
Developer Magic™:
ProDev™ WorkShop Overview

Document Number 007-2582-003

Developer Magic™: ProDev™ WorkShop Overview
Document Number 007-2582-003

CONTRIBUTORS

Written and illustrated by John C. Stearns
Production by Laura Cooper
Engineering contributions by Lia Adams, Jim Ambras, Trevor Bechtel, Wes Embry,

Alan Foster, Christine Hanna, David Henke, Marty Itzkowitz, Mahadevan Iyer,
Lisa Kvarda, Stuart Liroff, Song Liang, Allan McNaughton, Michey Mehta, Sudhir
Mohan, Ashok Mouli, Anil Pal, Andrew Palay, Tom Quiggle, Kim Rachmeler, Jack
Repenning, Paul Sanville, Ravi Shankar, John Templeton, Michele Chambers
Turner, Shankar Unni, Mike Yang, Jun Yu, and Doug Young.

© Copyright 1995 Silicon Graphics, Inc.— All Rights Reserved
This document contains proprietary and confidential information of Silicon
Graphics, Inc. The contents of this document may not be disclosed to third parties,
copied, or duplicated in any form, in whole or in part, without the prior written
permission of Silicon Graphics, Inc.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure of the technical data contained in this document by
the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS 52.227-7013
and/or in similar or successor clauses in the FAR, or in the DOD or NASA FAR
Supplement. Unpublished rights reserved under the Copyright Laws of the United
States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd.,
Mountain View, CA 94043-1389.

Silicon Graphics is a registered trademark, and Developer Magic, IRIX IM, Indy,
POWER Onyx, IRIS ViewKit, Power Fortran Accelerator, OpenGL, Open Inventor,
ShowCase, IRIS Inventor, and Graphics Library are trademarks of Silicon Graphics,
Inc. ClearCase is a trademark of Atria Software, Inc. UNIX is a registered trademark
in the United States and other countries, licensed exclusively through X/Open
Company, Ltd. X Window System is a trademark of the Massachusetts Institute of
Technology. OSF/Motif is a trademark of the Open Software Foundation. PostScript
is a registered trademark of Adobe Systems, Inc.

iii

Contents

About This Guide ix

ProDev WorkShop Overview 1
Using the ProDev WorkShop Debugger 3

Debugger User Model 3
Where to Find Debugger Information 10

Navigating Through Code With the Static Analyzer and Browser 12
Static Analyzer User Model 13
Where to Find Static Analyzer Information 16
Browser User Model 16

Pinpointing Performance Problems With the Performance Analyzer 20
Performance Analyzer User Model 20
Where to Find Performance Analyzer Information 26

Determining the Thoroughness of Test Coverage With Tester 27
Tester User Model 27
Where to Finder Tester Information 30

Recompiling Within the ProDev WorkShop Environment With Build
Manager 30
Making Quick Changes With Fix and Continue 31

Fix and Continue User Model 31
Where to Find Fix and Continue Information 34

Debugging X/Motif Programs 34
Features of the X/Motif Analyzer 35
Where to Find X/Motif Analyzer Information 39

Building Application Interfaces With RapidApp 40
RapidApp User Model 41
Where to Find RapidApp Information 43

iv

Contents

A. Using Graphical Views 45
General Graphical View Characteristics 46
Manipulating the Display 47

Graph Control Area 47
Overview Window 49
Using the Mouse in a Graph 50

Selecting Nodes from outside the Graph 51
Filtering Nodes and Arcs 51

Node Menu 52
Selected Nodes Menu 52

B. Customizing ProDev WorkShop Tools 53
Customizing Within ProDev WorkShop 54
Changing X Resources 55

Glossary 57

v

List of Figures

Figure 1 Major Areas of the Main View Window 4
Figure 2 Typical Debugger Views Accessible at a Breakpoint 6
Figure 3 Array Visualizer 8
Figure 4 Machine-Level Debugger Views 9
Figure 5 Main Static Analyzer Window 12
Figure 6 Static Analyzer Queries Menu with Submenus 15
Figure 7 Browser View Window and Query Menus with

C++ Data 17
Figure 8 Generated Man and Web Page Templates 19
Figure 9 Performance Panel With Task Menu Displayed 21
Figure 10 Performance Analyzer Main Window 22
Figure 11 Usage View (Graphs) Window: Lower Graphs 23
Figure 12 Malloc Error View 24
Figure 13 Major Areas of the Main Tester Window 29
Figure 14 Using Fix+Continue 32
Figure 15 The X/Motif Analyzer Window 35
Figure 16 X/Motif Analyzer Widget Tree Examiner 36
Figure 17 X/Motif Analyzer Trace Examiner 38
Figure 18 RapidApp Window Displaying Container Palette 40
Figure 19 Creating a Widget 42
Figure A-1 Typical Graphical View 46
Figure A-2 Graph Display Controls 47
Figure A-3 Admin Menu in the Overview Window 49
Figure A-4 Overview Window with Resulting Graph 50
Figure A-5 Node Pop-up Menus 51

vi

vii

List of Tables

Table 1 Where to Find Debugger Information in the Developer
Magic: Debugger User’s Guide 10

Table 2 Where to Find Static Analyzer Information in the Developer
Magic: Static Analyzer and Browser User’s Guide 16

Table 3 Where to Find Browser Information in the Developer Magic:
Static Analyzer and Browser User’s Guide 18

Table 4 Performance Analyzer Views and Data 25
Table 5 Where to Find Performance Analyzer Information in the

Developer Magic: Performance Analyzer and
Tester User’s Guide 26

Table 6 Tester Command Line Interface Summary 28
Table 7 Where to Find Tester Information in the Developer Magic:

Performance Analyzer and Tester User’s Guide 30
Table 8 Where to Find Fix and Continue Information in the

Developer Magic: Debugger User’s Guide 34
Table 9 Where to Find X/Motif Analyzer information in the

Developer Magic: Debugger User’s Guide 39
Table 10 Where to Find RapidApp Information in the Developer

Magic: Application Builder User’s Guide 43

ix

About This Guide

This manual is an introduction and overview of ProDev WorkShop, Release
2.5.1 It contains the following:

• The body of the manual, “ProDev WorkShop Overview,” describes the
major tools in the ProDev WorkShop toolkit. It provides a user model
for each tool, highlights some major features, and provides pointers to
the user guides where you can get detailed information on the tools.

• Appendix A, “Using Graphical Views,” describes the features and
operation of graphical views in the ProDev WorkShop toolkit.

• Appendix B, “Customizing ProDev WorkShop Tools,” describes
features and resources available for customizing the look and operation
of ProDev WorkShop tools.

• A glossary of commonly used terms in the ProDev WorkShop toolkit.

x

About This Guide

1

0. ProDev WorkShop Overview

Welcome to ProDev WorkShop, a major part of the Developer Magic
software development environment. ProDev WorkShop is a software toolset
for the development of C, C++, Ada, and Fortran applications. These
powerful, highly visual tools help you understand your program’s structure
and operation so that you can diagnose very difficult, traditionally
time-consuming problems in a short amount of time. With them, you can
develop applications for the entire Silicon Graphics product line, from
Indy to POWER Onyx workstations.

Note: In the past, the software development environment was called
CASEVision ; that name has been replaced by Developer Magic. In
addition to ProDev WorkShop, the Developer Magic environment includes
ProMPF—a special module for multi-process Fortran programming—and
IDO (IRIX Development Option)—the base compiler and libraries. Some of
the documentation may still use the CASEVision name; those documents
will be updated soon.

The ProDev WorkShop toolset provides:

• Comprehensive control over the debugging process—You can set
simple breakpoints with the click of a mouse button or define complex
conditions for your traps. ProDev WorkShop’s fast data watch points
with kernel support are especially adept at tracking memory corruption
problems.

• Visual debugging environment for examining data in your active
program—ProDev WorkShop provides convenient, graphical views of
variables, expressions, large arrays, and data structures. If you prefer a
tty-style interface, you can always dump values directly using
WorkShop’s Debugger command line.

• Powerful static analysis for understanding your program—You can
view the structure of your program and relationships such as call trees,
function lists, class hierarchies, and file dependencies. And you can get
this information whether or not the program can be compiled.

2

ProDev WorkShop Overview

• The ability to collect performance and coverage information during
test runs—ProDev WorkShop’s Performance Analyzer lets you see
where your program spends its time and pinpoint performance bugs,
including those due to memory problems. The Tester tool shows you
which source lines and basic blocks are covered in your tests.

• Convenient recompiling from within the ProDev WorkShop
environment—WorkShop’s standard build tools let you view file
dependencies and compiler requirements and fix compile errors
conveniently.

• Quick recompiles for simple changes—The Fix and Continue tool lets
you make simple changes without having to go through a major
recompile and relinking, dramatically reducing the number of
edit-compile-debug cycles.

• Ability to analyze structures and relationships in C++ and Ada
code—The Browser provides global graphical and textual views of
relationships between language-specific entities, including inheritance,
containment, and interactions.

• Specialized debugging for X/Motif applications—The X/Motif
Analyzer lets you solve the special problems in X/Motif application
development. You can look at object data, set breakpoints at the object
or X protocol level, trace X and widget events, and tune performance.

• Rapid application development—The RapidApp tool lets you create
graphical interfaces for C++ applications quickly and easily. RapidApp
lets you build graphical interfaces by dragging and dropping interface
elements (based on IRIX IM (X/Motif) widgets and IRIS
ViewKit -style components) onto a template window.

This overview gives you a broad exposure to the ProDev WorkShop toolset
as well as pointers to the documentation for getting detailed information.
The overview is organized as follows:

• “Using the ProDev WorkShop Debugger”

• “Navigating Through Code With the Static Analyzer and Browser”

• “Pinpointing Performance Problems With the Performance Analyzer”

• “Determining the Thoroughness of Test Coverage With Tester”

• “Recompiling Within the ProDev WorkShop Environment With Build
Manager”

Using the ProDev WorkShop Debugger

3

• “Making Quick Changes With Fix and Continue”

• “Debugging X/Motif Programs”

• “Building Application Interfaces With RapidApp”

In addition to the ProDev WorkShop tools, you can separately purchase:

• Developer Magic Pro MPF—a visual code parallelization tool used
with the Power Fortran Accelerator to help balance parallel loops in
Fortran applications

• Developer Magic ClearCase —a toolset for version control,
configuration management, and process control for software
organizations

Note: If you use ClearCase, SCCS, or RCS, you can check source files
directly into or out of ProDev WorkShop and MegaDev.

• Developer Magic Tracker—an application builder for creating change
control and change tracking systems. It can be integrated with
ClearCase.

Using the ProDev WorkShop Debugger

The Debugger is a UNIX source-level debugging tool that provides special
windows (views) for displaying program data and execution state as the
program executes. The Debugger lets you set various types of breakpoints
and watch points where you can conveniently view data such as variables,
expressions, structures, large arrays, call stacks, and machine-level values.
The WorkShop Debugger goes far beyond the capabilities of dbx. It includes
fast data watchpoints and other types of traps; graphical views for
displaying local variables, source-level expressions, array variables, and
data structures; and debugging at the machine level.

Debugger User Model

All WorkShop activities can be accessed from the Main View window, which
is illustrated in Figure 1.

4

ProDev WorkShop Overview

Figure 1 Major Areas of the Main View Window

The basic model for using the Debugger is to:

1. Invoke the Debugger by typing:

cvd [-pid pid] [-host host] [executable [corefile]] [&]

The -pid option lets you attach the Debugger to a running process.
You can use this to determine why a live process is in an infinite loop or
is otherwise hung.

Control panel,

Source code

Debugger command

Annotation column,

Provides access

Permits simple static

Lets you manipulate
source files and launch

Lets you show or hide
items in the annotation
column

Lets you set up
performance
analysis testing

Lets you specify
all trap types

Provides alternative

Provides access
to the online
help system

Provides general-purpose
options

to the data viewing
windows

analysis queries

options for execution
control

for controlling

display area,

for viewing or

line, for using the

recompiles

command line interface

program execution

for viewing
or editing code

setting traps and

Lets you make minor
changes easily

performance data

Using the ProDev WorkShop Debugger

5

The argument executable is the name of the executable file for the
process you want to run. It is optional; you can invoke the Debugger
first and specify the executable later.

The corefile option lets you invoke the Debugger and specify a core file
(with its executable) to try to determine why a program crashed.

The -host option lets you specify a remote host on which the target
executable will be run; the Debugger runs locally. This option is useful
if:

• you don’t want the Debugger windows to interfere with the
application you are debugging.

• you are supporting an application remotely.

• you don’t want to use the Debugger on the target system for
another reason.

2. Set stop traps, that is, breakpoints, in the source code.

Simple traps are set by clicking the left mouse button in the annotation
column to the left of the source code display or by using the Traps
menu. More complex traps, including watch points, can be set and
managed from the Trap Manager, Signal Panel, and Syscall Panel,
which can be accessed from the Views menu. You can also set traps by
typing them at the Debugger command line in Main View. You can stop
a process at any time by clicking the Stop button in the Main View
control area.

3. Start the program by clicking the Run button in Main View.

4. When the process stops at a trap or other stopping point of interest, you
can examine the data in the Debugger view windows (accessed from
the Views menu).

You can display view windows at any time; they update automatically
each time the program stops. Figure 2 shows four typical Debugger
views and indicates how you access them from the Views menu.

6

ProDev WorkShop Overview

Figure 2 Typical Debugger Views Accessible at a Breakpoint

PC (program counter)

Lets you trace through the call stack

Lets you enter expressions (including
global variables) for evaluation

Lets you display or change data structures and

Lets you view or reset local

Views menu

dereference pointers

variables

at breakpoint

Using the ProDev WorkShop Debugger

7

Figure 3 shows the Array Visualizer, a powerful view for examining
data in arrays of up to 100 x 100 elements. You can look for problem
areas in a 3D rendering of the array, click on the area of interest, and
view the numerical values in a spreadsheet format. In Figure 3, the hue
option has been set so that the values appear in a color spectrum from
blue (lowest) to red (highest) with out-of-range anomalies appearing in
gray. Note the high point coming out of the 3D image; it demonstrates
how anomalies in large arrays stand out.

If you need to debug your program at the machine level, you can use
Register View, Disassembly View, and Memory View, as shown in
Figure 4. These are accessed from the Views menu in the Debugger
Main View as well.

5. Use the control panel options in Main View to continue execution (see
Figure 1).

From any breakpoint, you have these options:

■ The Continue button runs the program until the next breakpoint.

■ The “Continue To” selection in the PC menu proceeds to a specified
source line. Placing the cursor in a line specifies it.

■ The “Jump To” selection in the PC menu goes to a specified line (by
the cursor), skipping over any intermediate code.

■ The Step Into button continues execution by one step or a number
specified by holding down the right mouse button over the Step
Into button and selecting the number from the dialog box. The
process then continues the specified number of source lines and
enters any called functions.

■ The Step Over button similarly proceeds a specified number of lines
but executes intermediate functions without stepping into them.

■ The Return button executes the remaining instructions in a function
and stops on return from that function.

6. Check out the source code that needs to be fixed.

If you find a bug and are using an integrated source control program
such as ClearCase, RCS, or SCCS, you can check out the source code
from Main View (or Source View, an alternate editing window).

Choose “Check Out” from the Versioning submenu in the Source menu.

8

ProDev WorkShop Overview

Figure 3 Array Visualizer

Array specification field

Row and column selection controls

3D viewing area

Data selection pointer

Anomaly standing out in 3D view

Spreadsheet browsing area

Cell corresponding to data anomaly. If
you click the data in the 3D viewing area,
the corresponding cell will be selected.

Currently selected cell

Using the ProDev WorkShop Debugger

9

Figure 4 Machine-Level Debugger Views

Register View, for viewing or changing the contents of registers

Memory View, for viewing or changing the contents of memory addresses

Disassembly View, for viewing
or changing machine-level
code

10

ProDev WorkShop Overview

7. Fix any problems in your code using the source code display area in
Main View, Source View, or the editor of your choice.

Both Main View and Source View let you do simple editing and
annotate the code with trap indicators. Source View also lets you
display test data from the Performance Analyzer and Tester in the
annotation column. If you prefer to view source code in a text editor
other than Source View, add the line

*editorCommand: editor

to your .Xdefaults file, where editor is the command for the editor you
wish to use.

8. Recompile using Build Manager.

Build Manager has two windows: Build View and Build Analyzer.
Build View lets you compile, view compile error lists, and access the
offending code in Source View or an editor of your choice. Build
Analyzer lets you view build dependencies and recompilation
requirements, and access source files. Build View uses the UNIX make
facility as its default build software. Although Build Analyzer
determines dependencies using make, you can substitute the build
software of your choice, any make that runs on Silicon Graphics
platforms.

Where to Find Debugger Information

To find out more about the Debugger, refer to Table 1.

Table 1 Where to Find Debugger Information in the Developer Magic:
Debugger User’s Guide

Topic See ...

General Debugger information Chapter 1, “Getting Started with the WorkShop Debugger”

Debugger tutorial Chapter 3, “A Short Debugger Tutorial”

Debugger interaction with source files Chapter 2, “Managing Source Files”

Managing windows while performing multiple tasks “Project Session Management Windows” on page 224

Comprehensive trap information Chapter 4, “Setting Traps”

Using the ProDev WorkShop Debugger

11

Controlling execution in a process (stepping, jumping, etc.) Chapter 5, “Controlling Process Execution”

Examining Debugger data in general at the source level Chapter 6, “Examining Debugger Data”

Tracing through the call stack “Tracing Through Call Stack View” on page 85

Entering expressions to be evaluated at stopping points “Evaluating Expressions” on page 88

Viewing or changing the values of variables “Variable Browser” on page 260

Examining data in arrays using the 3D or spreadsheet format “Array Browser” on page 232

Determining the data structures of variables “Structure Browser” on page 249

Using the Debugger command line “Debugger Command Line” on page 289

Examining debugger data at the machine level “Machine-level Debugging Windows” on page 262

Using the debugger to trap memory allocation problems Chapter 8, “Detecting Heap Corruption”

Debugging multiprocess programs “Multiple Process Debugging Windows” on page 273

Table 1 (continued) Where to Find Debugger Information in the
Developer Magic: Debugger User’s Guide

Topic See ...

12

ProDev WorkShop Overview

Navigating Through Code With the Static Analyzer and Browser

The ProDev WorkShop Static Analyzer is a source code analysis and
navigation tool for analyzing source code written in C, C++, Fortran, or Ada
(with purchase of ProDev Ada only). (The Browser has additional features
for Ada and C++ and is described in “Browser User Model” on page 16.) The
Static Analyzer shows you the code’s structure (graphically or in text
format) including function calls, definitions of variables, file dependencies,
macro locations, class hierarchies, file dependencies, and other structural
details for understanding your code. You can also make specific queries,
such as showing where a function is used. You can even analyze programs
that don’t compile, a particularly nice feature for those porting code.

The Static Analyzer works by reading through source code files that you
specify and creating a database of program elements such as functions, files,
classes, methods, packages, and their relationships. The main Static
Analyzer window with a typical call graph is illustrated in Figure 5.

Figure 5 Main Static Analyzer Window

Display area, for showing the results

Provides options for specifying
and building the database of
files to be analyzed, for accessing
other tools, and for other tasks

Lets you select the format of
the data display: text, call tree,
class tree, or file dependency

Lets you review or repeat
prior tasks in this session

Lets you define the type of
information to display

Task identification label

of your queries in the format you select

Graphic controls for manipulating
the display of graphical views

Query target field, for entering
the target in specific queries

Navigating Through Code With the Static Analyzer and Browser

13

Static Analyzer User Model

Follow these steps for using the Static Analyzer:

1. Invoke the Static Analyzer, either by typing cvstatic or by selecting
“Static Analyzer” from the Launch submenu in any ProDev WorkShop
Admin menu (preferably from the directory where your source is
located).

2. Decide which files are to be analyzed.

You designate which files are to be analyzed in a special file called a
fileset. A fileset is a regular ASCII file with a format of one entry per line,
each line separated from the next by a carriage return. The entries can
be regular expressions, filenames, or included directories preceded by
the designator -I.

To specify a fileset, you can

• create the fileset manually using a text editor

• use the Fileset Editor, which is accessed from the Admin menu in
the Static Analyzer window

• let the Static Analyzer create the fileset automatically at startup by
defaulting to the files in the current directory that match the
expression *.[cCfF]

• let the Static Analyzer create the fileset automatically at startup
from the command line by typing cvstatic with the -executable
flag and designating an executable

• use the compiler to create a fileset (and database) by adding the
-sa,<dbdirectory> option to your makefile

Note: Many programs are so big that a query covering the entire scope
is useless due to its size and complexity. There are two ways to keep the
scope of your analysis at a manageable size: (1) Limit the number of files
to be analyzed or (2) avoid queries that begin with “List All ...”.

3. Decide how you are going to build the database.

Before you can specify a fileset, you must decide how you are going to
build the database. You can choose to create the database in scanner
mode (the default), which is fast but not sensitive to any specific
programming language, or in parser mode, which uses the compiler and
is slower but more thorough. Use scanner mode for large programs or

14

ProDev WorkShop Overview

for programs that do not compile. Scanner mode is particularly suited
to porting situations. Parser mode is better when you have code that
compiles and you need to determine language-specific relationships,
particularly in Fortran, Ada, and C++.

4. Build the database.

5. Perform your queries.

Queries are selected from the Queries menu in the Static Analyzer. They
fall into 13 categories, as shown in Figure 6. Remember that the “List
All ...” queries can produce overwhelming results for large programs.

6. View (and save) the results.

The Static Analyzer has four ways of presenting data, which are
selected from the Views menu:

• “Text View” displays query results in a text format. In addition to
listing the queried items, it indicates the source filename and line
number, and includes the actual source line.

• “Call Tree View” applies to function queries. It presents the data in
a graphical format with nodes (rectangles) representing functions
and arcs (arrows) representing calls to functions.

• “Class Tree View” applies to C++ class queries. It presents a class
inheritance tree with nodes representing classes and arcs
representing parent-child class relationships.

• “File Dependency View” applies to file queries. It presents a graph,
with nodes representing files and arcs representing include
relationships.

If you want to save a query in a graphical view, you can save a
PostScript version by selecting “Save Query...” from the Admin menu
and print it out at your leisure.

7. Access the source code.

Double-clicking any node in a graph or item in Text View brings up the
Source View window containing the corresponding source code.
Double-clicking any arc (arrow) displays Source View with the
corresponding call site or file inclusion.

Navigating Through Code With the Static Analyzer and Browser

15

Figure 6 Static Analyzer Queries Menu with Submenus

General submenu

Macros submenu Variables submenu

Functions

Files

Classes

Methods

Common

Types

Directories

Blocks

submenu

submenu

submenu

submenu

submenu

submenu

submenu

Packages submenu
Tagged Types submenu Task Types submenu

16

ProDev WorkShop Overview

Where to Find Static Analyzer Information

To find out more about the Static Analyzer, refer to Table 2.

Browser User Model

The Browser user model is similar to the Static Analyzer user model. After
you build the database (which must be done in parser mode), you access the
Browser by selecting “Browser” from the Static Analyzer Admin menu.

The Browser lets you display different sets of information including
relationships about C++ classes and members, Ada packages, tagged types,
tasks, and their members through these three views:

• Browser View—displays member and related information in an
expandable, hierarchical outline format with the members of the
current class, package, tagged type, or task in the left pane and related
elements on the right (see Figure 7). Clicking the diamond-shaped icons
next to the headings in the list hides or displays the associated
information.

Table 2 Where to Find Static Analyzer Information in the Developer Magic:
Static Analyzer and Browser User’s Guide

Topic See ...

General Static Analyzer description Chapter 1, “Introduction to the
WorkShop Static Analyzer”

Static Analyzer tutorial Chapter 2, “A Sample Session With the
Static Analyzer”

Specifying a fileset “Fileset Specifications” on page 32

Building a database using scanner mode “Scanner Mode” on page 41

Building a database using parser mode “Parser Mode” on page 42

Performing queries Chapter 4, “Static Analyzer: Queries”

Static Analyzer viewing formats Chapter 5, “Static Analyzer: Views”

Strategies for analyzing large programs Chapter 6, “Static Analyzer: Working on
Large Programming Projects”

Navigating Through Code With the Static Analyzer and Browser

17

Like the Static Analyzer, you have numerous queries available through
the Query menu. In addition, if you select an item in either of the
Browser View lists and hold down the right mouse button, you can
access the Queries menu specific to that type of item, that is, methods,
data members, classes, and so on.

Figure 7 Browser View Window and Query Menus with C++ Data

Member list Related list

Main Queries menu
and submenus

Method-specific Queries menu

18

ProDev WorkShop Overview

You can create man page templates for classes, packages, tasks, or
tagged types by selecting “Generate man pages...” from the Browser
View Admin menu. You simply specify one or more elements, click the
Generate button, and the Browser fills in the man page template for you.
Similarly you can create web pages by selecting “Generate web
pages...” from the Browser View Admin menu. See Figure 8.

• Class Graph—displays the hierarchy for the current subject in the
Browser View window with nodes as subjects and arcs as relationships.
Class Graph can show four types of relationships: inheritance,
containment, interaction, and friends. You can display all subjects, limit
the scope to those derived from the current subject, or get a butterfly
view showing the immediate base and derived subjects of the current
one.

• Call Graph—displays the calling relationships of methods, virtual
methods, or functions selected from Browser View with options for
customizing the display of the graph.

To find out more about the Browser, refer to Table 3.

Table 3 Where to Find Browser Information in the Developer Magic: Static
Analyzer and Browser User’s Guide

Topic See ...

General Browser description Chapter 7, “Getting Started with the
Browser”

C++ Browser tutorial Chapter 8, “Using the Browser for C++:
A Sample Session”

Ada Browser tutorial Chapter 9, “Using the Browser for Ada:
A Sample Session”

Detailed reference information Chapter 10, “The Browser Reference”

Browser View window “Browser View Window” on page 147

Class Graph window “Class Graph Window” on page 173

Call Graph window “Call Graph Window” on page 176

Generating man pages “Man Page Generation” on page 157

Generating web pages “Web Page Generation” on page 159

Navigating Through Code With the Static Analyzer and Browser

19

Figure 8 Generated Man and Web Page Templates

Generated man page template

Generated web page template

20

ProDev WorkShop Overview

Pinpointing Performance Problems With the Performance Analyzer

The ProDev WorkShop Performance Analyzer helps you understand how
your program performs so that you can correct any problems. In
performance analysis, you run experiments to capture performance data
and see how long each phase or part of your program takes to run. You can
then determine if the performance of the phase is slowed down by the CPU,
I/O activity, memory, or a bug and attempt to speed it up.

A menu of predefined tasks is provided to help you set up your experiments.
With the Performance Analyzer views, you can conveniently analyze the
data. These views show CPU utilization and process resource usage (such as
context switches, page faults, and working set size), I/O activity, and
memory usage (to capture such problems as memory leaks, bad allocations,
and heap corruption).

The Performance Analyzer has three general techniques for collecting
performance data:

• Counting—It can count the exact number of times each function and/or
basic block has been executed. This requires instrumenting the program,
that is, inserting code into the executable to collect counts.

• Profiling—It can periodically examine and record the program’s PC
(program counter), call stack, and resource consumption.

• Tracing—It can trace events that affect performance, such as reads and
writes, system calls, page faults, floating point exceptions, and mallocs,
reallocs, and frees.

Performance Analyzer User Model

1. Set up a general experiment to determine areas for improvement in
your program.

To set up a performance experiment, select a task from the Select Task
submenu in the Perf menu in the Debugger Main View. The task menu
lets you select predefined experiment tasks (see Figure 9). At this point,
you probably haven’t formed a hypothesis yet about where the
performance problems lie. If this is the case, select the “Determine
bottlenecks, identify phases” task. This is useful for determining the
general problem areas within the program.

Pinpointing Performance Problems With the Performance Analyzer

21

Figure 9 Debugger Main View With Perf Task Menu Displayed

2. Start the program by clicking the Run button in Main View.

This runs the experiment and collects the performance data, which is
written to a directory test0000 (or a name of your choice); test0000 is the
identification for your experiment.

3. Analyze the results in the Performance Analyzer window and the
Usage View (Graphs) window.

After the experiment has finished, you can display the results in the
Performance Analyzer window by selecting “Performance Analyzer” from
the Launch submenu in any ProDev WorkShop Admin menu or by typing
cvperf -exp experimentname. The results from a typical performance analysis
experiment appear in Figure 10, the main Performance Analyzer window,
and Figure 11, which shows a subset of the graphs in the Usage Views
(Graphs) window. You should be able to determine where the phases of
execution occur so that you can set sample traps between them. Sample traps
collect performance data at specified times and events in the experiment.

Tracks total time spent by function, source code

Tracks total time spent by function, source

Tracks CPU time spent by function, source

Tracks ideal time spent by function, source code

Tracks system calls during experiment

Tracks page faults during experiment

Tracks mallocs, reallocs, and frees

Tracks CPU time spent by source code

Lets you specify performance data to be collected

Tracks I/O activity at every read and write

line, and instruction with samples at 1-second

code line, and instruction at specified sample traps

code line, and instruction at specified sample traps

line, and instruction at specified sample traps

during experiment

line and instruction at specified sample traps

Tracks floating point exceptions during
experiment

intervals

22

ProDev WorkShop Overview

Figure 10 Performance Analyzer Main Window

Function list area displays functions

Usage chart area indicates

Time line area indicates where samples

Caliper and sample point

with their performance data from the
experiment, time spent in the function

general resource usage during
the experiment

were taken. The calipers let you limit the

experiment. Double-clicking a sample
point displays the call stack that occurred
there.

including its called functions, and time
spent in the function excluding calls

scope of the analysis to a portion of the

selector controls

Pinpointing Performance Problems With the Performance Analyzer

23

Figure 11 Usage View (Graphs) Window: Lower Graphs

Context switch

Reads/writes: data size

Reads/writes: counts

Poll and I/O calls

Total system calls

Process signals

Process size

Current event identification

Page faults

24

ProDev WorkShop Overview

4. Set sample traps at the start and end of each phase.

Setting sample traps between phases isolates the data to be analyzed on
a phase-by-phase basis. Sample traps are set by selecting “Sample”,
“Sample at Function Entry”, or “Sample at Function Exit” from the Set
Trap submenu in the Traps menu in the Debugger Main View or
through the Traps Manager.

5. Select your next experiment from the Task Menu in the Performance
Panel and run it by clicking the Run button in the Main View window.

You need to form a hypothesis about the performance problem and
select an appropriate task (see Figure 9) for your next experiment.
There are trade-offs in selecting tasks—experiments can collect huge
amounts of data and may perturb the results in some cases.

6. Analyze the results using the Performance Analyzer main window, its
views, or Source View with performance data annotations displayed.

A typical Performance Analyzer view, Malloc Error View, is shown in
Figure 12. The Performance Analyzer provides results in the windows
listed in Table 4.

Figure 12 Malloc Error View

malloc identification area, for identifying
the malloc selected in the list below and
showing the number of errors

malloc list area, for displaying all the
malloc errors and allowing you to
select them to view the call stack

Call stack area, for viewing the call
stack corresponding to the selected
malloc error

Pinpointing Performance Problems With the Performance Analyzer

25

Table 4 Performance Analyzer Views and Data

Performance Analyzer Window Data Provided

Performance Analyzer main window Function list with performance data, usage chart showing general resource usage
over time, and time line for setting scope on data

Call Stack View Call stack recorded when selected event occurred

Usage View (Graphs) Specific resource usage over time, shown as graphs

Usage View (Numerical) Specific resource usage for selected (by caliper) time interval, shown as numerical
values

Call Graph View A graph showing functions that were called during the time interval, annotated by
the performance data collected

I/O View A graph showing I/O activity over time during the time interval

Malloc View A list of all mallocs, their sizes and number of occurrences, and, if selected, their
corresponding call stack within the selected time interval

Malloc Error View A list of malloc errors, their number of occurrences, and if selected, their
corresponding call stack within the time interval

Leak View A list of specific leaks, their sizes and number of occurrences, and if selected, their
corresponding call stack within the time interval

Heap View A generalized view of heap memory within the time interval

Source View The ProDev WorkShop text editor window showing source code annotated by
performance data collected

Working Set View The instruction coverage of dynamic shared objects (DSOs) that make up the
executable, showing instructions, functions, and pages that were not used within the
time interval

Cord Analyzer The Cord Analyzer is not actually part of the Performance Analyzer, but it works
with data from Performance Analyzer experiments. It lets you try out different
ordering of functions to see the effect on performance.

26

ProDev WorkShop Overview

Where to Find Performance Analyzer Information

To find out more about the Performance Analyzer, refer to Table 5.

Table 5 Where to Find Performance Analyzer Information in the Developer
Magic: Performance Analyzer and Tester User’s Guide

Topic See ...

General Performance Analyzer information Chapter 1, “Introduction to the Performance Analyzer”

Performance analysis theory “Sources of Performance Problems” on page 43

General Performance Analyzer tutorial Chapter 2, “Performance Analyzer Tutorial”

Memory leak tutorial “Memory Experiment Tutorial” on page 148

Setting up performance analysis experiments including task
selection

Chapter 3, “Setting Up Performance Analysis Experiments”
for details and “Selecting Performance Tasks” on page 94 for a
summary

Setting sample traps Chapter 4, “Setting Traps” in the ProDev WorkShop Debugger
User’s Guide

Performance Analyzer main window “The Performance Analyzer Main Window” on page 106

Usage View (Graphs) window “Usage View (Graphs)” on page 119

Watching an experiment without collecting data in the Process
Meter

“Process Meter” on page 125

Usage View (Numerical) window “Usage View (Numerical)” on page 125

Tracing I/O calls using the I/O View window “I/O View” on page 128

Call Graph View window “Call Graph View” on page 129

Finding memory problems “Analyzing Memory Problems” on page 138

Specifying performance annotations for Source View and Call
Graph View

“Config Menu” on page 114

Call Stack View window “Call Stack” on page 151

Improving working set behavior “Analyzing Working Sets” on page 152

Determining the Thoroughness of Test Coverage With Tester

27

Determining the Thoroughness of Test Coverage With Tester

Tester is a software quality assurance toolset for measuring dynamic
coverage over a set of tests. It tracks the execution of functions, individual
source lines, arcs, blocks, and branches.

Tester User Model

This section describes the user model for designing a single test. After you
have your instrumentation file and test directories set up, you can automate
your testing and create larger test sets. Tester has both a command line
interface (see Table 6) and a graphical user interface (see Figure 13).

1. Plan your test.

2. Create (or reuse) an instrumentation file.

The instrumentation file defines the coverage data you wish to collect
in this test.

3. Apply the instrument file to the target executable(s).

This creates a special executable for testing purposes that collects data
as it runs.

4. Create a test directory to collect the data files.

5. Run the instrumented version of the executable to collect the coverage
data.

6. Analyze the results.

Tester produces a wide variety of column-based reports. Most are
available in both interfaces: command line and graphical. The reports
can show source and assembly line coverage; coverage of functions; arc
coverage, that is, coverage of function calls; call graphs indicating caller
and callee functions and their counts; basic block counts; count
information for assembly language branches; summaries of overall
coverage; and argument tracing.

28

ProDev WorkShop Overview

Table 6 Tester Command Line Interface Summary

Command Category Command Name Description

general cvcov cattest Describes the test details for a test, test set, or test group

cvcov lsinstr Displays the instrumentation information for a particular test

cvcov lstest Lists the test directories in the current working directory

cvcov mktest Creates a test directory

cvcov rmtest Removes tests and test sets

cvcov runinstr Adds code to the target executable to enable you to capture coverage data, according
to the criteria you specify

cvcov runtest Runs a test or a set of tests

coverage analysis cvcov lssum Shows the overall coverage based on the user-defined weighted average over
function, line, block, branch, and arc coverage

cvcov lsfun Lists coverage information for the specified functions in the program that was tested

cvcov lsblock Displays a list of blocks for one or more functions and the count information
associated with each block

cvcov lsbranch Lists coverage information for branches in the program, including the line number at
which the branch occurs

cvcov lsarc Shows arc coverage, that is, the number of arcs taken out of the total possible arcs

cvcov lscall Lists the call graph for the executable with counts for each function

cvcov lsline Lists the coverage for native source lines

cvcov lssource Displays the source annotated with line counts

cvcov lstrace Shows the argument tracing information

cvcov diff Shows the difference in coverage for different versions of the same program

test set cvcov mktset Makes a test set

cvcov addtest Adds a test or test set to a test set or test group

cvcov deltest Removes a test or test set from a test set or test group

Determining the Thoroughness of Test Coverage With Tester

29

Figure 13 Major Areas of the Main Tester Window

cvcov optimize Selects the minimum set of tests that give the same coverage or meet the given
coverage criteria as the given set

test group cvcov mktgroup Creates a test group that can contain other tests or test groups; targets are either the
target libraries or DSOs

Table 6 (continued) Tester Command Line Interface Summary

Command Category Command Name Description

Provides general-purpose
options, such as “Launch
Tool”

Lets you select the format
of the data display: text,
call tree, or bar graph

Lets you define the type
of report to display

Lets you set up a
coverage test or
set of tests

Test identification area

Coverage results area

Control area

Query-specific fields area

Coverage categories
Number of successful covers
Number of possible covers
Cover %
Weighting for testing purposes

30

ProDev WorkShop Overview

Where to Finder Tester Information

To find out more information about Tester, refer to Table 7.

Recompiling Within the ProDev WorkShop Environment With Build Manager

The Build Manager lets you view file dependencies and compiler
requirements, fix compile errors conveniently, and compile software without
leaving the WorkShop environment. It provides two views:

• Build View—for compiling, viewing compile error lists, and accessing
the code containing the errors in Source View (the ProDev WorkShop
editor) or an editor of your choice.

• Build Analyzer—for viewing build dependencies and recompilation
requirements and accessing source files.

For more information on Build Manager, see Appendix B, “Using the Build
Manager,” in the Developer Magic:Debugger User’s Guide.

Table 7 Where to Find Tester Information in the Developer Magic: Performance
Analyzer and Tester User’s Guide

Topic See ...

General Tester information “Tester Overview” on page 435

Automated testing “Automated Testing” on page 446

Command line interface tutorial Chapter 23, “Tester Command Line
Interface Tutorial”

Graphical user interface tutorial Chapter 25, “Tester Graphical User
Interface Tutorial”

Command line interface details Chapter 24, “Tester Command Line
Reference”

Graphical user interface details Chapter 26, “Tester Graphical User
Interface Reference”

Making Quick Changes With Fix and Continue

31

Making Quick Changes With Fix and Continue

Fix and Continue is part of the Developer Magic MegaDev module. The Fix
and Continue feature lets you make minor changes to your code from within
WorkShop without having to recompile and link the entire system. You issue
Fix and Continue commands in the Debugger Main View window, either by
selecting them from the Fix+Continue menu or typing them in directly in the
Debugger command line area.

With Fix and Continue, you can edit a function, parse the new function, and
continue execution of the program being debugged. Fix and Continue
enables you to speed up your development cycle significantly. For example,
a program that takes 5 minutes to rebuild through a conventional compile
might take 45 seconds using Fix and Continue.

Fix and Continue lets you:

• Redefine existing function definitions

• Disable, reenable, save, and delete redefinitions

• Set breakpoints in and single-step within redefined code

• View the status of changes

• Examine differences between original and redefined functions

Figure 14 shows you the WorkShop Main View during a Fix and Continue
session and explains how to use the Fix and Continue menu.

Fix and Continue User Model

1. Invoke the Debugger as you normally would by typing:

cvd [-pid pid] [-host host] [executable [corefile]] [&]

See “Debugger User Model” on page 3.

2. Navigate to the function to be changed.

You can get to the function numerous ways, by selecting “Search...”
from the Source menu, typing func functionname at the Debugger
command line, or simply scrolling to the location. If you did not use
func functionname, you need to place the cursor inside the function.

32

ProDev WorkShop Overview

Figure 14 Using Fix+Continue

Function to be edited
appears highlighted,
with line numbers in
decimal format

Turns on edit mode, highlighting the current
function and changing the line number display
Lets you make Fix+Continue edits using
an external editor
Lets you try out your change
Returns from Fix+Continue edit mode
to read-only
Displays the difference between the edited
and original source code in side-by-side
window panes
Lets you toggle between enabling the edited
and compiled versions of the selected code
Cancels all edits
Saves the current fixes to a file
Saves all changes from current session to
the appropriate files
Lets you display the Fix+Continue status,
message, and build environment windows
Allows you to set preferences including the
external editor command, the difference tool,
and behavior related to the changes

Making Quick Changes With Fix and Continue

33

3. Select “Edit” from the Fix+Continue menu.

This turns on edit mode, highlighting the function source code. If line
numbers are displayed, those in the selected function appear with a
two-part number separated by a decimal point. The left part represents
the starting line number of the function in the source file before
selecting “Edit”. The right part renumbers the source within the
function to make it easier to keep track of added new lines.

4. Make your changes to the source code.

You can do this directly in Main View or you can use a preferred editor
by selecting “External Edit” from the Fix+Continue menu.

5. Try out your changes.

Selecting “Parse And Load” adds your changes to the executable you
are debugging. The changed function will get executed the next time it
is invoked. If you stopped in the edited function, the Debugger will let
you continue from the corresponding line in the new function, barring
certain restrictions.

6. If the changes are satisfactory, save them for later compiling.

“Save File+Fixes As...” saves the fixes in your current file. “Update All
Files...” saves all fixes in your current session.

At any point, you can make comparisons with your old code. “Show
Difference” displays the old and new source code in a side-by-side format.
“Edited<-->Compiled” lets you toggle between the old and new executables
making it easy to verify or demonstrate your bug fix.

34

ProDev WorkShop Overview

Where to Find Fix and Continue Information

To find out more information about Fix and Continue, refer to Table 8.

Debugging X/Motif Programs

The X/Motif Analyzer provides special debugging support for X/Motif
applications and is available from the WorkShop Views menu. The X/Motif
Analyzer operates in a number of modes (referred to as examiners) for
examining different types of X/Motif objects. The X/Motif Analyzer
provides information unavailable through conventional debuggers. It also
lets you set widget-level breakpoints and collect X event history.

When you first invoke the X/Motif Analyzer, it comes up in its Widget
Examiner mode. You can switch to the other examiners through the
Examiner menu or by clicking the tabs at the bottom of the window (See
Figure 15).

Table 8 Where to Find Fix and Continue Information in the Developer Magic:
Debugger User’s Guide

Topic See ...

General information and tutorial Chapter 7, “Debugging with
Fix+Continue: A Tutorial”

Detailed command information “Fix+Continue Windows” on page 277

Debugging X/Motif Programs

35

Figure 15 The X/Motif Analyzer Window

Features of the X/Motif Analyzer

The X/Motif Analyzer provides the following types of examiners:

• Widget examiner—identifies a widget’s ID, name, class, and parent,
and displays its definitions.

• Widget tree examiner—displays the widget hierarchy (see Figure 16).
The widgets can be displayed by name, class, or ID by selecting from

Examiner menu lets you
select different types of

Data display area shows

Examiner tabs provide a
quick way to select examiners

data appropriate to the type

data for examination.

of examiner.

36

ProDev WorkShop Overview

the widget display menu. Double-clicking a widget node switches to
the widget examiner and displays the data for the selected widget.

Figure 16 X/Motif Analyzer Widget Tree Examiner

• Breakpoints examiner—lets you set breakpoints at the widget and
widget class level. You can set breakpoints at

– callback functions

– widget events

– resource changes caused

– timeout callback functions

– input callback functions

– widget state changes

– X events

– X requests

widget display menu

Debugging X/Motif Programs

37

• Trace examiner—lets you trace the execution of your application and
collect the following types of data:

– X Server Events

– X Server Requests

– widget event dispatch information

– widget resource changes

– widget state changes

– Xt callbacks

Figure 17 is a typical example of the trace examiner. The events appear
in a list. Double-clicking an event displays its details.

• Callback examiner—comes up automatically when the process stops in
a callback. It displays

– the callstack frame for the callback function

– widget information

– the callback data structure

• Window examiner—identifies the window, its parent and any children,
and displays window attribute information

• Event examiner—displays the event structure for a given XEvent
pointer

• Graphics context (GC) examiner—displays the X graphics context
attributes for a given GC pointer

• Pixmap examiner—displays the basic attributes of an X pixmap,
including size and depth, and can provide an ASCII display of small
pixmaps, using the units digit of the pixel values

• widget class examiner—displays the widget class attributes for a given
widget class pointer

38

ProDev WorkShop Overview

Figure 17 X/Motif Analyzer Trace Examiner

Event list

Selected event
details

Debugging X/Motif Programs

39

Where to Find X/Motif Analyzer Information

To find out more information about the X/Motif Analyzer, refer to Table 9.

Table 9 Where to Find X/Motif Analyzer information in the Developer Magic:
Debugger User’s Guide

Topic See ...

General information and tutorial Chapter 10, “Using the X/Motif
Analyzer: A Tutorial”

Detailed reference information “X/Motif Analyzer Windows” on
page 193

Setting breakpoints to capture
widget-level information

“Breakpoints Examiner” on page 197

Tracing widget-level data through the
execution of a program

“Trace Examiner” on page 214

Getting information on a specified
widget

“Widget Examiner” on page 216

Displaying a graph of the widget
hierarchy

“Tree Examiner” on page 217

Getting information on a specified
callback

“Callback Examiner” on page 219

Getting information on a specified
window

“Window Examiner” on page 219

Getting information on a specified X
event

“Event Examiner” on page 220

Getting information on a specified
graphics context

“Graphics Context Examiner” on
page 221

Getting information on a specified
pixmap

“Pixmap Examiner” on page 222

40

ProDev WorkShop Overview

Building Application Interfaces With RapidApp

RapidApp is a simple, interactive tool for creating application interfaces. It’s
integrated with the other WorkShop tools to provide a complete
environment for developing object-oriented applications quickly and easily.
RapidApp generates C++ code, with interface classes based on the IRIS
ViewKit toolkit and IRIS IM (the Silicon Graphics version of X/Motif).
RapidApp also includes predefined interface components that allow you to
conveniently use other Developer Magic libraries such as OpenGL and
Open Inventor . Applications produced by RapidApp are automatically
integrated into the Indigo Magic Desktop environment, letting you take
advantage of Silicon Graphics’ interface and desktop technology.

Working with RapidApp is similar to using a drawing tool such as
Showcase . A typical RapidApp window is shown in Figure 18. RapidApp
lets you create interface elements by clicking icons representing widgets or
components in the palette area, positioning them in a template window, and
setting their resources in the editing area.

Figure 18 RapidApp Window Displaying Container Palette

Palette area
Resource

Object

editing area

information

Palette selection
tabs

Building Application Interfaces With RapidApp

41

RapidApp User Model

RapidApp users should be familiar with IRIX IM, IRIS ViewKit, and C++
programming. Here’s the basic user model:

1. Invoke RapidApp by typing rapidapp in the directory in which you
wish to build your application.

The RapidApp window is displayed as shown in Figure 18. There are
six palettes of icon widgets available. The number of palettes and icons
available will increase over time as new, useful widgets are developed.
The palettes and icons are:

• Container palette—provides container widgets, that is, widgets
that can hold other widgets

• Controls palette—provides miscellaneous widgets, typically for
controls, fields, and so on.

• Windows palette—provides simple or special-purpose windows
and window-oriented controls, such as menu bars and pulldown
menus

• ViewKit palette—provides ViewKit components, that is,
prepackaged assemblies of widgets from the ViewKit libraries

• Inventor palette—provides viewers, editors, and drawing areas
compatible with IRIS Inventor

The process is then one of selecting containers, populating them with
widgets, and assembling them into elements of your user interface.

2. Select a container widget.

A rubber-band box appears, representing the initial default size of the
widget. Use the mouse to drag it to a working area on your desktop (or
inside another container). After you’ve positioned the new container
widget, you can adjust its size by dragging the corners.

3. Edit the widget’s resources.

Customize the widget for your application. RapidApp changes the
resource editing area according to the type of widget you are working
with. It displays text fields for string resources, radio buttons for
Booleans, and menus for resources with multiple values. Figure 19

42

ProDev WorkShop Overview

illustrates the creation of a drawing area container widget. The drawing
area icon has been selected from the container palette, the new widget
has been placed, and the resource editing area has changed accordingly.

Figure 19 Creating a Widget

4. Select “Play Mode” from the View menu.

This lets you try out the interface design. When you are through trying
it out, go back to working on the interface by selecting “Build Mode”
from the View menu.

5. Perform any further edits on the widget.

6. Repeat steps 2-5 until your window (or application) is complete.

7. Select “Generate C++” from the Project menu.

This produces the source code (including Makefile) necessary to
implement the interface you have designed. It also displays the Builder
information window, a shell that displays RapidApp status messages.

Selected widget icon

Resulting

Resulting widget

resource
editor

Building Application Interfaces With RapidApp

43

8. Select “Edit File ...” from the Project menu to make any necessary
adjustments to the source code.

A file selection dialog box displays showing the contents of the
directory containing the generated source files. When you choose a file,
it will appear in your default editor.

9. Select “Build Application” from the Project menu to compile the new
program.

The WorkShop Build View displays and starts a compile going and lets
you view any compile errors (see “Recompiling Within the ProDev
WorkShop Environment With Build Manager” on page 30).

10. Use the other ProDev WorkShop and MegaDev tools, if necessary, to fix
any coding problems.

RapidApp is fully integrated with the rest of the Developer Magic
environment so that the full range of tools and libraries are at your
disposal for completing your application.

Where to Find RapidApp Information

To find out more information about RapidApp, refer to Table 10.

Table 10 Where to Find RapidApp Information in the Developer Magic:
Application Builder User’s Guide

Topic See ...

Understanding the RapidApp window “The RapidApp Interface” in Chapter 1

Using RapidApp “Basic Interaction Techniques” in
Chapter 1 and Chapter 3, “Building
Interfaces With RapidApp”

General tutorial “Example: A Calculator” in Chapter 1

Inventor tutorial Chapter 4, “Example Programs”

Windows “Choosing and Using Windows” in
Chapter 3

Containers “Using Containers” in Chapter 3

44

ProDev WorkShop Overview

Generating software code Chapter 2, “Creating Applications With
RapidApp”

Applying the other ProDev tools to
RapidApp applications

“Debugging and Interactively Adding
Functionality” in Chapter 2

Detailed reference information Appendix B, “RapidApp Reference”

Table 10 (continued) Where to Find RapidApp Information in the
Developer Magic: Application Builder User’s Guide

Topic See ...

45

Appendix A

A. Using Graphical Views

Many tools in ProDev WorkShop and related products provide graphical
views. The graphical view is a useful device for depicting relationships. This
appendix covers these topics:

• “General Graphical View Characteristics”

• “Manipulating the Display”

• “Filtering Nodes and Arcs”

46

Appendix A: Using Graphical Views

General Graphical View Characteristics

The purpose of a graphical view is to provide an overview that shows
relationships between entities and a means of accessing the detail
information. In a graphical view, entities are shown as rectangles (or nodes)
and relationships as connecting arrows (or arcs). When entities represent
source code, double-clicking a node will bring up Source View with the
corresponding code available for editing.

A typical graphical view appears in Figure A-1. Graphical views have a
display area with a row of controls underneath it. If the graph is larger than
the viewing area, scroll bars will be enabled.

Figure A-1 Typical Graphical View

Tool-specific menu

Graph display area

Graph control area

Manipulating the Display

47

Since an overwhelming amount of information can be displayed in a
graphical view, a number of methods are provided for simplifying the
display. They fall into two categories: those that manipulate the display
without changing the current contents and those that let you filter nodes and
arcs from the display.

Manipulating the Display

This section covers those methods that change the display without altering
the contents.

Graph Control Area

All graphical views have a control area containing a row of graph controls as
shown in Figure A-2.

Figure A-2 Graph Display Controls

Note: In some cases, the Multiple Arcs button may be disabled. This is
appropriate where there can only be one arc between nodes.

These graphical view controls are:

Zoom menu
shows the current scale of the graph. If clicked on, a pop-up
menu appears displaying other available scales. The scaling
range is between 15% and 300% of the normal (100%) size.

Zoom menu

Zoom Out button

Zoom In button

Overview button

Multiple Arcs button

Realign button

Rotate button

48

Appendix A: Using Graphical Views

Zoom Out button
resets the scale of the graph to the next available smaller size
in the range.

Zoom In button
resets the scale of the graph to the next available larger size
in the range.

Note: If you reposition the nodes by dragging and then use
one of the Zoom buttons, the configuration will return to the
initial position.

Overview button
invokes the overview pop-up display, which shows a
scaled-down representation of the graph. The nodes appear
in the analogous places on the overview pop-up, and a
white outline may be used to position the main graph
relative to the pop-up. Alternatively, the main graph may be
repositioned with its scroll bars. See the following section.

Multiple Arcs button
toggles between single and multiple arc mode. Multiple arc
mode is extremely useful for the “List Arcs” query, because
it indicates graphically how many of the paths between two
functions were actually used.

Realign button
redraws the graph, restoring the positions of any nodes that
were repositioned.

Rotate button
flips the orientation of the graph between horizontal
(calling nodes at the left) and vertical (calling nodes at the
top).

Note: If you reposition the nodes by dragging and then
change orientation, the nodes will return to the initial
positioning relative to each other.

Manipulating the Display

49

Overview Window

The Overview window lets you view the entire graph at a reduced scale. To
display the Overview window, you click the overview button (see
Figure A-3).

Figure A-4 shows a typical Overview window with the resulting graph. The
Overview window has a movable viewport that lets you select the portion
of the graph displayed in the main window. Special nodes and arcs are
highlighted for easy detection.

The Overview window has an Admin menu (see Figure A-3) with these
three selections:

“Scale to Fit”
scales the graph to match the aspect ratio of the overview
window.

“Show Arcs”
displays or hides the arcs between the nodes.

“Close”
closes the Overview window.

Figure A-3 Admin Menu
in the Overview Window

50

Appendix A: Using Graphical Views

Figure A-4 Overview Window with Resulting Graph

Using the Mouse in a Graph

You can move an individual node in a graph by dragging it with the middle
mouse button. This can help reveal obscured arc annotations.

You can select multiple nodes by dragging a selection rectangle around
them. You can Ctrl-click to add a single node to the group. Shift-clicking a

Viewport

Filtering Nodes and Arcs

51

node adds it to the group along with all the nodes that it calls. Once you have
selected a group of nodes, you can move them as a group with the middle
mouse button or perform other operations on them.

Selecting Nodes from outside the Graph

Often you can specify a node from a text view, search field, or dialog box and
it will be highlighted in the graph.

Filtering Nodes and Arcs

Another approach to simplifying a graph is to reduce the number of nodes
and arcs. Different tools have different filtering options. All graphs have two
types of node menus (accessed by holding the right mouse button) for
filtering nodes: the Node menu and the Selected Nodes menu. Both menus
are shown in Figure A-5.

Figure A-5 Node Pop-up Menus

Node menu

Selected Nodes menu

52

Appendix A: Using Graphical Views

Node Menu

The Node menu lets you filter a single node. It is displayed by holding the
right mouse button down while the cursor is over the node. The name of the
selected node appears at the top of the menu. The Node menu selections are:

“Hide Node”
removes the selected node from the graph display.

“Collapse Subgraph”
removes the nodes called by the selected node (and
subsequently called nodes) from the graph display.

“Show Immediate Children”
displays the functions called by the selected node.

“Show Parents”
displays all the functions that call the selected node.

“Show All Children”
displays all the functions (descendants) called by the
selected node.

Selected Nodes Menu

The Selected Nodes menu lets you filter multiple nodes. You can select
multiple nodes by dragging a selection rectangle around them. You can also
Shift-click a node and it will be selected along with all the nodes that it calls.
Holding down the right mouse button anywhere in the graph displays the
Selected Nodes menu. The Selected Nodes menu items are:

“Hide”
removes the selected nodes from the graph display.

“Collapse”
removes the nodes called by the selected nodes (and
descendant nodes) from the graph display.

“Expand”
displays all the functions (descendants) called by the
selected node.

53

Appendix B

B. Customizing ProDev WorkShop Tools

If the configuration of a window or view does not meet your particular
needs, you may be able to adjust the graphical user interface accordingly.
This appendix discusses how to make such changes.

• “Customizing Within ProDev WorkShop”

• “Changing X Resources”

54

Appendix B: Customizing ProDev WorkShop Tools

Customizing Within ProDev WorkShop

If you want to change the appearance of the ProDev WorkShop windows, we
recommend that you start with the menus provided for that purpose:

• WorkShop Main View: Display menu

• Array Browser: Color, Scale, Format, and Spreadsheet menus

• Call Stack View: Config and Display menus

• Disassembly View: Config, Disassemble, and Display menus

• Expression View: Config, Display, Language popup, and Format popup
menus

• Memory View: Mode menu

• Process Meter: Charts and Scale menu

• Register View: Config menu

• Source View: Display menu

• Structure Browser: Config, Display, Node, and Format popup menus

• Trap Manager: Config and Display menus

• Variable Browser: Language popup, and Format popup menus

• Build Analyzer: Filter, Selected Node popup and Node popup menus
and graphic controls

• Build View: Admin menu—”Preferences...” and “Build Options...”

• Performance Analyzer: Config menus in all views, and Selected Node
popup and Node popup menus and graphic controls in graphical views

• Static Analyzer: Views menu, and Selected Node popup and Node
popup menus and graphic controls in graphical views

• Tester: Views menu, and Selected Node popup and Node popup menus
and graphic controls in graphical views

Changing X Resources

55

Changing X Resources

While there are hundreds of X resources that can be changed, we
recommend that you avoid modifying recources if at all possible. However,
in some cases, there may be no way within WorkShop to make the desired
change. Here are some X resources for the Debugger and its views that you
may find useful:

*autoStringFormat
if true, sets default format for *char results as strings in
Expression View, the Variable Browser, and the Structure
Browser; otherwise the default format will be the hex
address.

*varBrowser*maxSymSize
lets you set the maximum number of variables that can be
displayed by the Variable Browser. The current default is 25.

*expressionView*maxNumOfExpr
lets you set the maximum number of expressions that can be
read from a file by Expression View. The current default is
25.

cvmain*sourceView*nameText.columns
sets the length of the File field in the WorkShop Main View
window. The default is 30 characters.

Cvmain*disableLicenseWarnings and *disableLicenseWarnings
disable the license warning messagse that display when
you start cvd and the other tools.

The following resources apply to Source View:

*tabWidth
sets the number of spaces for tabs in Source View.

*sourceView*textEdit.scrollHorizontal
if true, displays a horizontal scroll bar in Source View.

*sourceView*nameText.columns
sets the length of the File field in Source View. The default is
30 characters.

*svComponent*lineNumbersVisible
displays source line numbers by default.

56

Appendix B: Customizing ProDev WorkShop Tools

The following resource applies to the Build Analyzer:

*buildCommand
is used by the Build Analyzer to determine which program
to use to build with (make, smake, clearmake, etc.). The default
value is make.

To change these resources, you need to set the desired value in your
.Xdefaults file, re-run xrdb if you use it, and then restart your application so
that the resource gets picked up.

57

Glossary

anti-leak

See bad free.

arc

A relation between two entities in a program depicted graphically as lines
between rectangles (nodes). For example, arcs can represent function calls,
file dependency, or inheritance.

Array Browser

A Debugger view that displays the values of an array in a spreadsheet
format and can also depict them graphically in a 3D rendering.

bad free

A problem that occurs when a program frees a malloced piece of memory
that it had already freed (also referred to as an anti-leak condition or double
free).

Bar Graph View

A display mode of Tester that shows a summary of coverage information in
a bar graph.

basic block

A block of machine-level instructions used as a metric in Performance
Analyzer and Tester experiments. A basic block is the largest set of
consecutive machine instructions that can be formed with no branches into
or out of them.

boundary overrun

A problem that occurs when a program writes beyond a specified region, for
example overwriting the end of an array or a malloced structure.

58

Glossary

boundary underrun

A problem that occurs when a program writes in front of a specified region,
for example writing ahead of the first element in an array or a malloced
structure.

breakpoint

See trap

Browser (Static Analyzer)

A facility within the Static Analyzer for viewing structural and relationship
information in C++ or Ada programs. It provides three views: Browser View
for displaying member and class information; Class Graph for displaying
inheritance, containment, interaction, and friend relationships in the
hierarchy; and Call Graph for displaying the calling relationships of
methods, virtual methods, and functions.

Build Analyzer

A view that displays a graph of program files (source and object) indicating
build dependencies and provides access to the source files.

Build Manager

A tool for recompiling programs within WorkShop. The Build Manager has
two windows: Build Analyzer and Build View.

Build View

A view that lets you run compiles. In addition, Build View displays compile
errors and provides access to the code containing the errors.

calipers

See time line

call graph

A generic term for views used in several tools (Static Analyzer, C++ Browser,
Performance Analyzer, and Tester) that display a graph of the calling
hierarchy of functions. Double-clicking a function in a call graph causes the
Source View window to be displayed showing the function’s source code.

Call Graph

A display mode of the C++ Browser that shows methods and their calls. See

59

Glossary

also call graph and C++ Browser.

Call Graph View

A display mode of the Performance Analyzer that shows functions, their
calls, and associated performance data. See also call graph and C++ Browser.

Call Stack

A view that displays the call stack at the current context. In the Debugger
this means where the process is stopped; in the Performance Analyzer this
means sample traps and other events where data was written out to disk.
Each frame in the Call Stack window can show the function; argument
names, values, and types; the function’s source file and line number; and the
PC (program counter). Double-clicking a frame in the Call Stack causes the
Source View window to be displayed showing the corresponding source
code.

Call Tree View (Static Analyzer version)

A display mode of the Static Analyzer that displays the results of function
queries as a call graph. See also call graph and Static Analyzer

Call Tree View (Tester version)

A display mode of Tester that displays function coverage information in a
call graph. See also Tester

Call View

A display mode of the C++ Browser for displaying member and class
information. See also C++ Browser

Class Graph

A display mode of the C++ Browser for displaying inheritance, containment,
interaction, and friend relationships in the class hierarchy.

Class Tree View

A display mode of the Static Analyzer that displays the results of class
queries as a class hierarchy. See also Static Analyzer

ClearCase
A tool in the Developer Magic environment for performing configuration
management and version control.

60

Glossary

command line (Debugger)

A field in the Debugger Main View that lets you enter a set of commands
similar to dbx commands.

cord

A system command used to rearrange procedures in an executable to reduce
paging and achieve better instruction cache mapping. The Cord Analyzer
and Working Set View let you analyze the effectiveness of an arrangement
and try out new arrangements to improve efficiency.

Cord Analyzer

A tool that lets you analyze the paging efficiency of your executable’s
working sets, that is, the executable code brought into memory during a
particular phase or operation. It also calculates an optimized ordering and
lets you try out different working set configurations to reduce paging
problems. The Cord Analyzer works with the Working Set View, a part of the
Performance Analyzer. See also cord, working set, and Working Set View

counts

The number of times a piece of code (function, line, instruction, or basic
block) was executed as listed by Tester or the Performance Analyzer.

coverage

A term used in Tester. Coverage means a test has exercised a particular unit
of source code, such as functions, individual source lines, arcs, blocks, or
branches. In the case of branches, coverage means the branch has been
executed under both true and false conditions.

CPU-bound

A performance analysis term for a condition in which a process spends its
time in the CPU and is limited by CPU speed and availability.

CPU time

A performance analysis metric approximating the time spent in the CPU.
CPU time is calculated by multiplying the number of times a PC appears in
the profile of a function, source line, or instruction by 10 ms.

cvcord

The name of the Cord Analyzer executable. See also Cord Analyzer

61

Glossary

cvcov

The name of the Tester command line interface executable. See also Tester

cvd

The name of the Debugger executable. cvd has options for attaching the
Debugger to a running process (-pid), examining core files (executable), and
running from a remote host (-host). See also Debugger

cvperf

The name of the executable that calls the Performance Analyzer. cvperf has
an option (-exp) for designating the name of the experiment directory. See
also Performance Analyzer

cvspeed

The name of the executable that brings up the Performance Panel, a window
for setting up Performance Analyzer experiments. See also Performance
Panel

cvstatic

The name of the executable that calls the Static Analyzer. See also Static
Analyzer

cvxcov

The name of the executable that calls the graphical interface of Tester. See also
Tester

cycle count

The specified number of times to hit a breakpoint before stopping the
process, it defaults to 1. The cycle count for any trap can be set through the
Trap Manager view in the Debugger.

DCC

A native C++ compiler that allows you to use dynamic classes (also known
as Delta C++). See also the DCC(1) reference page for more information

Debugger

A tool in ProDev WorkShop for analyzing general software problems using
a live process. The Debugger lets you stop the process at specific locations in
the code by setting breakpoints (referred to as traps) or by clicking the Stop

62

Glossary

button. At each trap, you can display special windows called views, for
examining data. See also cvd

Disassembly View

A view that lets you see the program’s machine-level code. The Debugger
version shows you the code; the Performance Analyzer version additionally
displays performance data for each line.

double free

See bad free

DSO (dynamic shared object)

An ELF (Executable and Linking Format) format object file, similar in
structure to an executable program but with no main. It has a shared
component, consisting of shared text and read-only data; a private
component, consisting of data and the GOT (Global Offset Table); several
sections that hold information necessary to load and link the object; and a
liblist, the list of other shared objects referenced by this object. Most of the
libraries supplied by SGI are available as dynamic shared objects.

erroneous free

A problem that occurs when a program calls free() on addresses that were
not returned by malloc, such as static, global, or automatic variables, or other
invalid expressions.

event

An action that takes place during a process, such as a function call, signal, or
a form of user interaction. The Performance Analyzer uses event tracing in
experiments to help you correlate measurements to points in the process
where events occurred.

exclusive performance data

Performance Analyzer data collected for a function without including the
data for any functions it calls. See also inclusive performance data

Execution View

A Debugger view that serves as a simple shell to provide access outside of
WorkShop. It’s typically used to set environment variables, inspect error
messages, and conduct I/O with the program being debugged.

63

Glossary

experiment

The model for using the Performance Analyzer and Tester. The steps in
creating an experiment are (1) creating a directory to hold the results, (2)
instrumenting the executable (instrumentation is recompiling with special
libraries for collecting data), (3) running the instrumented executable as a
test, and (4) analyzing the results using the views in the tools. The first two
steps are done automatically when you use the Performance Panel and select
a performance task (performance experiments only). The term experiment
can also refer to the actual data itself that was saved.

Expression View

A Debugger view that lets you specify one or more expressions to be
evaluated whenever the process stops or the callstack context is changed.
Expression View lets you save sets of expressions for subsequent reuse,
specify the language of the expression (Ada, Fortran, C, or C++), and specify
the format for the resulting values.

File Dependency View

A display mode of the Static Analyzer that displays the results of queries in
a graph indicating file dependency relationships. See also Static Analyzer

Fileset Editor

A window for specifying a fileset, that is, the set of files to be used in creating
a database for Static Analyzer queries. The Fileset Editor also lets you specify
whether a file is to be analyzed using scanner mode or parser mode. See also
parser mode, scanner mode, and Static Analyzer

fine-grained usage

A technique in performance analysis that captures resource usage data
between sample traps.

Fix + Continue

A feature in the Debugger that lets you make source level changes and
continue debugging without having to perform a full compile and relinking.

floating point exception

A problem that occurs when a program cannot complete a numerical
calculation due to division by zero, overflow, underflow, inexact result, or
invalid operand. Floating point exceptions can be captured by the

64

Glossary

Performance Analyzer and can also be identified in the Array Browser.

freed memory

Freed memory is memory that was originally malloced and has been
returned for general use by calling free(). Accessing freed memory is a
problem that occurs when a program attempts to read or write this memory,
possibly corrupting the free list maintained by malloc.

function list

A generic type of view used in several tools (Static Analyzer, Performance
Analyzer, Tester, and Cord Analyzer) to list functions and related
information, such as location, experiment data, and executable code size.
Double-clicking a function displays its source code in Source View.

GLDebug

A graphical software tool for debugging application programs that use the
IRIS Graphics Library (GL). GLdebug locates programming errors in
executables when GL calls are used incorrectly. GLDebug is not part of
WorkShop but is accessible from the Admin menu in Main View.

heap corruption

A memory problem that may be due to boundary overrun or underrun,
accessing uninitialized memory, accessing freed memory, freeing a memory
location twice, or attempting to free a memory location erroneously. See also
malloc debugging library

Heap View

A Performance Analyzer view that displays a map of memory indicating
how blocks of memory were used in the time interval set by the time line
calipers.

ideal time

A performance analysis metric that assumes that each instruction takes one
cycle of the particular machine’s time. It’s then useful to compare the ideal
time with the actual time in an experiment.

inclusive performance data

Performance Analyzer data collected for a function where the total includes
data for all of the called functions. See also exclusive performance data

65

Glossary

instrumentation

See experiment

I/O-bound

A performance analysis term for a condition in which a process has to wait
for I/O to complete and may be limited by disk access speeds or memory
caching.

I/O View

A Performance Analyzer view that displays a chart devoted to I/O system
calls. I/O View can identify up to 10 files involved in I/O.

IRIS IM
A user interface toolkit on Silicon Graphics systems based on X/Motif .

IRIS IM Analyzer

A Debugger view for debugging X/Motif applications. The IRIS IM
Analyzer lets you look at object data, set breakpoints at the object or X
protocol level, trace X and widget events, and tune performance.

IRIS ViewKit
A Developer Magic toolkit that provides predefined widgets and classes for
building applications.

Leak View

A Performance Analyzer view that displays each memory leak that occurred
in your experiment, its size, the number of times the leak occurred at that
location during the experiment, and the call stack corresponding to the
selected leak.

library search path

A path you may need to specify when debugging executables or core files to
indicate which DSOs (dynamic shared objects) are required for debugging.
See also DSO

Main View

The main window of the Debugger. The MainView provides access to other
tools and views, process controls, a source code display, and a command line
for entering a set of commands similar to dbx. You can also add custom

66

Glossary

buttons to Main View using the command line.

Malloc Error View

A Performance Analyzer view that displays each malloc error (leaks and bad
frees) that occurred in an experiment, the number of times the malloc
occurred (a count is kept of mallocs with identical call stacks), and the call
stack corresponding to the selected malloc error.

malloc debugging library

A special library (libmalloc_cv.a) for detecting heap corruption problems.
Relinking your executable with the malloc library sets up mechanisms for
trapping memory problems.

Malloc View

A Performance Analyzer view that displays each malloc (whether or not it
caused a problem) that occurred in your experiment, its size, the number of
times the malloc occurred (a count is kept of mallocs with identical call
stacks), and the call stack corresponding to the selected malloc.

MegaDev

The package name for a set of advanced Developer Magic tools for the
development of C and C++ applications.

Memory-bound

A performance analysis term for a condition in which a process continuously
needs to swap out pages of memory.

memory leak

A problem when a program dynamically allocates memory and fails to
deallocate that memory when it is through with the space.

Memory View

A Debugger view that lets you see or change the contents of memory
locations.

Multiprocess View

A Debugger view that lets you manage the debugging of a multiprocess
executable. For example, you can set traps in individual processes or across
groups of processes.

67

Glossary

NCC

A native C++ compiler that uses the same compiler as DCC, but doesn’t
allow you to use dynamic classes.

node

The rectangles in graphical views. A node may represent a function, class, or
file depending on the type of graph.

Overview window

A window in graphical views that displays the current graph at a reduced
scale and lets you navigate to different parts of the graph.

palette

The portion of the RapidApp window that provides user interface elements
for creating graphical interfaces. See also RapidApp

parser mode

A method of extracting Static Analyzer data from source files. Parser mode
uses the compiler to build the Static Analyzer database. It is
language-specific and very thorough; as a result, it is slower than scanner
mode. See also scanner mode and Static Analyzer

Path Remapping

A dialog box that lets you set mappings to redirect filenames used in
building your executable to their actual locations in the filesystem.

PC (program counter)

The current line in a stopped process, indicated by a right-pointing arrow
with a highlight in the source code display areas and by a highlighted frame
in the Call Stack views.

Performance Analyzer

A tool in ProDev WorkShop for measuring the performance of an
application. To use the tool, you select one of the predefined analysis tasks,
run an experiment, and examine the results in one of the Performance
Analyzer views. See also cvperf

Performance Panel

A window for setting up Performance Analyzer experiments. The panel

68

Glossary

displays toggles and fields for specifying data to be captured. As a
convenience, you can select performance tasks (such as “Determine
bottlenecks...” or “Find memory leaks”) from a menu that specifies the data
automatically. See also cvspeed

performance task

See Performance Panel

phase

A performance analysis term for a period in an experiment covering a single
activity. In a phase, there is one limiting resource that controls the speed of
execution.

pollpoint sampling

A technique in performance analysis that captures performance data, such
as resource usage or event tracing, at regular intervals.

Process Meter

A view that monitors the resource usage of a running process without saving
the data. See also Performance Analyzer and Performance Panel

ProDev WorkShop

The package name for the core WorkShop tools.

profile

A record of a program’s PC (program counter), call stack, and resource
consumption over time, used in performance analysis.

Project View

A Debugger view for managing ProDev WorkShop and MegaDev tools
operating on a common target.

query

The term for a search through a Static Analyzer database to locate elements
in your program. Queries are similar to the IRIX grep command but provide
a more specific search. For example, you can perform a query to find where
a method is defined. See also Static Analyzer

69

Glossary

RapidApp

A tool in the Developer Magic environment for creating graphical interfaces
quickly and easily. RapidApp lets you drag and drop user interface elements
(for example, IRIS IM widgets, IRIS ViewKit components, Inventor
components, and so on) onto a template window to create the interface.

Register View

A Debugger view that lets you see or change the contents of the machine
registers.

Results Filter

A dialog box that lets you limit the scope of Static Analyzer queries. See also
query and Static Analyzer

sample trap

Similar to a stop trap except that instead of stopping the process,
performance data is written out to disk and the process continues running.
See also trap

sampling

In performance analysis, the capture of performance data, such as resource
usage or event tracing, at points in an experiment so that a graph of usage
over time can be created.

scanner mode

A method of extracting Static Analyzer data from source files. Scanner mode
is fast but not language-specific so that the source code need not be
compilable. Results may have minor inaccuracies. See also parser mode and
Static Analyzer

Signal Panel

A dialog box for specifying signals to trap.

Smart Build

An option to the compiler where only those files that must be recompiled are
recompiled.

Source View

A window for viewing or editing source code. Source View is an alternative

70

Glossary

editing window to Main View. If you have conducted Performance Analyzer
or Tester experiments, you can view the results in the column to the left of
the source code display area.

stack

See Call Stack

Static Analyzer

A tool in ProDev WorkShop for viewing the structure of a program at
different levels and locating where elements of the program are used or
defined. The Static Analyzer works by extracting structure and location
information from files that you specify and storing the information in a
database for subsequent analysis. You can view the analysis as a text list or
graphically. See also cvstatic, Call Tree View, Class Tree View, File
Dependency View, and Text View

stop trap

A breakpoint. See also trap

Structure Browser

A Debugger view that graphically displays data structures including data
values and pointer relationships.

Syscall Panel

A dialog box for specifying system calls to trap. You can designate whether
to trap the system calls at the entry or exit from the call.

test group

A grouping of experiments in Tester used to test a common DSO (dynamic
shared object).

test set

A group of experiments in Tester used to test a common executable.

Tester

A tool in ProDev WorkShop for measuring dynamic coverage over a set of
tests. It tracks the execution of functions, individual source lines, arcs,
blocks, and branches. Tester has both a command line and a graphical
interface.

71

Glossary

Text View (Static Analyzer version)

A display mode of the Static Analyzer that displays the results of queries as
a scrollable text list. See also Static Analyzer

Text View (Tester version)

A display mode of Tester that displays function coverage information in a
report form. See also Tester

time line

A feature in the main Performance Analyzer window that shows where
events occurred in an experiment and provides calipers for controlling the
scope of analysis for the Performance Analyzer views.

tracing

A record of a specified type of event (such as reads and writes, system calls,
page faults, floating point exceptions, and mallocs, reallocs, and frees) over
time, used in performance analysis.

trap

A mechanism for trapping data at specified points and conditions in a live
process. Also referred to as a breakpoint. There are two types of traps: stop
traps are used in debugging to halt a process, and sample traps are used in
performance analysis to collect data without halting the process. See also
watchpoint

Trap Manager

A window for managing traps. It lets you set simple or conditional traps,
browse (or modify) a list of traps, and save or load a set of traps.

uninitialized memory

Memory that is allocated but not assigned any specific contents. Accessing
uninitialized memory is a problem that occurs when a program attempts to
read memory that has not yet been initialized with valid information.

Usage View (Graphical)

A Performance Analyzer view that contains charts indicating resource usage
and the occurrence of events, corresponding to time intervals set by the time
line calipers.

72

Glossary

Usage View (Textual)

A Performance Analyzer view that displays the actual resource usage values
corresponding to time intervals set by the time line calipers.

Variable Browser

A Debugger view that displays the local variables valid in the current
context and their values (or addresses). The Variable Browser also lets you
view the previous value at the breakpoint. You can enter a new value directly
if you wish.

view

A window that lets you analyze data.

ViewKit

See IRIS ViewKit

watchpoint

A trap that fires when a specified variable or address is read, written, or
executed.

working set

The set of executable pages, functions, and instructions brought into
memory during a particular phase or operation. See also Working Set View

Working Set View

A Performance Analyzer view that lets you measure the coverage of the
dynamic shared objects (DSOs) that make up your executable. It indicates
instructions, functions, and pages that were not used in a particular phase or
operation in an experiment. Working Set View works with the Cord
Analyzer. See also working set and Cord Analyzer

Tell Us About This Manual

As a user of Silicon Graphics products, you can help us to better understand your needs
and to improve the quality of our documentation.

Any information that you provide will be useful. Here is a list of suggested topics:

• General impression of the document

• Omission of material that you expected to find

• Technical errors

• Relevance of the material to the job you had to do

• Quality of the printing and binding

Please send the title and part number of the document with your comments. The part
number for this document is 007-2582-003.

Thank you!

Three Ways to Reach Us

• To send your comments by electronic mail, use either of these addresses:

– On the Internet: techpubs@sgi.com

– For UUCP mail (through any backbone site): [your_site]!sgi!techpubs

• To fax your comments (or annotated copies of manual pages), use this
fax number: 650-932-0801

• To send your comments by traditional mail, use this address:

Technical Publications
Silicon Graphics, Inc.
2011 North Shoreline Boulevard, M/S 535
Mountain View, California 94043-1389

