushq frees messages on a queue by calling freemsg(D3) for each message. If the queue’s count falls
below the low water mark and someone wants to write to the queue, the nearest upstream or down-
stream service procedure is enabled.

Return Values
None

USAGE
Valid values for flag are:

FLUSHDATA Flush only data messages (types M_DATA, M_DELAY, M_PROTO, and
M_PCPROTO).

FLUSHALL Flush all messages.

Level
Base or Interrupt.

Synchronization Constraints
Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across calls to this function.

Examples
See put(D2) for an example of flushq.

REFERENCES
flushband(D3), freemsg(D3), put(D2), putq(D3), queue(D4)

127



freeb(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
freeb − free a message block

SYNOPSIS
#include <sys/stream.h>
#include <sys/ddi.h>

void freeb(mblk_t *bp);

Arguments
bp Pointer to the message block to be deallocated.

DESCRIPTION
freeb deallocates a message block. If the reference count of the db_ref member of the datab(D4)
structure is greater than 1, freeb decrements the count and returns. Otherwise, if db_ref equals 1, it
deallocates the message block and the corresponding data block and buffer.

If the data buffer to be freed was allocated with esballoc(D3), the driver is notified that the attached
data buffer needs to be freed by calling the free-routine [see free_rtn(D4)] associated with the data
buffer. Once this is accomplished, freeb releases the STREAMS resources associated with the buffer.

Return Values
None

USAGE
Level

Base or Interrupt.

Synchronization Constraints
Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across calls to this function.

Examples
See copyb(D3) for an example of freeb.

REFERENCES
allocb(D3), dupb(D3), esballoc(D3), datab(D4), free_rtn(D4), msgb(D4)

128



freemsg(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
freemsg − free a message

SYNOPSIS
#include <sys/stream.h>
#include <sys/ddi.h>

void freemsg(mblk_t *mp);

Arguments
mp Pointer to the message to be deallocated.

DESCRIPTION
freemsg frees all message blocks, data blocks, and data buffers associated with the message pointed to
by mp. freemsg walks down the b_cont list [see msgb(D4)], calling freeb(D3) for every message
block in the message.

Return Values
None

USAGE
Level

Base or Interrupt.

Synchronization Constraints
Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across calls to this function.

Examples
See copymsg(D3) for an example of freemsg.

REFERENCES
freeb(D3), msgb(D4)

129



freerbuf(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
freerbuf − free a raw buffer header

SYNOPSIS
#include <sys/buf.h>
#include <sys/ddi.h>

void freerbuf(buf_t *bp);

Arguments
bp Pointer to a previously allocated buffer header structure.

DESCRIPTION
freerbuf frees a raw buffer header previously allocated by getrbuf(D3).

Return Values
None

USAGE
freerbuf may not be used on a buffer header obtained through an interface other than getrbuf.

freerbuf is typically called from a driver’s biodone (D3) routine, as specified in the b_iodone field
of the buf(D4) structure.

Level
Base or Interrupt.

Synchronization Constraints
Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across calls to this function.

REFERENCES
biodone(D3), bioreset(D3), biowait(D3), buf(D4), getrbuf(D3)

130



freesema(D3X)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
freesema − free the resources associated with a semaphore

SYNOPSIS
#include "sys/types.h"
#include "sys/sema.h"

freesema(sema_t *semap);

DESCRIPTION
freesema frees all resources associated with a semaphore. Use freesema to free dynamically allocated
semaphores that are no longer needed. If the semaphores are part of a dynamically allocated structure,
you must use freesema to free the semaphores before you free the structure containing the semaphores.

For freesema, semap is a pointer to the semaphore you want to deallocate.

Return Values
None

See Also
cpsema(D3X), cvsema(D3X), psema(D3X), vsema(D3X), sleep(D3), vpsema(D3X),
SLEEP_ALLOC(D3), SLEEP_DEALLOC(D3)

131



fubyte(D3X)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
fubyte − fetch (read) a byte from user space

SYNOPSIS
int fubyte(char *usr_v_addr);

DESCRIPTION
fubyte reads a single (8-bit) byte from the specified address, 2, in the currently mapped user process
address space.

Return Values
Upon successful completion, fubyte returns the value of the byte at 2, a value from 0 to 255.

Otherwise, fubyte returns −1, indicating an invalid user virtual address.

See Also
fuword(D3X), subyte(D3X), copyin(D3)

132



fuword(D3X)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
fuword − fetch (read) a word from user space

SYNOPSIS
int fuword(int *usr_v_addr);

DESCRIPTION
fuword reads a (32-bit) word in the currently mapped user process’ address space. Use user_v_addr, to
specify the word you want to read.

Return Values
Upon successful completion, fuword returns the value from the requested location. Otherwise, fuword
returns −1, indicating an invalid user virtual address.

See Also
fubyte(D3X), suword(D3X), copyin(D3)

133



geteblk(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
geteblk − get an empty buffer

SYNOPSIS
#include <sys/types.h>
#include <sys/buf.h>
#include <sys/ddi.h>

buf_t *geteblk(void);

DESCRIPTION
geteblk retrieves a buffer [see buf(D4)] from the buffer cache and returns a pointer to the buffer
header. If a buffer is not available, geteblk sleeps until one is available.

Return Values
A pointer to the buffer header structure is returned.

USAGE
When the driver strategy(D2) routine receives a buffer header from the kernel, all the necessary
members are already initialized. However, when a driver allocates buffers for its own use, it must set up
some of the members before calling its strategy routine.

The following list describes the state of these members when the buffer header is received from
geteblk:

b_flags is set to indicate the transfer is from the user’s buffer to the kernel. The driver
must set the B_READ flag if the transfer is from the kernel to the user’s buffer.

b_edev is set to NODEV and must be initialized by the driver.

b_bcount is set to 1024.

b_un.b_addr is set to the buffer’s virtual address.

b_blkno is not initialized by geteblk, and must be initialized by the driver

Typically, block drivers do not allocate buffers. The buffer is allocated by the kernel, and the associated
buffer header is used as an argument to the driver strategy routine. However, to implement some
special features, such as ioctl(D2) commands that perform I/O, the driver may need its own buffer
space. The driver can get the buffer space from the system by using geteblk or ngeteblk(D3). If the
driver chooses to use its own memory for the buffer, it can allocate a buffer header only using
getrbuf(D3).

Buffers allocated via geteblk must be freed using either brelse(D3) or biodone(D3).

Level
Base only.

Synchronization Constraints
Can sleep.

134



geteblk(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Driver-defined basic locks and read/write locks may not be held across calls to this function.

Driver-defined sleep locks may be held across calls to this function.

REFERENCES
biodone(D3), biowait(D3), brelse(D3), buf(D4), ngeteblk(D3)

135



getemajor(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
getemajor − get external major device number

SYNOPSIS
#include <sys/types.h>
#include <sys/ddi.h>

major_t getemajor(dev_t dev);

Arguments
dev External device number.

DESCRIPTION
getemajor returns the external major number given a device number, dev.

Return Values
The external major number.

USAGE
External major numbers are visible to the user. Internal major numbers are only visible in the kernel.
Since, on some architectures, the range of major numbers may be large and sparsely populated, the kernel
keeps a mapping between external and internal major numbers to save space.

All driver entry points are passed device numbers using external major numbers.

Usually, a driver with more than one external major number will have only one internal major number.
However, some system implementations map one-to-one between external and internal major numbers.
Here, the internal major number is the same as the external major number and the driver may have more
than one internal major number.

Level
Initialization, Base or Interrupt.

Synchronization Constraints
Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across calls to this function.

REFERENCES
etoimajor(D3), geteminor(D3), getmajor(D3), getminor(D3), makedevice(D3)

136



geteminor(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
geteminor − get external minor device number

SYNOPSIS
#include <sys/types.h>
#include <sys/ddi.h>

minor_t geteminor(dev_t dev);

Arguments
dev External device number.

DESCRIPTION
geteminor returns the external minor number given a device number, dev.

Return Values
The external minor number.

USAGE
External minor numbers are visible to the user. Internal minor numbers are only visible in the kernel.
Since, on some architectures, a driver can support more than one external major device that maps to the
same internal major device, the kernel keeps a mapping between external minor numbers and internal
minor numbers to allow drivers to index arrays more easily. For example, a driver may support two dev-
ices, each with five minor numbers. The user may see each set of minor numbers numbered from zero to
four, but the driver sees them as one set of minor numbers numbered from zero to nine.

All driver entry points are passed device numbers using external minor numbers.

Systems that map external major device numbers one-to-one with internal major numbers also map exter-
nal minor numbers one-to-one with internal minor numbers.

Level
Initialization, Base or Interrupt.

Synchronization Constraints
Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across calls to this function.

REFERENCES
etoimajor(D3), getemajor(D3), getmajor(D3), getminor(D3), makedevice(D3)

137



geterror(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
geterror − retrieve error number from a buffer header

SYNOPSIS
#include <sys/buf.h>
#include <sys/ddi.h>

int geterror(struct buf_t *bp);

Arguments
bp Pointer to the buffer header.

DESCRIPTION
geterror is called to retrieve the error number from the error field of a buffer header (buf(D4) struc-
ture).

Return Values
An error number indicating the error condition of the I/O request is returned. If the I/O request com-
pleted successfully, 0 is returned.

USAGE
Level

Base or Interrupt.

Synchronization Constraints
Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across calls to this function.

REFERENCES
buf(D4), errnos(D5)

138



getmajor(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
getmajor − get internal major device number

SYNOPSIS
#include <sys/types.h>
#include <sys/ddi.h>

major_t getmajor(dev_t dev);

Arguments
dev Internal device number.

DESCRIPTION
The getmajor function extracts the internal major number from a device number.

Return Values
The internal major number.

USAGE
No validity checking is performed. If dev is invalid, an invalid number is returned.

See getemajor(D3) for an explanation of external and internal major numbers.

Level
Initialization, Base or Interrupt.

Synchronization Constraints
Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across calls to this function.

REFERENCES
etoimajor(D3), getemajor(D3), geteminor(D3), getminor(D3), makedevice(D3)

139



getminor(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
getminor − get internal minor device number

SYNOPSIS
#include <sys/types.h>
#include <sys/ddi.h>

minor_t getminor(dev_t dev);

Arguments
dev Internal device number.

DESCRIPTION
The getminor function extracts the internal minor number from a device number.

Return Values
The internal minor number.

USAGE
No validity checking is performed. If dev is invalid, an invalid number is returned.

See getemajor(D3) for an explanation of external and internal major numbers.

Level
Initialization, Base or Interrupt.

Synchronization Constraints
Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across calls to this function.

REFERENCES
etoimajor(D3), getemajor(D3), geteminor(D3), getmajor(D3), makedevice(D3)

140



getnextpg(D3X)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
getnextpg − get next page pointer

SYNOPSIS
#include <sys/types.h>
#include <sys/pfdat.h>
#include <sys/ddi.h>

struct pfdat *getnextpg(buf_t (*bp)(), struct pfdat *pp);

Arguments
bp Pointer to the buffer header structure
pp Pointer to the previous pfdat structure returned.

DESCRIPTION
getnextpg will return a pointer to the next page (pfdat) in a buffer header’s page list (see buf(D4)) dur-
ing a paged-I/O request. A paged-I/O request is identified by the B_PAGEIO flag being set and the
B_MAPPED flag being clear in the b_flags field of the buffer header passed to a driver’s strategy(D2)
routine.

Given a buffer header, bp, and a pointer to the page, pp, returned from the previous call to get-
nextpg, the next page is returned. If pp is NULL, the first page in the page list is returned.

Level
Base or Interrupt.

Notes
Does not sleep.

See Also
strategy(D2), bp_mapin(D3), bp_mapout(D3), pptophys(D3X), buf(D4)

141



getq(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
getq − get the next message from a queue

SYNOPSIS
#include <sys/stream.h>
#include <sys/ddi.h>

mblk_t *getq(queue_t *q);

Arguments
q Pointer to the queue from which the message is to be retrieved.

DESCRIPTION
getq gets the next available message from the top of the queue pointed to by q. It handles flow control,
restarting I/O that was blocked as needed.

Return Values
If there is a message to retrieve, getq returns a pointer to it. If no message is queued, getq returns a
NULL pointer.

USAGE
getq is typically used by service routines [see srv(D2)] to retrieve queued messages.

Level
Base or Interrupt.

Synchronization Constraints
Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across calls to this function.

Examples
See srv(D2) for an example of getq.

REFERENCES
bcanput(D3), canput(D3), putbq(D3), putq(D3), qenable(D3), rmvq(D3), srv(D2)

142



getrbuf(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
getrbuf − get a raw buffer header

SYNOPSIS
#include <sys/buf.h>
#include <sys/kmem.h>
#include <sys/ddi.h>

buf_t *getrbuf(long flag);

Arguments
flag Indicates whether the caller should sleep for free space.

DESCRIPTION
getrbuf allocates the space for a buffer header [see buf(D4)]. If flag is set to KM_SLEEP, the caller will
sleep if necessary until memory is available. If flag is set to KM_NOSLEEP, the caller will not sleep, but
getrbuf will return NULL if memory is not immediately available.

Return Values
Upon successful completion, getrbuf returns a pointer to the allocated buffer header. If KM_NOSLEEP
is specified and sufficient memory is not immediately available, getrbuf returns a NULL pointer.

USAGE
getrbuf is used when a block driver is performing raw I/O (character interface) and needs to set up a
buffer header that is not associated with a system-provided data buffer. The driver provides its own
memory for the data buffer.

After allocating the buffer header, the caller must set the b_iodone field to the address of an iodone
handler to be invoked when the I/O is complete [see biodone(D3)]. The caller must also initialize the
following fields:

b_flags Must be modified to indicate the direction of data transfer. Initially, it is set to indicate
the transfer is from the user’s buffer to the kernel. The driver must set the B_READ flag if
the transfer is from the kernel to the user’s buffer.

b_edev Must be initialized to the proper device number.

b_bcount Must be set to the number of bytes to transfer.

b_un.b_addr Must be set to the virtual address of the caller-supplied buffer.

b_blkno Must be set to the block number to be accessed.

b_resid Must be set to the same value as b_bcount.

b_bufsize Can be used to remember the size of the data buffer associated with the buffer header.

Typically, block drivers do not allocate buffers. The buffer is allocated by the kernel and the associated
buffer header is used as an argument to the driver strategy routine. However, to implement some
special features, such as ioctl(D2) commands that perform I/O, the driver may need its own buffer
space. The driver can get the buffer space from the system by using geteblk(D3) or ngeteblk(D3).
Or the driver can choose to use its own memory for the buffer and only allocate a buffer header with

143



getrbuf(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

getrbuf.

Level
Base only if flag is set to KM_SLEEP.

Base or Interrupt if flag is set to KM_NOSLEEP.

Synchronization Constraints
May sleep if flag is set to KM_SLEEP.

Driver-defined basic locks and read/write locks may be held across calls to this function if flag is
KM_NOSLEEP, but may not be held if flag is KM_SLEEP.

Driver-defined sleep locks may be held across calls to this function regardless of the value of flag.

REFERENCES
biodone(D3), bioreset(D3), biowait(D3), buf(D4), freerbuf(D3)

144



hwcpin(D3X)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
hwcpin − copy data from device memory to main memory using 16-bit reads

SYNOPSIS
#include "sys/types.h"

hwcpin(unsigned short *from, caddr_t to, int num_bytes);

DESCRIPTION
hwcpin efficiently copies data from device memory to main memory using 16-bit reads only. Use
hwcpin when transferring data from VME devices that understand only 16-bit halfwords.

Return Values
None

Note
hwcpin is similar to bcopy(D3) in that it does not verify the accessibility of the memory before attempt-
ing the transfer.

See Also
hwcpout(D3X)

145



hwcpout(D3X)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
hwcpout − copy data from main memory to device memory using 16-bit writes

SYNOPSIS
#include "sys/types.h"

hwcpout(caddr_t from, unsigned short *to, int num_bytes);

DESCRIPTION
hwcpout efficiently copies data from main memory to device memory using only 16-bit writes. Use
hwcpout when transferring data to VME devices that understand only 16-bit halfwords.

Return Values
None

Note
hwcpout is similar to bcopy(D3) in that it does not verify the accessibility of the memory before
attempting the transfer.

See Also
hwcpin(D3X)

146



initnsema(D3X)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
initnsema − initialize a synchronizing semaphore to a given value

SYNOPSIS
#include "sys/types.h"
#include "sys/sema.h"

initnsema(sema_t *semap, int val, char *name);

DESCRIPTION
initnsema initializes an IRIX synchronizing semaphore (a structure of type sema_t). Use synchronizing
semaphores to synchronize multiple processes. You must allocate a semaphore before you can use it in a
semaphore operation, such as psema or vsema. You can declare semaphores in line by using the sema_t
type, or you can allocate them dynamically by using the kernel memory allocator, kern_malloc(D3X).
In the case of an already allocated semaphore struct, initsema fills it.

The val parameter expects the initial value to which you want to set the semaphore. The name parameter
of initnsema expects a pointer to an eight character string that contains the name you want to assign to
the semaphore. This name may be used by debugging utilities.

Return Values
None

See Also
initnsema_mutex(D3X), cpsema(D3X), cvsema(D3X), psema(D3X), vsema(D3X), sleep(D3),
vpsema(D3X), SLEEP_ALLOC(D3), SLEEP_DEALLOC(D3)

147



initnsema_mutex(D3X)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
initnsema_mutex − initialize a mutex semaphore to one

SYNOPSIS
#include "sys/types.h"
#include "sys/sema.h"

initnsema_mutex(sema_t *semap, char *name);

DESCRIPTION
initnsema_mutex initializes an IRIX mutual exclusion (mutex) semaphore (a structure of type sema_t).
Use mutex semaphores to synchronize access to critical sections. You must allocate a semaphore before
you can use it in a semaphore operation, such as psema or vsema. You can declare semaphores in line
by using the sema_t type, or you can allocate them dynamically by using the kernel memory allocator,
kern_malloc(D3X). In the case of an already allocated semaphore struct, initsema_mutex fills it.

The name parameter of initnsema expects a pointer to an eight character string that contains the name
you want to assign to the semaphore. This name may be used by debugging utilities.

Return Values
None

See Also
initnsema(D3X), cpsema(D3X), cvsema(D3X), psema(D3X), vsema(D3X), sleep(D3),
vpsema(D3X), SLEEP_ALLOC(D3), SLEEP_DEALLOC(D3)

148



insq(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
insq − insert a message into a queue

SYNOPSIS
#include <sys/stream.h>
#include <sys/ddi.h>

int insq(queue_t *q, mblk_t *emp, mblk_t *nmp);

Arguments
q Pointer to the queue containing message emp.

emp Pointer to the existing message before which the new message is to be inserted.

nmp Pointer to the new message to be inserted.

DESCRIPTION
insq inserts a message into a queue. The message to be inserted, nmp, is placed in the queue pointed to
by q, immediately before the message, emp. If emp is NULL, the new message is placed at the end of the
queue. All flow control parameters are updated. The service procedure is scheduled to run unless dis-
abled by a previous call to noenable(D3).

Return Values
If nmp was successfully enqueued, insq returns 1. Otherwise, insq returns 0.

USAGE
Messages are ordered in the queue based on their priority, as described in srv(D2). If an attempt is
made to insert a message out of order in the queue, then nmp is not enqueued.

The insertion can fail if there is not enough memory to allocate the accounting data structures used with
messages whose priority bands are greater than zero.

If emp is non-NULL, it must point to a message in the queue pointed to by q, or a system panic could
result.

Level
Base or Interrupt.

Synchronization Constraints
Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across calls to this function.

Example
This routine illustrates the use of insq to insert a message into the middle of a queue. This routine can
be used to strip all the M_PROTO headers off all messages on a queue. We traverse the list of messages on
the queue, looking for M_PROTO messages (line 9). When one is found, we remove it from the queue
using rmvq(D3) (line 10). If there is no data portion to the message (line 11), we free the entire message
using freemsg(D3). Otherwise, for every M_PROTO message block in the message, we strip the
M_PROTO block off using unlinkb(D3) (line 15) and free the message block using freeb(D3). When
the header has been stripped, the data portion of the message is inserted back into the queue where it was

149



insq(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

originally found (line 19).

1 void
2 striproto(q)
3 queue_t *q;
4 {
5 mblk_t *emp, *nmp, *mp;

6 mp = q->q_first;
7 while (mp) {
8 emp = mp->b_next;
9 if (mp->b_datap->db_type == M_PROTO) {
10 rmvq(q, mp);
11 if (msgdsize(mp) == 0) {
12 freemsg(mp);
13 } else {
14 while (mp->b_datap->db_type == M_PROTO) {
15 nmp = unlinkb(mp);
16 freeb(mp);
17 mp = nmp;
18 }
19 insq(q, emp, mp);
20 }
21 }
22 mp = emp;
23 }
24 }

REFERENCES
getq(D3), putbq(D3), putq(D3), rmvq(D3), srv(D2)

150



itimeout(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
itimeout − execute a function after a specified length of time

SYNOPSIS
#include <sys/types.h>
#include <sys/ddi.h>

toid_t itimeout(void (*func)(), void *arg, long ticks,
pl_t pl, arg2, arg3, arg4);

Arguments
func Function to execute when the time increment expires.

arg, arg2, arg3, arg4
Argument to the function.

ticks Number of clock ticks to wait before the function is called.

pl The interrupt priority level at which the function will be called.

DESCRIPTION
itimeout causes the function specified by func to be called after the time interval specified by ticks, at the
interrupt priority level specified by pl. arg will be passed as the only argument to function func. The
itimeout call returns immediately without waiting for the specified function to execute.

Return Values
If the function specified by func is successfully scheduled, itimeout returns a non-zero identifier that
can be passed to untimeout to cancel the request. If the function could not be scheduled, itimeout
returns a value of 0.

USAGE
pl must specify a priority level greater than or equal to pltimeout; thus, plbase cannot be used. See
LOCK_ALLOC(D3) for a list of values for pl. Your driver should treat pl as an "opaque" and should not try
to compare or do any operation.

The length of time before the function is called is not guaranteed to be exactly equal to the requested time,
but will be at least ticks−1 clock ticks in length.

The function specified by func must neither sleep, reference process context, nor lower the interrupt prior-
ity level below pl.

After the time interval has expired, func only runs if the processor is at base level. Otherwise, func is
deferred until some time in the near future.

If itimeout is called holding a lock that is contended for by func, the caller must hold the lock at a pro-
cessor level greater than the base processor level.

A ticks argument of 0 has the same effect as a ticks argument of 1. Both will result in an approximate wait
of between 0 and 1 tick (possibly longer).

151



itimeout(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Drivers should be careful to cancel any pending itimeout functions that access data structures before
these structures are de-initialized or deallocated.

Level
Base or Interrupt.

Synchronization Constraints
Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across calls to this function.

Examples
See copyb(D3) for an example of itimeout.

REFERENCES
dtimeout(D3), LOCK_ALLOC(D3), untimeout(D3)

152



itoemajor(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
itoemajor − convert internal to external major device number

SYNOPSIS
#include <sys/types.h>
#include <sys/ddi.h>

int itoemajor(major_t imaj, int prevemaj);

Arguments
imaj Internal major number.

prevemaj Most recently obtained external major number (or NODEV, if this is the first time the function
has been called).

DESCRIPTION
itoemajor converts the internal major number imaj to the external major number. The external-to-
internal major number mapping can be many-to-one, and so any internal major number may correspond
to more than one external major number.

Return Values
External major number, or NODEV, if all have been searched.

USAGE
By repeatedly invoking this function and passing the most recent external major number obtained, the
driver can obtain all possible external major number values.

See getemajor(D3) for an explanation of external and internal major numbers.

Level
Initialization, Base or Interrupt.

Synchronization Constraints
Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across calls to this function.

REFERENCES
etoimajor(D3), getemajor(D3), geteminor(D3), getmajor(D3), getminor(D3),
makedevice(D3)

153



kern_calloc(D3X)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
kern_calloc − allocate storage for objects of a specified size

SYNOPSIS
#include "sys/types.h"

caddr_t
kern_calloc(int n, int object_size);

DESCRIPTION
kern_calloc allocates, and zeroes, storage for n objects of size object_size bytes. If necessary, the func-
tion sleeps until the entire requested memory is available. Therefore, do not call this function from an
interrupt routine. The allocated space is aligned for the given object size.

Return Values
kern_calloc returns the pointer to the requested storage.

See Also
kern_malloc(D3X), kern_free(D3X), kmem_alloc(D3)

154



kern_free(D3X)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
kern_free − free kernel memory space

SYNOPSIS
#include "sys/types.h"

kern_free(void *kern_v_addr);

DESCRIPTION
kern_free frees kernel virtual memory whose address is kern_v_addr. It frees the number of bytes that
the kern_malloc(D3X) or kern_calloc(D3X) function assigned to this address.

Return Values
kern_calloc(D3X), kmem_free(D3), kern_malloc(D3X)

155



kern_malloc(D3X)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
kern_malloc − allocate kernel virtual memory

SYNOPSIS
#include "sys/types.h"

void *kern_malloc(int num_bytes);

DESCRIPTION
kern_malloc allocates num_bytes of kernel virtual memory. If necessary, it sleeps until the entire
requested memory is available. Therefore, do not call this function from an interrupt routine. Memory is
not physically contiguous.

Return Values
Returns a pointer to the requested memory.

See Also
kern_calloc(D3X), kern_free(D3X), kmem_alloc(D3)

Note
Drivers that use DMA should use kmem_alloc(D3) to allocate buffers for DMA and free that memory
with kmem_free(D3). For a discussion, see kmem_alloc(D3).

156



kmem_alloc(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
kmem_alloc − allocate space from kernel free memory

SYNOPSIS
#include <sys/types.h>
#include <sys/kmem.h>
#include <sys/ddi.h>

void *kmem_alloc(size_t size, int flag);

Arguments
size Number of bytes to allocate.

flag Specifies whether the caller is willing to sleep waiting for memory, etc.

DESCRIPTION
kmem_alloc allocates size bytes of kernel memory and returns a pointer to the allocated memory. If flag
is set to KM_SLEEP, the caller will sleep if necessary until the specified amount of memory is available. If
flag is set to KM_NOSLEEP, the caller will not sleep, but kmem_alloc will return NULL if the specified
amount of memory is not immediately available. KM_PHYSCONTIG: Allocate contiguous physical
memory.

CAUTION: It is best to call kmem_alloc with this flag only at driver initialization time. Otherwise, it may
sleep for a very long time.

KM_CACHEALIGN: Allocate the requested memory starting at a cache line boundary. This also pads the
buffer out to a full cache line. Buffers that the driver will use for DMA must be cache-line aligned and pad-
ded to a full cache line.

Return Values
Upon successful completion, kmem_alloc returns a pointer to the allocated memory. If KM_NOSLEEP
is specified and sufficient memory is not immediately available, kmem_alloc returns a NULL pointer. If
size is set to 0, kmem_alloc returns NULL regardless of the value of flag.

USAGE
Kernel memory is a limited resource and should be used judiciously. Memory allocated using
kmem_alloc should be freed as soon as possible. Drivers should not use local freelists for memory or
similar schemes that cause the memory to be held for longer than necessary.

Since holding memory allocated using kmem_alloc for extended periods of time (e.g allocating memory
at system startup and never freeing it) can have an adverse effect on overall memory usage and system
performance, memory needed for such extended periods should be statically allocated whenever possi-
ble.

The address returned by a successful call to kmem_alloc is word-aligned.

Level
Base only if flag is set to KM_SLEEP.

157



kmem_alloc(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Initialization, Base or Interrupt if flag is set to KM_NOSLEEP.

Synchronization Constraints
May sleep if flag is set to KM_SLEEP.

Driver-defined basic locks and read/write locks may be held across calls to this function if flag is
KM_NOSLEEP, but may not be held if flag is KM_SLEEP.

Driver-defined sleep locks may be held across calls to this function regardless of the value of flag.

Note
kmem_alloc and kmem_free are intended as replacements for kmem_malloc and kern_free.
Drivers should use these routines rather than kern_malloc and kern_free.

REFERENCES
kmem_free(D3), kmem_zalloc(D3), Appendix A, Section A.2, "Data cache Write Back and Invalida-
tion" of the IRIX Device Driver Programming Guide

158



kmem_free(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
kmem_free − free previously allocated kernel memory

SYNOPSIS
#include <sys/types.h>
#include <sys/kmem.h>
#include <sys/ddi.h>

void kmem_free(void *addr, size_t size);

Arguments
addr Address of the allocated memory to be returned.

size Number of bytes to free.

DESCRIPTION
kmem_free returns size bytes of previously allocated kernel memory.

Return Values
None

USAGE
The addr argument must specify an address that was returned by a call to kmem_alloc(D3) or
kmem_zalloc(D3).

The size argument must specify the same number of bytes as was allocated by the corresponding call to
kmem_alloc or kmem_zalloc.

Together, the addr and size arguments must specify exactly one complete area of memory that was allo-
cated by a call to kmem_alloc or kmem_zalloc (that is, the memory cannot be freed piecemeal).

Level
Initialization, Base or Interrupt.

Synchronization Constraints
Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across calls to this function.

REFERENCES
kmem_alloc(D3), kmem_zalloc(D3)

159



kmem_zalloc(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
kmem_zalloc − allocate and clear space from kernel free memory

SYNOPSIS
#include <sys/types.h>
#include <sys/kmem.h>
#include <sys/ddi.h>

void *kmem_zalloc(size_t size, int flag);

Arguments
size Number of bytes to allocate.

flag Specifies whether the caller is willing to sleep waiting for memory, also other flags accepted by
kmem_alloc.

DESCRIPTION
kmem_zalloc allocates size bytes of kernel memory, clears the memory by filling it with zeros, and
returns a pointer to the allocated memory. If flag is set to KM_SLEEP, the caller will sleep if necessary
until the specified amount of memory is available. If flag is set to KM_NOSLEEP, the caller will not sleep,
but kmem_zalloc will return NULL if the specified amount of memory is not immediately available.

Return Values
Upon successful completion, kmem_zalloc returns a pointer to the allocated memory. If KM_NOSLEEP
is specified and sufficient memory is not immediately available, kmem_zalloc returns a NULL pointer.
If size is set to 0, kmem_zalloc returns NULL regardless of the value of flag.

USAGE
Kernel memory is a limited resource and should be used judiciously. Memory allocated using
kmem_zalloc should be freed as soon as possible. Drivers should not use local freelists for memory or
similar schemes that cause the memory to be held for longer than necessary.

Since holding memory allocated using kmem_zalloc for extended periods of time (e.g allocating
memory at system startup and never freeing it) can have an adverse effect on overall memory usage and
system performance, memory needed for such extended periods should be statically allocated whenever
possible.

The address returned by a successful call to kmem_zalloc is word-aligned.

Level
Initialization or Base if flag is set to KM_SLEEP.

Initialization, Base or Interrupt if flag is set to KM_NOSLEEP.

Synchronization Constraints
May sleep if flag is set to KM_SLEEP.

Driver-defined basic locks, read/write locks, and sleep locks may be held across calls to this function if
flag is KM_NOSLEEP, but may not be held if flag is KM_SLEEP.

160



kmem_zalloc(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Driver-defined sleep locks may be held across calls to this function regardless of the value of flag.

REFERENCES
kmem_alloc(D3), kmem_free(D3)

161



kvtophys(D3X)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
kvtophys − get physical address of buffer data

SYNOPSIS
#include <sys/types.h>
#include <sys/ddi.h>

paddr_t kvtophys(void *kv);

Arguments
kv Pointer to kernel virtual address.

DESCRIPTION
This function returns the physical address equivalent of the specified kernel virtual address. Mappings
returned are only valid up to a page boundary.

Return Values
kvtophys returns NULL if kv is invalid; otherwise, a physical address is returned.

Caution
If kv is invalid, referencing the value returned by kvtophys could panic the system.

Level
Base or Interrupt.

Notes
Does not sleep.

Driver defined basic locks, read/write locks, and sleep locks may be held across calls to this function.

See Also
getpagesize(2)

162



linkb(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
linkb − concatenate two message blocks

SYNOPSIS
#include <sys/stream.h>
#include <sys/ddi.h>

void linkb(mblk_t *mp1, mblk_t *mp2);

Arguments
mp1 Pointer to the message to which mp2 is to be added.

mp2 Pointer to the message to be added.

DESCRIPTION
linkb appends the message mp2 to the tail of message mp1. The continuation pointer (b_cont) of the
last message block in the first message is set to point to the second message:

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
linkb(mp1, mp2);

Before After

hhhh

mp1

c
c
c
hhhhhhhhh

c
c
chhhhhhhhh

b_cont hhhhb_cont

c
c
c
hhhhhhhhh

c
c
chhhhhhhhh

(0)c
c
c
hhhhhhhhh

c
c
chhhhhhhhh

b_cont

mp2mp1

b_cont
(0)c

c
c
hhhhhhhhh

c
c
chhhhhhhhh

hhhh

c
c
c
hhhhhhhhh

c
c
chhhhhhhhh

b_cont

b_cont

mp2

(0)c
c
c
hhhhhhhhh

c
c
chhhhhhhhh

cc
c
c
c
c
c
c
c
c
c
c

Return Values
None.

USAGE
Level

Base or Interrupt.

Synchronization Constraints
Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across calls to this function.

REFERENCES
msgb(D4), unlinkb(D3)

163



LOCK(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
LOCK − acquire a basic lock

SYNOPSIS
#include <sys/types.h>
#include <sys/ksynch.h>
#include <sys/ddi.h>

int LOCK(lock_t *lockp, pl_t pl);

Arguments
lockp Pointer to the basic lock to be acquired.

pl The interrupt priority level to be set while the lock is held by the caller.

DESCRIPTION
LOCK sets the interrupt priority level in accordance with the value specified by pl and acquires the lock
specified by lockp. If the lock is not immediately available, the caller will wait until the lock is available.
Some implementations may cause the caller to spin for the duration of the wait.

Return Values
Upon acquiring the lock, LOCK returns the previous mask for use by UNLOCK. Your driver should treat
this return integer as an "opaque" and should not try to compare or do any operation.

USAGE
Because some implementations require that interrupts that might attempt to acquire the lock be blocked
on the processor on which the lock is held, portable drivers must specify a pl value that is sufficient to
block out any interrupt handler that might attempt to acquire this lock. See the description of the min_pl
argument to LOCK_ALLOC(D3) for additional discussion and a list of the valid values for pl.

Level
Base or Interrupt.

Synchronization Constraints
Driver-defined sleep locks may be held across calls to this function.

Driver-defined basic locks and read/write locks may be held across calls to this function subject to the
hierarchy.

Warnings
Basic locks are not recursive. A call to LOCK attempting to acquire a lock that is currently held by the cal-
ling context will result in deadlock.

Calls to LOCK should honor the ordering in order to avoid deadlock.

When called from interrupt level, the pl argument must not specify a priority level below the level at
which the interrupt handler is running.

164



LOCK(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

REFERENCES
LOCK_ALLOC(D3), LOCK_DEALLOC(D3), TRYLOCK(D3), UNLOCK(D3)

165



LOCK_ALLOC(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
LOCK_ALLOC − allocate and initialize a basic lock

SYNOPSIS
#include <sys/types.h>
#include <sys/kmem.h>
#include <sys/ksynch.h>
#include <sys/ddi.h>

lock_t *LOCK_ALLOC(uchar_t hierarchy, pl_t min_pl, lkinfo_t *lkinfop,
int flag);

Arguments
hierarchy Set to -1. Reserved for future use.

min_pl Minimum priority level argument which asserts the minimum priority level that will be
passed in with any attempt to acquire this lock [see LOCK(D3)].

lkinfop Set to -1. Reserved for future use.

flag Specifies whether the caller is willing to sleep waiting for memory.

DESCRIPTION
LOCK_ALLOC dynamically allocates and initializes an instance of a basic lock. The lock is initialized to the
unlocked state.

If flag is set to KM_SLEEP, the caller will sleep if necessary until sufficient memory is available. If flag is
set to KM_NOSLEEP, the caller will not sleep, but LOCK_ALLOC will return NULL if sufficient memory is
not immediately available.

Return Values
Upon successful completion, LOCK_ALLOC returns a pointer to the newly allocated lock. If
KM_NOSLEEP is specified and sufficient memory is not immediately available, LOCK_ALLOC returns a
NULL pointer.

min_pl Argument
The valid values for this argument are as follows:

plbase Block no interrupts

pltimeout Block functions scheduled by itimeout and dtimeout

pldisk Block disk device interrupts

plstr Block STREAMS interrupts

plhi Block all interrupts

The notion of a min_pl assumes a defined order of priority levels. The following partial order is defined:

plbase < pltimeout <= pldisk,plstr <= plhi

The ordering of pldisk and plstr relative to each other is not defined.

166



LOCK_ALLOC(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Setting a given priority level will block interrupts associated with that level as well as any levels that are
defined to be less than or equal to the specified level. In order to be portable a driver should not acquire
locks at different priority levels where the relative order of those priority levels is not defined above.

The min_pl argument should specify a priority level that would be sufficient to block out any interrupt
handler that might attempt to acquire this lock. In addition, potential deadlock problems involving mul-
tiple locks should be considered when defining the min_pl value. For example, if the normal order of
acquisition of locks A and B (as defined by the lock hierarchy) is to acquire A first and then B, lock B
should never be acquired at a priority level less than the min_pl for lock A. Therefore, the min_pl for lock
B should be greater than or equal to the min_pl for lock A.

Note that the specification of min_pl with a LOCK_ALLOC call does not actually cause any interrupts to be
blocked upon lock acquisition, it simply asserts that subsequent LOCK calls to acquire this lock will pass
in a priority level at least as great as min_pl.

Level
Base only if flag is set to KM_SLEEP.

Initialization, Base or Interrupt if flag is set to KM_NOSLEEP.

Synchronization Constraints
May sleep if flag is set to KM_SLEEP.

Driver-defined basic locks and read/write locks may be held across calls to this function if flag is
KM_NOSLEEP but may not be held if flag is KM_SLEEP.

Driver-defined sleep locks may be held across calls to this function regardless of the value of flag.

REFERENCES
LOCK(D3), LOCK_DEALLOC(D3), TRYLOCK(D3), UNLOCK(D3)

167



LOCK_DEALLOC(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
LOCK_DEALLOC − deallocate an instance of a basic lock

SYNOPSIS
#include <sys/types.h>
#include <sys/ksynch.h>
#include <sys/ddi.h>

void LOCK_DEALLOC(lock_t *lockp);

Arguments
lockp Pointer to the basic lock to be deallocated.

DESCRIPTION
LOCK_DEALLOC deallocates the basic lock specified by lockp.

Return Values
None.

USAGE
Attempting to deallocate a lock that is currently locked or is being waited for is an error and will result in
undefined behavior.

Level
Base or Interrupt.

Synchronization Constraints
Does not sleep.

Driver-defined basic locks (other than the one being deallocated), read/write locks, and sleep locks may
be held across calls to this function.

REFERENCES
LOCK(D3), LOCK_ALLOC(D3), TRYLOCK(D3), UNLOCK(D3)

168



makedevice(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
makedevice − make device number from major and minor numbers

SYNOPSIS
#include <sys/types.h>
#include <sys/ddi.h>

dev_t makedevice(major_t majnum, minor_t minnum);

Arguments
majnum Major number.

minnum Minor number.

DESCRIPTION
The makedevice function creates a device number from major and minor device numbers.

Return Values
The device number, containing both the major number and the minor number, is returned. No validation
of the major or minor numbers is performed.

USAGE
makedevice should be used to create device numbers so that the driver will port easily to releases that
treat device numbers differently.

Level
Initialization, Base or Interrupt.

Synchronization Constraints
Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across calls to this function.

Singlethreaded Example
In the following example, makedevice is used to create the device number selected during a clone open.
If the CLONEOPEN flag is set (line 9), we search through the list of minor devices looking for one that is
available (lines 10−11). If we find an unused minor, we break off the search, create a new device number,
and store it in the memory location pointed to by devp (line 15). If no unused minor was found, we
return the error ENXIO.
1 xxxopen(q, devp, oflag, sflag, crp)
2 queue_t *q;
3 dev_t *devp;
4 int oflag;
5 int sflag;
6 cred_t *crp;
7 {
8 minor_t minnum;

9 if (sflag == CLONEOPEN) {
10 for (minnum = 0; minnum < XXXMAXMIN; minnum++)
11 if (!INUSE(minnum))
12 break;

169



makedevice(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

13 if (minnum >= XXXMAXMIN)
14 return(ENXIO);
15 SETINUSE(minnum);
16 *devp = makedevice(getemajor(*devp), minnum);
17 }

...

Multithreaded Example
In the following example, makedevice is used to create the device number selected during a clone open.
If the CLONEOPEN flag is set (line 11), we lock the list of minor devices (line 12) and search through the
list, looking for a minor device that is available (lines 13−14). If we find an unused minor, we break off
the search, mark the minor as being in use (line 20), unlock the list, create a new device number, and store
it in the memory location pointed to by devp (line 22). If no unused minor was found, we unlock the list
and return the error ENXIO.
1 xxxopen(q, devp, oflag, sflag, crp)
2 queue_t *q;
3 dev_t *devp;
4 int oflag;
5 int sflag;
6 cred_t *crp;
7 {
8 minor_t minnum;
9 int pl;
10 extern lock_t *xxxminlock;

11 if (sflag == CLONEOPEN) {
12 pl = LOCK(xxxminlock, plstr);
13 for (minnum = 0; minnum < XXXMAXMIN; minnum++)
14 if (!INUSE(minnum))
15 break;
16 if (minnum >= XXXMAXMIN) {
17 UNLOCK(xxxminlock, pl);
18 return(ENXIO);
19 } else {
20 SETINUSE(minnum);
21 UNLOCK(xxxminlock, pl);
22 *devp = makedevice(getemajor(*devp), minnum);
23 }
24 }

...

REFERENCES
getemajor(D3), geteminor(D3), getmajor(D3), getminor(D3)

170



max(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
max − return the larger of two integers

SYNOPSIS
#include <sys/ddi.h>

int max(int int1, int int2);

Arguments
int1, int2 The integers to be compared.

DESCRIPTION
max compares two integers and returns the larger of two.

Return Values
The larger of the two integers.

USAGE
If the int1 and int2 arguments are not of the specified type the results are undefined.

This interface may be implemented in a way that causes the arguments to be evaluated multiple times, so
callers should beware of side effects.

Level
Initialization, Base or Interrupt.

Synchronization Constraints
Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across calls to this function.

REFERENCES
min(D3)

171



min(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
min − return the lesser of two integers

SYNOPSIS
#include <sys/ddi.h>

int min(int int1, int int2);

Arguments
int1, int2 The integers to be compared.

DESCRIPTION
min compares two integers and returns the lesser of the two.

Return Values
The lesser of the two integers.

USAGE
If the int1 and int2 arguments are not of the specified type the results are undefined.

This interface may be implemented in a way that causes the arguments to be evaluated multiple times, so
callers should beware of side effects.

Level
Initialization, Base or Interrupt.

Synchronization Constraints
Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across calls to this function.

REFERENCES
max(D3)

172



msgdsize(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
msgdsize − return number of bytes of data in a message

SYNOPSIS
#include <sys/stream.h>
#include <sys/ddi.h>

int msgdsize(mblk_t *mp);

Arguments
mp Pointer to the message to be evaluated.

DESCRIPTION
msgdsize counts the number of bytes of data in the message pointed to by mp. Only bytes included in
message blocks of type M_DATA are included in the count.

Return Values
The number of bytes of data in the message.

USAGE
Level

Base or Interrupt.

Synchronization Constraints
Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across calls to this function.

Examples
See insq(D3) for an example of msgdsize.

REFERENCES
msgb(D4)

173



msgpullup(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
msgpullup − concatenate bytes in a message

SYNOPSIS
#include <sys/stream.h>
#include <sys/ddi.h>

mblk_t *msgpullup(mblk_t *mp, int len);

Arguments
mp Pointer to the message whose blocks are to be concatenated.

len Number of bytes to concatenate.

DESCRIPTION
msgpullup concatenates and aligns the first len data bytes of the message pointed to by mp, copying the
data into a new message. All message blocks that remain in the original message once len bytes have been
concatenated and aligned (including any partial message blocks) are copied and linked to the end of the
new message, so that the length of the new message is equal to the length of the original message.

The original message is unaltered. If len equals −1, all data are concatenated. If len bytes of the same mes-
sage type cannot be found, msgpullup fails and returns NULL.

Return Values
On success, msgpullup returns a pointer to the new message. On failure, msgpullup returns NULL.

USAGE
Level

Base or Interrupt.

Synchronization Constraints
Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across calls to this function.

REFERENCES
allocb(D3), msgb(D4)

174



ngeteblk(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
ngeteblk − get an empty buffer of the specified size

SYNOPSIS
#include <sys/types.h>
#include <sys/buf.h>
#include <sys/ddi.h>

buf_t *ngeteblk(size_t bsize);

Arguments
bsize Size of the buffer being requested.

DESCRIPTION
ngeteblk retrieves a buffer [see buf(D4)] of size bsize from the buffer cache and returns a pointer to the
buffer header. If a buffer is not available, ngeteblk dynamically allocates one. If memory is not
immediately available, ngeteblk will sleep until enough memory has been freed to allocate the buffer.

Return Values
A pointer to the buffer header structure is returned.

USAGE
When the driver strategy(D2) routine receives a buffer header from the kernel, all the necessary
members are already initialized. However, when a driver allocates buffers for its own use, it must set up
some of the members before calling its strategy routine.

The following list describes the state of these members when the buffer header is received from
ngeteblk:

b_flags is set to indicate the transfer is from the user’s buffer to the kernel. The driver
must set the B_READ flag if the transfer is from the kernel to the user’s buffer.

b_edev is set to NODEV and must be initialized by the driver.

b_bcount is set to bsize.

b_un.b_addr is set to the buffer’s virtual address.

b_blkno is not initialized by ngeteblk, and must be initialized by the driver

Typically, block drivers do not allocate buffers. The buffer is allocated by the kernel, and the associated
buffer header is used as an argument to the driver strategy routine. However, to implement some
special features, such as ioctl(D2) commands that perform I/O, the driver may need its own buffer
space. The driver can get the buffer space from the system by using geteblk(D3) or ngeteblk. Or
the driver can choose to use its own memory for the buffer and only allocate a buffer header with
getrbuf(D3).

Note that buffers allocated via ngeteblk must be freed using either brelse(D3) or biodone(D3).

175



ngeteblk(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Level
Base only.

Synchronization Constraints
Can sleep.

Driver-defined basic locks and read/write locks may not be held across calls to this function.

Driver-defined sleep locks may be held across calls to this function.

REFERENCES
biodone(D3), brelse(D3), buf(D4), geteblk(D3)

176



noenable(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
noenable − prevent a queue from being scheduled

SYNOPSIS
#include <sys/stream.h>
#include <sys/ddi.h>

void noenable(queue_t *q);

Arguments
q Pointer to the queue.

DESCRIPTION
The noenable function prevents the service routine of the queue pointed to by q from being scheduled
for service by insq(D3), putbq(D3), or putq(D3), when enqueuing a message that is not a high prior-
ity message.

Return Values
None

USAGE
The high-priority-only message restriction can be lifted with the enableok(D3) function.

noenable does not prevent the queue’s service routine from being scheduled when a high priority mes-
sage is enqueued, or by an explicit call to qenable(D3).

Level
Base or Interrupt.

Synchronization Constraints
Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across calls to this function.

REFERENCES
enableok(D3), insq(D3), putbq(D3), putq(D3), qenable(D3), queue(D4), srv(D2)

177



OTHERQ(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
OTHERQ − get a pointer to queue’s partner queue

SYNOPSIS
#include <sys/stream.h>
#include <sys/ddi.h>

queue_t *OTHERQ(queue_t *q);

Arguments
q Pointer to the queue.

DESCRIPTION
The OTHERQ function returns a pointer to the other of the two queue structures that make up an
instance of a STREAMS module or driver.

Return Values
OTHERQ returns a pointer to a queue’s partner.

USAGE
Level

Base or Interrupt.

Synchronization Constraints
Does not sleep.

Multithreaded drivers may hold driver-defined basic locks, read/write locks, and sleep locks across calls
to this function.

Examples
This routine sets the minimum packet size, the maximum packet size, the high water mark, and the low
water mark for the read and write queues of a given module or driver. It is passed either one of the
queues. This could be used if a module or driver wished to update its queue parameters dynamically.

1 void
2 set_q_params(queue_t *q, long min, long max, ulong_t hi, ulong_t lo)
3 {
4 pl_t pl; /* for multi-threaded drivers */
5 (void) strqset(q, QMINPSZ, 0, min);
6 (void) strqset(q, QMAXPSZ, 0, max);
7 (void) strqset(q, QHIWAT, 0, hi);
8 (void) strqset(q, QLOWAT, 0, lo);
9 (void) strqset(OTHERQ(q), QMINPSZ, 0, min);
10 (void) strqset(OTHERQ(q), QMAXPSZ, 0, max);
11 (void) strqset(OTHERQ(q), QHIWAT, 0, hi);
12 (void) strqset(OTHERQ(q), QLOWAT, 0, lo);
13 }

178



OTHERQ(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

REFERENCES
RD(D3), WR(D3)

179



pcmsg(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
pcmsg − test whether a message is a priority control message

SYNOPSIS
#include <sys/types.h>
#include <sys/stream.h>
#include <sys/ddi.h>

int pcmsg(uchar_t type);

Arguments
type The type of message to be tested.

DESCRIPTION
The pcmsg function tests the type of message to determine if it is a priority control message (also known
as a high priority message).

Return Values
pcmsg returns 1 if the message is a priority control message and 0 if the message is any other type.

USAGE
The db_type field of the datab(D4) structure contains the message type. This field may be accessed
through the message block using mp->b_datap->db_type.

Level
Base or Interrupt.

Synchronization Constraints
Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across calls to this function.

Examples
The service routine processes messages on the queue. If the message is a high priority message, or if it is
a normal message and the stream is not flow-controlled, the message is processed and passed along in the
stream. Otherwise, the message is placed back on the head of the queue and the service routine returns.

1 xxxsrv(q)
2 queue_t *q;
3 {
4 mblk_t *mp;

5 while ((mp = getq(q)) != NULL) {
6 if (pcmsg(mp->b_datap->db_type) || canputnext(q->g_next)) {
7 /* process message */
8 putnext(q, mp);
9 } else {
10 putbq(q, mp);
11 return;
12 }
13 }

180



pcmsg(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

14 }

REFERENCES
allocb(D3), datab(D4), msgb(D4), messages(D5)

181



phalloc(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
phalloc − allocate and initialize a pollhead structure

SYNOPSIS
#include <sys/poll.h>
#include <sys/kmem.h>
#include <sys/ddi.h>

struct pollhead *phalloc(int flag);

Arguments
flag Specifies whether the caller is willing to sleep waiting for memory.

DESCRIPTION
phalloc allocates and initializes a pollhead structure for use by non-STREAMS character drivers that
wish to support polling. If flag is set to KM_SLEEP, the caller will sleep if necessary until sufficient
memory is available. If flag is set to KM_NOSLEEP, the caller will not sleep, but phalloc will return
NULL if sufficient memory is not immediately available.

Return Values
On success, phalloc returns a pointer to the newly allocated pollhead structure. If KM_NOSLEEP is
specified and sufficient memory is not immediately available, phalloc returns a NULL pointer.

USAGE
On systems where the phalloc function is available, DDI/DKI conforming drivers should only use
pollhead structures which have been allocated and initialized using phalloc. Use of pollhead
structures which have been obtained by any other means is prohibited on such systems.

Level
Base only if flag is set to KM_SLEEP.

Initialization, Base or Interrupt if flag is set to KM_NOSLEEP.

Synchronization Constraints
May sleep if flag is set to KM_SLEEP.

Driver-defined basic locks and read/write locks may be held across calls to this function if flag is
KM_NOSLEEP but may not be held if flag is KM_SLEEP.

Driver-defined sleep locks may be held across calls to this function regardless of the value of flag.

REFERENCES
chpoll(D2), phfree(D3)

182



phfree(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
phfree − free a pollhead structure

SYNOPSIS
#include <sys/poll.h>
#include <sys/ddi.h>

void phfree(struct pollhead *php);

Arguments
php Pointer to the pollhead structure to be freed.

DESCRIPTION
phfree frees the pollhead structure specified by php.

Return Values
None.

USAGE
The structure pointed to by php must have been previously allocated by a call to phalloc(D3).

On systems where the phalloc function is available, DDI/DKI conforming drivers should only use
pollhead structures which have been allocated and initialized using phalloc. Use of pollhead
structures which have been obtained by any other means is prohibited on such systems.

Level
Initialization, Base or Interrupt.

Synchronization Constraints
Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across calls to this function.

REFERENCES
chpoll(D2), phalloc(D3)

183



physiock(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
physiock − validate and issue a raw I/O request

SYNOPSIS
#include <sys/types.h>
#include <sys/buf.h>
#include <sys/uio.h>
#include <sys/ddi.h>

int physiock(void (*strat)(), buf_t *bp, dev_t dev, int rwflag,
daddr_t nblocks, uio_t *uiop);

Arguments
strat Address of the driver strategy(D2) routine, or similar function.
bp Pointer to the buf(D4) structure describing the I/O request.
dev External device number.
rwflag Flag indicating whether the access is a read or a write.
nblocks Number of blocks that the logical device dev can support.
uiop Pointer to the uio(D4) structure that defines the user space of the I/O request.

DESCRIPTION
physiock is called by the character interface ioctl(D2), read(D2), and write(D2) routines of block
drivers to help perform unbuffered I/O while maintaining the buffer header as the interface structure.

Return Values
physiock returns 0 if the result is successful, or the appropriate error number on failure. If a partial
transfer occurs, the uio structure is updated to indicate the amount not transferred and an error is
returned. physiock returns the ZNOPC error if an attempt is made to read beyond the end of the dev-
ice. If a read is performed at the end of the device, 0 is returned. ZNOSPC is also returned if an attempt
is made to write at or beyond the end of a the device. EFAULT is returned if user memory is not valid.
EAGAIN is returned if physiock could not lock all of the pages.

USAGE
physiock performs the following functions:

verifies the requested transfer is valid by checking if the offset is at or past the end of the device
(this check is bypassed if the size parameter argument nblocks is zero) and that the offset is a
multiple of 512

sets up a buffer header describing the transfer

faults pages in and locks the pages impacted by the I/O transfer so they can’t be swapped out

calls the driver strategy routine passed to it (strat)

sleeps until the transfer is complete and is awakened by a call to biodone(D3) from the driver’s
I/O completion handler

184



physiock(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

performs the necessary cleanup and updates, then returns to the driver routine

A transfer using physiock is considered valid if the specified data location exists on the device, and the
user has specified a storage area large enough that exists in user memory space.

If bp is set to NULL, a buffer is allocated temporarily and freed after the transfer completes.

If rwflag is set to B_READ, the direction of the data transfer will be from the kernel to the user’s buffer. If
rwflag is set to B_WRITE, the direction of the data transfer will be from the user’s buffer to the kernel.

One block is equal to NBPSCTR bytes. NBPSCTR is defined in sys/param.h.

Level
Base only.

Synchronization Constraints
Can sleep.

Driver-defined basic locks and read/write locks may not be held across calls to this function.

Driver-defined sleep locks may be held across calls to this function.

REFERENCES
buf(D4), ioctl(D2), read(D2), strategy(D2), uio(D4), write(D2), uiophysio(D3X)

185



pio_andb_rmw(D3X)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
pio_andb_rmw − byte VME-bus read-modify-write cycle routines

SYNOPSIS
pio_andb_rmw(piomap_t *piomap, iopaddr_t iopaddr, unsigned char mask);

DESCRIPTION
pio_andb_rmw performs an atomic VME-bus read-modify-write operation. This function reads a byte
from the address given by the iopaddr argument. The function then ANDs the byte, with the mask
specified by mask, and writes the result to the address, iopaddr. To prevent any other VME-bus cycles dur-
ing this operation, this function locks the VME bus. piomap is the PIO map returned from
pio_mapalloc(D3X).

Note
The address must be correctly aligned for the given transfer.

See Also
pio_orb_rmw(D3X), pio_andh_rmw(D3X), pio_andw_rmw(D3X)

186



pio_andh_rmw(D3X)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
pio_andh_rmw − half-word VME-bus read-modify-write cycle routine

SYNOPSIS
pio_andh_rmw(piomap_t *piomap, iopaddr_t pioaddr, unsigned short mask);

DESCRIPTION
pio_andh_rmw performs an atomic VME-bus read-modify-write operation. This function reads a half-
word from the address given by the pioaddr argument. The function then ANDs the half-word with the
mask specified by mask, and writes the result to the address, pioaddr. To prevent any other VME-bus
cycles during this operation, this function locks the VME bus. piomap is the PIO map returned from
pio_mapalloc(D3X).

Note
The address must be correctly aligned for the given transfer.

See Also
pio_orb_rmw(D3X), pio_andh_rmw(D3X), pio_andw_rmw(D3X)

187



pio_andw_rmw(D3X)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
pio_andw_rmw − word VME-bus read-modify-write cycle routines

SYNOPSIS
pio_andw_rmw(piomap_t *piomap, iopaddr_t pioaddr, unsigned long mask);

DESCRIPTION
pio_andw_rmw perform an atomic VME-bus read-modify-write operation. This function reads a word
from the address given by the pioaddr argument. The function then ANDs the word with the mask
specified by mask, and writes the result to the address, pioaddr. To prevent any other VME-bus cycles dur-
ing this operation, this function locks the VME bus. piomap is the PIO map returned from
pio_mapalloc(D3X).

Note
The address must be correctly aligned for the given transfer.

See Also
pio_orb_rmw(D3X), pio_andb_rmw(D3X), pio_andh_rmw(D3X)

188



pio_badaddr(D3X)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
pio_badaddr − check for bus error when reading an address

SYNOPSIS
#include <sys/types.h>
#include <sys/ddi.h>
#include <sys/pio.h>

int pio_badaddr (piomap_t* piomap, iopaddr_t iopaddr, int len);

Arguments
piomap The PIO map returned from pio_mapalloc(D3X).

iopaddr The VME bus address to be probed.

len The size in bytes to probe the VME bus address.

DESCRIPTION
Call pio_badaddr to determine whether you can read specified address location. Typically, you call
pio_badaddr from a VME device’s edtinit() function to determine whether a device is still on the
present system.

Return Values
Returns a zero if the probe was successful.

See Also
pio_mapalloc(D3X), pio_mapfree(D3X), pio_mapaddr(D3X), pio_wbadaddr(D3X),
pio_bcopyin (Da3x), pio_bcopyout(D3X)

189



pio_bcopyin(D3X)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
pio_bcopyin − copy data from VME bus address to kernel’s virtual space

SYNOPSIS
#include <sys/types.h>
#include <sys/ddi.h>
#include <sys/pio.h>

int pio_bcopyin(piomap_t *piomap, iopaddr_t iopaddr, void *kvaddr,
int size, int itmsz, int flag);

Arguments
piomap The PIO map returned from pio_mapalloc(D3X).

iopaddr The VME bus address.

kvaddr The kernel’s virtual address.

size The byte count of the transfer.

itmsz The element size of each read or write of the VME bus.

flag PIO_NOSLEEP if this call shouldn’t block.

DESCRIPTION
pio_bcopyin copies data from the VME bus address space to the kernel virtual address space.

Return Values
The number of bytes transferred.

See Also
pio_mapalloc(D3X), pio_mapfree(D3X), pio_mapaddr(D3X), pio_badaddr(D3X),
pio_wbadaddr(D3X), pio_bcopyout(D3X)

190



pio_bcopyout(D3X)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
pio_bcopyout − copy data from kernel’s virtual space to VME bus address

SYNOPSIS
#include <sys/types.h>
#include <sys/ddi.h>
#include <sys/pio.h>

int pio_bcopyout (piomap_t *piomap, iopaddr_t iopaddr, void *kvaddr,
int size, int itmsz, int flag);

Arguments
piomap The PIO map returned from pio_mapalloc(D3X).

iopaddr The VME bus address.

kvaddr The kernel’s virtual address.

size The byte count of the transfer.

itmsz The element size of each read or write of the VME bus.

flag PIO_NOSLEEP if this call shouldn’t block.

DESCRIPTION
pio_bcopyin copies data from the kernel virtual address space to the VME bus address space.

Return Values
The number of bytes transferred.

See Also
pio_mapalloc(D3X), pio_mapfree(D3X), pio_mapaddr(D3X), pio_badaddr(D3X),
pio_wbadaddr(D3X), pio_bcopyin(D3X)

191



pio_mapaddr(D3X)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
pio_mapaddr − used with FIXED maps to generate a kernel pointer to VME bus space

SYNOPSIS
#include <sys/types.h>
#include <sys/ddi.h>
#include <sys/pio.h>

caddr_t pio_mapaddr (piomap_t *piomap, iopaddr_t addr);

Arguments
piomap The PIO map returned from pio_mapalloc(D3X).

addr The BME address to be mapped.

DESCRIPTION
pio_mapaddr converts a VME address to a virtual address.

Return Values
A pointer which when accessed, will access the VME bus location specified by addr.

See Also
pio_mapfree(D3X), pio_mapalloc(D3X), pio_badaddr(D3X), pio_wbadaddr(D3X),
pio_bcopyin(D3X), pio_bcopyout(D3X)

192



pio_mapalloc(D3X)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
pio_mapalloc − allocate a PIO map

SYNOPSIS
#include <sys/types.h>
#include <sys/ddi.h>
#include <sys/pio.h>

piomap_t *
pio_mapalloc(uint bus, uint adap, iospace_t *iospace, int flag, char *name);

Arguments
bus The type of bus the map is for, ADAP_VME from edt.h.

adap Identifies which VME bus. The Challenge series supports up to five.

iospace This defines the space on the VME bus to mapped, a16s, a24n, etc.

flag PIOMAP_FIXED or PIOMAP_UNFIXED.

name A character string used to identify the map. Useful for debugging a driver.

DESCRIPTION
pio_mapalloc creates PIO maps used to access VME bus space from a driver. PIO maps can be FIXED
or UNFIXED. FIXED maps provide the driver with a kernel address which can be used as a normal
pointer to access VME bus space. UNFIXED maps require the use of special routines access to VME bus
space.

Return Values
A pointer to a piomap_t type structure which is used with the reset of the routines.

See Also
pio_mapfree(D3X), pio_mapaddr(D3X), pio_badaddr(D3X), pio_wbadaddr(D3X),
pio_bcopyin(D3X), pio_bcopyout(D3X)

193



pio_mapfree(D3X)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
pio_mapfree − free up a previously allocated PIO map

SYNOPSIS
#include <sys/types.h>
#include <sys/ddi.h>
#include <sys/pio.h>

void pio_mapfree(piomap_t *piomap);

Arguments
piomap The PIO map to be freed.

DESCRIPTION
Pio_mapfree frees the specified PIO map which is previously allocated by pio_mapalloc(D3X).

Return Values
None

See Also
pio_mapalloc(D3X), pio_mapaddr(D3X), pio_badaddr(D3X), pio_wbadaddr(D3X),
pio_bcopyin(D3X), pio_bcopyout(D3X)

194



pio_orb_rmw(D3X)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
pio_orb_rmw − VME-bus read-modify-write cycle routines

SYNOPSIS
pio_orb_rmw(piomap_t *piomap, iopaddr_t pioaddr, unsigned char mask);

DESCRIPTION
This function perform VME-bus atomic read-modify-write operations. pio_orb_rmw(D3X),
pio_orh_rmw(D3X), or pio_orw_rmw(D3X) read a byte, half-word, or word (respectively) from the
address pointed to by pioaddr. The routine then ORs the byte, half-word, or word with the mask in mask
and writes the result to the address, pioaddr (overwriting the original value). piomap is the PIO map
returned from pio_mapalloc(D3X).

The address, pioaddr, must be correctly aligned for the given transfer.

Return Values
None

Note
To prevent any other VME-bus cycles during this operation, these routines lock the VME bus.

195



pio_orh_rmw(D3X)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
pio_orh_rmw − VME-bus read-modify-write cycle routines

SYNOPSIS
pio_orh_rmw(piomap_t *piomap, iopaddr_t pioaddr, unsigned short mask);

DESCRIPTION
This function perform VME-bus atomic read-modify-write operations. pio_orb_rmw(D3X),
pio_orh_rmw(D3X), or pio_orw_rmw(D3X) read a byte, half-word, or word (respectively) from the
address pointed to by pioaddr. The routine then ORs the byte, half-word, or word with the mask in mask
and writes the result to the address, pioaddr (overwriting the original value). piomap is the PIO map
returned from pio_mapalloc(D3X).

The address, pioaddr, must be correctly aligned for the given transfer.

Return Values
None

Note
To prevent any other VME-bus cycles during this operation, these routines lock the VME bus.

196



pio_orw_rmw(D3X)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
pio_orw_rmw − VME-bus read-modify-write cycle routines

SYNOPSIS
pio_orw_rmw (piomap_t *piomap, iopaddr_t pioaddr, unsigned long mask);

DESCRIPTION
This function perform VME-bus atomic read-modify-write operations. pio_orb_rmw(D3X),
pio_orh_rmw(D3X), or pio_orw_rmw(D3X) read a byte, half-word, or word (respectively) from the
address pointed to by pioaddr. The routine then ORs the byte, half-word, or word with the mask in mask
and writes the result to the address, pioaddr (overwriting the original value). piomap is the PIO map
returned from pio_mapalloc(D3X).

The address, pioaddr, must be correctly aligned for the given transfer.

Return Values
None

Note
To prevent any other VME-bus cycles during this operation, these routines lock the VME bus.

197



pio_wbadaddr(D3X)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
pio_wbadaddr − check for bus error when writing to an address

SYNOPSIS
#include <sys/types.h>
#include <sys/ddi.h>
#include <sys/pio.h>

int pio_wbadaddr (piomap_t *piomap, iopaddr_t iopaddr, int len);

Arguments
piomap The PIO map returned from pio_mapalloc(D3X).

iopaddr The VME bus address to be probed.

len The size in bytes to probe the VME bus address.

DESCRIPTION
Call pio_badaddr to determine whether you can write to specified address location. Typically, you call
pio_wbadaddr from a VME device’s edtinit() function to determine whether a device is still on the
present system.

Return Values
Returns a zero if the probe was successful.

See Also
pio_mapalloc(D3X), pio_mapfree(D3X), pio_badaddr(D3X), pio_badaddr(D3X),
pio_bcopyin(D3X), pio_bcopyout(D3X)

198



pollwakeup(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
pollwakeup − inform polling processes that an event has occurred

SYNOPSIS
#include <sys/poll.h>
#include <sys/ddi.h>

void pollwakeup(struct pollhead *php, short event);

Arguments
php Pointer to a pollhead structure.

event Event to notify the process about.

DESCRIPTION
The pollwakeup function provides non-STREAMS character drivers with a way to notify processes pol-
ling for the occurrence of an event.

Return Values
None

USAGE
pollwakeup should be called from the driver for each occurrence of an event. Events are described in
chpoll(D2).

The pollhead structure will usually be associated with the driver’s private data structure for the partic-
ular minor device where the event has occurred.

pollwakeup should only be called with one event at a time.

Level
Base or Interrupt.

Synchronization Constraints
Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across calls to this function.

REFERENCES
chpoll(D2), poll(2)

199



pptophys(D3X)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
pptophys − convert page pointer to physical address

SYNOPSIS
#include <sys/types.h>
#include <sys/pfdat.h>
#include <sys/ddi.h>

paddr_t pptophys(struct pfdat *pp);

Arguments
pp Pointer to the page structure

DESCRIPTION
pptophys converts a pointer to a page structure to a physical address.

Return Values
The physical address represented by the page (pfdat) structure referenced by pp.

Block drivers can use this address for physical DMA operations during paged-I/O requests (see
getnextpg(D3X)).

Level
Base or Interrupt.

Notes
Does not sleep.

See Also
strategy(D2), getnextpg(D3X), buf(D4)

200



proc_ref(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
proc_ref − obtain a reference to a process for signaling

SYNOPSIS
#include <sys/stream.h>
#include <sys/ddi.h>

void *proc_ref(void);

DESCRIPTION
A non-STREAMS character driver can call proc_ref to obtain a reference to the process in whose con-
text it is running.

Return Values
proc_ref returns an identifier that can be used in calls to proc_signal and proc_unref(D3).

USAGE
The value returned can be used in subsequent calls to proc_signal(D3) to post a signal to the process.
The return value should not be used in any other way (that is, the driver should not attempt to interpret
its meaning).

Processes can exit even though they are referenced by drivers. In this event, reuse of the identifier will be
deferred until all driver references are given up.

There must be a matching call to proc_unref for every call to proc_ref, when the driver no longer
needs to reference the process. This is typically done as part of close(D2) processing.

This function requires user context.

Level
Base only.

Synchronization Constraints
Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across calls to this function.

REFERENCES
proc_signal(D3), proc_unref(D3)

201



proc_signal(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
proc_signal − send a signal to a process

SYNOPSIS
#include <sys/signal.h>
#include <sys/ddi.h>

int proc_signal(void *pref, int sig);

Arguments
pref Identifier obtained by a previous call to proc_ref(D3).

sig Signal number to be sent.

DESCRIPTION
The proc_signal function can be used to post a signal to the process represented by pref. This will
interrupt any process blocked in SV_WAIT_SIG(D3) or SLEEP_LOCK_SIG(D3) at the time the signal is
posted, causing those functions to return prematurely in most cases. If the process has exited then this
function has no effect.

Return Values
If the process still exists, 0 is returned. Otherwise, −1 is returned to indicate that the process no longer
exists.

USAGE
Valid signal numbers are listed in signals(D5).

STREAMS drivers and modules should not use this mechanism for signaling processes. Instead, they can
send M_SIG or M_PCSIG STREAMS messages to the stream head.

proc_signal must not be used to send SIGTSTP to a process.

Level
Base or Interrupt.

Synchronization Constraints
Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across calls to this function.

REFERENCES
proc_ref(D3), proc_unref(D3), signals(D5)

202



proc_unref(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
proc_unref − release a reference to a process

SYNOPSIS
#include <sys/ddi.h>

void proc_unref(void *pref);

Arguments
pref Identifier obtained by a previous call to proc_ref(D3).

DESCRIPTION
The proc_unref function can be used to release a reference to a process identified by the parameter
pref.

Return Values
None

USAGE
There must be a matching call to proc_unref for every previous call to proc_ref(D3).

Processes can exit even though they are referenced by drivers. In this event, reuse of pref will be deferred
until all driver references are given up.

Level
Base or Interrupt.

Synchronization Constraints
Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across calls to this function.

REFERENCES
proc_ref(D3), proc_signal(D3)

203



psema(D3X)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
psema − perform a "P" or wait semaphore operation

SYNOPSIS
#include "sys/types.h"
#include "sys/param.h"
#include "sys/sema.h"

psema(sema_t *semap, int priority);

DESCRIPTION
psema performs a "P" semaphore operation on the given semaphore. The value associated with the
semaphore is decremented by 1. If the semaphore value then becomes less than 0, the process goes to
sleep and gives up the CPU.

Use semap to pass psema a pointer to the semaphore you want to decrement. Use priority to specify the
priority you want to assign to the sleeping process when it is awakened. The priority argument also deter-
mines whether signals can awaken the process. If the priority value is greater than PZERO, it is breakable;
otherwise it is not. If the process is awakened by a signal, then the semaphore value is incremented and is
allowed to continue. If PCATCH is ORed into the priority, psema returns −1, and the process continues
after the call; otherwise, control returns to the last point in the kernel where the process signal context
was saved, usually at the beginning of the system call.

To initialize and allocate a semaphore, call initnsema or initnsema_mutex.

Return Values
psema returns −1 if a breakable sleep is interrupted by a signal and PCATCH is set. Otherwise psema
returns 0.

Note
psema may cause the calling process to sleep; it must not be called from within an interrupt procedure.

See Also
sleep(D3), SLEEP_LOCK(D3)

204



ptob(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
ptob − convert size in pages to size in bytes

SYNOPSIS
#include <sys/types.h>
#include <sys/ddi.h>

ulong_t ptob(ulong_t numpages);

Arguments
numpages Size in pages to convert to equivalent size in bytes.

DESCRIPTION
ptob returns the number of bytes that are contained in the specified number of pages.

Return Values
The return value is the number of bytes in the specified number of pages.

USAGE
There is no checking done on the input value and overflow is not detected.

In the case of a page count whose corresponding byte count cannot be represented by a ulong_t the
higher order bits are truncated.

Level
Base or Interrupt.

Synchronization Constraints
Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across calls to this function.

Examples
If the page size is 2048, then ptob(2) returns 4096. ptob(0) returns 0.

REFERENCES
btop(D3), btopr(D3)

205



putbq(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
putbq − place a message at the head of a queue

SYNOPSIS
#include <sys/stream.h>
#include <sys/ddi.h>

int putbq(queue_t *q, mblk_t *bp);

Arguments
q Pointer to the queue.

bp Pointer to the message.

DESCRIPTION
putbq puts a message back at the head of a queue. If messages of a higher priority are on the queue, then
bp is placed at the head of its corresponding priority band. See srv(D2) for more information about
message priorities.

All flow control parameters are updated. The queue’s service routine is scheduled if it has not been dis-
abled by a previous call to noenable(D3).

Return Values
putbq returns 1 on success and 0 on failure.

USAGE
putbq is usually called when bcanput(D3) or canput(D3) determines that the message cannot be
passed on to the next stream component.

putbq can fail if there is not enough memory to allocate the accounting data structures used with mes-
sages whose priority bands are greater than zero.

High priority messages should never be put back on a queue from within a service routine.

Level
Base or Interrupt.

Synchronization Constraints
Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across calls to this function.

Examples
See bufcall(D3) for an example of putbq.

REFERENCES
bcanput(D3), canput(D3), getq(D3), insq(D3), msgb(D4), putq(D3), queue(D4), rmvq(D3),
srv(D2)

206



putbq(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
putctl − send a control message to a queue

SYNOPSIS
#include <sys/stream.h>
#include <sys/ddi.h>

int putctl(queue_t *q, int type);

Arguments
q Pointer to the queue to which the message is to be sent.

type Message type (must be a control type).

DESCRIPTION
putctl tests the type argument to make sure a data type has not been specified, and then attempts to
allocate a message block. putctl fails if type is M_DATA, M_PROTO, or M_PCPROTO, or if a message
block cannot be allocated. If successful, putctl calls the put(D2) routine of the queue pointed to by q,
passing it the allocated message.

Return Values
On success, 1 is returned. Otherwise, if type is a data type, or if a message block cannot be allocated, 0 is
returned.

Level
Base or Interrupt.

Synchronization Constraints
Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may not be held across calls to this function.

Examples
The send_ctl routine is used to pass control messages downstream. M_BREAK messages are handled
with putctl (line 9). putctl1 (line 11) is used for M_DELAY messages, so that param can be used to
specify the length of the delay. If an invalid message type is detected, send_ctl returns 0, indicating
failure (line 13).
1 int
2 send_ctl(wrq, type, param)
3 queue_t *wrq;
4 uchar_t type;
5 uchar_t param;
6 {

7 switch (type) {
8 case M_BREAK:
9 return(putctl(wrq->q_next, M_BREAK));

10 case M_DELAY:
11 return(putctl1(wrq->q_next, M_DELAY, param));

12 default:

207



putctl(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

13 return(0);
14 }
15 }

REFERENCES
put(D2), putctl1(D3)

208



putctl1(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
putctl1 − send a control message with a one-byte parameter to a queue

SYNOPSIS
#include <sys/stream.h>
#include <sys/ddi.h>

int putctl1(queue_t *q, int type, int param);

Arguments
q Pointer to the queue to which the message is to be sent.

type Message type (must be a control type).

param One-byte parameter.

DESCRIPTION
putctl1, like putctl(D3), tests the type argument to make sure a data type has not been specified, and
attempts to allocate a message block. The param parameter can be used, for example, to specify the signal
number when an M_PCSIG message is being sent. putctl1 fails if type is M_DATA, M_PROTO, or
M_PCPROTO, or if a message block cannot be allocated. If successful, putctl1 calls the put(D2) routine
of the queue pointed to by q, passing it the allocated message.

Return Values
On success, 1 is returned. Otherwise, if type is a data type, or if a message block cannot be allocated, 0 is
returned.

Level
Base or Interrupt.

Synchronization Constraints
Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may not be held across calls to this function.

Examples
See putctl(D3) for an example of putctl1.

REFERENCES
put(D2), putctl(D3)

209



putnext(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
putnext − send a message to the next queue

SYNOPSIS
#include <sys/stream.h>
#include <sys/ddi.h>

int putnext(queue_t *q, mblk_t *mp);

Arguments
q Pointer to the queue from which the message mp will be sent.

mp Pointer to the message to be passed.

DESCRIPTION
The putnext function is used to pass a message to the put(D2) routine of the next queue (q−>q_next) in
the stream.

Return Values
Ignored

USAGE
Level

Base or Interrupt.

Synchronization Constraints
Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may not be held across calls to this function.

Examples
See allocb(D3) for an example of putnext.

REFERENCES
put(D2)

210



putq(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
putq − put a message on a queue

SYNOPSIS
#include <sys/stream.h>
#include <sys/ddi.h>

int putq(queue_t *q, mblk_t *bp);

Arguments
q Pointer to the queue.

bp Pointer to the message.

DESCRIPTION
putq is used to put messages on a queue after the put(D2) routine has finished processing the message.
The message is placed after any other messages of the same priority, and flow control parameters are
updated. The queue’s service routine is scheduled if it has not been disabled by a previous call to
noenable(D3), or if the message being enqueued has greater than normal priority (that is, it is not in
band zero).

Return Values
putq returns 1 on success and 0 on failure.

USAGE
putq can fail if there is not enough memory to allocate the accounting data structures used with mes-
sages whose priority bands are greater than zero.

Level
Base or Interrupt.

Synchronization Constraints
Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across calls to this function.

Examples
See datamsg(D3) for an example of putq.

REFERENCES
getq(D3), insq(D3), msgb(D4), put(D2), putbq(D3), queue(D4), rmvq(D3), srv(D2)

211



qenable(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
qenable − schedule a queue’s service routine to be run

SYNOPSIS
#include <sys/stream.h>
#include <sys/ddi.h>

void qenable(queue_t *q);

Arguments
q Pointer to the queue.

DESCRIPTION
qenable puts the queue pointed to by q on the linked list of those whose service routines are ready to be
called by the STREAMS scheduler.

Return Values
None

USAGE
qenable works regardless of whether the service routine has been disabled by a prior call to
noenable(D3).

Level
Base or Interrupt.

Synchronization Constraints
Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across calls to this function.

Examples
See enableok(D3) for an example of qenable.

REFERENCES
enableok(D3), noenable(D3), queue(D4), srv(D2)

212



qreply(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
qreply − send a message in the opposite direction in a stream

SYNOPSIS
#include <sys/stream.h>
#include <sys/ddi.h>

void qreply(queue_t *q, mblk_t *bp);

Arguments
q Pointer to the queue from which the message is being sent.

bp Pointer to the message to be sent in the opposite direction.

DESCRIPTION
qreply sends a message in the opposite direction from that which q is pointing. It calls the OTHERQ(D3)
function to find q’s partner, and passes the message by calling the put(D2) routine of the next queue in
the stream after q’s partner.

Return Values
None

USAGE
Level

Base or Interrupt.

Synchronization Constraints
Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may not be held across calls to this function.

Examples
See put(D2) for an example of qreply.

REFERENCES
OTHERQ(D3), put(D2), putnext(D3)

213



qsize(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
qsize − find the number of messages on a queue

SYNOPSIS
#include <sys/stream.h>
#include <sys/ddi.h>

int qsize(queue_t *q);

Arguments
q Pointer to the queue to be evaluated.

DESCRIPTION
qsize evaluates the queue pointed to by q and returns the number of messages it contains.

Return Values
If there are no message on the queue, qsize returns 0. Otherwise, it returns the number of messages on
the queue.

USAGE
Level

Base or Interrupt.

Synchronization Constraints
Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across calls to this function.

REFERENCES
msgb(D4), queue(D4)

214



RD(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
RD − get a pointer to the read queue

SYNOPSIS
#include <sys/stream.h>
#include <sys/ddi.h>

queue_t *RD(queue_t *q);

Arguments
q Pointer to the queue whose read queue is to be returned.

DESCRIPTION
The RD function accepts a queue pointer as an argument and returns a pointer to the read queue of the
same module or driver.

Return Values
The pointer to the read queue.

USAGE
Note that when RD is passed a read queue pointer as an argument, it returns a pointer to this read queue.

Level
Base or Interrupt.

Synchronization Constraints
Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across calls to this function.

Examples
See the put(D2) function page for an example of RD.

REFERENCES
OTHERQ(D3), WR(D3)

215



rmalloc(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
rmalloc − allocate space from a private space management map

SYNOPSIS
#include <sys/types.h>
#include <sys/map.h>
#include <sys/ddi.h>

ulong_t rmalloc(struct map *mp, size_t size);

Arguments
mp Pointer to the map from which space is to be allocated.

size Number of units of space to allocate.

DESCRIPTION
rmalloc allocates space from the private space management map pointed to by mp.

Return Values
Upon successful completion, rmalloc returns the base of the allocated space. If size units cannot be
allocated, 0 is returned.

USAGE
Drivers can use rmalloc to allocate space from a previously allocated and initialized private space
management map.

On systems where the rmallocmap function is available, the map must have been allocated by a call to
rmallocmap(D3) and the space managed by the map must have been added using rmfree(D3) prior to
the first call to rmalloc for the map.

On systems where the rmallocmap function is not available, the map must be initially allocated either
as a data array, or by the kmem_alloc(D3) function. The map must have been initialized by a call to
rminit(D3) and the space managed by the map must have been added using rmfree(D3) prior to the
first call to rmalloc for the map.

size specifies the amount of space to allocate and is in arbitrary units. The driver using the map places
whatever semantics on the units are appropriate for the type of space being managed. For example, units
may be byte addresses, pages of memory, or blocks on a device.

The system allocates space from the memory map on a first-fit basis and coalesces adjacent space frag-
ments when space is returned to the map by rmfree.

Level
Initialization, Base or Interrupt.

Synchronization Constraints
Does not sleep.

216



rmalloc(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Driver-defined basic locks, read/write locks, and sleep locks may be held across calls to this function.

Examples
The following example is a simple memory map, but it illustrates the principles of map management. A
driver declares a map table (line 4) and initializes the map table by calling both the rminit and rmfree
functions. There are 35 entries in the map table, 32 of which can be used to represent space allocated. In
the driver’s start(D2) routine, we allocate 16 Kbytes of memory using kmem_alloc(D3) (line 8). This
is the space to be managed. Then we call rminit to establish the number of slots or entries in the map
(line 10), and rmfree to populate the map with the space it is to manage (line 11).

In the driver’s read(D2) and write(D2) routines, we use rmalloc to allocate buffers for data transfer.
This example illustrates the write routine. Assuming the device can only transfer XX_MAXBUFSZ bytes
at a time, we calculate the amount of data to copy (line 22) and use rmalloc to allocate some space from
the map. The call to rmalloc is protected against interrupts (line 23) from the device that may result in
freeing map space. This way, if space is freed, we won’t miss the corresponding wakeup(D3).

If the appropriate space cannot be allocated, we use rmsetwant(D3) to indicate that we want space (line
25) and then we sleep until a buffer is available. When a buffer becomes available, rmfree is called to
return the space to the map and to wake the sleeping process. Then the call to rmalloc will succeed
and the driver can then transfer data.

1 #define XX_MAPSIZE 35
2 #define XX_MEMSIZE (16*1024)
3 #define XX_MAXBUFSZ 1024

4 struct map xx_map[XX_MAPSIZE];
...

5 xx_start()
6 {
7 caddr_t bp;

8 if ((bp = kmem_alloc(XX_MEMSIZE, KM_NOSLEEP)) == 0)
9 cmn_err(CE_PANIC, "xx_start: could not allocate %d bytes",
10 XX_MEMSIZE);
11 rminit(xx_map, XX_MAPSIZE);
12 rmfree(xx_map, XX_MEMSIZE, bp);
13 }

...
14 xx_write(dev, uiop, crp)
15 dev_t dev;
16 uio_t *uiop;
17 cred_t *crp;
18 {
19 caddr_t addr;
20 size_t size;
21 int s;

...
22 while (uiop->uio_resid > 0) {
23 size = min(uiop->uio_resid, XX_MAXBUFSZ);

217



rmalloc(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

24 s = spl4();
25 while ((addr = (caddr_t)rmalloc(xx_map, size)) == NULL) {
26 rmsetwant(xx_map);
27 sleep((caddr_t)xx_map, PZERO);
28 }
29 splx(s);

...
30 }

...

On systems where the rmallocmap function is available, line 4 could become:

struct map *xx_map;

and line 10 could become:

if ((mp=rmallocmap(xx_MAPSIZE) == 0
cmn_err (CE_PANIC, "xx_start: could not allocate map");

REFERENCES
rmalloc_wait(D3), rmallocmap(D3), rmfree(D3), rmfreemap(D3), rminit(D3),
rmsetwant(D3)

218



rmallocmap(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
rmallocmap − allocate and initialize a private space management map

SYNOPSIS
#include <sys/types.h>
#include <sys/map.h>
#include <sys/ddi.h>

struct map *rmallocmap(ulong_t mapsize);

Arguments
mapsize Number of entries for the map.

DESCRIPTION
rmallocmap allocates and initializes a private map array that can be used for the allocation of space.

Return Values
On success, rmallocmap returns a pointer to the newly allocated map. On failure, a NULL pointer is
returned.

USAGE
Although rmallocmap allocates and initializes the map array itself, it does not allocate the space that
the map will manage. This space must be allocated separately and must be added to the map using
rmfree(D3) prior to attempting to allocate space from the map using rmalloc(D3) or
rmalloc_wait(D3).

The system maintains the map list structure by size and index. The caller places whatever semantics on
the units of size are appropriate for the type of space being managed. For example, units may be byte
addresses, pages of memory, or blocks.

On systems where the rmallocmap function is available, DDI/DKI conforming drivers may only use
map structures which have been allocated and initialized using rmallocmap. Use of map structures
which have been obtained by any other means is prohibited on such systems.

Level
Initialization, Base or Interrupt.

Synchronization Constraints
Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across calls to this function.

REFERENCES
rmalloc(D3), rmalloc_wait(D3), rmfree(D3), rmfreemap(D3)

219



rmalloc_wait(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
rmalloc_wait − allocate space from a private space management map

SYNOPSIS
#include <sys/types.h>
#include <sys/map.h>
#include <sys/ddi.h>

ulong_t rmalloc_wait(struct map *mp, size_t size);

Arguments
mp Pointer to map to resource map.

size Number of units to allocate.

DESCRIPTION
rmalloc_wait allocates space from a private map previously allocated using rmallocmap(D3).

Return Values
rmalloc_wait returns the base of the allocated space.

USAGE
rmalloc_wait is identical to rmalloc(D3), except that a call to rmalloc_wait will sleep (uninter-
ruptible by signals), if necessary, until space becomes available.

Space allocated using rmalloc_wait may be returned to the map using rmfree(D3).

Level
Base only.

Synchronization Constraints
May sleep.

Driver-defined basic locks and read/write locks may not be held across calls to this function.

Driver-defined sleep locks may be held across calls to this function, but the driver writer must be cautious
to avoid deadlock between the process holding the lock and trying to acquire the resource and another
process holding the resource and trying to acquire the lock.

REFERENCES
rmalloc(D3), rmallocmap(D3), rmfree(D3), rmfreemap(D3)

220



rmfree(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
rmfree − free space into a private space management map

SYNOPSIS
#include <sys/types.h>
#include <sys/map.h>
#include <sys/ddi.h>

void rmfree(struct map *mp, size_t size, ulong_t index);

Arguments
mp Pointer to the map.

size Number of units to free into the map.

index Index of the first unit of the space being freed.

DESCRIPTION
rmfree releases space into the private space management map pointed to by mp and wakes up any
processes that are waiting for space.

Return Values
None

USAGE
rmfree should be called to return space that had been allocated by a previous call to rmalloc(D3), in
which case index is the value returned from the corresponding call to rmalloc. rmfree should also be
called to add space to a newly allocated map prior to the first call to rmalloc, in which case index
specifies the base of the space being added.

Both size and index are in arbitrary units. The driver using the map places whatever semantics on the
units are appropriate for the type of space being managed. For example, units may be byte addresses,
pages of memory, or blocks on a device.

If the space being returned is adjacent to other space in the map, rmfree will coalesce the adjacent frag-
ments.

If the rmfree call causes the number of fragments in the map to exceed the number of map entries
specified by rminit(D3) (for singlethreaded drivers) or rmallocmap(D3) (for multithreaded drivers)
the following warning message is displayed on the console:

WARNING: rmfree map overflow mp lost size items at index

This implies that the driver should specify a larger number of map entries when initializing the map.

Level
Base or Interrupt.

Synchronization Constraints
Does not sleep.

221



rmfree(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Driver-defined basic locks, read/write locks, and sleep locks may be held across calls to this function.

Examples
See rmalloc(D3) for an example of rmfree.

REFERENCES
rmalloc(D3), rmalloc_wait(D3), rmallocmap(D3), rmfreemap(D3), rminit(D3),
rmsetwant(D3)

222



rmfreemap(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
rmfreemap − free a private space management map

SYNOPSIS
#include <sys/map.h>
#include <sys/ddi.h>

void rmfreemap(struct map *mp);

Arguments
mp Pointer to the map to be freed.

DESCRIPTION
rmfreemap frees the map pointed to by mp.

Return Values
None

USAGE
The map structure array pointed to by mp must have been previously allocated by a call to
rmallocmap(D3).

Before freeing the map, the caller must ensure that nobody is using space managed by the map, and that
nobody is waiting for space in the map.

Level
Initialization, Base or Interrupt.

Synchronization Constraints
Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across calls to this function.

REFERENCES
rmalloc(D3), rmalloc_wait(D3), rmallocmap(D3), rmfree(D3)

223



rmvb(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
rmvb − remove a message block from a message

SYNOPSIS
#include <sys/stream.h>
#include <sys/ddi.h>

mblk_t *rmvb(mblk_t *mp, mblk_t *bp);

Arguments
mp Pointer to the message from which a message block is to be removed.

bp Pointer to the message block to be removed.

DESCRIPTION
rmvb removes the message block specified by bp from the message specified mp and returns a pointer to
the altered message.

Return Values
On success, a pointer to the message (minus the removed block) is returned. If bp was the only block in
the message before rmvb was called, NULL is returned. If the designated message block (bp) was not in
the message, −1 is returned.

USAGE
The message block is not freed, merely removed from the message. It is the caller’s responsibility to free
the message block.

Level
Base or Interrupt.

Synchronization Constraints
Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across calls to this function.

Examples
This routine removes all zero-length M_DATA message blocks from the given message. For each message
block in the message, we save the next message block (line 9). If the current message block is of type
M_DATA and has no data in its buffer (lines 10−11), then we remove the message block from the message
(line 12) and free it (line 13). In either case, we continue with the next message block (line 15), until we
have checked every message block in the message.

1 void
2 xxclean(mp)
3 mblk_t *mp;
4 {
5 mblk_t *tmp;
6 mblk_t *nmp;

7 tmp = mp;
8 while (tmp) {

224



rmvb(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

9 nmp = tmp->b_next;
10 if ((tmp->b_datap->db_type == M_DATA) &&
11 (tmp->b_rptr == tmp->b_wptr)) {
12 mp = rmvb(mp, tmp);
13 freeb(tmp);
14 }
15 tmp = nmp;
16 }
17 }

225



rmvq(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
rmvq − remove a message from a queue

SYNOPSIS
#include <sys/stream.h>
#include <sys/ddi.h>

void rmvq(queue_t *q, mblk_t *mp);

Arguments
q Pointer to the queue containing the message to be removed.

mp Pointer to the message to remove.

DESCRIPTION
rmvq removes the message specified by mp from the queue specified by q.

Return Values
None

USAGE
A message can be removed from anywhere in a queue. To prevent modules and drivers from having to
deal with the internals of message linkage on a queue, either rmvq or getq(D3) should be used to
remove a message from a queue.

Level
Base or Interrupt.

Synchronization Constraints
Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across calls to this function.

Warnings
mp must point to an existing message in the queue pointed to by q, or a system panic will occur.

Examples
See insq(D3) for an example of rmvq.

REFERENCES
getq(D3), insq(D3),

226



SAMESTR(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
SAMESTR − test if next queue is of the same type

SYNOPSIS
#include <sys/stream.h>
#include <sys/ddi.h>

int SAMESTR(queue_t *q);

Arguments
q Pointer to the queue.

DESCRIPTION
The SAMESTR function checks whether the next queue in a stream (if it exists) is of the same type as the
current queue (that is, both are read queues or both are write queues).

Return Values
SAMESTR returns 1 if the next queue is of the same type as the current queue. It returns 0 if the next
queue does not exist or if it is not of the same type.

USAGE
This function can be used to determine the point in a STREAMS-based pipe where a read queue is linked
to a write queue.

Level
Base or Interrupt.

Synchronization Constraints
Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across calls to this function.

Examples
See the put(D2) manual page for an example of SAMESTR.

REFERENCES
OTHERQ(D3)

227



scsi_alloc(D3X)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
scsi_alloc − allocate communication channel between host adapter driver and a kernel level SCSI dev-
ice driver

SYNOPSIS
#include "sys/types.h"
#include "sys/scsi.h"

int (*scsi_alloc[])(u_char adapter, u_char target, u_char lun,
int option, void (*callback_function)(char *));

DESCRIPTION
A kernel level SCSI device driver calls scsi_alloc to initialize a communication connection between
itself and a host adapter driver, in preparation for issuing SCSI commands. The adapter, target, and lun
arguments specify the device. The option argument currently has two fields: SCSIALLOC_EXCLUSIVE
indicates that the device driver wishes exclusive communication with the device.

SCSIALLOC_QDEPTH is an 8- bit mask which specifies the number of commands that the device driver
will want to queue. It is advisory only and may be ignored by the host adapter driver. The
callback_function argument may be useful for drivers that don’t use the SCSIALLOC_EXCLUSIVE option.
When it is non-NULL, it specifies a function to call whenever there is sense data from device. It can be
useful when more than one device driver will talk to one SCSI device, but one of the drivers n eeds to
know about things like media removals. Only one device driver may specify a callback_function.

Return Values
scsi_alloc returns 0 if a communication connection could not be established, or the arguments are out of
range, or the device was already allocate in exclusive use mode, or this request was for exclusive use and
the device is already allocated (including possibly earlier requests by the same driver). Otherwise, it will
return a positive value.

See Also
scsi_info(D3X), scsi_command(D3X), /usr/include/sys/scsi.h

Note
scsi_alloc and scsi_free are actually an array of pointers to functions, indexed by SCSI host
adapter driver number. See the SCSI chapter of the IRIX Device Driver Programming Guide
or /usr/include/sys/scsi.h for more information on how to use this function.

228



scsi_command(D3X)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
scsi_command − issue a command to a SCSI device

SYNOPSIS
#include "sys/types.h"
#include "sys/scsi.h"

void (*scsi_command[])(struct scsi_request *req);

DESCRIPTION
scsi_command is used to issue commands to SCSI devices. The caller (a kernel level SCSI device driver)
fills out a struct scsi_request and passes a pointer to the request to scsi_command. See the SCSI chapter of
the IRIX Device Driver Programming Guide
and /usr/include/sys/scsi.h for more information on how to fill out a scsi_request.

Return Values
Success or failure is indicated by fields in the scsi_request structure passed to scsi_command. See the
SCSI chapter of the IRIX Device Driver Programming Guide
or /usr/include/sys/scsi.h for more information on return values.

See Also
scsi_info(D3X), scsi_alloc(D3X), /usr/include/sys/scsi.h

Note
scsi_command is actually an array of pointers to functions, indexed by SCSI host adapter driver
number. See the SCSI chapter of the IRIX Device Driver Programming Guide
or /usr/include/sys/scsi.h for more information on how to use this function.

Unlike earlier versions of IRIX, it is not possible to call scsi_command and have it suspend the caller
until the scsi_command completes (via a null callback pointer). Instead, the caller must use sema-
phores, or the (deprecated) sleep/wakeup mechanism, and a callback routine. Calls with a null sr_notify_
will immediately return with a failure indication set in the sr_status field.

229



scsi_free(D3X)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
scsi_free − free communication channel between host adapter driver and a kernel level SCSI device
driver

SYNOPSIS
#include "sys/types.h"
#include "sys/scsi.h"

void (*scsi_free[])(u_char adapter, u_char target, u_char lun,
void (*callback_function)(char *));

DESCRIPTION
scsi_free is used to terminate a communication connection. The arguments are the same as
scsi_alloc(D3X), except that option is not used.

Return Values
None

See Also
scsi_alloc(D3X), scsi_info(D3X), scsi_command(D3X), /usr/include/sys/scsi.h

Note
scsi_alloc(D3X) and scsi_free(D3X) are actually an array of pointers to functions, indexed by SCSI
host adapter driver number. See the SCSI chapter of the IRIX Device Driver Programming Guide
or /usr/include/sys/scsi.h for more information on how to use this function.

230



scsi_info(D3X)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
scsi_info − get information about a SCSI device

SYNOPSIS
#include "sys/types.h"
#include "sys/scsi.h"

struct scsi_target_info * (*scsi_info[])(u_char adapter, u_char target, u_char lun);

DESCRIPTION
scsi_info issues an Inquiry command to the given adapter, target, and lun, returning a pointer to a
struct scsi_target_info. The adapter argument indicates which adapter (or controller) to use. The target can
be any number from 0 to 15, though the ID number of the host adapter itself (by default 0 on Integral con-
trollers and 7 on VME controllers) is not available.

Return Values
If the given device does not exist, or there is an error getting the data, or if the arguments are out of range,
NULL is returned. Otherwise a pointer to a struct scsi_target_info is returned.

See Also
scsi_alloc(D3X), scsi_command(D3X), /usr/include/sys/scsi.h

Note
scsi_info is actually an array of pointers to functions, indexed by SCSI host adapter driver number.
See the SCSI chapter of the IRIX Device Driver Programming Guide
or /usr/include/sys/scsi.h for more information on how to use this function.

231



sgset(D3X)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
sgset − assign physical addresses to a vector of software scatter-gather registers

SYNOPSIS
#include "sys/types.h"
#include "sys/buf.h"
#include "sys/sg.h"

sgset(struct buf *bp, struct sg *vec, int maxvec, int *resid);

DESCRIPTION
sgset provides a utility to manage a software equivalent of scatter-gather registers for devices that do
not implement them. Based on the information provided in the buf type structure pointed to by bp, this
routine fills in maxvec entries of a scatter-gather vector vec. If the number of vectors required to perform
the transfer exceeds maxvec, the contents of resid is set to the number of pages remaining.

The buffer must not be for mapped address (B_PAGEIO for buf(40) not set).

The scatter gather entries are formatted in the following structure, excerpted from sys/sg.h:
struct sg {

unsigned long sg_ioaddr; /* physical addrs of page */
unsigned long sg_bcount; /* byte count of transfer */

};

Return Values
The number of vector entries used.

232



sleep(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
sleep − suspend process execution pending occurrence of an event

SYNOPSIS
#include <sys/types.h>
#include <sys/param.h>
#include <sys/ddi.h>

int sleep(caddr_t event, int priority);

Arguments
event Kernel address signifying an event for which the caller wishes to wait.

priority A hint to the scheduling policy as to the relative priority the caller wishes to be assigned while
running in the kernel after waking up.

DESCRIPTION
sleep suspends execution of a process to await certain events such as reaching a known system state in
hardware or software. For instance, when a process wants to read a device and no data are available, the
driver may need to call sleep to wait for data to become available before returning. This causes the ker-
nel to suspend execution of the process that called sleep and schedule another process. The process
that called sleep can be resumed by a call to the wakeup function with the same event specified as that
used to call sleep.

Return Values
sleep returns 0 if the caller woke up because of a call to wakeup, or if the caller was stopped by a job
control signal and subsequently continued. If the sleep is interrupted by a signal that does not cause the
process to be stopped and the priority argument includes the PCATCH flag, the sleep call returns a
value of 1. If the sleep is interrupted by a signal and the PCATCH flag is not set, the process will
longjmp out of the driver and the sleep call will never return to the calling code.

USAGE
event Argument

The address has no significance except that the same address must be passed to wakeup(D3) to resume
the sleeping process. The address used should be the address of a kernel data structure associated with
the driver, or one of the driver’s own data structures. Use of arbitrary addresses not associated with a
private data structure can result in conflict with other, unrelated sleep and wakeup operations in the
kernel.

priority Argument
In general, a lower value will result in more favorable scheduling although the exact semantic of the
priority argument is specific to the scheduling class of the caller, and some scheduling classes may choose
to ignore the argument for the purposes of assigning a scheduling priority.

In addition to the scheduling semantics, the value of the priority argument determines whether the sleep
may be interrupted by signals. If the value of priority is less than or equal to the value of the constant
PZERO (defined in sys/param.h), the sleeping process will not be awakened by a signal. If the value of
priority is greater than PZERO and the PCATCH bit flag is ORed into the priority argument, the process

233



sleep(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

will wake up prematurely (without a call to wakeup) upon receipt of a non-ignored, non-held signal and
will normally return 1 to the calling code. If priority is greater than PZERO and PCATCH is not set, the
sleep function will longjmp out of the driver upon receipt of a signal and will never return to the
caller.

General Considerations
If a process were to sleep while it is manipulating global data inside a critical section of driver code, it
would be possible for another process to execute base level driver code which manipulates the same data
while the first process was sleeping, resulting in data corruption. A driver should not sleep inside such a
critical section unless it takes explicit steps to prevent concurrent access to the data (for example, the
driver could implement its own locking protocol to protect the data).

The value for priority should be selected based on whether or not a wakeup is certain to occur as well as
the importance of the driver and of any resources that the driver will hold after waking up. If the driver
is holding or waiting for a critical kernel resource or is otherwise crucial to the performance of the system,
and the corresponding call to wakeup is guaranteed to happen, the driver should specify a priority argu-
ment less than or equal to PZERO. If the driver is less performance critical or it is possible that the
wakeup may not occur, the driver should specify a priority argument greater than PZERO.

If there is any driver state that needs to be cleaned up in the event of a signal, the driver should OR the
PCATCH flag in with the priority argument. Typical items that need cleaning up are locked data struc-
tures that should be unlocked or dynamically allocated resources that need to be freed. When PCATCH is
specified sleep will normally return a 1 in the event of a signal, indicating that the calling routine
should perform any necessary cleanup and then return.

If sleep is called from the driver strategy(D2) routine, the caller should OR the priority argument
with PCATCH or select a priority of PZERO or less.

Level
Base only.

Synchronization Constraints
Can sleep.

REFERENCES
wakeup(D3)

234



SLEEP_ALLOC(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
SLEEP_ALLOC − allocate and initialize a sleep lock

SYNOPSIS
#include <sys/types.h>
#include <sys/kmem.h>
#include <sys/ksynch.h>
#include <sys/ddi.h>

sleep_t *SLEEP_ALLOC(int arg, lkinfo_t *lkinfop, int flag);

Arguments
arg Reserved for future use (must be equal to zero).

lkinfop Reserved for future use (must be equal to -1).

flag Specifies whether the caller is willing to sleep waiting for memory.

DESCRIPTION
SLEEP_ALLOC dynamically allocates and initializes an instance of a sleep lock. The lock is initialized to
the unlocked state.

If flag is set to KM_SLEEP, the caller will sleep if necessary until sufficient memory is available. If flag is
set to KM_NOSLEEP, the caller will not sleep, but SLEEP_ALLOC will return NULL if sufficient memory
is not immediately available.

Return Values
Upon successful completion, SLEEP_ALLOC returns a pointer to the newly allocated lock. If
KM_NOSLEEP is specified and sufficient memory is not immediately available, SLEEP_ALLOC returns a
NULL pointer.

USAGE
Level

Base only if flag is set to KM_SLEEP.

Initialization, Base or Interrupt if flag is set to KM_NOSLEEP.

Synchronization Constraints
May sleep if flag is set to KM_SLEEP.

Driver-defined basic locks and read/write locks may be held across calls to this function if flag is
KM_NOSLEEP but may not be held if flag is KM_SLEEP.

Driver-defined sleep locks may be held across calls to this function regardless of the value of flag.

REFERENCES
initnsema(D3X), initnsema_mutex(D3X), SLEEP_DEALLOC(D3), SLEEP_LOCK(D3),
SLEEP_LOCK_SIG(D3), SLEEP_LOCKAVAIL(D3), SLEEP_TRYLOCK(D3), SLEEP_UNLOCK(D3)

235



SLEEP_DEALLOC(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
SLEEP_DEALLOC − deallocate an instance of a sleep lock

SYNOPSIS
#include <sys/ksynch.h>
#include <sys/ddi.h>

void SLEEP_DEALLOC(sleep_t *lockp);

Arguments
lockp Pointer to the sleep lock to be deallocated.

DESCRIPTION
SLEEP_DEALLOC deallocates the lock specified by lockp.

Return Values
None

USAGE
Attempting to deallocate a lock that is currently locked or is being waited for is an error and results in
undefined behavior.

Level
Base or Interrupt.

Synchronization Constraints
Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks (other than the one being deallocated), may
be held across calls to this function.

REFERENCES
freesema(D3X), SLEEP_ALLOC(D3), SLEEP_LOCK(D3), SLEEP_LOCK_SIG(D3),
SLEEP_LOCKAVAIL(D3), SLEEP_TRYLOCK(D3), SLEEP_UNLOCK(D3)

236



SLEEP_LOCK(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
SLEEP_LOCK − acquire a sleep lock

SYNOPSIS
#include <sys/ksynch.h>
#include <sys/ddi.h>

void SLEEP_LOCK(sleep_t *lockp, int priority);

Arguments
lockp Pointer to the sleep lock to be acquired.

priority Reserved for future use (must be equal to -1).

DESCRIPTION
SLEEP_LOCK acquires the sleep lock specified by lockp. If the lock is not immediately available, the caller
is put to sleep (the caller’s execution is suspended and other processes may be scheduled) until the lock
becomes available to the caller, at which point the caller wakes up and returns with the lock held.

The caller will not be interrupted by signals while sleeping inside SLEEP_LOCK.

Return Values
None

Level
Base only.

Synchronization Constraints
Can sleep.

Driver-defined basic locks and read/write locks may not be held across calls to this function.

Driver-defined sleep locks may be held across calls to this function subject to the recursion restrictions
described below.

Warnings
Sleep locks are not recursive. A call to SLEEP_LOCK attempting to acquire a lock that is currently held
by the calling context will result in deadlock.

REFERENCES
psema(D3X), SLEEP_ALLOC(D3), SLEEP_DEALLOC(D3), SLEEP_LOCK_SIG(D3),
SLEEP_LOCKAVAIL(D3), SLEEP_TRYLOCK(D3), SLEEP_UNLOCK(D3)

237



SLEEP_LOCKAVAIL(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
SLEEP_LOCKAVAIL − query whether a sleep lock is available

SYNOPSIS
#include <sys/types.h>
#include <sys/ksynch.h>
#include <sys/ddi.h>

boolean_t SLEEP_LOCKAVAIL(sleep_t *lockp);

Arguments
lockp Pointer to the sleep lock to be queried.

DESCRIPTION
SLEEP_LOCKAVAIL returns an indication of whether the sleep lock specified by lockp is currently avail-
able.

Return Values
SLEEP_LOCKAVAIL returns TRUE (a non-zero value) if the lock was available or FALSE (zero) if the lock
was not available.

USAGE
The state of the lock may change and the value returned may no longer be valid by the time the caller sees
it. The caller is expected to understand that this is ‘‘stale data’’ and is either using it as a heuristic or has
arranged for the return value to be meaningful by other means.

Level
Base or Interrupt.

Synchronization Constraints
Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across calls to this function.

REFERENCES
SLEEP_ALLOC(D3), SLEEP_DEALLOC(D3), SLEEP_LOCK(D3), SLEEP_LOCK_SIG(D3),
SLEEP_TRYLOCK(D3), SLEEP_UNLOCK(D3)

238



SLEEP_LOCK_SIG(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
SLEEP_LOCK_SIG − acquire a sleep lock

SYNOPSIS
#include <sys/types.h>
#include <sys/ksynch.h>
#include <sys/ddi.h>
#include <sys/param.h>

boolean_t SLEEP_LOCK_SIG(sleep_t *lockp, int priority);

Arguments
lockp Pointer to the sleep lock to be acquired.

priority A hint to the scheduling policy as to the relative priority the caller wishes to be assigned while
running in the kernel after waking up.

DESCRIPTION
SLEEP_LOCK_SIG acquires the sleep lock specified by lockp. If the lock is not immediately available, the
caller is put to sleep (the caller’s execution is suspended and other processes may be scheduled) until the
lock becomes available to the caller, at which point the caller wakes up and returns with the lock held.

SLEEP_LOCK_SIG may be interrupted by a signal, in which case it may return early without acquiring
the lock.

If the function is interrupted by a job control stop signal (e.g., SIGSTOP, SIGTSTP, SIGTTIN,
SIGTTOU) which results in the caller entering a stopped state, the SLEEP_LOCK_SIG function will tran-
sparently retry the lock operation upon continuing (the call will not return without the lock).

If the function is interrupted by a signal other than a job control stop signal, or by a job control stop signal
that does not result in the caller stopping (because the signal has a non-default disposition), the
SLEEP_LOCK_SIG call will return early without acquiring the lock.

Return Values
SLEEP_LOCK_SIG returns TRUE (a non-zero value) if the lock is successfully acquired or FALSE (zero)
if the function returned early because of a signal.

USAGE
priority Argument

In general, a lower value will result in more favorable scheduling although the exact semantic of the
priority argument is specific to the scheduling class of the caller, and some scheduling classes may choose
to ignore the argument for the purposes of assigning a scheduling priority.

The value of priority must be greater than PZERO (defined in sys/param.h)

In general, a higher relative priority should be used when the caller is attempting to acquire a highly con-
tended lock or resource,or when the caller is already holding one or more locks or kernel resources upon
entry to SLEEP_LOCK_SIG.

239



SLEEP_LOCK_SIG(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Level
Base only.

Synchronization Constraints
Can sleep.

Driver-defined basic locks and read/write locks may not be held across calls to this function.

Driver-defined sleep locks may be held across calls to this function subject to the recursion restrictions
described below.

Warnings
Sleep locks are not recursive. A call to SLEEP_LOCK_SIG attempting to acquire a lock that is currently
held by the calling context will result in deadlock.

REFERENCES
SLEEP_ALLOC(D3), SLEEP_DEALLOC(D3), SLEEP_LOCK(D3), SLEEP_LOCKAVAIL(D3),
SLEEP_TRYLOCK(D3), SLEEP_UNLOCK(D3), signals(D5), psema(D3X)

240



SLEEP_TRYLOCK(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
SLEEP_TRYLOCK − try to acquire a sleep lock

SYNOPSIS
#include <sys/types.h>
#include <sys/ksynch.h>
#include <sys/ddi.h>

boolean_t SLEEP_TRYLOCK(sleep_t *lockp);

Arguments
lockp Pointer to the sleep lock to be acquired.

DESCRIPTION
If the lock specified by lockp is immediately available (can be acquired without sleeping) the
SLEEP_TRYLOCK function acquires the lock. If the lock is not immediately available, SLEEP_TRYLOCK
returns without acquiring the lock.

Return Values
SLEEP_TRYLOCK returns TRUE (a non-zero value) if the lock is successfully acquired or FALSE (zero) if
the lock is not acquired.

USAGE
Level

Base only.

Synchronization Constraints
Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across calls to this function.

REFERENCES
cpsema(D3X), cvsema(D3X), SLEEP_ALLOC(D3), SLEEP_DEALLOC(D3), SLEEP_LOCK(D3),
SLEEP_LOCK_SIG(D3), SLEEP_LOCKAVAIL(D3), SLEEP_UNLOCK(D3)

241



SLEEP_UNLOCK(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
SLEEP_UNLOCK − release a sleep lock

SYNOPSIS
#include <sys/ksynch.h>
#include <sys/ddi.h>

void SLEEP_UNLOCK(sleep_t *lockp);

Arguments
lockp Pointer to the sleep lock to be released.

DESCRIPTION
SLEEP_UNLOCK releases the sleep lock specified by lockp. If there are processes waiting for the lock, one
of the waiting processes is awakened.

Return Values
None

USAGE
Level

Base or Interrupt.

Synchronization Constraints
Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across calls to this function.

REFERENCES
SLEEP_ALLOC(D3), SLEEP_DEALLOC(D3), SLEEP_LOCK(D3), SLEEP_LOCK_SIG(D3),
SLEEP_LOCKAVAIL(D3), SLEEP_TRYLOCK(D3), vsema(D3X)

242



spl(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
spl − block/allow interrupts on a processor

SYNOPSIS
#include <sys/ddi.h>

int splbase(void);
int spltimeout(void);
int spldisk(void);
int splstr(void);
int spltty(void);
int splhi(void);
int spl0(void);
int spl7(void);

void splx(int oldlevel);

Arguments
oldlevel Last set priority value (only splx has an input argument).

DESCRIPTION
The spl functions block or allow servicing of interrupts on the processor on which the function is called.

Return Values
All spl functions except splx return the previous priority level for use by splx.

USAGE
Hardware devices are assigned to interrupt priority levels depending on the type of device. Each spl
function which blocks interrupts is associated with some machine dependent interrupt priority level and
will prevent interrupts occurring at or below this priority level from being serviced on the processor on
which the spl function is called.

On a multiprocessor system, interrupts may be serviced by more than one processor and, therefore, use of
a spl function alone is not sufficient to prevent interrupt code from executing and manipulating driver
data structures during a critical section. Drivers that must prevent execution of interrupt-level code in
order to protect the integrity of their data should use basic locks for this purpose [see LOCK_ALLOC(D3)].

The spl functions include the following:

splbase Block no interrupts. Should only be used by base-level code that knows it is not nested
within any section of protected critical code.

spltimeout Block functions scheduled by itimeout and dtimeout.

spldisk Block disk device interrupts.

splstr Block STREAMS interrupts.

243



spl(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

spltty Used by a TTY driver to protect critical code. spltty is mapped to splstr.

splhi Block all interrupts. Can be used in any type of driver to mask out all interrupts including
the clock, and should be used very sparingly.

spl0 Equivalent to splbase.

spl7 Equivalent to splhi.

To ensure driver portability, the named spl functions (such as splbase or spltimeout) should be
used whenever possible. The numbered spl functions (spl0 and spl7) should be used only when an
interrupt priority level must be set to a specific value.

Calling a given spl function will block interrupts specified for that function as well as interrupts at equal
and lower levels. The notion of low vs. high levels assumes a defined order of priority levels. The follow-
ing partial order is defined:

splbase <= spltimeout <= spldisk,splstr <= splhi
The ordering of spldisk and splstr relative to each other is not defined.

When setting a given priority level, the previous level returned should be saved and splx or
UNLOCK(D3) should be used as appropriate to restore this level.

Interrupt-level code must never lower the interrupt priority level below the level at which the interrupt
handler was entered. For example, if an interrupt handler is entered at the priority level associated with
spldisk, the handler must not call spltimeout.

Level
Base or Interrupt.

Synchronization Considerations
All spl functions do not sleep.

Driver-defined basic locks and read/write locks may be held across calls to these functions, but the spl
call must not cause the priority level to be lowered below the level associated with the lock.

Driver-defined sleep locks may be held across calls to these functions.

REFERENCES
LOCK(D3), LOCK_ALLOC(D3),

244



strcat(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
strcat − concatenate strings

SYNOPSIS
#include <sys/types.h>
#include <sys/ddi.h>

char *strcat(char *sptr1, const char *sptr2)

Arguments
The arguments sptr1 and sptr2 each point to strings, and each string is an array of characters terminated
by a null-character.

DESCRIPTION
The function strcat appends a copy of the string pointed to by sptr2 including the terminating null-
character to the end of the string pointed to by sptr1 . The initial character in the string pointed to by sptr2
replaces the null-character at the end of the string pointed to by sptr1 .

The function strcat alters sptr1 without checking for overflow of the array pointed to by sptr1 . If copy-
ing takes place between strings that overlap, the behavior is undefined.

Return Values
The function strcat returns the value of sptr1 , which points to the null-terminated result.

USAGE
Character movement is performed differently in different implementations; thus, overlapping moves may
yield surprises.

Level
Base or Interrupt.

Synchronization Constraints
Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across calls to this function.

REFERENCES
bcopy(D3)

245



strcpy(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
strcpy − copy a string

SYNOPSIS
#include <sys/types.h>
#include <sys/ddi.h>

char *strcpy (char *sptr1, const char *sptr2)

Arguments
The arguments sptr1 and sptr2 each point to strings, and each string is an array of characters terminated
by a null-character.

DESCRIPTION
The function strcpy copies the string pointed to by sptr2 (including the terminating null-character) into
the string pointed to by sptr1 , stopping after the null-character has been copied, and returns the string
pointed to by sptr1 .

The function strcpy alters sptr1 without checking for overflow of the string pointed to by sptr1 . If
copying takes place between strings that overlap, the behavior is undefined.

Return Values
The function strcpy returns the value of sptr1 , which points to the null-terminated result.

USAGE
Character movement is performed differently in different implementations; thus, overlapping moves may
yield surprises.

Level
Base or Interrupt.

Synchronization Constraints
Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across calls to this function.

REFERENCES
bcopy(D3)

246



streams_interrupt(D3X)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
streams_interrupt − synchronize interrupt-level function with STREAMS mechanism

SYNOPSIS
#include <strmp.h>

typedef void (*strintrfunc_t)(void *, void *, void *);

int streams_interrupt(strintrfunc_t func, void *a1, void *a2, void *a3);

DESCRIPTION
streams_interrupt provides writers of STREAMS-based device drivers with an interface for syn-
chronizing interrupt-level functions with the STREAMS mechanism on multi-processor IRIX systems.
Under IRIX, it is not permitted to call STREAMS interface routines (e.g., allocb(), putq(), qenable())
or otherwise manipulate STREAMS data structures from interrupt level without first synchronizing with
the underlying STREAMS mechanism.

Failure to properly synchronize could result in corrupted data structures and kernel panics.

streams_interrupt attempts to synchronize with the STREAMS mechanism and execute func, before
returning to the caller. If streams_interrupt cannot immediately synchronize with the STREAMS
mechanism, it will schedule func for execution the next time synchronization can be achieved and will
return to the caller. Since the time between calling streams_interrupt and the time that func is exe-
cuted is indeterminate, it is not advisable to use func to perform time-critica l tasks (e.g., resetting
hardware state, reading hardware data buffers, etc.).

streams_interrupt does not guarantee the spl level that func will run at. It is the responsibility of the
driver writer to explicitly set the desired spl level within func. However, the driver writer "must not"
under any circumstances set the spl level to spl0 within func.

Diagnostics
streams_interrupt returns 1 if func was executed, 0 if func was scheduled for later execution, and −1
on error.

See Also
STREAMS_TIMEOUT(D3X), untimeout(D3), IRIX Device Driver Programming Guide

247



STREAMS_TIMEOUT(D3X)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
STREAMS_TIMEOUT − synchronize timeout with STREAMS mechanism

SYNOPSIS
#include <strmp.h>

toid_t STREAMS_TIMEOUT(strtimeoutfunc_t func, void *arg, int time);
toid_t STREAMS_TIMEOUT1(strtimeoutfunc_t func, void *arg, int time, void
*arg1);
toid_t STREAMS_TIMEOUT2(strtimeoutfunc_t func, void *arg, int time, void *arg1,
void *arg2);

DESCRIPTION
The STREAMS_TIMEOUT macros provide writers of STREAMS device drivers and modules with an inter-
face for synchronizing timeouts with the STREAMS mechanism on multi-processor IRIX systems. Under
IRIX, it is not permitted to call STREAMS interface routines (e.g., allocb(), putq(), qenable()) or oth-
erwise manipulate STREAMS data structures from a function called via a timeout without first synchron-
izing with the underlying STREAMS mechanism.

Failure to properly synchronize could result in corrupted data structures and kernel panics.

The STREAMS_TIMEOUT interfaces arrange for func to be called in time/HZ seconds, and guarantee that
it will be properly synchronized with the STREAMS mechanism.

One, two or three arguments may be passed to func by using STREAMS_TIMEOUT,
STREAMS_TIMEOUT1 or STREAMS_TIMEOUT2 respectively.

The STREAMS_TIMEOUT interfaces do not guarantee the spl level that func will run at. It is the responsi-
bility of the driver or module writer to explicitly set the desired spl level within func. However, the driver
or module writer "must not" under any circumstances set the spl level to spl0 within func.

Diagnostics
The STREAMS_TIMEOUT interfaces return a positive toid_t on success. This toid_t value may be used by a
subsequent call to untimeout() to cancel the timeout. If an error is detected while setting the timeout, a
toid_t of 0 will be returned and no timeout will be set.

See Also
streams_interrupt(D3X), untimeout(D3), IRIX Device Driver Programming Guide

248



strlog(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
strlog − submit messages to the log driver

SYNOPSIS
#include <sys/types.h>
#include <sys/stream.h>
#include <sys/strlog.h>
#include <sys/log.h>
#include <sys/ddi.h>

int strlog(short mid, short sid, char level, ushort_t flags,
char *fmt, ... /* args */);

Arguments
mid Identification number of the module or driver submitting the message.

sid Identification number for a particular minor device.

level Tracing level for selective screening of low priority messages.

flags Bitmask of flags indicating message purpose.

fmt printf(3S) style format string.

args Zero or more arguments to printf.

DESCRIPTION
strlog submits formatted messages to the log(7) driver. The messages can be retrieved with the
getmsg(2) system call. The flags argument specifies the type of the message and where it is to be sent.
strace(1M) receives messages from the log driver and sends them to the standard output.
strerr(1M) receives error messages from the log driver and appends them to a file called
/var/adm/streams/error.mm-dd, where mm-dd identifies the date of the error message.

Return Values
strlog returns 0 if the message is not seen by all the readers, 1 otherwise.

USAGE
flags Argument

Valid values for flags are:

SL_ERROR Message is for error logger.

SL_TRACE Message is for tracing.

SL_CONSOLE Message is for console logger.

SL_NOTIFY If SL_ERROR is also set, mail copy of message to system administrator.

SL_FATAL Modifier indicating error is fatal.

249



strlog(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

SL_WARN Modifier indicating error is a warning.

SL_NOTE Modifier indicating error is a notice.

fmt Argument
The %s, %e, %g, and %G formats are not allowed.

printf args
args can specify a maximum of NLOGARGS, currently three.

Level
Base or Interrupt.

Synchronization Constraints
Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across calls to this function.

REFERENCES
log(7), strace(1M), strerr(1M)

250



strqget(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
strqget − get information about a queue or band of the queue

SYNOPSIS
#include <sys/types.h>
#include <sys/stream.h>
#include <sys/ddi.h>

int strqget(queue_t *q, qfields_t what, uchar_t pri, long *valp);

Arguments
q Pointer to the queue.

what The field of the queue about which to return information.

pri Priority band of the queue about which to obtain information.

valp Pointer to the memory location where the value is to be stored.

DESCRIPTION
strqget gives drivers and modules a way to get information about a queue or a particular priority band
of a queue without directly accessing STREAMS data structures.

Return Values
On success, 0 is returned. An error number is returned on failure. The actual value of the requested
field is returned through the reference parameter, valp.

USAGE
Valid what values are:

QHIWAT High water mark of the specified priority band.

QLOWAT Low water mark of the specified priority band.

QMAXPSZ Maximum packet size of the specified priority band.

QMINPSZ Minimum packet size of the specified priority band.

QCOUNT Number of bytes of data in messages in the specified priority band.

QFIRST Pointer to the first message in the specified priority band.

QLAST Pointer to the last message in the specified priority band.

QFLAG Flags for the specified priority band [see queue(D4)].

Level
Base or Interrupt.

Synchronization Constraints
Does not sleep.

251



strqget(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Driver-defined basic locks, read/write locks, and sleep locks may be held across calls to this function.

REFERENCES
queue(D4), strqset(D3),

252



strqset(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
strqset − change information about a queue or band of the queue

SYNOPSIS
#include <sys/types.h>
#include <sys/stream.h>
#include <sys/ddi.h>

int strqset(queue_t *q, qfields_t what, uchar_t pri, long val);

Arguments
q Pointer to the queue.

what The field of the queue to change.

pri Priority band of the queue to be changed.

val New value for the field to be changed.

DESCRIPTION
strqset gives drivers and modules a way to change information about a queue or a particular priority
band of a queue without directly accessing STREAMS data structures.

Return Values
On success, 0 is returned. An error number is returned on failure.

USAGE
Valid values for what are:

QHIWAT High water mark of the specified priority band.

QLOWAT Low water mark of the specified priority band.

QMAXPSZ Maximum packet size of the specified priority band.

QMINPSZ Minimum packet size of the specified priority band.

Level
Base or Interrupt.

Synchronization Constraints
Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across calls to this function.

REFERENCES
queue(D4), strqget(D3)

253



subyte(D3X)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
subyte − set (write) a byte to user space

SYNOPSIS
int subyte(char *usr_v_addr, char c);

DESCRIPTION
subyte writes the given (8-bit) byte, c, to the specified address, user_v_addr, in the currently mapped user
process’ address space.

Return Values
Upon successful completion, subyte returns 0. Otherwise, subyte returns −1, indicating an invalid
user virtual address.

See Also
copyout(D3), fubyte(D3X), suword(D3X),

254



suword(D3X)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
suword − set (write) a word to user space

SYNOPSIS
int suword(int *usr_v_addr, int i);

Arguments
usr_v_addr

Specified address in the currently mapped user process’ address space.

i 32-bit word.

DESCRIPTION
suword writes the given (32-bit) word, i, to the specified address, user_v_addr, in the currently mapped
user process’ address space.

Return Values
Upon successful completion, suword returns 0. Otherwise, suword returns −1, indicating an invalid
user virtual address.

See Also
fuword(D3X), subyte(D3X), copyout(D3)

255



TRYLOCK(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
TRYLOCK − try to acquire a basic lock

SYNOPSIS
#include <sys/types.h>
#include <sys/ksynch.h>
#include <sys/ddi.h>

int TRYLOCK(lock_t *lockp, pl_t pl);

Arguments
lockp Pointer to the basic lock to be acquired.

pl The interrupt priority level to be set while the lock is held by the caller.

DESCRIPTION
If the lock specified by lockp is immediately available (can be acquired without waiting) TRYLOCK sets the
interrupt priority level in accordance with the value specified by pl and acquires the lock. If the lock is
not immediately available, the function returns without acquiring the lock.

Return Values
If the lock is acquired, TRYLOCK returns the previous interrupt priority level for use by UNLOCK. If the
lock is not acquired the value invpl is returned.

USAGE
Because some implementations require that interrupts that might attempt to acquire the lock be blocked
on the processor on which the lock is held, portable drivers must specify a pl value that is sufficient to
block out any interrupt handler that might attempt to acquire this lock. See the description of the min_pl
argument to LOCK_ALLOC(D3) for additional discussion and a list of the valid values for pl.

TRYLOCK may be used to acquire a lock in a different order from the order defined by the lock hierarchy.

When called from interrupt level, the pl argument must not specify a priority level below the level at
which the interrupt handler is running.

Level
Base or Interrupt.

Synchronization Constraints
Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across calls to this function.

REFERENCES
LOCK(D3), LOCK_ALLOC(D3), LOCK_DEALLOC(D3), UNLOCK(D3)

256



uiomove(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
uiomove − copy data using uio(D4) structure

SYNOPSIS
#include <sys/types.h>
#include <sys/uio.h>
#include <sys/ddi.h>

int uiomove(caddr_t addr, long nbytes, uio_rw_t rwflag,
uio_t *uiop);

Arguments
addr Source/destination kernel address of the copy.

nbytes Number of bytes to copy.

rwflag Flag indicating read or write operation. Valid values are UIO_READ and UIO_WRITE.

uiop Pointer to the uio structure for the copy.

DESCRIPTION
The uiomove function copies nbytes of data between the kernel address addr and the space defined by
the uio structure pointed to by uiop. If rwflag is UIO_READ, the data is copied from addr to the space
described by the uio structure. If rwflag is UIO_WRITE, the data is copied from the space described by
the uio structure to addr.

The uio_segflg member of the uio structure specifies the type of space described by the uio struc-
ture. If uio_segflg is set to UIO_SYSSPACE the uio structure describes a portion of the kernel
address space. If uio_segflg is set to UIO_USERSPACE the uio structure describes a portion of the
user address space.

If the copy is successful, uiomove updates the appropriate members of the uio and iovec(D4) struc-
tures to reflect the copy (uio_offset and iov_base are increased by nbytes and uio_resid and
iov_len are decrease by nbytes).

Return Values
uiomove returns 0 on success or an error number on failure.

USAGE
Level

Base only if uio_segflg is set to UIO_USERSPACE.

Base or Interrupt if uio_segflg is set to UIO_SYSSPACE.

Synchronization Constraints
May sleep if uio_segflg is set to UIO_USERSPACE.

Driver-defined basic locks and read/write locks may be held across calls to this function if uio_segflg
is UIO_SYSSPACE but may not be held if uio_segflg is UIO_USERSPACE.

257



uiomove(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Driver-defined sleep locks may be held across calls to this function regardless of the value of
uio_segflg.

Warnings
If addr specifies an address in user space or if the value of uio_segflg is not consistent with the type of
address space described by the uio structure, the system can panic.

When holding locks across calls to this function, multithreaded drivers must be careful to avoid creating a
deadlock. During the data transfer, page fault resolution might result in another I/O to the same device.
For example, this could occur if the driver controls the disk drive used as the swap device.

REFERENCES
bcopy(D3), copyin(D3), copyout(D3), ureadc(D3), uwritec(D3), iovec(D4), uio(D4)

258



uiophysio(D3X)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
uiophysio − set up user data space for I/O

SYNOPSIS
#include <sys/types.h>
#include <sys/buf.h>
#include <sys/uio.h>
#include <sys/ddi.h>

int uiophysio(int (*strat)(struct buf *), struct buf *bp, dev_t dev, int rwflag, stru

Arguments
strat Address of the driver routine.

bp Pointer to the buf(D4) structure describing the I/O request.

dev External device number.

rwflag Flag indicating whether the access is a read or a write.

uiop Pointer to the uio(D4) structure that defines the user space of the I/O request.

DESCRIPTION
uiophysio prepares the user’s address space for DMA I/O and encapsulates the transfer information in
a buffer header.

Return Values
uiophysio returns 0 if the result is successful, or the appropriate error number on failure. If a partial
transfer occurs, the uio structure is updated to indicate the amount not transferred and an error is
returned. uiophysio returns the ENOSPC error if an attempt is made to read beyond the end of the
device. If a read is performed at the end of the device, 0 is returned. ENOSPC is also returned if an
attempt is made to write at or beyond the end of a the device. EFAULT
is returned if user memory is not valid. EAGAIN is returned if uiophysio could not lock all of the
pages.

USAGE
uiophysio performs the following functions:

g Sets up a buffer header describing the transfer; faults pages in and locks the pages impacted by
the I/O transfer so they can’t be swapped out

g Calls the routine named in the strat parameter, passing a pointer to a buf structure

g Sleeps until the transfer is complete and is awakened by a call to biodone(D3) from the driver’s
I/O completion handler

g Performs the necessary cleanup and updates, then returns to the driver routine

259



uiophysio(D3X)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

If bp is set to NULL, a buffer is allocated temporarily and freed after the transfer completes.

If rwflag is set to B_READ, the direction of the data transfer will be from the kernel or device to the user’s
buffer. If rwflag is set to B_WRITE, the direction of the data transfer will be from the user’s buffer to the
kernel or device.

Level
Base only.

See Also
buf(D4), ioctl(D2), read(D2), strategy(D2), physiock(D3), uio(D4), write(D2)

260



unbufcall(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
unbufcall − cancel a pending bufcall request

SYNOPSIS
#include <sys/stream.h>
#include <sys/ddi.h>

void unbufcall(toid_t id);

Arguments
id Non-zero identifier returned from a prior call to bufcall(D3) or esbbcall(D3).

DESCRIPTION
unbufcall cancels the pending bufcall or esbbcall request specified by id.

Return Values
None

USAGE
If unbufcall is called while any function called by the pending bufcall or esbbcall request is
running, the call to unbufcall has no effect.

Level
Base or Interrupt.

Synchronization Constraints
Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may not be held across calls to this function.

Example
See bufcall for the other half of this example.

In the module close routine, if a bufcall request is pending (line 14), we cancel it (line 15). Otherwise,
if a itimeout request is pending (line 16), we cancel it (line 17). Then the m_type field in the module’s
private data structure is set to 0, indicating no pending bufcall or itimeout.
1 struct mod {
2 long m_id;
3 char m_type;

...
4 };
5 #define TIMEOUT 1
6 #define BUFCALL 2

...
7 modclose(q, flag, crp)
8 queue_t *q;
9 int flag;
10 cred_t *crp;
11 {
12 struct mod *modp;

13 modp = (struct mod *)q->q_ptr;

261



unbufcall(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

14 if (modp->m_type == BUFCALL)
15 unbufcall(modp->m_id);
16 else if (modp->m_type == TIMEOUT)
17 untimeout(modp->m_id);
18 modp->m_type = 0;

...

REFERENCES
bufcall(D3), esbbcall(D3)

262



undma(D3X)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
undma − unlock physical memory in user space

SYNOPSIS
#include "sys/types.h"
#include "sys/buf.h"

undma(void *usr_v_addr, unsigned int num_bytes, int rw);

Arguments
usr_v_addr

User process address space.

num_bytes
Number of bytes.

rw B_READ or B_WRITE (should match corresponding userdma() call).

DESCRIPTION
userdma prepares memory before a DMA operation into or from a user process’ address space and
invalidates the data cache lines corresponding to the given address and count, if necessary.

When the operation is complete, call undma to unlock these pages.

Return Values
None

263



unlinkb(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
unlinkb − remove a message block from the head of a message

SYNOPSIS
#include <sys/stream.h>
#include <sys/ddi.h>

mblk_t *unlinkb(mblk_t *mp);

Arguments
mp Pointer to the message.

DESCRIPTION
unlinkb removes the first message block from the message pointed to by mp.

Return Values
unlinkb returns a pointer to the remainder of the message after the first message block has been
removed. If there is only one message block in the message, NULL is returned.

USAGE
The removed message block is not freed. It is the caller’s responsibility to free it.

Level
Base or Interrupt.

Synchronization Constraints
Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across calls to this function.

Examples
The routine expects to get passed an M_PROTO T_DATA_IND message. It will remove and free the
M_PROTO header and return the remaining M_DATA portion of the message.

1 mblk_t *
2 makedata(mp)
3 mblk_t *mp;
4 {
5 mblk_t *nmp;

6 nmp = unlinkb(mp);
7 freeb(mp);
8 return(nmp);
9 }

REFERENCES
linkb(D3)

264



UNLOCK(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
UNLOCK − release a basic lock

SYNOPSIS
#include <sys/types.h>
#include <sys/ksynch.h>
#include <sys/ddi.h>

void UNLOCK(lock_t *lockp, int pl);

Arguments
lockp Pointer to the basic lock to be released.

pl The interrupt priority level to be set after releasing the lock. This argument should be the
value returned by LOCK.

DESCRIPTION
UNLOCK releases the basic lock specified by lockp and then sets the interrupt priority level in accordance
with the value specified by pl.

Return Values
None

USAGE
See the description of the min_pl argument to LOCK_ALLOC(D3) for a list of the valid values for pl. If lock
calls are not being nested or if the caller is unlocking in the reverse order that locks were acquired, the pl
argument should be the value that was returned from the corresponding call to acquire the lock. The
caller may need to specify a different returned value by other LOCK for pl if nested locks are released in
some order other than the reverse order of acquisition, so as to ensure that the interrupt priority level is
kept sufficiently high to block interrupt code that might attempt to acquire locks which are still held.

Level
Base or Interrupt.

Synchronization Constraints
Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across calls to this function.

REFERENCES
LOCK(D3), LOCK_ALLOC(D3), LOCK_DEALLOC(D3), TRYLOCK(D3)

265



untimeout(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
untimeout − cancel previous timeout request

SYNOPSIS
#include <sys/types.h>
#include <sys/ddi.h>

void untimeout(toid_t id);

Arguments
id Non-zero identifier returned from a prior call to dtimeout(D3) or itimeout(D3).

DESCRIPTION
untimeout cancels the pending timeout request specified by id.

Return Values
None

USAGE
On uniprocessor systems, if untimeout is called while any function called by the pending timeout
request is running, then there is no effect.

On multiprocessor systems, if untimeout is called while any function called by the pending timeout
request is running, untimeout will not return until the function completes.

Note that any function that runs as a result of a call to itimeout (or to dtimeout) cannot use
untimeout to cancel itself.

Level
Base or Interrupt, with the following exception on multiprocessor systems: For itimeout(D3) and
dtimeout(D3), the untimeout can only be performed from interrupt levels less than, or equal to, the
level specified when the function was scheduled.

Synchronization Constraints
Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may not be held across calls to this function
if these locks are contended by the function being canceled.

Examples
See unbufcall(D3) for an example of untimeout.

REFERENCES
delay(D3), dtimeout(D3), itimeout(D3), unbufcall(D3)

266



untimeout_func(D3X)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
untimeout_func − cancel a previous invocation of timeout by function

SYNOPSIS
#include "sys/types.h"

untimeout_func(int (*function)(), caddr_t arg);

DESCRIPTION
untimeout_func works much like untimeout in that untimeout_func cancels a previous timeout
scheduled by itimeout(D3). However, untimeout_func cancels a scheduled timeout that is
identified by the function and first argument specified in the original itimeout(D3) call. If more than
one call to the given function is scheduled with the same argument, untimeout_func cancels the
timeout with the nearest expiration time.

Use untimeout_func in the device interrupt routine when you need to cancel a timeout set in the
upper-half driver routines.

Return Values
None

267



ureadc(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
ureadc − copy a character to space described by uio(D4) structure

SYNOPSIS
#include <sys/uio.h>
#include <sys/ddi.h>

int ureadc(int c, uio_t *uiop);

Arguments
c The character to be copied.

uiop Pointer to the uio structure.

DESCRIPTION
ureadc copies the character c into the space described by the uio structure pointed to by uiop.

The uio_segflg member of the uio structure specifies the type of space to which the copy is made. If
uio_segflg is set to UIO_SYSSPACE the character is copied to a kernel address. If uio_segflg is set
to UIO_USERSPACE the character is copied to a user address.

If the character is successfully copied, ureadc updates the appropriate members of the uio and
iovec(D4) structures to reflect the copy (uio_offset and iov_base are incremented and
uio_resid and iov_len are decremented).

Return Values
ureadc returns 0 on success or an error number on failure.

USAGE
Level

Base only if uio_segflg is set to UIO_USERSPACE.

Base or Interrupt if uio_segflg is set to UIO_SYSSPACE.

Synchronization Constraints
May sleep if uio_segflg is set to UIO_USERSPACE.

Driver-defined basic locks and read/write locks may be held across calls to this function if uio_segflg
is UIO_SYSSPACE but may not be held if uio_segflg is UIO_USERSPACE.

Driver-defined sleep locks may be held across calls to this function regardless of the value of
uio_segflg.

Warnings
When holding locks across calls to this function, multithreaded drivers must be careful to avoid creating a
deadlock. During the data transfer, page fault resolution might result in another I/O to the same device.
For example, this could occur if the driver controls the disk drive used as the swap device.

268



ureadc(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

REFERENCES
iovec(D4), uio(D4), uiomove(D3), uwritec(D3)

269



userdma(D3X)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
userdma − lock, unlock physical memory in user space

SYNOPSIS
#include "sys/types.h"
#include "sys/buf.h"

userdma(void *usr_v_addr, unsigned int num_bytes, int rw);

Arguments
usr_v_addr

User process address space.

num_bytes
Number of bytes.

rw If set to B_READ, then the memory space will be readable upon return from this call. If set to
B_WRITE, the memory will be writable upon return.

DESCRIPTION
userdma prepares memory before a DMA operation into or from a user process’ address space. It locks
the physical pages associated with num_bytes bytes of user virtual memory starting at location usr_v_addr.
If the rw flag is set to B_READ, then the memory space will be readable upon return from this call. If,
however, the flag is set to B_WRITE, the memory will be writable upon return. userdma also invali-
dates the data cache lines corresponding to the given address and count, if necessary.

When the operation is complete, call undma to unlock these pages.

Return Values
If userdma is successful, it returns 1; otherwise, it returns 0 and sets the per-process global variable,
u.u_error, as follows:

[EFAULT]
The user buffer was outside the allocated address space.

[EAGAIN]
Total amount of system memory to lock user pages is temporarily insufficient. The undma call
has no return value.

270



uwritec(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
uwritec − return a character from space described by uio(D4) structure

SYNOPSIS
#include <sys/uio.h>
#include <sys/ddi.h>

int uwritec(uio_t *uiop);

Arguments
uiop Pointer to the uio structure.

DESCRIPTION
uwritec copies a character from the space described by the uio structure pointed to by uiop and returns
the character to the caller.

The uio_segflg member of the uio structure specifies the type of space from which the copy is made.
If uio_segflg is set to UIO_SYSSPACE the character is copied from a kernel address. If uio_segflg
is set to UIO_USERSPACE the character is copied from a user address.

If the character is successfully copied, uwritec updates the appropriate members of the uio and
iovec(D4) structures to reflect the copy (uio_offset and iov_base are incremented and
uio_resid and iov_len are decremented) and returns the character to the caller.

Return Values
If successful, uwritec returns the character. -1 is returned if the space described by the uio struc-
ture is empty or there is an error.

USAGE
Level

Base only if uio_segflg is set to UIO_USERSPACE.

Base or Interrupt if uio_segflg is set to UIO_SYSSPACE.

Synchronization Constraints
May sleep if uio_segflg is set to UIO_USERSPACE.

Driver-defined basic locks and read/write locks may be held across calls to this function if uio_segflg
is UIO_SYSSPACE but may not be held if uio_segflg is UIO_USERSPACE.

Driver-defined sleep locks may be held across calls to this function regardless of the value of
uio_segflg.

Warnings
When holding locks across calls to this function, multithreaded drivers must be careful to avoid creating a
deadlock. During the data transfer, page fault resolution might result in another I/O to the same device.
For example, this could occur if the driver controls the disk drive used as the swap device.

271



uwritec(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

REFERENCES
iovec(D4), uio(D4), uiomove(D3), ureadc(D3)

272



valusema(D3X)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
valusema − return the value associated with a semaphore

SYNOPSIS
#include "sys/types.h"
#include "sys/sema.h"

valusema (sema_t *semap);

DESCRIPTION
valusema returns a snapshot of the semaphore value associated with the semaphore pointed to by semap.
Because it performs no work, valusema is primarily used for assertions.

Because the semaphore value can change immediately after the call, you cannot use valusema for con-
ditional semaphore operations. For situations where you need to do this, use cpsema(D3X) and
cvsema(D3X).

To initialize a semaphore, call initnsema(D3X) or initnsema_mutex(D3X).

Return Values
The returned value of this function is the value of the semaphore pointed to by the semap parameter. Of
course, if you give this function a bogus semaphore pointer, there is no telling what the function returns.

See Also
ASSERT(D3)

273



vme_adapter(D3X)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
vme_adapter − determine VME adapter

SYNOPSIS
int vme_adapter(paddr_t addr);

DESCRIPTION
This function takes a VME address and returns the number of the VME adapter to which the address
corresponds. This adapter number is required by such functions as dma_mapalloc(D3X).

Return Values
If the passed-in address is a valid VME address, vme_adapter returns the adapter number; otherwise,
it returns −1.

See Also
dma_mapalloc(D3X)

274



vme_ivec_alloc(D3X)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
vme_ivec_alloc − allocate a VME bus interrupt VECTOR

SYNOPSIS
#include <sys/types.h>
#include <sys/ddi.h>

int vme_ivec_alloc(uint_t adapter);

Arguments
adapter The adapter number identifying which VME bus on the system.

DESCRIPTION
vme_ivec_alloc dynamically allocates an interrupt vector for the specified VME bus. With
vme_ivec_set(D3X), a driver can allocate and register more than one VME interrupt vector for a single
board. vme_ivec_alloc(D3X) and vme_ivec_set(D3X) are used in edtinit() routines.

Return Values
vme_ivec_alloc returns −1 if no vectors remain or the adapter specified is invalid.

See Also
vme_ivec_set(D3X), vme_ivec_free(D3X)

275



vme_ivec_free(D3X)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
vme_ivec_free − free up a VME bus interrupt VECTOR

SYNOPSIS
#include <sys/types.h>
#include <sys/ddi.h>

void vme_ivec_free (int adapter, int vec);

Arguments
adapter The adapter number identifying which VME bus on the system.

vec The vector allocated from vme_ivec_alloc(D3X).

DESCRIPTION
vme_ivec_free returns the specified interrupt vector to the specified VME bus’ free list.
vmeivec_free is called when the driver is unloaded.

Return Values
vme_ivec_free returns −1 if no vector or the adapter specified is invalid.

See Also
vme_ivec_set(D3X), vme_ivec_alloc(D3X)

276



vme_ivec_set(D3X)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
vme_ivec_set − register a VME bus interrupt handler

SYNOPSIS
#include <sys/types.h>
#include <sys/ddi.h>

int vme_ivec_set (int adapter, int vec, int (*intr)(int), int arg);

Arguments
adapter The adapter number identifying which VME bus on the system.

vec The vector allocated from vme_ivec_alloc(D3X).

intr A pointer to the driver’s interrupt handler.

arg A value to be passed into the interrupt handler when the interrupt occurs.

DESCRIPTION
vme_ivec_set registers the interrupt handler to the specified VME bus interrupt table. With
vme_ivec_alloc(D3X), a driver can allocate and register more than one VME interrupt vector for a sin-
gle board. vme_ivec_alloc(D3X) and vme_ivec_set(D3X) are used in edtinit() routines.

Return Values
vme_ivec_set returns −1 if no vectors remain or the adapter specified is invalid.

See Also
vme_ivec_alloc(D3X), vme_ivec_free(D3X)

277



volatile(D3X)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
volatile − inform the compiler of volatile variables

SYNOPSIS
volatile

DESCRIPTION
volatile is a compiler directive that causes the variable(s) associated with it not to be affected by the
optimizer; that is, memory accesses will be done, in the coded sequence, even if they appear to have no
side effects. Pointers to device registers should always be declared volatile.

Return Values
None

278



vpsema(D3X)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
vpsema − perform an atomic "V" and "P" semaphore operation on two semaphores

SYNOPSIS
#include "sys/types.h"
#include "sys/param.h"
#include "sys/sema.h"

vpsema(sema_t *sema1p, sema_t *sema2p, int priority);

DESCRIPTION
vpsema performs a vsema operation with the first semaphore and a psema on the second semaphore
and the given priority. (See psema(D3X) and vsema(D3X) for details on these operations.) vpsema is
atomic in the sense that no other process (on a multiprocessor) can perform a semaphore operation on the
first semaphore before the psema operation has been performed on the second semaphore. It effectively
"swaps" one semaphore for another.

To initialize semaphores, use initnsema(D3X) or initnsema_mutex(D3X).

Return Values
vpsema returns −1 if a signal interrupts a breakable sleep and PCATCH was set; otherwise, it returns 0.

See Also
initnsema(D3X), initnsema_mutex(D3X), psema(D3X), vsema(D3X), SLEEP_UNLOCK(D3)

279



vsema(D3X)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
vsema − perform a "V" or signal semaphore operation

SYNOPSIS
#include "sys/types.h"
#include "sys/sema.h"

vsema(sema_t *semap);

DESCRIPTION
vsema performs a "V" semaphore operation on the semaphore pointed to by semap. The value associated
with the semaphore is incremented by 1. If the semaphore value is then less than or equal to 0, a sleeping
process is awakened.

vsema expects a pointer to the semaphore as its argument. To allocate or initialize semaphores, use
initnsema(D3X).

Return Values
vsema returns 0 if no sleeping process was awakened; otherwise, it returns 1.

See Also
initnsema(D3X), psema(D3X), cvsema(D3X), SLEEP_UNLOCK(D3)

280



v_getaddr(D3X)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
v_getaddr − get the user address associated with virtual handle

SYNOPSIS
#include "sys/types.h"
#include "sys/immu.h"
#include "sys/region.h"

v_getaddr(vhandl_t *vt);

DESCRIPTION
v_getaddr gets the user virtual address with which the virtual handle vt is associated and writes it to vt.

Return Values
None

See Also
v_gethandle(D3X), v_getlen(D3X), v_mapphys(D3X)

281



v_gethandle(D3X)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
v_gethandle − get unique identifier associated with virtual handle

SYNOPSIS
#include "sys/types.h"
#include "sys/immu.h"
#include "sys/region.h"

v_gethandle(vhandl_t *vt);

DESCRIPTION
v_gethandle gets the unique identifier with which the virtual handle vt is associated and writes it to vt.
It is this value only, and not the address of vt, which uniquely identifies the virtual handle, vt, upon suc-
cessive calls to driver routines.

Return Values
None

See Also
v_getaddr(D3X), v_getlen(D3X), v_mapphys(D3X)

282



v_getlen(D3X)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
v_getlen − get length of user address space associated with virtual handle

SYNOPSIS
#include "sys/types.h"
#include "sys/immu.h"
#include "sys/region.h"

v_getlen (vhandl_t *vt);

DESCRIPTION
v_getlen gets the length of the user virtual address space with which the virtual handle vt is associated
and writes that value to vt.

Return Values
None

See Also
v_getaddr(D3X), v_gethandle(D3X), v_mapphys(D3X)

283



v_mapphys(D3X)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
v_mapphys − map physical addresses into user address space

SYNOPSIS
#include "sys/types.h"
#include "sys/immu.h"
#include "sys/region.h"

v_mapphys(vhandl_ *vt, char *addr, long len);

DESCRIPTION
v_mapphys maps len bytes of the physical hardware addressed by addr into a user’s address space. The
actual user virtual address space to which addr is mapped is determined by vt, the "virtual handle" passed
to the device driver map routine when the user issues a mmap(2) system call.

If addr refers to memory and addr is either a kseg0 address or a cached kseg2 address, addr is mapped as a
cached address (that is, all loads and stores will access or fill the data cache); otherwise, all references are
uncached.

Return Values
In the event of an error, v_mapphys returns an errno value; otherwise, it returns 0. The errors include:

[ENOMEM]
Not enough memory was available to allocate page tables for the address space, or the user
requested a specific mapping that collides with an address space that cannot be unmapped.

See Also
v_getaddr(D3X), v_gethandle(D3X), v_getlen(D3X)

284



wakeup(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
wakeup − resume suspended process execution

SYNOPSIS
#include <sys/types.h>
#include <sys/ddi.h>

void wakeup(caddr_t event);

Arguments
event Address that was passed to the corresponding call to sleep(D3) which caused the process to

be suspended.

DESCRIPTION
wakeup awakens all processes sleeping on the address specified by event and makes them eligible for
scheduling.

Return Values
None

USAGE
The same event argument must be used for corresponding calls to sleep and wakeup. It is recom-
mended for code readability and for efficiency to have a one-to-one correspondence between events and
sleep addresses.

Whenever a driver returns from a call to sleep, it should test to ensure that the event for which the
driver slept actually occurred. There is an interval between the time the process that called sleep is
awakened and the time it resumes execution where the state forcing the sleep may have been reentered.
This can occur because all processes waiting for an event are awakened at the same time. The first pro-
cess selected for execution by the scheduler usually gains control of the event. All other processes awak-
ened should recognize that they cannot continue and should reissue the sleep call.

Level
Base or Interrupt.

Synchronization Constraints
Does not sleep.

REFERENCES
sleep(D3)

285



wbadaddr(D3X)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
wbadaddr − check for bus error when writing to an address

SYNOPSIS
wbadaddr(char *addr, int size);

Arguments
addr The address of the location to be read.

size The size in bytes of the location to be read. size can be:
1 (one byte),
2 (two bytes = short or half word), or
4 (four bytes = long word).

DESCRIPTION
Call wbadaddr to determine whether you can write to the specified address location. Typically, you call
wbadaddr from a VME device’s edtinit() function to determine whether a device is still on the
present in the system.

Return Values
If the addressed location is writable, wbadaddr returns 0. Otherwise, wbadaddr returns 1.

See Also
badaddr(D3X)

286



WR(D3)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
WR − get a pointer to the write queue

SYNOPSIS
#include <sys/stream.h>
#include <sys/ddi.h>

queue_t *WR(queue_t *q);

Arguments
q Pointer to the queue whose write queue is to be returned.

DESCRIPTION
The WR function accepts a queue pointer as an argument and returns a pointer to the write queue of the
same module.

Return Values
The pointer to the write queue.

USAGE
Note that when WR is passed a write queue pointer as an argument, it returns a pointer to this write
queue.

Level
Base or Interrupt.

Synchronization Constraints
Does not sleep.

Driver-defined basic locks, read/write locks, and sleep locks may be held across calls to this function.

Examples
In a STREAMS open(D2) routine, the driver or module is passed a pointer to the read queue. The driver
or module can store a pointer to a private data structure in the q_ptr field of both the read and write
queues if it needs to identify the data structures from its put(D2) or srv(D2) routines.

1 extern struct xxx_dev[];
...

2 xxxopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *crp)
3 {

...
3 q->q_ptr = (caddr_t)&xxx_dev[getminor(*devp)];
4 WR(q)->q_ptr = (caddr_t)&xxx_dev[getminor(*devp)];

...
5 }

REFERENCES
OTHERQ(D3), RD(D3)

287



Chapter 1



Kernel Data Structures and
Extensions (D4 and D4X)

Chapter 1



Chapter 1



intro(D4)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
intro − introduction to kernel data structures

SYNOPSIS
#include <sys/types.h>
#include <sys/ddi.h>

DESCRIPTION
This section describes the kernel data structures a developer might need to use in a device driver.

USAGE
Driver developers should not declare arrays of these structures, as the size of any structure might change
between releases. Two exceptions to this are the iovec(D4) and uio(D4) structures.

Drivers can only reference those structure members described on the manual page. The actual data struc-
tures may have additional structure members beyond those described, but drivers must not reference
them.

Some structure members are flags fields that consist of a bitmask of flags. Drivers must never directly
assign values to these structure members. Drivers should only set and clear flags they are interested in,
since the actual implementation may contain unlisted flags.

Data structures that are ‘‘black boxes’’ to drivers are not described in this section. These structures are
referenced on the manual pages where they are used. Drivers should not be written to use any of their
structure members. Their only valid use is passing pointers to the structures to the particular kernel rou-
tines.

291



buf(D4)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
buf − block I/O data transfer structure

SYNOPSIS
#include <sys/types.h>
#include <sys/proc.h>
#include <sys/buf.h>
#include <sys/ddi.h>

DESCRIPTION
The buf structure is the basic data structure for block I/O transfers.

USAGE
Each block I/O transfer has an associated buffer header. The header contains all the buffer control and
status information. For drivers, the buffer header pointer is the sole argument to a block driver
strategy(D2) routine. Do not depend on the size of the buf structure when writing a driver.

It is important to note that a buffer header may be linked in multiple lists simultaneously. Because of this,
most of the members in the buffer header cannot be changed by the driver, even when the buffer header
is in one of the drivers’ work lists.

Buffer headers may be used by the system to describe a portion of the kernel data space for I/O for block
drivers. Buffer headers are also used by the system for physical I/O for block drivers. In this case, the
buffer describes a portion of user data space that is locked into memory [see physiock(D3)].

Block drivers often chain block requests so that overall throughput for the device is maximized. The
av_forw and the av_back members of the buf structure can serve as link pointers for chaining block
requests.

Structure Definitions
The buf structure contains the following members:

uint_t b_flags; /* Buffer status */
struct buf *b_forw; /* Kernel/driver list link */
struct buf *b_back; /* Kernel/driver list link */
struct buf *av_forw; /* Driver work list link */
struct buf *av_back; /* Driver work list link */
unsigned int b_bcount; /* # of bytes to transfer */
union {

caddr_t b_addr; /* Buffer’s virtual address */
} b_un;
daddr_t b_blkno; /* Block number on device */
unsigned int b_resid; /* # of bytes not transferred */
clock_t b_start; /* Request start time */
struct proc *b_proc; /* Process structure pointer */
long b_bufsize; /* Size of allocated buffer */

292



buf(D4)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

void (*b_iodone)(); /* Function called by biodone */
void *b_iochain; /* link pointer for iodone chain */
dev_t b_edev; /* Expanded dev field */
void *b_private; /* For driver’s use in SVR4MP only*/

The members of the buffer header available to test or set by a driver are described below:

b_flags is a bitmask that stores the buffer status and tells the driver whether to read from or write to the
device. To avoid an error condition, the driver must never clear the b_flags member or modify its
value, except by setting or clearing individual flag bits as described below.

Valid flags are as follows:

B_BUSY The buffer is in use. The driver may change this flag only if it acquired the buffer
with getrbuf(D3), and if no I/O operation is in progress.

B_DONE The data transfer has completed. The driver should not change this flag [see
bioreset(D3)].

B_ERROR The driver sets B_ERROR to indicate an error occurred during an I/O transfer. On
systems where the bioerror(D3) function is available, drivers should not access
this flag directly.

B_PAGEIO The buffer is being used in a paged I/O request. If B_PAGEIO is set, the b_pages
field of the buffer header points to a list of page structures sorted by block location
on the device. Also, the b_un.b_addr field of the buffer header is the offset into
the first page of the page list. If B_PAGEIO is not set, the b_pages field of the
buffer header is not used and the b_un.b_addr field of the buffer header contains
the starting virtual address of the I/O request (in user address space if B_PHYS is
set or kernel address space otherwise). The driver must not set or clear the
B_PAGEIO flag.

B_PHYS The buffer header is being used for physical (direct) I/O to a user data area. The
b_un.b_addr member contains the starting virtual address of the user data area.
Note that B_PHYS and B_PAGEIO are never set simultaneously and must not be
changed by the driver.

B_READ Data are to be read from the peripheral device into main memory. The driver may
change this flag only if it acquired the buffer with getrbuf(D3), geteblk(D3), or
ngeteblk(D3), and if no I/O operation is in progress.

B_WRITE Data are to be transferred from main memory to the peripheral device. B_WRITE
is a pseudo-flag that occupies the same bit location as B_READ. B_WRITE cannot
be directly tested; it is only detected as the absence of B_READ (!(bp-
>b_flags&B_READ).)

293



buf(D4)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

b_forw and b_back may only be used by the driver if the buffer was acquired by the driver with the
getrbuf routine. In that case, these members can be used to link the buffer into driver work lists.

av_forw and av_back can be used by the driver to link the buffer into driver work lists.

b_bcount specifies the number of bytes to be transferred for both paged and non-paged I/O requests.
The driver may change this member.

b_un.b_addr is either the virtual address of the I/O request, or an offset into the first page of a page list
depending on whether B_PAGEIO is set. If it is set, the b_pages field of the buffer header points to a
sorted list of page structures and b_un.b_addr is the offset into the first page. If B_PAGEIO is not set,
b_un.b_addr is the virtual address from which data are read or to which data are written. It represents
a user virtual address if B_PHYS is set, or a kernel virtual address otherwise. The driver may change this
member.

b_blkno identifies which logical block on the device is to be accessed. The driver may have to convert
this logical block number to a physical location such as a cylinder, track, and sector of a disk. The driver
may change this member only if it allocated the buffer via geteblk, ngeteblk, or getrbuf, and if no
I/O operation is in progress.

b_resid indicates the number of bytes not transferred. The driver must set this member prior to calling
biodone(D3).

b_start holds the time the I/O request was started. It is provided for the driver’s use in calculating
response time and is set by the driver. Its type, clock_t, is an integral type upon which direct integer
calculations can be performed. It represents clock ticks.

b_proc contains the process structure address for the process requesting an unbuffered (direct) data
transfer to or from a user data area (this member is set to NULL when the transfer is buffered). The pro-
cess table entry is used to perform proper virtual to physical address translation of the b_un.b_addr
member. The driver should not change this member.

b_bufsize contains the size in bytes of the allocated buffer. The driver may change this member only if
it acquired the buffer with getrbuf, and if no I/O operation is in progress.

(*b_iodone) identifies a specific driver routine to be called by the system when the I/O is complete. If
a routine is specified, the biodone(D3) routine does not return the buffer to the system. The driver may
change this member if no I/O operation is in progress.

(*b_iochain) If b_iodone has been set by another driver layer, it is important to preserve its value and
make sure it is called upon i/o completion. b_iochain is provied for this purpose. For example, a driver
that wishes to use b_iodone should save the old value of b_iodone and b_iochain and write the address of
these saved values into b_iochain and its completion routines address into b_iodone. When the comple-
tion routine is called, it should restore both b_iodone and b_iochain and call biodone() with the buffer
again.

294



buf(D4)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

b_edev contains the external device number of the device. The driver may change this member only if it
allocated the buffer via geteblk, ngeteblk, or getrbuf, and if no I/O operation is in progress.

Warnings
Buffers are a shared resource within the kernel. Drivers should only read or write the members listed in
this section in accordance with the rules given above. Drivers that attempt to use undocumented
members of the buf structure risk corrupting data in the kernel and on the device.

DDI/DKI-conforming drivers may only use buffer headers that have been allocated using geteblk,
ngeteblk, or getrbuf, or have been passed to the driver strategy routine.

REFERENCES
biodone(D3), bioerror(D3), biowait(D3), brelse(D3), clrbuf(D3), freerbuf(D3),
geteblk(D3), geterror(D3), getrbuf(D3), iovec(D4), ngeteblk(D3), physiock(D3),
strategy(D2), uio(D4), uiophysio(D3X)

295



copyreq(D4)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
copyreq − STREAMS transparent ioctl copy request structure

SYNOPSIS
#include <sys/stream.h>
#include <sys/ddi.h>

DESCRIPTION
The copyreq structure contains the information necessary to process transparent ioctls.

USAGE
The copyreq structure is used in M_COPYIN and M_COPYOUT messages. The module or driver usually
converts an M_IOCTL or M_IOCDATA message into an M_COPYIN or M_COPYOUT message. The
copyreq structure is thus overlaid on top of the iocblk(D4) or copyresp(D4) structure. The stream
head guarantees that the message is large enough to contain the different structures.

Structure Definitions
The copyreq structure contains the following members:

int cq_cmd; /* ioctl command */

cred_t *cq_cr; /* user credentials */

uint_t cq_id; /* ioctl ID */

caddr_t cq_addr; /* copy buffer address */

uint_t cq_size; /* number of bytes to copy */

int cq_flag; /* for future use */

mblk_t *cq_private; /* module private data */

The cq_cmd field is the ioctl command, copied from the ioc_cmd field of the iocblk structure. If
the same message is used, then the cq_cmd field directly overlays the ioc_cmd field (that is, it need not
be copied.)

The cq_cr field contains a pointer to the user credentials. It is copied from the ioc_cr field of the
iocblk structure. If the same message is used, then the cq_cr field directly overlays the ioc_cr field
(that is, it need not be copied.)

The cq_id field is the ioctl ID, copied from the ioc_id field of the iocblk structure. It is used to
uniquely identify the ioctl request in the stream. If the same message is used, then the cq_id field
directly overlays the ioc_id field (that is, it need not be copied.)

For an M_COPYIN message, the cq_addr field contains the user address from which the data are to be
copied. For an M_COPYOUT message, the cq_addr field contains the user address to which the data are
to be copied. In both cases, the cq_size field contains the number of bytes to copy.

The cq_flag field is reserved for future use and should be set to 0 by the module or driver.

The cq_private field is a field set aside for use by the driver. It can be used to hold whatever state
information is necessary to process the ioctl. It is copied to the cp_private field in the resultant
M_IOCDATA message. When the M_COPYIN or M_COPYOUT message is freed, any message that
cq_private refers to is not freed by the STREAMS subsystem. It is the responsibility of the module or
driver to free it.

296



copyreq(D4)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

REFERENCES
copyresp(D4), datab(D4), iocblk(D4), messages(D5), msgb(D4)

297



copyresp(D4)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
copyresp − STREAMS transparent ioctl copy response structure

SYNOPSIS
#include <sys/stream.h>
#include <sys/ddi.h>

DESCRIPTION
The copyresp structure contains information in response to a prior copy request necessary to continue
processing transparent ioctls.

USAGE
M_IOCDATA messages, generated by the stream head, contain the copyresp structure.

If an M_IOCDATA message is reused, any unused fields in the new message should be cleared.

Structure Definitions
The copyresp structure contains the following members:
int cp_cmd; /* ioctl command */

cred_t *cp_cr; /* user credentials */

uint_t cp_id; /* ioctl ID */

caddr_t cp_rval; /* status of request */

mblk_t *cp_private; /* module private data */

The cp_cmd field is the ioctl command, copied from the cq_cmd field of the copyreq structure.

The cp_cr field contains a pointer to the user credentials. It is copied from the cq_cr field of the
copyreq structure.

The cp_id field is the ioctl ID, copied from the cq_id field of the copyreq structure. It is used to
uniquely identify the ioctl request in the stream.

The cq_rval field contains the return value from the last copy request. If the request succeeded, it is set
to 0. Otherwise, if it is non-zero, the request failed. On success, the module or driver should continue
processing the ioctl. On failure, the module or driver should abort ioctl processing and free the
message. No M_IOCNAK message need be generated.

The cp_private field is copied from the cq_private field of the copyreq structure. It is available
so that the module or driver can regain enough state information to continue processing the ioctl
request. When the M_IOCDATA message is freed, any message that cp_private refers to is not freed
by the STREAMS subsystem. It is the responsibility of the module or driver to free it.

REFERENCES
copyreq(D4), datab(D4), iocblk(D4), messages(D5), msgb(D4)

298



datab(D4)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
datab − STREAMS data block structure

SYNOPSIS
#include <sys/types.h>
#include <sys/stream.h>
#include <sys/ddi.h>

DESCRIPTION
The datab structure describes the data of a STREAMS message.

USAGE
The actual data contained in a STREAMS message is stored in a data buffer pointed to by this structure.
A message block structure [msgb(D4)] includes a field that points to a datab structure.

A data block can have more than one message block pointing to it at one time, so the db_ref member
keeps track of a data block’s references, preventing it from being deallocated until all message blocks are
finished with it.

Structure Definitions
The datab structure is defined as type dblk_t and contains the following members:
uchar_t *db_base; /* first byte of buffer */
uchar_t *db_lim; /* last byte (+1) of buffer */
uchar_t db_ref; /* # of message pointers to this data */
uchar_t db_type; /* message type */

The db_base field points to the beginning of the data buffer. Drivers and modules should not change
this field.

The db_lim field points to one byte past the end of the data buffer. Drivers and modules should not
change this field.

The db_ref field contains a count of the number of message blocks sharing the data buffer. If it is
greater than 1, drivers and modules should not change the contents of the data buffer. Drivers and
modules should not change this field.

The db_type field contains the message type associated with the data buffer. This field can be changed
by the driver. However, if the db_ref field is greater than 1, this field should not be changed.

REFERENCES
free_rtn(D4), messages(D5), msgb(D4)

299



eisa_dma_cb(D4)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
eisa_dma_cb − DMA command block structure

SYNOPSIS
#include <sys/types.h>
#include <sys/eisa.h>

DESCRIPTION
The EISA DMA command block structure is used to control a DMA operation.

USAGE
Each DMA operation requested by a driver is controlled by a command block structure whose fields
specify the operation to occur.

The DMA control block specifies the parameters to be programmed for a requestor and a target. The
requestor is the hardware device that is requesting the DMA operation, while the target is the target of the
operation. The typical case is one in which the requestor is an I/O device and the target is memory.

EISA DMA command block structures should only be allocated via eisa_dma_get_cb(D3X).
Although drivers may access the structure members listed below, they should not make any assumptions
about the size of the structure or the contents of other fields in the structure.

Structure Definitions
The eisa_dma_cb structure contains the following members:

struct eisa_dma_buf *reqrbufs; /* requestor data buffer list */
uchar_t trans_type; /* Single/Demand/Block/Cascade */
uchar_t reqr_path; /* 8/16/32 */
uchar_t bufprocess; /* Single/Chain/Auto-Init */
uchar_t reqr_bswap; /* byte swap data on/off */
char *procparam; /* parameter buffer for appl call */
int (*proc)(); /* address of application call routines */

The following bit-fields defined in the eisa_dma_cb structure should be initialized using the appropri-
ate EISA defines described below:

cb_cmd; /* Read/Write/Translate/Verify */
targ_step; /* Inc/Dec/Hold */
trans_type; /* Single/Demand/Block/Cascade */
reqr_path; /* 8/16/32 */
reqr_timing; /* A, B, C, ISA compatible */
reqr_ringstop; /* use channel’s stop registers */
reqr_eop: /* is EOP input/output */

The members of the eisa_dma_cb structure are:

reqrbufs is a pointer to a list of DMA buffer structures [see eisa_dma_buf(D4)] that describes the
requestor of the DMA operation.

300



eisa_dma_cb(D4)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

bufprocess specifies how the DMA target buffer structures are to be processed. It may have the follow-
ing values:

EISA_DMA_BUF_SNGL
Specifies that the target consists of a single DMA Buffer.

EISA_DMA_BUF_CHAIN
Specifies that the target consists of a chain of DMA Buffers.

reqr_bswap specifies whether data should be byte-swapped between the EISA bus and the host memory
bus. It may have one of the following values:

EISA_DMA_BSWAP_ON
Specifies that byte swapping should be performed.

EISA_DMA_BSWAP_OFF
Specifies that byte swapping should not be performed.

procparam is the parameter to be passed to the subroutine specified by the proc field.

proc specifies the address of a routine to be called when a DMA operation is enabled by
eisa_dma_enable(D3X). Typically, this is used to program the hardware commands that initiate the
DMA operation. The value in the procparam field is passed as an argument to this routine. This field
may be set to NULL if no procedure is to be called.

cb_cmd specifies the command for the DMA operation. It may be one of the following values:

EISA_DMA_CMD_READ
Specifies a DMA read from the target to the requestor.

EISA_DMA_CMD_WRITE
Specifies a DMA write from the requestor to the target.

targ_step specifies how the target addresses are to be modified after each transfer. They each may
have one of the following values:

EISA_DMA_STEP_INC
Specifies that the target address is to be incremented following each data
transfer.

EISA_DMA_STEP_DEC
Specifies that the target address is to be decremented following each data
transfer

trans_type specifies the transfer type of the operation. It can have one of the following values:

EISA_DMA_TRANS_SNGL
Specifies that a single transfer is to occur.

301



eisa_dma_cb(D4)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

EISA_DMA_TRANS_BLCK
Specifies that a block transfer is to occur. This is the only acceptable value for
software-initiated transfers.

EISA_DMA_TRANS_DMND
Specifies demand transfer mode, which is a variation on block transfer in
which the requestor may provide additional control flow on the transfer.

reqr_path species the size of the data path for the requestor. It may have one of the following values:

EISA_DMA_PATH_8
Specifies that the requestor uses an 8-bit data path.

EISA_DMA_PATH_16
Specifies that the requestor uses a 16-bit data path.

EISA_DMA_PATH_32
Specifies that the requestor uses a 32-bit data path.

reqr_timing specifies the timing mode that requestor hardware uses. Its values can be:

EISA_DMA_TIME_ISA
Specifies that ISA compatibility timing is being used.

EISA_DMA_TIME_A
Specifies that EISA type A timing is being used.

EISA_DMA_TIME_B
Specifies that EISA type B timing is being used.

EISA_DMA_TIME_C
Specifies that EISA type C timing is being used.

reqr_ringstop indicates whether or not the EISA ring buffer feature should be enabled or disabled. It
may have one of the following values:

EISA_DMA_RING_OFF
Disable the EISA ring buffer feature.

EISA_DMA_RING_ON
Enable the EISA ring buffer feature.

reqr_eop indicates whether EOP acts as a hardware input or output. Typically EOP operates as an out-
put to generate interrupts. It may have one of the following values:

EISA_DMA_EOP_OUTPUT
EOP is an output.

EISA_DMA_EOP_INPUT
EOP is an input.

302



eisa_dma_cb(D4)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

REFERENCES
eisa_dma_buf(D4), eisa_dma_free_cb(D3X), eisa_dma_get_cb(D3X), eisa_dma_prog(D3X),
eisa_dma_swstart(D3X)

303



eisa_dma_buf(D4)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
eisa_eisa_dma_buf − EISA DMA buffer descriptor structure

SYNOPSIS
#include <sys/types.h>
#include <sys/eisa.h>

DESCRIPTION
The EISA DMA buffer descriptor structure is used to specify the data to be transferred by a DMA opera-
tion.

USAGE
Each DMA operation is controlled by a DMA command block [see eisa_dma_cb(D4)] structure that
includes a pointer to linked list of eisa_dma_buf structures.

Each eisa_dma_buf structure provides the physical address and size of a data block involved in a
DMA transfer. Scatter/gather operations involving multiple data blocks may be implemented by linking
together multiple eisa_dma_bufs in a singly-linked list. Each eisa_dma_buf includes the virtual
address of the next EISA DMA buffer descriptor in the list.

EISA DMA buffer descriptor structures should only be allocated via eisa_dma_get_buf(D3X).
Although drivers may access the members listed below, they should not make any assumptions about the
size of the structure or the contents of other fields in the structure.

Structure Definitions
The eisa_dma_buf structure contains the following members:
ushort_t count; /* size of block*/
paddr_t address; /* physical address of data block */
struct eisa_dma_buf *next_buf; /* next buffer descriptor */
ushort_t count_hi; /* for big blocks */
paddr_t stopval; /* ring buffer stop */
The members of the eisa_dma_buf structure are:

count specifies the low-order 16 bits of the size of the data block in bytes.

address specifies the physical address of the data block.

next_buf specifies the virtual address of the next eisa_dma_buf in a linked list of EISA DMA buffer
descriptors. It should be NULL if the buffer descriptor is the last one in the list. Note that an EISA DMA
buffer descriptor allocated by eisa_dma_get_buf will be zeroed out initially, thus no explicit initiali-
zation is required for this field if a value of NULL is desired.

count_hi specifies the high-order 16 bits of the size of the data block in bytes. Since a eisa_dma_buf
allocated by eisa_dma_get_buf is initially zeroed out, no explicit initialization is required for this field
if the size of the data block may be specified by a ushort_t. stopval specifies the physical address
used to terminate an EISA ring buffer. This field is used in conjunction with the reqr_ringstopP
field in the eisa_dma_cb structure. It should be left as NULL if this EISA
feature is not used.

304



eisa_dma_buf(D4)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

REFERENCES
eisa_dma_cb(D4), eisa_dma_free_buf(D3X), eisa_dma_get_buf(D3X)

305



free_rtn(D4)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
free_rtn − STREAMS driver’s message free routine structure

SYNOPSIS
#include <sys/stream.h>
#include <sys/ddi.h>

DESCRIPTION
A free_rtn structure is needed for messages allocated via esballoc(D3).

USAGE
Since the driver is providing the memory for the data buffer, a way is needed to notify the driver when
the buffer is no longer in use. esballoc associates the free routine structure with the message when it
is allocated. When freeb(D3) is called to free the message and the reference count goes to zero, the
driver’s message free routine is called, with the argument specified, to free the data buffer.

Structure Definitions
The free_rtn structure is defined as type frtn_t and contains the following members:

void (*free_func)() /* driver’s free routine */
char *free_arg /* argument to free_func() */
The free_func field specifies the driver’s function to be called when the message has been freed. It is
called with interrupts from STREAMS devices blocked on the processor on which the function is running.

The free_arg field is the only argument to the driver’s free routine.

REFERENCES
esballoc(D3), freeb(D3)

306



iocblk(D4)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
iocblk − STREAMS ioctl structure

SYNOPSIS
#include <sys/stream.h>
#include <sys/ddi.h>

DESCRIPTION
The iocblk structure describes a user’s ioctl(2) request.

USAGE
The iocblk structure is used in M_IOCTL, M_IOCACK, and M_IOCNAK messages. Modules and
drivers usually convert M_IOCTL messages into M_IOCACK or M_IOCNAK messages by changing the
type and updating the relevant fields in the iocblk structure.

Data cannot be copied to the user’s buffer with an M_IOCACK message if the ioctl is transparent.

No data can be copied to the user’s buffer with an M_IOCNAK message.

When processing a transparent ioctl, the iocblk structure is usually overlaid with a copyreq(D4)
structure. The stream head guarantees that the message is large enough to contain either structure.

Structure Definitions
The iocblk structure contains the following members:

int ioc_cmd; /* ioctl command */

cred_t *ioc_cr; /* user credentials */

uint_t ioc_id; /* ioctl ID */

uint_t ioc_count; /* number of bytes of data */

int ioc_error; /* error code for M_IOCACK or M_IOCNAK */

int ioc_rval; /* return value for M_IOCACK */

The ioc_cmd field is the ioctl command request specified by the user.

The ioc_cr field contains a pointer to the user credentials.

The ioc_id field is the ioctl ID, used to uniquely identify the ioctl request in the stream.

The ioc_count field specifies the amount of user data contained in the M_IOCTL message. User data
will appear in M_DATA message blocks linked to the M_IOCTL message block. If ioc_count is set to
the special value TRANSPARENT, then the ioctl request is ‘‘transparent.’’ This means that the user did
not use the I_STR format of STREAMS ioctls and the module or driver will have to obtain any user
data with M_COPYIN messages, and change any user data with M_COPYOUT messages. In this case, the
M_DATA message block linked to the M_IOCTL message block contains the value of the arg parameter in
the ioctl system call. For an M_IOCACK message, the ioc_count field specifies the amount of data
to copy back to the user’s buffer.

The ioc_error field can be used to set an error for either an M_IOCACK or an M_IOCNAK message.

307



iocblk(D4)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

The ioc_rval field can be used to set the return value in an M_IOCACK message. This will be returned
to the user as the return value for the ioctl system call that generated the request.

REFERENCES
copyreq(D4), copyresp(D4), datab(D4), messages(D5), msgb(D4)

308



iovec(D4)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
iovec − data storage structure for I/O using uio(D4)

SYNOPSIS
#include <sys/types.h>
#include <sys/uio.h>
#include <sys/ddi.h>

DESCRIPTION
The iovec structure describes a data storage area for transfer in a uio structure. Conceptually, it may
be thought of as a base address and length specification.

USAGE
A separate interface does not currently exist for allocating iovec(D4) structures when the driver needs
to create them itself. Therefore, the driver may either use kmem_zalloc(D3) to allocate them, or allocate
them statically.

Structure Definitions
The iovec structure contains the following members:

caddr_t iov_base; /* base address of the data storage area */

int iov_len; /* size of the data storage area in bytes */

The driver may only set iovec structure members to initialize them for a data transfer for which the
driver created the iovec structure. The driver must not otherwise change iovec structure members.
However, drivers may read them. The iovec structure members available to the driver are:

iov_base contains the address for a range of memory to or from which data are transferred.

iov_len contains the number of bytes of data to be transferred to or from the range of memory starting
at iov_base.

REFERENCES
physiock(D3), uiomove(D3), ureadc(D3), uwritec(D3), uio(D4)

309



linkblk(D4)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
linkblk − STREAMS multiplexor link structure

SYNOPSIS
#include <sys/stream.h>
#include <sys/ddi.h>

DESCRIPTION
The linkblk structure contains the information needed by a multiplexing driver to set up or take down
a multiplexor link.

USAGE
The linkblk structure is embedded in the M_DATA portion of the M_IOCTL messages generated from
the following ioctl(2) calls: I_LINK, I_UNLINK, I_PLINK, and I_PUNLINK [see streamio(7)].

Structure Definitions
The linkblk structure contains the following members:

queue_t *l_qtop; /* lower queue of top stream */
queue_t *l_qbot; /* upper queue of bottom stream */
int l_index; /* unique ID */
The l_qtop field is a pointer to the lowest write queue in the upper stream. In other words, it is the
write queue of the multiplexing driver. If the link is persistent across closes of the driver, then this field is
set to NULL.

The l_qbot field is a pointer to the upper write queue in the lower stream. The lower stream is the
stream being linked under the multiplexor. The topmost read and write queues in the lower stream are
given to the multiplexing driver to use for the lower half of its multiplexor processing. The qinit(D4)
structures associated with these queues are those specified for the lower processing in the multiplexing
driver’s streamtab(D4) structure.

The l_index field is a unique ID that identifies the multiplexing link in the system. The driver can use
this as a key on which it can multiplex or de-multiplex.

REFERENCES
datab(D4), iocblk(D4), ioctl(2), messages(D5), msgb(D4), qinit(D4), streamio(7),
streamtab(D4)

310



module_info(D4)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
module_info − STREAMS driver and module information structure

SYNOPSIS
#include <sys/types.h>
#include <sys/conf.h>
#include <sys/stream.h>
#include <sys/ddi.h>

DESCRIPTION
When a module or driver is declared, several identification and limit values can be set. These values are
stored in the module_info structure. These values are used to initialize the module’s or driver’s
queues when they are created.

USAGE
After the initial declaration, the module_info structure is intended to be read-only. However, the flow
control limits (mi_hiwat and mi_lowat) and the packet size limits (mi_minpsz and mi_maxpsz) are
copied to the queue(D4) structure, where they may be modified.

There may be one module_info structure per read and write queue, or the driver or module may use
the same module_info structure for both the read and write queues.

Structure Definitions
The module_info structure contains the following members:
ushort_t mi_idnum; /* module ID number */
char *mi_idname; /* module name */
long mi_minpsz; /* minimum packet size */
long mi_maxpsz; /* maximum packet size */
ulong_t mi_hiwat; /* high water mark */
ulong_t mi_lowat; /* low water mark */
The mi_idnum field is a unique identifier for the driver or module that distinguishes the driver or
module from the other drivers and modules in the system.

The mi_idname field points to the driver or module name. The constant FMNAMESZ limits the length of
the name, not including the terminating NULL. It is currently set to eight characters.

The mi_minpsz field is the default minimum packet size for the driver or module queues. This is an
advisory limit specifying the smallest message that can be accepted by the driver or module.

The mi_maxpsz field is the default maximum packet size for the driver or module queues. This is an
advisory limit specifying the largest message that can be accepted by the driver or module.

The mi_hiwat field is the default high water mark for the driver or module queues. This specifies the
number of bytes of data contained in messages on the queue such that the queue is considered full and
hence flow-controlled.

The mi_lowat field is the default low water mark for the driver or module queues. This specifies the
number of bytes of data contained in messages on the queue such that the queue is no longer flow-
controlled.

311



module_info(D4)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

REFERENCES
queue(D4)

312



msgb(D4)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
msgb − STREAMS message block structure

SYNOPSIS
#include <sys/types.h>
#include <sys/stream.h>
#include <sys/ddi.h>

DESCRIPTION
A STREAMS message is made up of one or more message blocks, referenced by a pointer to a msgb
structure. When a message is on a queue, all fields are read-only to drivers and modules.

USAGE
Structure Definitions

The msgb structure is defined as type mblk_t and contains the following members:

struct msgb *b_next; /* next message on queue */
struct msgb *b_prev; /* previous message on queue */
struct msgb *b_cont; /* next block in message */
uchar_t *b_rptr; /* 1st unread data byte of buffer */
uchar_t *b_wptr; /* 1st unwritten data byte of buffer */
struct datab *b_datap; /* pointer to data block */
uchar_t b_band; /* message priority */
ushort_t b_flag; /* used by stream head */
The b_next and b_prev pointers are used to link messages together on a queue(D4). These fields can
be used by drivers and modules to create linked lists of messages.

The b_cont pointer links message blocks together when a message is composed of more than one block.
Drivers and modules can use this field to create complex messages from single message blocks.

The b_rptr and b_wptr pointers describe the valid data region in the associated data buffer. The
b_rptr field points to the first unread byte in the buffer and the b_wptr field points to the next byte to
be written in the buffer.

The b_datap field points to the data block [see datab(D4)] associated with the message block. This
field should never be changed by modules or drivers.

The b_band field contains the priority band associated with the message. Normal priority messages and
high priority messages have b_band set to zero. High priority messages are high priority by virtue of
their message type. This field can be used to alter the queuing priority of the message. The higher the
priority band, the closer to the head of the queue the message is placed.

The b_flag field contains a bitmask of flags that can be set to alter the way the stream head will process
the message. Valid flags are:

MSGMARK The last byte in the message is ‘‘marked.’’ This condition is testable from user level via
the I_ATMARK ioctl(2).

313



msgb(D4)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

REFERENCES
allocb(D3), datab(D4), esballoc(D3), freeb(D3), free_rtn(D4), messages(D5)

314



qinit(D4)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
qinit − STREAMS queue initialization structure

SYNOPSIS
#include <sys/stream.h>
#include <sys/ddi.h>

DESCRIPTION
The qinit structure contains pointers to processing procedures and default values for a queue(D4).
Drivers and modules declare qinit structure for their read and write queues, and place the addresses of
the structures in their streamtab(D4) structure. After the initial declaration, all fields are intended to
be read-only.

USAGE
There is usually one qinit structure for the read side of a module or driver, and one qinit structure
for the write side.

Structure Definitions
The qinit structure contains the following members:

int (*qi_putp)(); /* put procedure */
int (*qi_srvp)(); /* service procedure */
int (*qi_qopen)(); /* open procedure */
int (*qi_qclose)(); /* close procedure */
int (*qi_qadmin)(); /* for future use */
struct module_info *qi_minfo; /* module parameters */
struct module_stat *qi_mstat; /* module statistics */

The qi_putp field contains the address of the put(D2) routine for the queue.

The qi_srvp field contains the address of the service [srv(D2)] routine for the queue. If there is no
service routine, this field should be set to NULL.

The qi_qopen field contains the address of the open(D2) routine for the driver or module. Only the
read-side qinit structure need define contain the routine address. The write-side value should be set to
NULL.

The qi_qclose field contains the address of the close(D2) routine for the driver or module. Only the
read-side qinit structure need define contain the routine address. The write-side value should be set to
NULL.

The qi_qadmin field is intended for future use and should be set to NULL.

The qi_minfo field contains the address of the module_info(D4) structure for the driver or module.

The qi_mstat field contains the address of the module_stat structure for the driver or module. The
module_stat structure is defined in /usr/include/sys/strstat.h. This field should be set to
NULL if the driver or module does not keep statistics.

315



qinit(D4)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

REFERENCES
module_info(D4), queue(D4), streamtab(D4)

316



queue(D4)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
queue − STREAMS queue structure

SYNOPSIS
#include <sys/types.h>
#include <sys/stream.h>
#include <sys/ddi.h>

DESCRIPTION
A instance of a STREAMS driver or module consists of two queue structures, one for upstream (read-
side) processing and one for downstream (write-side) processing.

USAGE
This structure is the major building block of a stream. It contains pointers to the processing procedures,
pointers to the next queue in the stream, flow control parameters, and a list of messages to be processed.

Structure Definitions
The queue structure is defined as type queue_t and contains the following members:

struct qinit *q_qinfo; /* module or driver entry points */
struct msgb *q_first; /* first message in queue */
struct msgb *q_last; /* last message in queue */
struct queue *q_next; /* next queue in stream */
void *q_ptr; /* pointer to private data structure */
ulong_t q_count; /* approximate size of message queue */
ulong_t q_flag; /* status of queue */
long q_minpsz; /* smallest packet accepted by QUEUE */
long q_maxpsz; /* largest packet accepted by QUEUE */
ulong_t q_hiwat; /* high water mark */
ulong_t q_lowat; /* low water mark */
The q_qinfo field contains a pointer to the qinit(D4) structure specifying the processing routines and
default values for the queue. This field should not be changed by drivers or modules.

The q_first field points to the first message on the queue, or is NULL if the queue is empty. This field
should not be changed by drivers or modules.

The q_last field points to the last message on the queue, or is NULL if the queue is empty. This field
should not be changed by drivers or modules.

The q_next field points to the next queue in the stream. This field should not be changed by drivers or
modules.

The q_ptr field is a private field for use by drivers and modules. It provides a way to associate the
driver’s per-minor data structure with the queue.

The q_count field contains the number of bytes in messages on the queue in priority band 0. This
includes normal messages and high priority messages.

317



queue(D4)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

The q_flag field contains a bitmask of flags that indicate different queue characteristics. No flags may
be set or cleared by drivers or modules. However, the following flags may be tested:

QREADR The queue is the read queue. Absence of this flag implies a write queue.

The q_minpsz field is the minimum packet size for the queue. This is an advisory limit specifying the
smallest message that can be accepted by the queue. It is initially set to the value specified by the
mi_minpsz field in the module_info(D4) structure. This field can be changed by drivers or modules.

The q_maxpsz field is the maximum packet size for the queue. This is an advisory limit specifying the
largest message that can be accepted by the queue. It is initially set to the value specified by the
mi_maxpsz field in the module_info structure. This field can be changed by drivers or modules.

The q_hiwat field is the high water mark for the queue. This specifies the number of bytes of data con-
tained in messages on the queue such that the queue is considered full, and hence flow-controlled. It is
initially set to the value specified by the mi_hiwat field in the module_info structure. This field can
be changed by drivers or modules.

The q_lowat field is the low water mark for the queue. This specifies the number of bytes of data con-
tained in messages on the queue such that the queue is no longer flow-controlled. It is initially set to the
value specified by the mi_lowat field in the module_info structure. This field can be changed by
drivers or modules.

REFERENCES
getq(D3), module_info(D4), msgb(D4), putq(D3), qinit(D4), strqget(D3), strqset(D3)

318



streamtab(D4)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
streamtab − STREAMS driver and module declaration structure

SYNOPSIS
#include <sys/stream.h>
#include <sys/ddi.h>

DESCRIPTION
The streamtab structure is made up of pointers to qinit structures for both the read and write queue
portions of each module or driver. (Multiplexing drivers require both upper and lower qinit struc-
tures.) The qinit structure contains the entry points through which the module or driver routines are
called.

USAGE
Each STREAMS driver or module must have a streamtab structure. The streamtab structure must
be named prefixinfo, where prefix is the driver prefix.

Structure Definitions
The streamtab structure contains the following members:
struct qinit *st_rdinit; /* read queue */
struct qinit *st_wrinit; /* write queue */
struct qinit *st_muxrinit; /* lower read queue*/
struct qinit *st_muxwinit; /* lower write queue*/

The st_rdinit field contains a pointer to the read-side qinit structure. For a multiplexing driver,
this is the qinit structure for the upper read side.

The st_wrinit field contains a pointer to the write-side qinit structure. For a multiplexing driver,
this is the qinit structure for the upper write side.

The st_muxrinit field contains a pointer to the lower read-side qinit structure for multiplexing
drivers. For modules and non-multiplexing drivers, this field should be set to NULL.

The st_muxwinit field contains a pointer to the lower write-side qinit structure for multiplexing
drivers. For modules and non-multiplexing drivers, this field should be set to NULL.

REFERENCES
qinit(D4)

319



stroptions(D4)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
stroptions − stream head option structure

SYNOPSIS
#include <sys/stream.h>
#include <sys/stropts.h>
#include <sys/ddi.h>

DESCRIPTION
The stroptions structure, used in an M_SETOPTS message, contains options for the stream head.

USAGE
The M_SETOPTS message is sent upstream by drivers and modules when they want to change stream
head options for their stream.

Structure Definitions
The stroptions structure contains the following members:

ulong_t so_flags; /* options to set */
short so_readopt; /* read option */
ushort_t so_wroff; /* write offset */
long so_minpsz; /* minimum read packet size */
long so_maxpsz; /* maximum read packet size */
ulong_t so_hiwat; /* read queue high water mark */
ulong_t so_lowat; /* read queue low water mark */
uchar_t so_band; /* band for water marks */
The so_flags field determines which options are to be set, and which of the other fields in the structure
are used. This field is a bitmask and is comprised of the bit-wise OR of the following flags:

SO_READOPT Set the read option to that specified by the so_readopt field.

SO_WROFF Set the write offset to that specified by the so_wroff field.

SO_MINPSZ Set the minimum packet size on the stream head read queue to that specified by
the so_minpsz field.

SO_MAXPSZ Set the maximum packet size on the stream head read queue to that specified
by the so_maxpsz field.

SO_HIWAT Set the high water mark on the stream head read queue to that specified by the
so_hiwat field.

SO_LOWAT Set the low water mark on the stream head read queue to that specified by the
so_lowat field.

SO_ALL Set all of the above options (SO_READOPT | SO_WROFF | SO_MINPSZ |
SO_MAXPSZ | SO_HIWAT | SO_LOWAT).

320



stroptions(D4)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

SO_MREADON Turn on generation of M_READ messages by the stream head.

SO_MREADOFF Turn off generation of M_READ messages by the stream head.

SO_NDELON Use old TTY semantics for no-delay reads and writes.

SO_NDELOFF Use STREAMS semantics for no-delay reads and writes.

SO_ISTTY The stream is acting as a terminal.

SO_ISNTTY The stream is no longer acting as a terminal.

SO_TOSTOP Stop processes on background writes to this stream.

SO_TONSTOP Don’t stop processes on background writes to this stream.

SO_BAND The water marks changes affect the priority band specified by the so_band
field.

The so_readopt field specifies options for the stream head that alter the way it handles read(2) calls.
This field is a bitmask whose flags are grouped in sets. Within a set, the flags are mutually exclusive. The
first set of flags determines how data messages are treated when they are read:

RNORM Normal (byte stream) mode. read returns the lesser of the number of bytes
asked for and the number of bytes available. Messages with partially read data
are placed back on the head of the stream head read queue. This is the default
behavior.

RMSGD Message discard mode. read returns the lesser of the number of bytes asked
for and the number of bytes in the first message on the stream head read queue.
Messages with partially read data are freed.

RMSGN Message non-discard mode. read returns the lesser of the number of bytes
asked for and the number of bytes in the first message on the stream head read
queue. Messages with partially read data are placed back on the head of the
stream head read queue.

The second set of flags determines how protocol messages (M_PROTO and M_PCPROTO) are treated dur-
ing a read:

RPROTNORM Normal mode. read fails with the error code EBADMSG if there is a protocol
message at the front of the stream head read queue. This is the default
behavior.

RPROTDIS Protocol discard mode. read discards the M_PROTO or M_PCPROTO por-
tions of the message and return any M_DATA portions that may be present.
M_PASSFP messages are also freed in this mode.

RPROTDAT Protocol data mode. read treats the M_PROTO or M_PCPROTO portions of
the message as if they were normal data (that is, they are delivered to the user.)

321



stroptions(D4)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

The so_wroff field specifies a byte offset to be included in the first message block of every M_DATA
message created by a write(2) and the first M_DATA message block created by each call to putmsg(2).

The so_minpsz field specifies the minimum packet size for the stream head read queue.

The so_maxpsz field specifies the maximum packet size for the stream head read queue.

The so_hiwat field specifies the high water mark for the stream head read queue.

The so_lowat field specifies the low water mark for the stream head read queue.

The so_band field specifies the priority band to which the high and/or low water mark changes should
be applied.

REFERENCES
datab(D4), messages(D5), msgb(D4), read(2), streamio(7)

322



uio(D4)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
uio − scatter/gather I/O request structure

SYNOPSIS
#include <sys/types.h>
#include <sys/file.h>
#include <sys/uio.h>
#include <sys/ddi.h>

DESCRIPTION
The uio structure describes an I/O request that can be broken up into different data storage areas
(scatter/gather I/O). A request is a list of iovec(D4) structures (base/length pairs) indicating where in
user space or kernel space the data are to be read/written.

USAGE
The contents of the uio structure passed to the driver through the entry points in section D2 should not
be changed directly by the driver. The uiomove(D3), ureadc(D3), and uwritec(D3) functions take
care of maintaining the uio structure. A block driver may also use the physiock(D3) function to per-
form unbuffered I/O. physiock also takes care of maintaining the uio structure.

A driver that creates its own uio structures for a data transfer is responsible for zeroing it prior to initial-
izing members accessible to the driver. The driver must not change the uio structure afterwards; the
functions take care of maintaining the uio structure.

Note that a separate interface does not currently exist for allocating uio(D4) and iovec(D4) structures
when the driver needs to create them itself. Therefore, the driver may either use kmem_zalloc(D3) to
allocate them, or allocate them statically.

Structure Definitions
The uio structure contains the following members:

iovec_t *uio_iov; /* Pointer to the start of the iovec */
/* array for the uio structure */

int uio_iovcnt; /* The number of iovecs in the array */
off_t uio_offset; /* Offset into file where data are */

/* transferred from or to */
short uio_segflg; /* Identifies the type of I/O transfer */
short uio_fmode; /* File mode flags */
int uio_resid; /* Residual count */

The driver may only set uio structure members to initialize them for a data transfer for which the driver
created the uio structure. The driver must not otherwise change uio structure members. However,
drivers may read them. The uio structure members available for the driver to test or set are described
below:

323



uio(D4)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

uio_iov contains a pointer to the iovec array for the uio structure. If the driver creates a uio struc-
ture for a data transfer, an associated iovec array must also be created by the driver.

uio_iovcnt contains the number of elements in the iovec array for the uio structure.

uio_offset contains the starting logical byte address on the device where the data transfer is to occur.
Applicability of this field to the driver is device-dependent. It applies to randomly accessed devices, but
may not apply to all sequentially accessed devices.

uio_segflg identifies the virtual address space in which the transfer data areas reside. The value
UIO_SYSSPACE indicates the data areas are within kernel space. The value UIO_USERSPACE indicates
one data area is within kernel space and the other is within the user space of the current process context.

uio_fmode contains flags describing the file access mode for which the data transfer is to occur. Valid
flags are:

FNDELAY The driver should not wait if the requested data transfer cannot occur immediately; it
should terminate the request without indicating an error occurred. The driver’s
implementation of this flag’s implied semantics are subject to device-dependent
interpretation.

FNONBLOCK The driver should not wait if the requested data transfer cannot occur immediately; it
should terminate the request, returning the EAGAIN error code as the completion
status [see errnos(D5)]. The driver’s implementation of the implied semantics of
this flag are subject to device-dependent interpretation.

If the driver creates a uio structure for a data transfer, it may set the flags described above in
uio_fmode.

uio_resid indicates the number of bytes that have not been transferred to or from the data area. If the
driver creates a uio structure for a data transfer, uio_resid is initialized by the driver as the number
of bytes to be transferred. Note that a separate interface does not currently exist for allocating

REFERENCES
iovec(D4), physiock(D3), read(D2), uiomove(D3), ureadc(D3), uwritec(D3), write(D2)

324



uio(D4)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

325



Kernel Definitions (D5)

Chapter 1





intro(D5)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
intro − introduction to kernel #define’s

SYNOPSIS
#include <sys/types.h>
#include <sys/ddi.h>

DESCRIPTION
This section describes the kernel #define’s a developer may need to use in a device driver. Most
#define’s are specified on the manual page in which they are used. However, some #define’s are too
general or numerous to include in another manual page. Instead, they have been given a separate page in
this section.

USAGE
#include <sys/ddi.h> must always be the last header file included.

327



errnos(D5)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
errnos − error numbers

SYNOPSIS
#include <sys/errno.h>
#include <sys/ddi.h>

DESCRIPTION
The following is a list of the error codes that drivers may return from their entry points, or include in
STREAMS messages (for example, M_ERROR messages).

EACCES Permission denied. An attempt was made to access a file in a way forbidden by its file
access permissions.

EADDRINUSE The address requested is already in use.

EADDRNOTAVAIL
The address requested cannot be assigned.

EAFNOSUPPORT The address family specified is not installed or supported on the host.

EAGAIN Temporary resource allocation failure; try again later. Drivers can return this error
when resource allocation fails, for example, kmem_alloc(D3) or allocb(D3).

EALREADY The operation requested is already being performed.

EBUSY Device is busy. This can be used for devices that require exclusive access.

ECONNABORTED A received connect request was aborted when the peer closed its endpoint.

ECONNREFUSED The connection was refused.

ECONNRESET The connection was reset by the peer entity.

EDESTADDRREQ The requested operation required a destination address but none was supplied.

EEXIST Unable to register module for dynamic loading because the module is already statically
configured.

EFAULT Bad address. Drivers should return this error whenever a call to copyin(D3) or
copyout(D3) fails.

EHOSTDOWN Host is down.

EHOSTUNREACH No route to host.

EINPROGRESS The operation requested is now in progress.

EINTR Interrupted operation. Drivers can return this error whenever an interruptible opera-
tion is interrupted by receipt of an asynchronous signal.

EINVAL Invalid argument. Drivers can return this error for operations that have invalid param-
eters specified.

328



errnos(D5)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

EIO An I/O error has occurred. Drivers can return this error when an input or output
request has failed.

EISCONN The endpoint is already connected.

EMSGSIZE Message too long. The protocol is such that there is a limit to the size of a message and
that limit has been exceeded.

ENETDOWN The network trying to be reached is down.

ENETRESET The network dropped the connection because of a reset.

ENETUNREACH The network trying to be reached is unreachable.

ENOBUFS No buffer space available.

ENODEV No such device. Drivers can return this error when an attempt is made to apply an
inappropriate function to a device; for example, trying to read a write-only device such
as a printer.

ENOMEM Not enough memory. Drivers can return this error when resource allocation fails and it
is either inconvenient or impossible for a retry to occur.

ENOPROTOOPT The protocol option requested is not available at the level indicated.

ENOSPC The device is out of free space.

ENOTCONN The requested operation requires the endpoint to be connected but it is not.

ENXIO No such device or address. Drivers can return this error when trying to open an
invalid minor device, or when trying to perform I/O past the end of a device. This
error may also occur when, for example, a tape drive is not online or a disk pack is not
loaded on a drive.

EOPNOTSUPP The operation requested is not supported.

EPERM Permission denied. Drivers can return this error when a operation is attempted that
requires more privilege than the current process has.

EPROTO Protocol error. Drivers can return this error when they incur a protocol error, such as
not being able to generate the proper protocol message because of resource exhaustion,
and not being able to recover gracefully.

ETIMEDOUT The connection timed out.

USAGE
The above examples are not exhaustive.

REFERENCES
geterror(D3)

329



messages(D5)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
messages − STREAMS messages

SYNOPSIS
#include <sys/stream.h>
#include <sys/ddi.h>

DESCRIPTION
The following is a list of the STREAMS messages types that can be used by drivers and modules.

M_DATA Data message.

M_PROTO Protocol control message.

M_BREAK Control message used to generate a line break.

M_SIG Control message used to send a signal to processes.

M_DELAY Control message used to generate a real-time delay.

M_CTL Control message used between neighboring modules and drivers.

M_IOCTL Control message used to indicate a user ioctl(2) request.

M_SETOPTS Control message used to set stream head options.

M_IOCACK High priority control message used to indicate success of an ioctl request.

M_IOCNAK High priority control message used to indicate failure of an ioctl request.

M_PCPROTO High priority protocol control message.

M_PCSIG High priority control message used to send a signal to processes.

M_READ High priority control message used to indicate the occurrence of a read(2) when there
are no data on the stream head read queue.

M_FLUSH High priority control message used to indicate that queues should be flushed.

M_STOP High priority control message used to indicate that output should be stopped immedi-
ately.

M_START High priority control message used to indicate that output can be restarted.

M_HANGUP High priority control message used to indicate that the device has been disconnected.

M_ERROR High priority control message used to indicate that the stream has incurred a fatal error.

M_COPYIN High priority control message used during transparent ioctl processing to copy data
from the user to a STREAMS message.

M_COPYOUT High priority control message used during transparent ioctl processing to copy data
from a STREAMS message to the user.

330



messages(D5)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

M_IOCDATA High priority control message used during transparent ioctl processing to return the
status and data of a previous M_COPYIN or M_COPYOUT request.

M_PCCTL High priority control message used between neighboring modules and drivers.

M_PCSETOPTS High priority control message used to set stream head options.

M_STOPI High priority control message used to indicate that input should be stopped immediately.

M_STARTI High priority control message used to indicate that input can be restarted.

REFERENCES
allocb(D3), copyreq(D4), copyresp(D4), datab(D4), iocblk(D4), linkblk(D4), msgb(D4),
put(D2), srv(D2), stroptions(D4)

331



signals(D5)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

NAME
signals − signal numbers

SYNOPSIS
#include <sys/signal.h>
#include <sys/ddi.h>

DESCRIPTION
There are two ways to send a signal to a process. The first, proc_signal(D3), can be used by non-
STREAMS drivers. The second, by using an M_SIG or M_PCSIG message, can be used by STREAMS
drivers and modules.

The following is a list of the signals that drivers may send to processes.

SIGHUP The device has been disconnected.

SIGINT The interrupt character has been received.

SIGQUIT The quit character has been received.

SIGPOLL A pollable event has occurred.

SIGTSTP Interactive stop of the process.

SIGURG Urgent data are available.

SIGWAITING
All LWPs in a process are blocked.

SIGWINCH The window size has changed.

USAGE
The signal SIGTSTP cannot be generated with proc_signal. It is only valid when generated from a
stream.

REFERENCES
proc_ref(D3), proc_signal(D3), proc_unref(D3)

332



signals(D5)hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

333



333

C

canput(D3)  73
close(D2)  10
clrbuf(D3)  74
cmn_err(D3)  75
copyb(D3)  78
copyin(D3)  80
copymsg(D3)  82
copyout(D3)  84
copyreq(D4)  296
copyresp(D4)  298
cpsema(D3X)  86
cvsema(D3X)  87

D

datab(D4)  299
datamsg(D3)  88
delay(D3)  90
devflag(D1)  4
dki_dcache_inval(D3X)  91
dki_dcache_wb(D3X)  92
dki_dcache_wbinval(D3X)  93
dma_map(D3X)  94
dma_mapaddr(D3X)  95
dma_mapalloc(D3X)  96
dma_mapfree(D3X)  97

A

adjmsg(D3)  50
allocb(D3)  51
ASSERT(D3)  53

B

badaddr(D3X)  54
bcanput(D3)  55
bcopy(D3)  56
biodone(D3)  58
bioerror(D3)  60
biowait(D3)  61
bptophys(D3X)  62
bp_mapin(D3)  63
bp_mapout(D3)  64
brelse(D3)  65
btod(D3X)  66
btop(D3)  67
btopr(D3)  68
buf(D4)  292
bufcall(D3)  69
bzero(D3)  72

Index



334

Index

drv_getparm(D3)  98
drv_hztousec(D3)  100
drv_priv(D3)  101
drv_setparm(D3)  102
drv_usectohz(D3)  104
drv_usecwait(D3)  105
dtimeout(D3)  106
dupb(D3)  108
dupmsg(D3)  110

E

eisa_dma_buf(D4X)  304
eisa_dma_cb(D4X)  300
eisa_dma_disable(D3X)  111
eisa_dma_enable(D3X)  112
eisa_dma_free_buf(D3X)  113
eisa_dma_free_cb(D3X)  114
eisa_dma_get_buf(D3X)  115
eisa_dma_get_cb(D3X)  116
eisa_dma_prog(D3X)  117
eisa_dma_stop(D3X)  118
eisa_dma_swstart(D3X)  119
enableok(D3)  120
errnos(D5)  328
esballoc(D3)  121
esbbcall(D3)  123
etoimajor(D3)  124

F

flushband(D3)  125
flushbus(D3X)  126
flushq(D3)  127
freeb(D3)  128

freemsg(D3)  129
freerbuf(D3)  130
freesema(D3X)  131
free_rtn(D4)  306
fubyte(D3X)  132
fuword(D3X)  133

G

geteblk(D3)  134
getemajor(D3)  136
geteminor(D3)  137
geterror(D3)  138
getmajor(D3)  139
getminor(D3)  140
getnextpg(D3X)  141
getq(D3)  142
getrbuf(D3)  143

H

halt(D2)  13
hwcpin(D3X)  145
hwcpout(D3X)  146

I

info(D1)  5
init(D2)  14
initnsema(D3X)  147
initnsema_mutex(D3X)  148
insq(D3)  149
intr(D2)  16
intro(D1)  3



335

Index

intro(D2)  9
intro(D3)  49
intro(D4)  291
intro(D5)  327
iocblk(D4)  307
ioctl(D2)  18
iovec(D4)  309
itimeout(D3)  151
itoemajor(D3)  153

K

kern_calloc(D3X)  154
kern_free(D3X)  155
kern_malloc(D3X)  156
kmem_alloc(D3)  157
kmem_free(D3)  159
kmem_zalloc(D3)  160
kvtophys(D3X)  162

L

linkb(D3)  163
linkblk(D4)  310
LOCK(D3)  164
LOCK_ALLOC(D3)  166
LOCK_DEALLOC(D3)  168

M

makedevice(D3)  169
map(D2X)  20
max(D3)  171
messages(D5)  330

min(D3)  172
mmap(D2)  22
module_info(D4)  311
msgb(D4)  313
msgdsize(D3)  173
msgpullup(D3)  174

N

ngeteblk(D3)  175
noenable(D3)  177

O

open(D2)  24
OTHERQ(D3)  178

P

pcmsg(D3)  180
phalloc(D3)  182
phfree(D3)  183
physiock(D3)  184
pio_andb_rmw(D3X)  186
pio_andh_rmw(D3X)  187
pio_andw_rmw(D3X)  188
pio_badaddr(D3X)  189
pio_bcopyin(D3X)  190
pio_bcopyout(D3X)  191
pio_mapaddr(D3X)  192
pio_mapalloc(D3X)  193
pio_mapfree(D3X)  194
pio_orb_rmw(D3X)  195
pio_orh_rmw(D3X)  196



336

Index

pio_orw_rmw(D3X)  197
pio_wbadaddr(D3X)  198
poll(D2)  28
pollwakeup(D3)  199
pptophys(D3X)  200
prefix(D1)  6
print(D2)  30
proc_ref(D3)  201
proc_signal(D3)  202
proc_unref(D3)  203
psema(D3X)  204
ptob(D3)  205
put(D2)  31
putbq(D3)  206
putctl(D3)  207
putctl1(D3)  209
putnext(D3)  210
putq(D3)  211

Q

qenable(D3)  212
qinit(D4)  315
qreply(D3)  213
qsize(D3)  214
queue(D4)  317

R

RD(D3)  215
read(D2)  34
rmalloc(D3)  216
rmallocmap(D3)  219
rmalloc_wait(D3)  220

rmfree(D3)  221
rmfreemap(D3)  223
rmvb(D3)  224
rmvq(D3)  226

S

SAMESTR(D3)  227
scsi_alloc(D3X)  228
scsi_command(D3X)  229
scsi_free(D3X)  230
scsi_info(D3X)  231
sgset(D3X)  232
signals(D5)  332
size(D2)  35
sleep(D3)  233
SLEEP_ALLOC(D3)  235
SLEEP_DEALLOC(D3)  236
SLEEP_LOCK(D3)  237
SLEEP_LOCKAVAIL(D3)  238
SLEEP_LOCK_SIG(D3)  239
SLEEP_TRYLOCK(D3)  241
SLEEP_UNLOCK(D3)  242
spl(D3)  243
srv(D2)  36
start(D2)  39
strategy(D2)  40
strcat(D3)  245
strcpy(D3)  246
streams_interrupt(D3X)  247
STREAMS_TIMEOUT(D3X)  248
streamtab(D4)  319
strlog(D3)  249
stroptions(D4)  320
strqget(D3)  251



337

Index

strqset(D3)  253
subyte(D3X)  254
suword(D3X)  255

T

TRYLOCK(D3)  256

U

uio(D4)  323
uiomove(D3)  257
uiophysio(D3X)  259
unbufcall(D3)  261
undma(D3X)  263
unlinkb(D3)  264
unload(D2)  42
UNLOCK(D3)  265
unmap(D2X)  43
untimeout(D3)  266
untimeout_func(D3X)  267
ureadc(D3)  268
userdma(D3X)  270
uwritec(D3)  271

V

valusema(D3X)  273
vme_adapter(D3X)  274
vme_ivec_alloc(D3X)  275
vme_ivec_free(D3X)  276
vme_ivec_set(D3X)  277
volatile(D3X)  278
vpsema(D3X)  279

vsema(D3X)  280
v_getaddr(D3X)  281
v_gethandle(D3X)  282
v_getlen(D3X)  283
v_mapphys(D3X)  284

W

wakeup(D3)  285
wbadaddr(D3X)  286
WR(D3)  287
write(D2)  44





Tell Us About This Manual

As a user of Silicon Graphics products, you can help us to better understand your needs
and to improve the quality of our documentation.

Any information that you provide will be useful. Here is a list of suggested topics:

• General impression of the document

• Omission of material that you expected to find

• Technical errors

• Relevance of the material to the job you had to do

• Quality of the printing and binding

Please send the title and part number of the document with your comments. The part
number for this document is 007-2183-003.

Thank you!

Three Ways to Reach Us

• To send your comments by electronic mail, use either of these addresses:

– On the Internet: techpubs@sgi.com

– For UUCP mail (through any backbone site): [your_site]!sgi!techpubs

• To fax your comments (or annotated copies of manual pages), use this
fax number: 650-932-0801

• To send your comments by traditional mail, use this address:

Technical Publications
Silicon Graphics, Inc.
2011 North Shoreline Boulevard, M/S 535
Mountain View, California  94043-1389




