MIPSpro™ POWER Fortran 90
Programmer’s Guide

Document Number 007-2760-001

CONTRIBUTORS

Written by David Cortesi (based on Power Fortran 77 text by Chris Hogue)

Production by Derrald Vogt

Engineering contributions by Ron Price, Ron Shapiro, Rohit Chandra..

Cover design and illustration by Rob Aguilar, Rikk Carey, Dean Hodgkinson,
Erik Lindholm, and Kay Maitz

© Copyright 1995, Silicon Graphics, Inc.— All Rights Reserved

This document contains proprietary and confidential information of Silicon
Graphics, Inc. The contents of this document may not be disclosed to third parties,
copied, or duplicated in any form, in whole or in part, without the prior written
permission of Silicon Graphics, Inc.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure of the technical data contained in this document by
the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS 52.227-7013
and/or in similar or successor clauses in the FAR, or in the DOD or NASA FAR
Supplement. Unpublished rights reserved under the Copyright Laws of the United
States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd.,
Mountain View, CA 94043-1389.

Silicon Graphics and the Silicon Graphics logo are registered trademarks of Silicon
Graphics, Inc.. Cray is a trademark of Cray Research, Inc.

MIPSpro™ POWER Fortran 90 Programmer’s Guide
Document Number 007-2760-001

Contents

List of Examples vii
List of Tables ix
About This Guide xi

Organization xi
Additional Reading xii
Conventions Used in This Guide xiii

Using Power Fortran 90 1

Power Fortran 90 Concepts 1

The Power Fortran Design Cycle 2
Tuning Power Fortran 90 3
Relation to Parallel Directives 4

Using Listing and Temporary Files 5
Selecting Files to Generate 6
Using the Transformed Source File 7
Using the Workshop Pro MPF File 8
Controlling the Power Fortran Listing File 9
Paginating the Listing 10
Specifying Optional Information 10
Disabling Message Classes 11
Viewing the Listing File 11

Contents

Interpreting the Listing 12
Default Listing Fields 12
Line Numbers 14
DO Loop Marking 14
Action Summary 14
Footnotes 17
Syntax Errors/Warning Messages 17
Sample Listings 18
Indirect Indexing 18
Function Call 20
Procedure Parameters 22
Reductions 24

Working With Power Fortran 90 27
Using Driver Options 27
Enabling Parallelization of Loops 27
Specifying a Work Threshold 27
Enabling Parallel /O 29
Specifying a Complexity Limit 29
Setting the Optimization Level 30
Controlling Variations in Round Off 31
Performing Inlining and Interprocedural Analysis

Preventing Use of Directives and Assertions 32

31

Contents

Using Directives and Assertions 32

Preventing Parallelization 32
C*$* ASSERT DO (SERIAL) 33
CDIR$ NEXT SCALAR 34
C*$* ASSERT DO PREFER (SERIAL) 34

Explicit Parallelization 35
C*$*[NOJCONCURRENTIZE 35
CVD$ CONCUR 35
C*$* ASSERT DO PREFER (CONCURRENT) 35
C*$* ASSERT DO (CONCURRENT) 36
CDIR$ IVDEP 36

Clarifying Dependencies 36
C*$* ASSERT RELATION 37
C*$* ASSERT NO RECURRENCE 38
C*$* ASSERT PERMUTATION 38
C*$* ASSERT CONCURRENT CALL 39
CVD$ CNCALL 39

A. Power Fortran Assertions 41
C*$* ASSERT CONCURRENT CALL 42
C*$* ASSERT DO (CONCURRENT) 42
C*$* ASSERT DO (SERIAL) 42
C*$* ASSERT DO PREFER (CONCURRENT) 42
C*$* ASSERT DO PREFER (SERIAL) 43
C*$* ASSERT [NO] LAST VALUE NEEDED 43
C*$* ASSERT NO RECURRENCE 43
C*$* ASSERT NO SYNC 43
C*$* ASSERT PERMUTATION 44
C*$* ASSERT RELATION 44

Contents

B. Power Fortran Directives 45
C*$* CONCURRENTIZE 46
C** LIMIT 46
C*$* MINCONCURRENT 46
C*$* NO ASSERTIONS 47
C*$* NOCONCURRENTIZE 47
C*$*OPTIMIZE 47
C*$*ROUNDOFF 48
C$ DOACROSS 48
C$& 48
CDIR$ IVDEP 49
CDIR$ NEXT SCALAR 49
CVD$ CNCALL 49
CVD$ CONCUR 49

C. Power Fortran Driver Options 51
[no]concurrentize 52
[no]directives 52
limit 52
lines 53
listoptions 53
minconcurrent 54
optimize 55
parallelio 55
suppress 56

Index 57

Vi

List of Examples
Example 2-1 Contents of File sample.f90 6
Example 2-2 Transformed Source File 7
Example 2-3 Workshop Pro MPF Analysis File 8
Example 2-4 Generated Listing File 9
Example 2-5 Use of xwsh From a Shell Script 12
Example 2-6 Listing Fragment Showing Common Fields 13
Example 2-7 Loop With Indirect Indexing 18
Example 2-8 Listing of Loop With Indirect Indexing 18
Example 2-9 Loop Asserting Indirect Indexing Through

a Permutation 19
Example 2-10 Listing of Loop With Asserted Permutation 20
Example 2-11 Loop With Call to External Function 20
Example 2-12 Listing of Loop With External Call 21
Example 2-13 Loop With Asserted Concurrent Call 21
Example 2-14 Listing of Loop With Asserted Concurrent Call 22
Example 2-15 Loop With Ambiguous Parameter 22
Example 2-16 Listing of Loop With Ambiguous Parameter 23
Example 2-17 Loop With Apparent Assignment to Parameter 23
Example 2-18 Sum of Products Reduction 24
Example 2-19 Listing of Sum of Products Procedure 24
Example 2-20 Listing of Reduction With Roundoff Directive 25
Example 3-1 Loop With Unknown Amount of Work 28
Example 3-2 Transformed Loop With Unknown Amount of Work 28
Example 3-3 ~ Nested Loop 33
Example 3-4 Nested Loop With Serial Assertion 33
Example 3-5 Inner Loop Preferred Serial 34
Example 3-6 Nested Loop With Preferred Loop 35

vii

Example 3-7 Loop With Implied Relation 37
Example 3-8 Loop With Asserted Relation 38

viii

List of Tables

Table Intro-1
Table 2-1
Table 2-2
Table 2-3
Table 2-4
Table 2-5
Table 2-6
Table A-1
Table B-1
Table C-1
Table C-2
Table C-3

Conventions xiii

Output Files 6

Listing File Include Options 10

Listing File Message Disabling Options 11
Listing File DO Loop Delimiters 14
Power Fortran Action Abbreviations 15
Power Fortran Reductions 26

Power Fortran Assertions 41

Power Fortran Directives 45

Power Fortran Driver Options 51

Listing File Include Options 53

Listing File Message Disabling Options 56

Organization

About This Guide

This Guide presents the features of MIPSpro™ Power Fortran 90, an
extension to MIPSpro Fortran 90 that can automatically prepare existing
Fortran 90 programs to execute in parallel on multiprocessor systems such
as the Silicon Graphics, Inc. POWER Challenge™ and POWER Onyx™.

Using normal MIPSpro Fortran 90, you can modify a program using explicit
source directives and assertions so that, when you compile the program with
appropriate driver options, the program executes in parallel on a
multiprocessor. These explicit source directives, assertions, and driver
options are only summarized in this document; they are covered in detail in
the MIPSpro Fortran 90 Programmer’s Guide.

This Guide describes the unique features of MIPSpro Power Fortran 90,
especially the ability to automatically analyze and modify a program for
parallel execution.

The contents of this Guide are organized as follows.

¢ Chapter 1, “Using Power Fortran 90,” gives an overview of the product,
defines important terms, and shows how to invoke the product.

* Chapter 2, “Using Listing and Temporary Files,” shows how to use the
files written by Power Fortran 90, especially the listing file.

¢ Chapter 3, “Working With Power Fortran 90,” tells how to use source
directives and driver options to control the operations of Power
Fortran 90.

¢ Appendix A, “Power Fortran Assertions,” summarizes for reference the
source assertions supported by Power Fortran 90.

Xi

About This Guide

Additional Reading

Xii

e Appendix B, “Power Fortran Directives,” summarizes for reference the
source directives supported by Power Fortran 90.

¢ Appendix C, “Power Fortran Driver Options,” summarizes for
reference the driver options supported by Power Fortran 90.

Refer to the Fortran 90 Handbook by Adams, Brainerd, et. al. (McGraw-Hill
1992; ISBN 0-07-000406-4) for a description of the Fortran language as
implemented by MIPSpro Fortran 90.

Refer to the MIPSpro Fortran 90 Programmer’s Guide for information on:

e compiling, linking, and running Fortran programs

e alignment, sizes, and value ranges of data types

® the interface between Fortran programs and programs written in other
languages

e file management, run-time error handling, and other details related to
the IRIX operating system

e [RIX system functions and subroutines callable by Fortran programs

® scalar optimizations that can be controlled through command line
options and compiler directives

e source directives for multiprocessing, including PCF directives

* run-time error messages

Refer to the CASEVision™/WorkShop Pro MPF User’s Guide for information
about using WorkShop Pro MPF, a visual analyzer for parallel Fortran

programs. Refer to the dbx User’s Guide for information on the debugging
tool dbx.

Refer to the MIPS Compiling and Performance Tuning Guide for an overview of
the MIPSpro compiler system and general compiler system command line
options, as well as information on:

¢ using the performance tools prof and pixie

* using dynamic shared objects (DSOs)

Conventions Used in This Guide

* the dump utilities, archiver, and other tools for maintaining Fortran

programs

Refer to the MIPSpro Porting and Transition Guide for information on 64-bit
systems versus 32-bit systems, including;:

e writing and updating code that is portable to 64-bit systems

¢ language implementation differences

e porting source code to the 64-bit system

* compilation and run-time issues

Conventions Used in This Guide

These are the typographical conventions used in this guide.

Table Intro-1 Conventions

Purpose

Example

Names of Fortran keywords and
procedures, and procedure names
defined in example code

Names of Fortran variables from
example code.

Names of commands and options
entered on the IRIX command line

Titles of manuals

Filenames and pathnames

Full lines of example code or commands,
including variable elements you supply

Exact quotes of computer output

A function such as AINT must be named
in an INTRINSIC statement. The module
NEW_TYPE defines type TAX_PAYER.

The assignment of A(j-1) into A(j) creates
a dependency.

The compiler driver is f90. Use elfdump -t
to list external names in an object file.

Refer to the dbx User’s Guide.

The compiler automatically includes
libftn90.so, libftn.so, and libm.so from
Jusr/lib64.

f90 -g -m ps4 sourcename. f

off end of record

Xiii

Chapter 1

Power Fortran 90 Concepts

Using Power Fortran 90

This chapter contains the following main topics:

e “Power Fortran 90 Concepts” on page 1 surveys the main concepts
behind Power Fortran 90.

* “The Power Fortran Design Cycle” on page 2 gives an overview of how
you normally use Power Fortran 90.

¢ “Tuning Power Fortran 90” on page 3 summarizes the control inputs
you can use.

e “Relation to Parallel Directives” on page 4 reviews the relationship
between Power Fortran and other parallel-execution directives.

MIPSpro Power Fortran 90 (called Power Fortran hereafter) is an extended
version of the MIPSpro Fortran 90 compiler that enables you to compile
existing Fortran 90 programs so that they use multiple CPUs concurrently
when running on a Silicon Graphics multiprocessor system. Power Fortran
analyzes a program, identifies loops that can safely execute in parallel, and
generates a parallel version of the program.

When you execute the parallelized program on a multiprocessor, the
program dynamically adjusts itself to use all the CPUs available on the
system at the time, and so runs faster than when it runs serially on one CPU.

Power Fortran does not require a multiprocessor system to compile. The
parallel version of your program can run on a uniprocessor with some slight
loss of speed. Thus you can compile and test using Power Fortran on any
Silicon Graphics workstation or server.

Chapter 1: Using Power Fortran 90

You select the code to be converted. You can convert the whole program or
you can select key parts of it, either by adding directives or by applying
Power Fortran only to selected source files. Object files produced by Power
Fortran are fully compatible with object files that run only serially, and with
object files that you prepared manually for parallel execution.

You can also use Power Fortran with WorkShop Pro MPF, an optional
product available from Silicon Graphics. It provides a graphical interface to
the analysis performed by Power Fortran and allows you to understand and
control your program to be run in parallel. WorkShop Pro MPF also works
with the WorkShop /Performance Analyzer to help you concentrate on those
parts of the program that are taking the longest to execute.

The Power Fortran Design Cycle

Simply passing code through Power Fortran rarely produces all the
increased performance available. Power Fortran analyzes the way your
program uses variables, and it must make conservative assumptions about
how one variable depends on others. As a result, Power Fortran often detects
data dependencies that prevent it from converting a loop to parallel
operation.

You use the listing file generated by Power Fortran to find out which loops
it can run in parallel and which it cannot. When a loop cannot be
parallelized, you use the listing to find out why. Often the reason is a real or
assumed dependency that you can easily remove. By making small changes
in the program, for example by adding an assertion statement, you enable
Power Fortran to parallelize much more of the program.

You should not apply Power Fortran until you have a complete, working
version of your Fortran 90 program. There are three reasons for this:

1. Power Fortran compilation takes longer than normal compilation, so it
is good to be done with the frequent recompilations of the testing
phase.

2. Debugging a parallel program can be difficult, so it is good to know
that all functions of the program work correctly in serial execution
before you attempt parallel execution.

Tuning Power Fortran 90

Tuning Power Fortran 90

The point of parallelization is improved performance, so it is good to
have a complete test setup and to know the serial execution times for
different inputs—otherwise you will not know whether parallel
execution is doing any good or not.

When the program is ready, use Power Fortran in the following cycle:

1.

Compile the program using MIPSpro Power Fortran 90, specifying the
-pfalist driver option to generate a listing file.

Examine the listing file, which shows the structure of the program and
how Power Fortran dealt with each loop.

If there are any obvious data dependencies or other changes to make,
apply them and repeat from step 1.

Run the parallelized program against your test cases and measure its
performance. If you think there is more to be gained, modify the source
program and repeat from step 1.

Chapter 2, “Using Listing and Temporary Files,” describes the contents of
the Power Fortran listing and how you interpret it.

You tune and control the work of Power Fortran in three ways:

Using driver options, you set global limits and policies on the way
Power Fortran works. For example, you use the -minconcurrent option
to set a limit on the simplest loop that is worth parallelizing.

Using assertions, which are Fortran comment lines that tell Power
Fortran about your program, you inform Power Fortran of how to
resolve data dependencies, and you mark specific loops to be ignored
or to be parallelized.

Using directives, which are Fortran comment lines that instruct Power
Fortran, you set special handling of sections of the source code.

Chapter 3, “Working With Power Fortran 90,” tells how to use driver
options, directives, and assertions to fine-tune the output of Power Fortran.

Chapter 1: Using Power Fortran 90

Relation to Parallel Directives

When Power Fortran detects a loop that can be run in parallel, it generates
directive statements and inserts them into the program. These directives are
interpreted by MIPSpro Fortran 90. It is the Fortran 90 compiler that
implements the parallel code, based on the generated directives.

You can write and insert parallel-execution directives yourself, and
Fortran 90 will act on them. This process is documented in the MIPSpro
Fortran 90 Programmer’s Guide.

In most cases it is better to let Power Fortran automatically choose the loops
to run in parallel, rather than forcing a loop to run in parallel by directly
inserting parallel directives. When you specify the code to run in parallel,
you need to verify that no subsequent modification inserts a data
dependency, causing a serious (and hard-to-find) error. When you rewrite a
loop so that Power Fortran recognizes the loop as safe to run in parallel,
Power Fortran can check future modifications for data dependencies.

Chapter 2

Using Listing and Temporary Files

This chapter has the following major topics:
* “Selecting Files to Generate” on page 6 tells how to select output files.

e “Using the Transformed Source File” on page 7 describes the source file
generated by Power Fortran.

e “Using the Workshop Pro MPF File” on page 8 covers that file.

e “Controlling the Power Fortran Listing File” on page 9 discusses listing
options.

e “Interpreting the Listing” on page 12 discusses the listing contents.

e “Sample Listings” on page 18 illustrates the use of the listing file in
solving some Power Fortran problems.

Chapter 2: Using Listing and Temporary Files

Selecting Files to Generate

Power Fortran generates the types of output files shown in Table 2-1.

Table 2-1 Output Files

File Contents Suffix Driver Option Required
Listing of program structure and message .L -pfalist or -pfakeep
Transformed Fortran source file .m -pfakeep

Input file for WorkShop Pro MPF .anl -pfakeep

Suppose that the file sample.f90 contains the tiny subroutine in Example 2-1.

Example 2-1 Contents of File sample.f90

subroutine sample (a,b,c)
di nensi on a(1000), b(1000), c(1000)
doi =1, 1000
a(i) =b(i) + c(i)
end do
end
When sample.f is compiled using the following command:

f90 -64 -pfakeep -c sanple.f

the output includes the following files:
e sample.L contains the listing file
* sample.m contains the transformed source

e sample.anl contains the WorkShop Pro input file

Using the Transformed Source File

Using the Transformed Source File

The transformed source file contains the original source lines plus
parallel-execution directives generated by Power Fortran. The sample.m file
produced from Example 2-1 contains the lines shown in Example 2-2.

Example 2-2 Transformed Source File

C KAP/ SG@ _F90 MP 00. 00 k240000 19019505r 0s03
20-Jun-1995 14:54:32
1 "pfal.f90"
subroutine SAMPLE (A, B, C)
i nteger |
real A(1000), B(1000), C(1000)
C3PAR paral l el shared (A B,C) local (I)
CSA $ startloop 3
C$PAR pdo
do 2 1=1, 1000
A(l) = B(1) + (1)
2 conti nue
C$PAR end pdo nowai t
CSA $ endl oop 3
C$PAR end paral |l el
end

The transformed file contains numerous generated directives. These
directives, such as C$PAR, direct the parallel execution of the compiled
program. Many of these directives are documented in the MIPSpro Fortran
90 Programmer’s Guide (for example, C$PAR is a PCF directive that marks the
start and end of a parallel work unit). However, some directives are not
intended for general use and are not documented (for example, C$SGI is not
documented).

You use the transformed source file for information only. The transformed
source uses fixed format and loops in the Fortran 77 style, instead of the
Fortran 90 syntax. As a result, it might not compile correctly if your were to
change its suffix to .f90 and compile it.

Chapter 2: Using Listing and Temporary Files

Using the Workshop Pro MPF File

The WorkShop Pro MPF Parallel Analyzer View cupav helps you understand
the structure and operation of parallelized applications by providing an
interactive, visual comparison of their original source with transformed,
parallelized code. The Parallel Analyzer View reads the .anl analysis files
generated by Power Fortran and displays editable parameters for each DO
loop. These parameters are easily customized and explored with the help of
the Parallel Analyzer View's user-friendly graphical interface.

A sample of a .anl file is shown in Example 2-3.

Example 2-3 Workshop Pro MPF Analysis File

product "KAP/ SG _F90 MP

version "00.00 k240000 190195"

routine "SAMPLE" line 2 - 7

begi n_orig_| oop_section "SAWPLE"

orig_loop 1 "SAMPLE" do nest 1 range 4 - 6

i ndex "1"
| oop_option 1 optimze 5
| oop_option 1 roundoff 0O
| oop_option 1 scal ar_optinmize 3
| oop_option 1 Iimt 20000
| oop_option 1 arc_limt 5000
| oop_option 1 m nconcurrent 1000
| oop_option 1 unroll 4
| oop_option 1 unroll _weight 100
| oop_option 1 max_invariant_if_growth 500

| oop_option 1 each_invariant_if_growth 20
variable_list 1 "C':r , "B":r , "A": w, "l":rw
end_orig_loop 1

end_orig_| oop_section "SAWMPLE"

begi n_t ransf ormed_| oop_secti on " SAMPLE"
transforned_loop 3 1 "SAMPLE" ordi nary
wor kl oad 5

schedtype sinple "Default"

nmode paral |l el

nest 1

line_range 4 - 6

end_transforned_| oop 3 " SAWPLE"
end_transforned_| oop_secti on " SAVMPLE"

begi n_vi n

file_nane 1 "pfal.f90"

Controlling the Power Fortran Listing File

vin_translation 1 1 1
vin_translation 1 2 1
end_vln

Controlling the Power Fortran Listing File

Foot not es

Actions

DR

Abbr evi ati ons Used

DI R
C

Loop#

directive
concurrentized

Loop Sunmary

From To

l'ine line

3 5

The Power Fortran listing file shows the input source statements and how
Power Fortran treated them. It is your primary tool for judging the effect of
parallelization, and for discovering how to make Power Fortran more
effective. The listing file produced by Example 2-1 is shown in Example 2-4.

Example 2-4 Generated Listing File

DO Loops Li ne

1 # 1 "pfal.fo0"
1 subroutine sanple (a,b,c)
2 di nensi on a(1000), b(1000), c(1000
Fome e 3 doi =1, 1000
4 a(i) = b(i) + c(i)
. 5 end do
6 end
Loop Loop at
| abel i ndex nest St at us
Do | 1 concurrenti zed

The page-heading lines and some blank lines have been deleted from
Example 2-4. The output in Example 2-4 is the result of using default listing
options. A listing with more details is shown under “Interpreting the
Listing” on page 12.

Note: The first line 1, containing a number directive, was actually added by
cpp. The source file passes through cpp prior to Power Fortran.

Chapter 2: Using Listing and Temporary Files

Paginating the Listing

The driver option —lines=n (or —In=n) paginates the listing at n lines per page.
When you specify —lines=0, the listing is paginated at subroutine boundaries.

If you do not specify the —lines option, Power Fortran writes 55 lines per
page.

Specifying Optional Information

The driver option —listoptions=list option (or —lo=list) specifies the
information to include in the listing file. The list is any combination of the

option letters in Table 2-2. The default is —listoptions=ol.

Table 2-2 Listing File Include Options

Letter Controls This Information

c Calling tree at the end of the program listing.

i Transformed program file annotated with line numbers in the
source program. Error messages and debugging information can
refer to the original source rather than the transformed source. This
argument is specified by default.

k List of the Power Fortran options used at the end of each program
unit.

1 Loop-by-loop optimization table.

n Program unit names, as processed, to the standard error file. This

option is added automatically as part of an f90 —v compilation.

0 Annotated listing of the original program.

P Processing performance statistics.

s Summary of optimizations performed.

t Annotated listing of the transformed program.

10

Controlling the Power Fortran Listing File

The following command compiles the program source.f90 with Power
Fortran and includes an annotated listing of the original program and a
summary of the optimizations performed in the listing file:

% f90 -pfa -lo=ls source.f90

Disabling Message Classes

Use the —suppress=list option (or —su=list) to disable individual classes of
Power Fortran messages that are normally included in the listing. These
messages range from syntax warnings and error messages to messages
about the optimizations performed. list is any combination of the option
letters summarized in Table 2-3.

Table 2-3 Listing File Message Disabling Options

Value Message Class Disabled

d Data dependence

e Syntax error

i Information

n Unable to run loop in parallel

q Questions

s Standard messages

w Warning of syntax error (Power Fortran adds the —suppress=w

option automatically if you use the -w option to f77)

If you do not specify this option, Power Fortran prints messages of all
classes.

Viewing the Listing File

The listing file is in 132-column format. To view the file, open a window with
132 columns and the number of rows in a page by entering an xwsh
command with specific geometry.

% xwsh -geonetry 132x55

11

Chapter 2: Using Listing and Temporary Files

Interpreting the Listing

12

Optionally you can include a font specification in order to reduce the size of
the window while retaining readability.

% xwsh -fn "-*-screen-nmedi umr-normal --12" -geonetry 132x40

When you want to display the listing file from a shell script or makefile, you
can consider other options described in the xwsh(1) reference page. The
command fragments in Example 2-5 might appear in a shell script. This xwsh
starts up quickly because it does not open a shell. The user browses the
listing using the xwsh scroll buffer, whose size is set to 5000 lines in order to
accommodate large listings.

Example 2-5 Use of xwsh From a Shell Script

fo0 ... -pfalist -lines=40 ... -c $FI LENAME. f 90
xwsh -fn "-*-screen-medi umr-nornal --12" \
-geonetry 132x40 \
-sl 5000 \
-title "$FILENAME |isting" \
-nokeyboard -normenu -hold \
-e cat $FI LENAME. L

The listing file generated by Power Fortran lists the changes Power Fortran
made to the code, and shows where and why the code was not changed. For
example, a message could say that, although three loops could have run in
parallel, Power Fortran converted only the one it determined most
profitable. When you understand the information in the Power Fortran
listing, you can recognize where small changes to the source code will make
a difference in which code is run in parallel.

Default Listing Fields

Any Power Fortran listing that includes the includes the default list options
0 and [(as described under “Specifying Optional Information” on page 10)
contains the following fields:

e source lines with line numbers

¢ DO loop annotations

Interpreting the Listing

® action summary

e footnotes

* syntax errors/warning messages

The listing fragment in Example 2-6 illustrates these fields.

Example 2-6

DO Loops Li ne

16
17
18
19
20
21
NCS o 22
NCS ! 23
V. 24
25
26
27
DR 28
C o 29
* 30
x 31
32
33
34
35
36

Foot notes Actions

Abbr evi ati ons Used
NO not optin zed
DI R directive
NCS non-concurrent-stnt
C concurrentized
Foot not e Li st
1: not optim zed
2: not optimzed

Listing Fragment Showing Common Fields

i nteger, paraneter::adim= 1000
real ra(adim,rb(adim,rc(adim

! load the arrays -- suboptimal i/o0 for exanple
open (unit=11, acti on="READ", fil e="pfal. data")
doi =1,adim

read (unit=11, fnt ="2E15. 8")
end do

ra(i),rb(i)

! swizzle the contents
I function has no side-effects
I *$* ASSERT CONCURRENT CALL
doi =1,adim
rc(i) = swizzle(ra(i),rb(i))
end do

I un-swi zzle in subroutine
call subber(ra,rb,rc)

end

This | oop contains unoptin zable i nput or output statenents.
This input or output statenent

inhibits | oop optimzation.

13

Chapter 2: Using Listing and Temporary Files

14

Line Numbers

A statement in the listing with a line number, such as 21, is either that line
from the original source file, or else it is derived from that line. Line numbers
are useful when inspecting the transformed program listing and when
debugging.

Power Fortran sometimes generates several lines of code from a single line
of the original program. In this case, each generated line is labeled with the
same number as the line of the original source from which it was generated.

DO Loop Marking

The listing displays the boundaries of DO loops graphically in the column
headed “DO Loops.” Power Fortran surrounds each loop (up to a nesting
level of 10) with a loop delimiter character. The delimiters form brackets
around each loop nest level. The delimiter characters are listed in Table 2-4.

Table 2-4 Listing File DO Loop Delimiters

Character Denotes
| Generic DO loop
* Power Fortran can run loop in parallel

! Problem preventing optimization

A statement contained within # DO loops has n of these loop delimiters on
that line. You can use the delimiters to trace the extent of each loop, and to
quickly learn which loops were parallelized.

Action Summary

When Power Fortran translates or modifies a statement, it places
abbreviations in the “Actions” column of the listing to explain what was
done to that statement. The abbreviations used in this column are expanded

Interpreting the Listing

at the bottom of each page. Table 2-5 lists and explains the values that can
appear in the Actions column.

Table 2-5 Power Fortran Action Abbreviations

Value Meaning

C Concurrentized: This statement will execute on multiple CPUs.

DD Data Dependence: Data dependence prevents Power Fortran from
running this statement in parallel.

DEL Deleted: ?

DIR Directive: This statement recognized as a directive. If you code a directive
and that line does not have the DIR abbreviation, Power Fortran did not
recognize the directive. Check the setting of the —directives driver option
and the syntax of the directive.

E Error: Error found in this statement. The message can refer to missing or
extra characters, illegal keywords, or text placed in the wrong column. The
transformed source file (.71) contains an unmodified copy of this line.

EX Extension: A construct in the original program is a Fortran language
extension not supported in the language that Power Fortran generates..

I Inserted statement.

INF Information message. See the related listing footnote..

INL Inlined: Statement inserted in the inlining process.

IPA Interprocedural analysis: Statement inserted or modified during inlining
or IPA.

LM Label modification: Loop target label generated or modified.

LR Loop Reordering: This DO statement has been moved in an nterchange
with a nested or containing loop.

MIS Miscellaneous: Unspecific message. This message does not always mean
that something is wrong with the program.

NC Not Concurrentized: this statement could not be made concurrent for the
NCS reason shown in another code.

15

Chapter 2: Using Listing and Temporary Files

16

Table 2-5 (Continued) Power Fortran Action Abbreviations

Value Meaning

NO Not Optimized: some Power Fortran internal data structure or table has
overflowed. To process this source, you must split the file into smaller
sections.

NT Not Tiled: This statement could not be optimized for cache performance.

NTS

NV Not Vectorized: This statement could not be optimized for vector

NVS performance.

OE Option Error: An error detected in Power Fortran driver option. This error
does not stop processing of a program unit.

OPT Optimized: This statement modified by scalar optimization.

oT Output Translation Failure: This statement cannot be represented in the

OTF Fortran language generated by Power Fortran.

ow Option Warning: A questionable condition detected in a Power Fortran
driver option.

Q Question: This statement cannot be optimized unless more information is
given. The question is given in a footnote line. You can usually answer this
question with an appropriate assertion.

SC Scalar Optimization: This statement modified by scalar optimization..

SO

STD Standardized: This statement was transformed into a standard Fortran
form in order to improve the changes of being able to optimize it.

T Tiled: This statement transformed to improve cache memory
performance.

TE Translator Error: Indicates an internal Power Fortran error. Power Fortran
writes the notification to the standard error file and writes a trace back to
the output file. Notify Silicon Graphics if you see this message.

TL Too Large: The source program is too large; Power Fortran can only
process it in smaller sections.

\Y% Vectorized: This statement modified for vector performance.

W (Warning) Contains syntax warnings.

Interpreting the Listing

Footnotes

The “Footnotes” column gives details concerning the actions or nonactions
taken. Power Fortran numbers and prints the footnotes at the bottom of each
program unit under the Footnote List heading. For example, the following

line from a listing contains the footnote number 13.

13 DD 1790 IF (B(l) .LE. 6) IB(J*I) = |+J

In the Footnote List displayed at the end of the program unit, the footnote
appears.

13: data dependence Data dependence involving this |ine due
tovariable IB

In this example, 13 is the footnote number, DD (data dependence) is the
explanation for the action (in this case, nonaction).

Syntax Errors/Warning Messages

When a program has errors, the listing contains the error text following the
line in error. The same messages are printed to stderr during the compile. The
following example displays a listing with an error.

Footnotes Actions DOLoops Line

1 SBRUNNE Z(ABN
2 AL AN, BN
PR 3 D020 =1, N
! 4 XA(1)
! 5 Y1)
! 6 20 Ql)=XY

#Ht line (6)
#itt error Aray not declared or statenent function decl ared
after executabl e statenents.
#HHt error A do | oop ends on a non-execut abl e stat enent .
7 PRNT *, X
8 B\D

17

Chapter 2: Using Listing and Temporary Files

Sample Listings

This section contains a few simple examples of Fortran code and the
corresponding Power Fortran output. An actual source program would be
much larger, and a single loop could contain several of the cases illustrated
here. However, even in a large loop, you can deal with each problem
individually.

Indirect Indexing

Power Fortran cannot determine if it can run a loop in parallel when the code
uses indirect indexing. A loop is indirectly indexed when it uses the value
from some auxiliary array as the index value rather than the DO loop
variable. The code in Example 2-7 illustrates indirect indexing.

Example 2-7 Loop With Indirect Indexing

subroutine indirex(a,b,index,n)
real a(n), b(n)
i nteger index(n)
doi =1, n
a(index(i)) = a(index(i)) + b(i)
end do
end

When Example 2-7 is submitted to Power Fortran, it produces the listing
shown in Example 2-8.

Example 2-8 Listing of Loop With Indirect Indexing

Foot not es Acti ons DO Loops Li ne
D R # 1 "pfa3.f90"
subroutine INDIREX (A, B, INDEX, N)
integer N, |
real A(N), B(N)
i nt eger | NDEX(N)
CS@ $ startloop 2
do I=1,N
A(INDEX(1)) = A(INDEX(1)) + B(I)
end do
CSA $ endl oop 2
end

[y
go~ -
+

NOOURADMNRPRRERR

18

Sample Listings

Abbr evi ati ons Used

DD dat a dependence
Q question

I i nserted

DI R directive

Foot note Li st
1. question
2: data dependence

I's "I NDEX" a pernutation vector?
Dat a dependence involving this line due to variable "A".

DD in the Actions column for statement 6 warns that the variable A might
carry a dependency. A dependency exists when one iteration of the loop
writes to a location that is used by a different iteration of the loop. In this
example, if the values in index are not unique, different iterations might write
to the same element of A.

The question given in footnote 1 asks if index is a permutation of the integers
1..n. (Since all elements index(i) are used as subscripts of a, Power Fortran
assumes they are all taken from the set 1..7; however only a permutation of
1..n contains no duplicate values.)

If you are sure that index is a permutation vector, there can be no data
dependence between elements of A. You inform Power Fortran of this by
adding an assertion, as shown in Example 2-9.

Example 2-9 Loop Asserting Indirect Indexing Through a Permutation

subroutine indirex(a,b,index,n)
real a(n), b(n)
i nteger index(n)
1 *$* assert pernutation (index)
doi =1, n
a(index(i)) = a(index(i)) + b(i)
end do
end

19

Chapter 2: Using Listing and Temporary Files

The listing in Example 2-10 shows that Power Fortran finds the loop safe to
run in parallel.

Example 2-10 Listing of Loop With Asserted Permutation

Foot not es Acti ons DO Loops Li ne
DR 1 # 1 "pfa3.fo0"
1 subroutine INDIREX (A, B, INDEX, N)
| 1 integer N, |
| 1 real A(N), B(N)
| 1 i nteger | NDEX(N)
DR 4 C*$* assertpermutation (| NDEX)
I 5 C$PAR parallel if (N.gt. 142) shared (N IN
DEX, A, B) local (1)
| 5 CS@$ startloop 3
| 5 C$PAR pdo
LM1 C R 5 do 2 I=1,N
* 6 A(INDEX(1)) = A(INDEX(1)) + B(1)
| x 7 2 conti nue
| 7 C$PAR end pdo nowai t
| 7 CSA $ endl oop 3
| 7 C3PAR end parall el
8 end
Abbrevi ations Used
LM | abel nodification
I inserted
DI R directive
C concurrentized

Note: Power Fortran cannot verify the truth of this, or any, assertion. When
you make an assertion, it is up to you to be certain that it is true for all
possible input data.

Function Call
The code in Example 2-11 contains a call to an external function.

Example 2-11 ~ Loop With Call to External Function
subroutine caller(a,b,c,n)

real a(n), b(n), c(n)

external force

doi =1,n

20

Sample Listings

[EnY

a(i) = force(b(i),c(i))
end do
end
The Power Fortran listing for this code is shown in Example 2-12.

Example 2-12 Listing of Loop With External Call

Abbr evi ati ons Used

Foot not e Li st

Acti ons DO Loops Li ne
DR 1 # 1 "pfa4.fo0"
1 subroutine caller(a,b,c,n)
2 real a(n), b(n), c(n)
3 external force
NO NCS Fommme - 4 doi =1,n
NO NCs ! 5 a(i) = force(b(i),c(i))
VL 6 end do
7 end
not optimn zed
directive
non- concurrent - st nt
not optim zed This | oop contains an unoptim zable call to "FORCE".
not optim zed This statenent contains an unoptinizable call to "FORCE".

Since Power Fortran cannot be sure that function force has no side-effects, it
cannot parallelize this loop. If the function has a side-effect—that is, if it
assigns data to variables other than its arguments and result—errors would
occur when it was called concurrently from multiple CPUs.

If you know that a procedure has no side-effects, you can insert an assertion
to tell Power Fortran, as shown in Example 2-13.

Example 2-13 Loop With Asserted Concurrent Call

subroutine caller(a,b,c,n)
real a(n), b(n), c(n)
external force

I *$*assert concurrent cal
doi =1,n

a(i) = force(b(i),c(i))

end do

end

21

Chapter 2: Using Listing and Temporary Files

With this modification, Power Fortran parallelizes the loop as shown in
Example 2-14.

Example 2-14 Listing of Loop With Asserted Concurrent Call

Foot not es Acti ons DO Loops Li ne
DR 1 # 1 "pfad.f90"
1 subroutine caller(a,b,c,n)
2 real a(n), b(n), c(n)
3 external force
DR 4 I *$*assert concurrent call
C R 5 doi =1,n
* 6 a(i) = force(b(i),c(i))
* 7 end do
8 end
Abbr evi ati ons Used
DI R directive
C concurrenti zed

Procedure Parameters

There is a further subtlety in using procedure calls in parallelized loops.
Power Fortran does not examine the code of the external function (unless
you use the optimization of procedure inlining, discussed in the MIPSpro
Fortran 90 Programmer’s Guide). As a result, Power Fortran cannot know
whether the external procedure modifies any of its arguments. Code with
this ambiguity is shown in Example 2-15.

Example 2-15 Loop With Ambiguous Parameter

subroutine tricky (a,b,c,n,m
real a(*), b(*)
external ny_function
I*$*assert concurrent call

doi =1, n
a(i) = my_function (b(i), m
b(i) =a(i) +m

end do

end
The question is, does my_function modify its argument m? If it only reads

m, there can be a single copy of m used by all concurrent instances of the
loop. If the function assigns to 1, each loop instance needs its own copy of

22

Sample Listings

D R

LM1 C

the variable. These two modes, called SHARE and LOCAL respectively, are
discussed in Chapter 7 of the MIPSpro Fortran 90 Programmer’s Guide.

Given Example 2-15, Power Fortran assumes that m is read-only, and gives
it SHARE status. This can be seen when the transformed program is
included in the listing (-listoptions=loi), as shown in Example 2-16.

Example 2-16 Listing of Loop With Ambiguous Parameter

2 conti nue
C$PAR end pdo nowai t
CSG@ $ endl oop 3
C$PAR end paral |l el

4 C*$* assertconcurrentcall

5 C$PAR parallel if (N .gt. 16) shared (N, A B,M local (I)
5 CS@$ startloop 3

5 C$PAR pdo

5 do 2 1=1,N

6 A(l) =real (MY_FUNCTION (B(1),M)
7 B(l) = A(l) +real (M

8

8

8

8

The C$PAR clause shared(N,A,B,M) in Example 2-16 specifies that single
copies of those variables will be accessed concurrently from all instances of
the concurrent loop. If in fact my_function changes the value of m, then this
is incorrect. If this is the case, you can give Power Fortran the hint it needs
by adding a visible assignment to m prior to the procedure call, as shown in
Example 2-17.

Example 2-17 Loop With Apparent Assignment to Parameter

subroutine tricky (a,b,c,n,m
real a(*), b(*)
external ny_function
I *$*assert concurrent call
doi =1, n
m= 0! force Mto be LOCAL

a(i) = my_function (b(i), m
b(i) =a(i) +m
end do
end

23

Chapter 2: Using Listing and Temporary Files

Abbr evi ati ons Used

24

DD

dat a dependence

Since Power Fortran sees an assignment to m within the loop, it declares m
to be LOCAL (without regard to its use as a parameter). This is an example
of how it is sometimes necessary to put extra statements in a loop in order to
get the best speed from a parallel program.

Note: If my_function both reads the input value of m and writes a new
value, the trick in Example 2-17 will not work. You would have to find an
assignment to m that preserves its value in each iteration of the loop.
Unfortunately, most such non-assignments, such as m=m*1, are likely to be
deleted as unnecessary by the scalar optimization phase of Power Fortran!

Reductions

A reduction produces a single value from a set of values. The subroutine in
Example 2-18 calculates the sum of products of two arrays.

Example 2-18 Sum of Products Reduction

subroutine sum prods(a, b, n, sum
real a(n), b(n), sum

sum= 0.0
doi =1,n
sum = sum + a(i)*b(i)
end do
end

With Example 2-18 as input, Power Fortran produces the listing in
Example 2-19.

Example 2-19 Listing of Sum of Products Procedure

1 subroutine sum prods(a, b, n, sum

2 real a(n), b(n), sum

3 sum= 0.0
--------- 4 doi =1,n

5 sum = sum + a(i)*b(i)
_____ 6 end do

7 end

Sample Listings

D R

DR

SO

Abbr evi ati ons Used

SO
DI R
C

scal ar optim zation
directive
concurrenti zed

Because different iterations of the loop read and write the variable sum,
Power Fortran detects a dependence. However, reduction is a special kind of
data dependence. Because sum only accumulates a total, you can accumulate
subtotals in parallel and then combine the subtotals at the end. (This general
technique for dealing with reduction is discussed in Chapter 7 of the
MIPSpro Fortran 90 Programmer’s Guide.)

In fact, Power Fortran can recognize the four most common reductions—
sum, product, min and max—and parallelize them. It does not do this
automatically because, since the parallel version of the code adds the
elements together in a different order than the single-process version, the
round-off errors can accumulate differently in a parallelized reduction,
producing a different answer depending on the number of CPUs that
execute the code. In fact, if you use the dynamic scheduling option, the
answer might vary slightly from one run of the program to the next, even if
you use the same number of processes on the same machine.

Most applications can safely ignore this variation in round-off error. If your
application is not affected, you can direct Power Fortran to use parallel
reduction using either the C*$* ROUNDOFF(2) directive or the driver option
—WK,—roundoff=2. The resulting listing is shown in Example 2-20.

Example 2-20 Listing of Reduction With Roundoff Directive

1 # 1 "pfa6.f90"

1 subroutine sum prods(a, b, n, sum

2 real a(n), b(n), sum

3 sum= 0.0

4 1 *$*r oundof f (2)
--------- 5 doi =1,n

6 sum = sum + a(i)*b(i)
_____ 7 end do

8 end

The round-off error produced by a parallel reduction operation is not
necessarily worse than the round-off error seen in the serial version. It is
simply different. If your original application was not affected by round-off
error, there is no reason to worry about it in the parallel version. However, if
your application takes special steps to reduce round off (for example, adding

25

Chapter 2: Using Listing and Temporary Files

26

the numbers together in order from smallest absolute value to largest), then
you should not use parallel reductions.

Table 2-6 shows the types of reductions Power Fortran supports.

Table 2-6 Power Fortran Reductions

Type Operator Example

Sum + sum = sum + expression
Product * prod = prod * expression

Min min() least = min(least, expressiorn)
Max max() most = max(most, expression)

All these reductions are under the control of the —roundoff driver option and
C*$*ROUNDOFF directive, even though technically the min and max
reductions do not involve round-off problems.

Chapter 3

Using Driver Options

Working With Power Fortran 90

This chapter documents your control of Power Fortran using driver options,
directives, and assertions.

You use f90 driver options to control the operations of Power Fortran. This
topic discusses the options that are unique to Power Fortran. (For other
driver options, see the MIPSpro Fortran 90 Programmer’s Guide.) This chapter
discusses the driver options in functional groups. For a summary ordered
alphabetically, see Appendix C, “Power Fortran Driver Options.”

Enabling Parallelization of Loops

The —concurrentize option (or —conc) directs Power Fortran to convert eligible
loops to run in parallel. This option is assumed when the -pfa option is used
to enable Power Fortran.

Use —noconcurrentize option (or —nconc) to prevent Power Fortran from
converting loops, while still applying scalar optimizations.

You can use the C*$*NOCONCURRENTIZE directive to prevent
transformation of a particular loop (see “C*$*[NOJCONCURRENTIZE” on
page 35).

Specifying a Work Threshold

The —minconcurrent=n option (or —mc=n) specifies the minimum amount of

work that must be found inside any loop in order for it to be profitable to
execute the loop in parallel. The positive integer # is a count of the number

27

Chapter 3: Working With Power Fortran 90

28

of operations (for example, add, multiply, load, store) in the loop, multiplied
by the number of times the loop will be executed.

The default value is 500 or more operation. The higher the value for 7, the
larger (more iterations, more statements, or both) the loop body must be, to
be run in parallel. You can set the threshold for a particular loop using the
C*$* MINCONCURRENT (n) directive.

When the loop bounds are known at compile time (that is, when they are
constants), Power Fortran can compute the exact iteration count and decide
whether to run the loop in parallel. Loops that are too small are not
parallelized.

When the loop bounds are undefined at compile time, Power Fortran adds
an IF clause to the generated parallel directive. This clause tests at run-time
if sufficient work exists. If not, the loop runs serially.

To disable testing the work threshold throughout the program, specify
—minconcurrent=0. You can disable the threshold for a specific loop using the
C*$* MINCONCURRENT(0) directive.

The loop in Example 3-1 executes an unpredictable amount of work.

Example 3-1 Loop With Unknown Amount of Work

subroutine mnc(x,y, z,n)

integer n
real x(n),y(n), z(n)
doi =1,n
x(i) = y(i)*z(i)
end do
end

Power Fortran generates the transformed loop shown in Example 3-2.

Example 3-2 Transformed Loop With Unknown Amount of Work

1 # 1 "pfa7.f90"

1 subroutine MNC (X, VY, Z, N)

1 integer N, |

1 real X(N), Y(N, Z(N)

4 C$PAR parallel if (N .gt. 200) shared (N X Y,2Z) local (I)
4 CSG@$ startloop 3

Using Driver Options

C$PAR pdo
do 2 I=1,N
X(1) = Y(1) * Z(1)
2 conti nue
C$PAR end pdo nowai t
CSG@ $ endl oop 3
C$PAR end paral |l el
end

~Noooo oD

The IF clause in the C$PAR directive at line 4 is executed at runtime. It tests
whether there are the default 500 operations in the loop body (apparently
Power Fortran counts 2.5 operations in statement 5). Each time this
subroutine is entered the test is made and, when n>200, the loop executes in
parallel. Otherwise, it runs serially

Enabling Parallel I1/0

The —parallelio option (or —pio) enables the parallelization of loops that
contain I/O statements. The -parallelio=no is the default. Use this option only
on systems with parallel I/O capabilities or where you are sure that I/O
statements in a parallelized loop are not executed.

Specifying a Complexity Limit

The —limit=n option (or —Im=n) controls the amount of time Power Fortran
can spend trying to determine whether a loop is safe to run in parallel. The
limit n does not correspond to the DO loop nest level. It is an estimate of the
number of loop orderings that Power Fortran could generate from a loop
nest.

Power Fortran estimates how much time is required to analyze each nest of
loops. If an outer loop looks as if it would take too much time to analyze,
Power Fortran ignores the outer loop and recursively visits the inner loops.

Larger limits can allow Power Fortran to generate parallel code for deeply
nested loop structures that it might not otherwise be able to run safely in
parallel. However, with larger limits Power Fortran can also take more time
to analyze a program.

29

Chapter 3: Working With Power Fortran 90

You can set the same limit either globally or for a particular part of the source
module using the C*$* LIMIT(n) directive.

Setting the Optimization Level

The —optimize=n option (or —o=n) sets the optimization level. The higher you
set the optimization level, the more code is optimized and the longer
compilation takes Valid values for n are:

0 Disables optimization; no loops are converted.

1 Converts loops to run in parallel without using advanced
data dependence tests. Enables loop interchanging.

2 Determines when scalars need last-value assignment
using lifetime analysis. Also uses more powerful data
dependence tests to find loops that can run safely in
parallel. This level allows reductions in loops that execute
concurrently but only if the —roundoff option is set to 2 (see
“Reductions” on page 24 for discussion of —roundoff.)

3 Recognizes triangular loops and attempts loop
interchanging to improve memory referencing. Uses
special case data dependence tests. Also, recognizes
special index sets called wraparound variables.

4 Generates two versions of a loop, if necessary, to break a
data dependence arc. This level also implements
more-exact data dependence tests and allows special
index sets (called wraparound variables) to convert more
code to run in parallel.

5 Fuses two adjacent loops if it is legal to do so (that is, there
are no data dependencies) and if the loops have the same
control values. In certain limited cases, this level
recognizes arrays as local variables. This level is the
default.

The same option is supported when Power Fortran is not invoked, to control
scalar optimizations (refer to Chapter 4 of the MIPSpro Fortran 90
Programmer’s Guide). You can set the optimization level with global use of the
C*$* OPTIMIZE(n) directive.

30

Using Driver Options

Controlling Variations in Round Off

The —roundoff=n option (or —r=n) controls the amount of variation in round
off that Power Fortran will allow as a result of the different order of
execution between parallel and serial loops. Valid values for # are the
following integers:

0,1 Suppresses any round-off transformations. This is the default.

2 Allows reductions to be performed in parallel. This value is one
of the most commonly-specified user options.

3 Recognizes REAL induction variables. Permits memory
management transformations (refer to the MIPSpro Fortran 90
Programmer’s Guide for details.)

See “Reductions” on page 24 for an example.

Performing Inlining and Interprocedural Analysis

Function and subroutine calls create an obstacle to parallelization. Power
Fortran provides three ways of dealing with this obstacle:

e Assert that the external routine is safe for concurrent execution (see
“C*$* ASSERT CONCURRENT CALL” on page 39).

¢ Inline the routine by replacing the call to the external routine with the
actual code.

¢ Perform interprocedural analysis (IPA) by analyzing the external
routine ahead of time and using the results of that analysis when a
reference to the routine is encountered.

Inlining and IPA tend to be slow, memory-intensive operations. Attempting
to inline all routines everywhere they occur can take a lot of time. Inlining
should usually be restricted to a few time-critical places. For details about
inlining and IPA, and the related directives and command line options, refer
to the MIPSpro Fortran 90 Programmer’s Guide.

31

Chapter 3: Working With Power Fortran 90

Preventing Use of Directives and Assertions

Power Fortran does not check the correctness of assertions. Directives
inserted into a source module and then forgotten can cause unexpected
results that contradict the driver options you employ. If you specify that an
untrue assertion or unwanted directive is causing problems, you can control
the interpretation of directives and assertions in three ways.

e Use the —nodirectives driver option to cause all directives to be treated as
comments.

e Use the -directives=list driver option to selectively prevent or allow the
interpretation of Cray, VAST, and SGI directives (refer to the pfa(1)
reference page).

e Place the C*$* NO ASSERTIONS directive to tell Power Fortran to
ignore all following assertions.

Using Directives and Assertions

32

After you run a Fortran source program through Power Fortran once, you
can use directives and assertions to fine-tune program execution. (Driver
options apply to the program as a whole.) The listing file will show where
and why Power Fortran did not parallelize the code. You can also use
WorkShop Pro MPF to review Power Fortran’s analysis of your program.

You use directives and assertions to force Power Fortran to process portions
of code in various ways. You can also use directives and assertions to keep
Power Fortran from converting code to run in parallel. In other cases you
might want to explicitly force Power Fortran to run segments of code in
parallel even though it normally would not.

Preventing Parallelization

Often you know of parts of your program that should not be parallelized,
typically because you know that these parts contribute little to the execution
time of the program. You can insert directives or assertions (called
assertions, actually they have the effect of directives) to prevent Power
Fortran from parallelizing specific loops.

Using Directives and Assertions

C*$* ASSERT DO (SERIAL)

The assertion C*$* ASSERT DO (SERIAL) tells Power Fortran to run the loop
immediately following it serially. Power Fortran also does not try to run any
enclosing loop in parallel. However, it can still convert any loops nested
inside the serial loop to run in parallel. For example, consider the code
shown in Example 3-3.

Example 3-3 Nested Loop

subroutine nest(x,y,z,n)
real x(n,n,n), y(n,n), z(n,n)

do i=1,n
doj =1,n
do k =1,n
X(i,j, k) =x(i,j,k)y * y(i,j)
end do
do k =1,n
X(i,j,k)y = X(i,j,k) + Z(i,k)
end do
end do
end do
end

As written, Power Fortran will interchange loop variables to invert the order
of the three loops, and parallelizes the outermost loop. Adding an assertion
as shown in Example 3-4 makes a dramatic change.

Example 3-4 Nested Loop With Serial Assertion

subroutine nest(x,y,z,n)
real x(n,n,n), y(n,n), z(n,n)

do i=1,n
doj =1,n
1*$* ASSERT DQ(SERI AL)
do k =1,n
x(i,j, k) =x(i,j, k) * y(i,j)
end do
do k =1,n
X(i,j,k) = X(i,j,k) + Z(i,k)
end do
end do
end do
end

33

Chapter 3: Working With Power Fortran 90

34

The assertion forces the loop on I, the loop on], and the first loop on K to be
serial. Power Fortran still executes the second loop on K in parallel.

CDIR$ NEXT SCALAR

Silicon Graphics Power Fortran supports the Cray directive, CDIR$ NEXT
SCALAR as a synonym for the C*$* ASSERT DO (SERIAL) assertion.

C*$* ASSERT DO PREFER (SERIAL)

The C*$* ASSERT DO PREFER (SERIAL) assertion tells the compiler to
prefer any ordering in which the loop following the assertion remains serial.
Unlike C*$* ASSERT DO (SERIAL), this assertion does not inhibit
optimization of outer loops. This assertion directs Power Fortran to leave the
loop alone, regardless of the setting of the optimization level. You can use
this assertion to control which loop in a nest of loops Power Fortran chooses
to run in parallel. The code fragment in Example 3-5 is an example of how to
use the assertion.

Example 3-5 Inner Loop Preferred Serial

DOl =1, N
C*$* ASSERT DO PREFER (SERI AL)
DOJ =1 M
A(l,J) = B(1,J)
END DO
END DO

The assertion requests that the loop on] be serial. In this construction, Power
Fortran tries to run the loop on I in parallel. This capability is useful when
you know the value of M to be very small or less than N.

If the assertion in Example 3-4 is changed from DO (SERIAL) to DO PREFER
(SERIAL), Power Fortran makes remarkable alterations in the transformed
program, producing two copies of the outer loop, each containing just one of
the inner loops on K.

Using Directives and Assertions

Explicit Parallelization

Sometimes you might need to hand-tune a loop so that it will run in parallel.
You can use the C$ DOACROSS directive, or the PCF directives, to explictly
mark a section of code for parallel execution. These directives are discussed
in detail in Chapter 7 of the MIPSpro Fortran 90 Programmer’s Guide.

C*$*[NO]CONCURRENTIZE

The C*$*[NO]JCONCURRENTIZE directive enables or disables Power
Fortran from transforming eligible loops to run in parallel to the end of the
current program unit.

Used locally, these directives override the —[no]Jconcurrentize driver option.
Used globally, these directives have the same effect as the —[noJconcurrentize
driver option. (See “Enabling Parallelization of Loops” on page 27)

CVD$ CONCUR

Power Fortran supports the VAST directive CVD$CONCUR. Power Fortran
interprets this directive as if it were the C*$*CONCURRENTIZE directive.

C*$* ASSERT DO PREFER (CONCURRENT)

The C*$* ASSERT DO PREFER (CONCURRENT) assertion directs Power
Fortran to run a particular nested loop in parallel if possible. Power Fortran
runs another of the nested loops in parallel only if a condition prevents
running the selected loop in parallel. This assertion applies only to the loop
immediately after it.

Consider the code in Example 3-6.

Example 3-6 Nested Loop With Preferred Loop

| *$* ASSERT DO PREFER (CONCURRENT)
DOl =1, N
DO 100 J = 1, M
A(l, J) =B (I, J)
END DO
END DO

35

Chapter 3: Working With Power Fortran 90

36

The assertion directs Power Fortran to prefer to run the loop on I in parallel.
However, if a data dependence conflict prevents running that loop in
parallel, Power Fortran might run the loop on | in parallel.

The —noconcurrentize command line option and the C*$* NO
CONCURRENTIZE directive prevent Power Fortran from generating
concurrent code, even if you specify the C*$* ASSERT DO PREFER
(CONCURRENT) assertion.

C*$* ASSERT DO (CONCURRENT)

The C*$* ASSERT DO (CONCURRENT) assertion tells Power Fortran to
ignore assumed data dependencies.

Normally, Power Fortran is conservative about converting loops to run in
parallel. When Power Fortran analyzes a loop, it categorizes the loop into
one of three groups:

* vyes (loop is safe to run in parallel)

* no (definite data dependency)

* not sure (assumed data dependency)

Normally, Power Fortran does not run in parallel a loop with an assumed

data dependency. C*$* ASSERT DO (CONCURRENT) tells Power Fortran to
go ahead and run “not sure” loops in parallel.

CDIRS IVDEP

Power Fortran interprets the Cray directive CDIR$ IVDEP as if it were a C*$*
ASSERT DO (CONCURRENT) assertion. Some dependencies that are safe to
run on Cray hardware are not safe to run on Silicon Graphics hardware.
Therefore, to avoid incorrect parallelization of loops recognition of this
assertion is turned off by default.

Clarifying Dependencies

With assertions, you can give Power Fortran information about the use of
data in the program. This allows Power Fortran to parallelize more loops or
to do so more efficiently.

Using Directives and Assertions

C*$* ASSERT RELATION

The C*$* ASSERT RELATION (name.xx.name) assertion specifies that a
particular logical relation always holds between two variables, or between a
variable and a constant. name is the variable or constant, and xx is any of the
logical relations GT, GE, EQ, NE, LT, or LE. Used locally, this assertion
applies only to the following DO statement.

C*$* ASSERT RELATION can be specified globally when the variable names
appear in COMMON blocks or are dummy arguments to a subprogram. You
cannot use global assertions to make relational assertions about variables
that are local to a subprogram.

The code in Example 3-7 illustrates the use of C*$* ASSERT RELATION.

Example 3-7 Loop With Implied Relation

subrouti ne sundown(a, b, m n)
integer mn,j
real a,b
di nension a(:),b(:)
do j=1,n
a(j) =a(j+m + b(j)
end do
end

When Power Fortran analyzes this code, it detects that a data dependence
would exist if M were less than or equal to N, because in that case different
instances of a concurrent loop could store into the same elements of A.
Power Fortran parallelizes the loop by generating this IF statement:

if (M.ge. 1 .and. N.ge. M.or. M.le. (-1)) then
The THEN branch of the IF contains a serial version of the loop as originally

written. The ELSE branch, executed when no data dependency can exist,
contains a parallel version of the loop.

37

Chapter 3: Working With Power Fortran 90

38

When you know that M is always greater than N, there is no need for this
duplication of code. You can use C*$* ASSERT RELATION to inform Power
Fortran, as shown in Example 3-8. When you do this, Power Fortran
generates only the parallel form of the loop.

Example 3-8 Loop With Asserted Relation

subroutine sundown(a, b, mn)
integer mn,j
real a,b
di nension a(:),b(:)

1*$* assert relation (mgt.n)
do j=1,n

a(j) =a(j+m + b(j)

end do

end

C*$* ASSERT NO RECURRENCE

The C*$* ASSERT NO RECURRENCE(variable) assertion tells the compiler
to ignore all data dependence conflicts caused by variable in the loop that
follows it. For example, the following code tells the compiler to ignore all
dependence arcs caused by the variable X in the loop:

1*$* assert no recurrence (Xx)
doi=1m5
x(k) = x(k) + x(i)
end do

Not only does the compiler ignore the assumed dependence, it also ignores
the real dependence caused by X(k) appearing on both sides of the
assignment.

The C*$* ASSERT NO RECURRENCE assertion applies only to the
following loop. It cannot be specified as a global assertion.

C*$* ASSERT PERMUTATION

The C*$* ASSERT PERMUTATION (array) assertion tells Power Fortran that
array contains no repeated values. This assertion permits Power Fortran to
run in parallel certain kinds of loops that use indirect addressing. For a
detailed example of the use of this assertion, see “Indirect Indexing” on
page 18.

Using Directives and Assertions

C*$* ASSERT CONCURRENT CALL

C*$* ASSERT CONCURRENT CALL tells Power Fortran to ignore assumed
dependencies that are caused by a subroutine call or a function reference.
You must ensure that the subroutines and referenced functions have no side
effects and are safe for parallel execution. This assertion applies to all
subroutine and function references in the following loop. For detailed
examples of the use of this assertions, see “Function Call” on page 20 and
“Procedure Parameters” on page 22.

CVD$ CNCALL

Power Fortran interprets the VAST directive CDIR$ CNCALL as if it were a
C*$* ASSERT CONCURRENT CALL assertion. Some dependencies that are
safe to run on Cray hardware are not safe to run on Silicon Graphics
hardware. Therefore, recognition of this assertion is turned off by default.

39

Appendix A

Power Fortran Assertions

This appendix summarizes the Power Fortran assertions in alphabetical
order. When viewing this Guide online, you can use the cross-references in
the following table as hypertext links to the descriptive paragraphs.

Table A-1 Power Fortran Assertions

Assertion Summary Discussion
C*$* ASSERT CONCURRENT CALL page 42 page 20
C*$* ASSERT DO (CONCURRENT) page 42 page 36
C*$* ASSERT DO (SERIAL) page 42 page 33
C*$* ASSERT DO PREFER (CONCURRENT) page 42 page 35
C*$* ASSERT DO PREFER (SERIAL) page 43 page 34

C*$* ASSERT [NO] LAST VALUE NEEDED page 43

C*$* ASSERT NO RECURRENCE page 43 page 38
C*$* ASSERT NO SYNC page 43

C*$* ASSERT PERMUTATION page 44 page 18
C*$* ASSERT RELATION page 44 page 37

41

Appendix A: Power Fortran Assertions

42

C*$* ASSERT CONCURRENT CALL

C*$* ASSERT CONCURRENT CALL tells Power Fortran to ignore assumed
dependencies that are due to a subroutine call or a function reference.
However, you must ensure that the subroutines and referenced functions are
safe for parallel execution. This assertion applies to all subroutine and
function references in the immediately following loop.

C*$* ASSERT DO (CONCURRENT)

C*$* ASSERT DO (CONCURRENT) tells Power Fortran to ignore assumed
data dependencies. Normally, does not run loops containing assumed data
dependencies in parallel. C*$* ASSERT DO (CONCURRENT) tells Power
Fortran to go ahead and run such loops in parallel.

Note: If Power Fortran identifies a loop as containing definite (as opposed
to assumed) data dependencies, it does not run the loop in parallel even if a
C*$* ASSERT DO (CONCURRENT) assertion precedes the loop.

C*$* ASSERT DO (SERIAL)

C*$* ASSERT DO (SERIAL) tells Power Fortran to run the immediately
following loop serially. Power Fortran does not try to convert the specified
loop to run in parallel. Nor does it try to run any enclosing loop in parallel.
However, Power Fortran can still convert any loops nested inside the
following loop to run in parallel.

C*$* ASSERT DO PREFER (CONCURRENT)

C*$* ASSERT DO PREFER (CONCURRENT) runs a the immediately
following nested loop in parallel whenever possible. Power Fortran runs
other nested loops in parallel only if a condition prevents running the
selected loop in parallel.

Power Fortran does not generate parallel code if you use the —noconcurrentize
driver option or the C*$* NOCONCURRENTIZE directive.

C*$* ASSERT DO PREFER (SERIAL)

C*$* ASSERT DO PREFER (SERIAL) indicates that you want to execute the
immediately following loop in serial mode. This assertion directs Power
Fortran to leave the loop alone, regardless of the setting of the optimization
level. You can use this assertion to control which loop (in a nest of loops)
Power Fortran chooses to run in parallel.

C*$* ASSERT [NO] LAST VALUE NEEDED

Power Fortran gives each instance of the parallel loop its own, temporary
copy of the iteration variable to use. Power Fortran generates code so that
the instance of the loop that represents the “last” iteration (which may or
may not execute last in actual time sequence) assigns its final value for the
iteration variable to the actual variable, so that this “last” value will be
available to the serial code that follows the loop.

C*$* ASSERT NO LAST VALUE NEEDED specifies that the final values
from loops are not used, so last-value assignments are unnecessary. This
assertion is active until reset or until the end of the program.

C*$* ASSERT NO RECURRENCE

C*$* ASSERT NO RECURRENCE(variable) tells Power Fortran to ignore all
data dependencies associated with variable. Power Fortran ignores not just
assumed dependencies (as with C*$* ASSERT DO (CONCURRENT)) but
also real dependencies. Use this assertion to force Power Fortran to
parallelize a loop when other, gentler means have failed. Use this assertion
with caution, as indiscriminate use can result in illegal parallel code.

C*$* ASSERT NO SYNC
Sometimes when Power Fortran concurrentizes a loop, it adds unnecessary

synchronization directives or other synchronization code. You can use the
C*$* ASSERT NO SYNC assertion to eliminate synchronization overhead.

43

Appendix A: Power Fortran Assertions

44

C*$* ASSERT PERMUTATION

The C*$* ASSERT PERMUTATION (array) assertion tells Power Fortran that
array contains no repeated values. This assertion permits Power Fortran to
run in parallel certain kinds of loops that use indirect addressing.

C*$* ASSERT RELATION

The C*$* ASSERT RELATION (name.xx.name) assertion indicates the
relationship between two variables or between a variable and a constant.
name is the variable or constant, and xx is any of the following: GT, GE, EQ,
NE, LT, or LE. This assertion applies only to the immediately following loop.

Appendix B

Power Fortran Directives

This appendix summarizes the Power Fortran directives in alphabetical
order. When viewing this Guide online, you can use the cross-references in
the following table as hypertext links to the descriptive paragraphs.

Table B-1 Power Fortran Directives

Directive Class Summary Discussion
C$& SGI page 48

C*$* CONCURRENTIZE SGI page 46 page 35
C*$* LIMIT SGI page 46 page 29
C*$* MINCONCURRENT SGI page 46 page 27
C*$* NO ASSERTIONS SGI page 47 page 32
C*$* NOCONCURRENTIZE SGI page 47 page 35
C*$* OPTIMIZE SGI page 47 page 30
C*$* ROUNDOFF SGI page 48 page 24
CDIR$ IVDEP Cray page 49 page 36
CDIR$ NEXT SCALAR Cray page 49 page 34
C$ DOACROSS SGI page 48 page 27
CVD$ CNCALL VAST page 49 page 39
CVD$ CONCUR VAST page 49 page 35

45

Appendix B: Power Fortran Directives

46

C*$* CONCURRENTIZE

C*$*CONCURRENTIZE tells Power Fortran to convert eligible loops to run
in parallel. This directive, when specified globally, has the same effect as the
—concurrentize command line option. See also “C*$* NOCONCURRENTIZE”
on page 47.

C*$* LIMIT

C*$*LIMIT (1) reduces Power Fortran processing time by limiting the
amount of time Power Fortran can spend on trying to determine whether a
loop is safe to run in parallel. Power Fortran estimates how much time is
required to analyze each loop nest construct. If an outer loop looks like it
would take too much time to analyze, Power Fortran ignores the outer loop
and recursively visits the inner loops.

Larger limits often allow Power Fortran to generate parallel code for deeply
nested loop structures that it might not otherwise be able to run safely in
parallel. However, with larger limits Power Fortran can also take more time
to analyze a program. The value of n does not correspond to the loop nest
level. It is an estimate of the number of loop orderings that Power Fortran
can generate from a loop nest.

This directive, when specified globally, has the same effect as the —limit
driver option; see “limit” on page 52.

C*$* MINCONCURRENT

C*$*MINCONCURRENT(n) option establishes the minimum amount of
work needed inside the loop to make executing a loop in parallel profitable.
n is a count of the number of operations (for example, add, multiply, load,
store) in the loop, multiplied by the number of times the loop will be
executed. If the loop does not contain at least this much work, the loop will
not be run in parallel. If the loop bounds are not constants, an IF clause is
added to the generated parallelizing directive to test at run time if sufficient
work exists.

C*$* NO ASSERTIONS

C*$* NO ASSERTIONS directs Power Fortran to ignore all following
assertions to end of file.

C*$* NOCONCURRENTIZE

C*$*NONCONCURRENTIZE prevents Power Fortran from converting

loops to run in parallel. Used globally, it has the same effect as the
-noconcurrentize driver option. See also “C*$* CONCURRENTIZE” on

page 46.

C*$*OPTIMIZE

C*$*OPTIMIZE(n) sets the optimization level. The higher the optimization

level, the more code is optimized and longer Power Fortran runs. Valid

values for n are the integers:

0
1

Disables optimization; no loops are converted.

Converts loops to run in parallel without using advanced
data dependence tests. Enables loop interchanging.

Determines when scalars need last-value assignment
using lifetime analysis. Also uses more powerful data
dependence tests to find loops that can run safely in
parallel. This level allows reductions in loops that execute
concurrently but only if the —roundoff option is set to 2 (see
“Reductions” on page 24 for discussion of —roundoff.)

Recognizes triangular loops and attempts loop
interchanging to improve memory referencing. Uses
special case data dependence tests. Also, recognizes
special index sets called wraparound variables.

47

Appendix B: Power Fortran Directives

48

4 Generates two versions of a loop, if necessary, to break a
data dependence arc. This level also implements
more-exact data dependence tests and allows special
index sets (called wraparound variables) to convert more
code to run in parallel.

5 Fuses two adjacent loops if it is legal to do so (that is, there
are no data dependencies) and if the loops have the same
control values. In certain limited cases, this level
recognizes arrays as local variables. This level is the
default.

C*$*ROUNDOFF

C*$*ROUNDOFEF(n) controls whether Power Fortran runs a reduction
operation in parallel. Valid values for n are

0,1 Suppresses any round-off transformations. This is the default.

2 Allows reductions to be performed in parallel. This value is one
of the most commonly-specified user options.

3 Recognizes REAL induction variables. Permits memory
management transformations (refer to the MIPSpro Fortran 90
Programmer’s Guide for details.)

C$ DOACROSS

C$ DOACROSS tells the MIPSpro Fortran 90 compiler to generate parallel
code for the loop that immediately follows the directive. Putting this
directive in the original source marks the loop to run in parallel and signals
Power Fortran not to modify the loop. The use of C$ DOACROSS is covered
in detail in the MIPSpro Fortran 90 Programmer’s Guide.

Note: MIPSpro Power Fortran automatically generates C$PAR directives

from the PCF directive set. Older versions of Power Fortran generated C$
DOACROSS instead.

C$&

The C$& directive continues the preceding parallel directive onto a
continuation lines.

CDIRS IVDEP

Power Fortran interprets the Cray CDIR$ IVDEP directive as if it were a C*$*
ASSERT DO (CONCURRENT) assertion (see “C*$* ASSERT DO
(CONCURRENT)” on page 42). Cray directives are disabled by default; see
“[no]directives” on page 52.

CDIR$ NEXT SCALAR

Power Fortran interprets the CDIR$ NEXT SCALAR directive as if it were a
C*$* ASSERT DO(SERIAL) assertion (see “C*$* ASSERT DO (SERIAL)” on
page 42). Cray directives are disabled by default; see “[no]directives” on
page 52.

CVD$ CNCALL
Power Fortran interprets the CVD$ CNCALL directive as if it were the C*$*

ASSERT CONCURRENT CALL assertion (see “C*$* ASSERT
CONCURRENT CALL” on page 42).

CVD$ CONCUR
Power Fortran interprets the CVD$ CONCUR directive as if it were the

C*$*CONCURRENTIZE directive (see “C*$* CONCURRENTIZE” on
page 46).

49

Appendix C

Power Fortran Driver Options

This appendix summarizes the driver options that relate specifically to
automatic parallelization in Power Fortran. Many additional options
relating to optimization are documented in the MIPSpro Fortran 90
Programmer’s Guide. When viewing this Guide online, you can use the
cross-references in the following table as hypertext links to the descriptive

paragraphs.
Table C-1 Power Fortran Driver Options
Option (long) Option Default Summary Discussion
(short) (with -pfa)
—[no]concurrentize -[no]Jconc -conc page 52 page 27
-[no]directives[=list] -[n]dr[=list] —dr=ackpv page 52 page 32
-limit=n -Im -Im=20000 page 52 page 29
-lines=n -In -lines=55 page 53 page 10
-listoptions=list -lo=list -lo=li page 53 page 10
-minconcurrent -mc -mc=500 page 54 page 27
-optimize=n -0=n depends on On page 55 page 30
-[no]parallelio -[no]pio -nopio page 55 page 29
-roundoff=n -r=n depends onOn page 52 page 24
-suppress=list -su=list (none) page 56 page 11

51

Appendix C: Power Fortran Driver Options

52

[noJconcurrentize

The —concurrentize option allows Power Fortran to convert eligible loops to
run in parallel throughout the source file, subject to use of directives within
the source file (see “C*$* NOCONCURRENTIZE” on page 47).

The -noconcurrentize option disables conversion of eligible loops throughout

the source file, subject to the use of the directives within the source file (see
“C*$* CONCURRENTIZE” on page 46).

[no]directives

The option -directives=list enables interpretation of directives in the source
file. The letters in list specify different classes of directives to be recognized:

A Unique Power Fortran directives

C Cray (CDIRS) directives

K Power Fortran C*$* form directives
S Sequent C$ directives

\Y% VAST (CVD$) directives

The default is to enable all but Cray directives, since there are cases where
the Cray CDIR$ IVDEP directive is unsafe in SGI Fortran (see “CDIR$
IVDEP” on page 36).

The options -nodirectives disables processing of all directives in the source
file.

limit

The —limit=n option reduces Power Fortran processing time by limiting the
amount of time Power Fortran can spend trying to determine whether a loop
is safe to run in parallel. Power Fortran estimates how much time is required
to analyze each loop nest construct. If an outer loop looks like it would take
too much time to analyze, Power Fortran ignores the outer loop and
recursively visits the inner loops.

Larger limits often allow Power Fortran to generate parallel code for deeply
nested loop structures that it might not otherwise be able to run safely in

parallel. However, with larger limits Power Fortran can also take more time
to analyze a program.The value of # does not correspond to the loop nest
level. It is an estimate of the number of loop orderings that Power Fortran
can generate from a loop nest.

The same processing limit can be specified within the source file using a
directive; see “C*$* LIMIT” on page 46.

lines

The —lines option sets the page size for the listing produced by Power
Fortran. Specifying —lines=0 paginates at subroutine boundaries only.

listoptions

The —listoptions=list option specifies the information to include in the listing
file (.L). The letters in list include any combination of the letters in Table C-2.
The default is —listoptions=ol.

Table C-2 Listing File Include Options

Letter Controls This Information

c Calling tree at the end of the program listing.

i Transformed program file annotated with line numbers in the
source program. Error messages and debugging information can
refer to the original source rather than the transformed source. This
argument is specified by default.

k List of the Power Fortran options used at the end of each program
unit.

1 Loop-by-loop optimization table.

n Program unit names, as processed, to the standard error file. This

option is added automatically as part of an f90 —v compilation.

0 Annotated listing of the original program.

P Processing performance statistics.

s Summary of optimizations performed.

t Annotated listing of the transformed program.

53

Appendix C: Power Fortran Driver Options

54

minconcurrent

The —minconcurrent=n option establishes the minimum amount of work
needed inside a loop to make executing a loop in parallel worthwhile. If the
loop does not contain at least this much work, the loop will not be run in
parallel.

When the loop bounds are constants, Power Fortran can decide whether or
not to transform the loop at compile time. If the loop bounds are not
constants, Power Fortran transforms the loop to parallel form but includes
an IF clause in the parallelizing directive to test at run time whether
sufficient work exists.

The value 7 is a count of the number of operations (for example, add,
multiply, load, store) in the loop, multiplied by the number of times the loop
will be executed.

optimize

The —optimize=n option sets the optimization level. The higher you set the
optimization level, the more code is optimized and the longer compilation
takes Valid values for n are:

0 Disables optimization; no loops are converted.

1 Converts loops to run in parallel without using advanced
data dependence tests. Enables loop interchanging.

2 Determines when scalars need last-value assignment
using lifetime analysis. Also uses more powerful data
dependence tests to find loops that can run safely in
parallel. This level allows reductions in loops that execute
concurrently but only if the —roundoff option is set to 2 (see
“Reductions” on page 24 for discussion of —roundoff.)

3 Recognizes triangular loops and attempts loop
interchanging to improve memory referencing. Uses
special case data dependence tests. Also, recognizes
special index sets called wraparound variables.

4 Generates two versions of a loop, if necessary, to break a
data dependence arc. This level also implements
more-exact data dependence tests and allows special
index sets (called wraparound variables) to convert more
code to run in parallel.

5 Fuses two adjacent loops if it is legal to do so (that is, there
are no data dependencies) and if the loops have the same
control values. In certain limited cases, this level
recognizes arrays as local variables. This level is the
default.

parallelio
The —parallelio option enables the parallelization of loops that contain I/O
statements. Use this option only on systems with parallel I/O capabilities or

where I/0O statements in loops are not executed.

The -noparallelio option (the default) disables transformation of any loop
with an I/O statement in it.

55

Appendix C: Power Fortran Driver Options

56

suppress

The —suppress option lets you disable individual classes of Power Fortran
messages that are normally included in the listing (.L) file These messages
range from syntax warnings and error messages to messages about the
optimizations performed. list is any combination of the option letters
summarized in Table C-3.

Table C-3 Listing File Message Disabling Options

Value Message Class Disabled

d Data dependence

e Syntax error

i Information

n Unable to run loop in parallel

q Questions

s Standard messages

w Warning of syntax error (Power Fortran adds the —suppress=w

option automatically if you use the -w option to f90)

Index

A

action summary, 14

assertions, 32-39, 41-44

C*$* ASSERT CONCURRENT CALL, 21, 22,23,
39,42

C*$* ASSERT DO (CONCURRENT), 36, 42

C*$* ASSERT DO (SERIAL), 33, 42

C*$* ASSERT DO PREFER (CONCURRENT), 35,
42

C*$* ASSERT DO PREFER (SERIAL), 34, 43

C*$* ASSERT NO RECURRENCE, 38, 43

C*$* ASSERT NO SYNC, 43

C*$* ASSERT PERMUTATION, 19, 38, 44

C*$* ASSERT RELATION, 37, 44

C

C$&, 48
C*$* ASSERT CONCURRENT CALL, 21, 22, 23, 39,
42

C*$* ASSERT DO (CONCURRENT), 36, 42

C*$* ASSERT DO (SERIAL), 33, 42

C*$* ASSERT DO PREFER (CONCURRENT), 35, 42
C*$* ASSERT DO PREFER (SERIAL), 34, 43

C*$* ASSERT NO RECURRENCE, 38, 43

C*$* ASSERT NO SYNC, 43

C*$* ASSERT PERMUTATION, 19, 38, 44

C*$* ASSERT RELATION, 37, 44

C*$* CONCURRENTIZE, 35, 46

C*$* LIMIT, 30, 46

C*$* MINCONCURRENT, 27, 46
C*$* NO ASSERTIONS, 32, 47
C*$* NOCONCURRENTIZE, 35, 47
C*$* OPTIMIZE, 30, 47

C*$* ROUNDOFF, 25, 48

CDIR$ IVDEP, 36, 49

CDIR$ NEXT SCALAR, 34, 49
C$ DOACROSS, 35, 48
—concurrentize driver option, 52
C$PAR, 29

Cray directives

CDIR$ IVDEP, 36, 49
CDIR$ NEXT SCALAR, 34, 49

CVD$ CNCALL, 39, 49
CVD$ CONCUR, 35,49

D

directives, 32-39, 45-49
C$&, 48
C*$* CONCURRENTIZE, 35, 46
C*$* LIMIT, 30, 46
C*$* MINCONCURRENT, 27, 46
C*$* NO ASSERTIONS, 32, 47
C*$* NOCONCURRENTIZE, 35, 47
C*$* OPTIMIZE, 30, 47
C*$* ROUNDOFF, 25, 48
CDIR$ IVDEP, 36, 49
CDIR$ NEXT SCALAR, 34, 49

57

Index

C$ DOACROSS, 35, 48 I

C$PAR, 29
CVD$ CNCALL, 39,49 IF clause of C$PAR, 29
CVD$ CONCUR, 35,49 indirect indexing, 18
DO loop marking, 14 inlining, 31
driver option, 27-32, 51-56 interprocedural analysis (IPA), 31

overview, 27
-concurrentize, 27, 52

-limit, 29, 52 L
-lines, 53
—lines, 10 LAST VALUE NEEDED, 43

-listoptions, 10, 12, 53
-minconcurrent, 27, 54
-noconcurrentize, 52
—noconcurrentize, 27

-limit driver option, 29
—limit driver option, 52
line numbers, 14

-nodirectives, 32 ~lines driver option, 10, 53
-noparallelio, 55 listing

—optimize, 30 action summary, 14
-parallelio, 55 DO loop marking, 14
—parallelio, 29 error messages, 17
-roundoff, 25, 31 field descriptions, 12
-suppress, 11, 56 footnotes, 17

interpreting, 12
line numbers, 14

E paginating, 10
samples, 18-26
error messages, 17 viewing, 11
examples warning messages, 17
function call in loop, 20 -listoptions driver option, 10, 12, 53

indirect indexing, 18
procedure parameter, 22
reduction, 24 M

message classes, diabling, 11
F —minconcurrent driver option, 27, 54

footnotes, 17
function call in loop, 20

58

Index

N

assertions

C*$* ASSERT, 43
C*$* ASSERT, 43
-noconcurrentize driver option, 27, 52
-nodirectives driver option, 32
-noparallelio driver option, 55

O

optimization level, 30
—optimize driver option, 30

P

paginating the listing, 10
—parallelio driver option, 29, 55

Power Fortran
assertions, 32-39, 41-44
directives, 32-39, 45-49
driver options, 27-32, 51-56
interpreting listing, 12
reduction support, 26
table of action abbreviations, 15

procedure parameter, 22

R

reduction, 24

types of, 26
-roundoff driver option, 31
—-roundoff driver option, 26

S

sample listings, 18
setting optimization level, 30
—suppress driver option, 11, 56

\Y
VAST directives

CVD$ CNCALL, 39,49
CVD$ CONCUR, 35, 49

viewing the listing, 11
W

warning messages, 17
WorkShop Pro MPF, 2
work threshold, 27

X

xwsh use, 11

59

Tell Us About This Manual

As a user of Silicon Graphics products, you can help us to better understand your needs
and to improve the quality of our documentation.

Any information that you provide will be useful. Here is a list of suggested topics:

* General impression of the document

® Omission of material that you expected to find

® Technical errors

® Relevance of the material to the job you had to do

¢ Quality of the printing and binding

Please send the title and part number of the document with your comments. The part
number for this document is 007-2760-001.

Thank you!

Three Ways to Reach Us
* To send your comments by electronic mail, use either of these addresses:
— On the Internet: techpubs@sgi.com
— For UUCP mail (through any backbone site): [your_site]!sgi!techpubs

¢ To fax your comments (or annotated copies of manual pages), use this
fax number: 415-965-0964

* To send your comments by traditional mail, use this address:

Technical Publications

Silicon Graphics, Inc.

2011 North Shoreline Boulevard, M/S 535
Mountain View, California 94043-1389

