
Indigo2 IMPACT Video™
Programmer’s Guide

Document Number 007-3182-001

Indigo2 IMPACT Video™ Programmer’s Guide
Document Number 007-3182-001

CONTRIBUTORS

Written by Carolyn Curtis
Illustrated by Cheri Brown, Scott Pritchett, and Carolyn Curtis
Edited by Christina Cary
Production by Heather Hermstad
Engineering contributions by Michael Minakami, Ed Goldberg, I-Ching Wang, Jeff

Schmidt, Judy Ting, Grant Dorman, and Scott Pritchett
Cover design and illustration by Rob Aguilar, Rikk Carey, Dean Hodgkinson,

Erik Lindholm, and Kay Maitz

© Copyright 1995, Silicon Graphics, Inc.— All Rights Reserved
This document contains proprietary and confidential information of Silicon
Graphics, Inc. The contents of this document may not be disclosed to third parties,
copied, or duplicated in any form, in whole or in part, without the prior written
permission of Silicon Graphics, Inc.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure of the technical data contained in this document by
the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS 52.227-7013
and/or in similar or successor clauses in the FAR, or in the DOD or NASA FAR
Supplement. Unpublished rights reserved under the Copyright Laws of the United
States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd.,
Mountain View, CA 94043-1389.

Silicon Graphics, the Silicon Graphics logo, OpenGL, and IRIS are registered
trademarks and Indigo2 IMPACT Video, IRIX, Galileo Video, IndyCam, Indigo2

IMPACT Compression, Video Library, and Graphics Library are trademarks of
Silicon Graphics, Inc. MII is a trademark of Panasonic, Inc. Betacam and Sony are
registered trademarks and Hi-8mm and U-Matic are trademarks of Sony
Corporation. S-VHS is a trademark of JVC, Inc. UNIX is a registered trademark in the
United States and other countries, licensed exclusively through X/Open Company,
Ltd. X Window System is a trademark of Massachusetts Institute of Technology.

Figure 7-4, in Chapter 7, is derived from Thomas Porter and Tom Duff, “Compositing
Digital Images,” published by the Association for Computing Machinery, 1984.

iii

Contents

List of Figures vii

List of Tables ix

List of Examples xi

About This Guide xiii
Audience xiii
Structure of This Document xiii
Conventions xv

1. Features of Indigo2 IMPACT Video 1
Indigo2 IMPACT Video Board Capabilities 1
Video Library Capabilities 3
VL System Software Architecture 4

Video Daemon 5
Generic Video Tools 6
Library and Header Files 7

VL Architectural Model of Video Devices 7
Path 8
Node 8
Port 10
Connections 11

Indigo2 IMPACT Video Formats 12

iv

Contents

2. Creating Video Programs With the Video Library 15
The VL Programming Model 15
Performing Preliminary Steps 17
Opening a Connection to the Video Daemon 18
Specifying Nodes on the Data Path 18
Creating and Setting Up the Data Path 19

Creating the Path 20
Getting the Device ID 20
Adding a Node 21
Setting Up the Data Path 21
Specifying the Path-Related Events to Be Captured 23

Setting Parameters for Data Transfer to or From Memory 25
Setting Node Controls for Data Transfer 25

Displaying Video Data Onscreen 39
Transferring Video Data to and From Devices 40

Creating a Buffer for Video Data 41
Registering the VL Buffer 43
Starting Data Transfer 43
Reading Data From the Buffer 45

Ending Data Transfer 48
Example Programs 49

3. Using VL Controls 51
VL Control Type and Values 54
VL Control Fraction Ranges 55
VL Control Classes 55
VL Control Groupings 56

4. Event Handling 59
Indigo2 IMPACT Video VL Events 60
Querying VL Events 65
Creating a VL Event Loop 67
Creating a Main Loop With Callbacks 68

Contents

v

5. Managing Connections 71
Specifying Connectivity 71

Getting Connections 73
Avoiding Dynamic Switching Problems 78

Crosspoint Mux Timing Restrictions 79
VGI1 Memory Source Timing Restrictions 80

6. Video Real-Time Capture and Playback 81
Video Library Buffers 81
Caching 82
Buffer Alignment 83
Direct I/O to Disk 84
syssgi 85
Asynchronous I/O 86
Capture and Playback Examples 87

7. Blending, Keying, and Transitions 89
The Blender Node 90

Setting Up the Blender Node 92
Setting Normalization 94
Setting and Turning Off Flat Background 97
Adding Shadows 98

Keying 99
Luma Keying 101
Chroma Keying 103
Fades, Tiles, and Wipes 105

The Keyer 108
VL Blending Examples 109

Blending Video and Graphics 110
Creating a Simple Wipe Effect 110

vi

Contents

A. Video Basics 111
Interlacing 111
Broadcast Standards 113
Color Encoding 114

RGB 114
YUV 115
YIQ 115
YC, YC-358, YC-443, or S-Video 116
Composite Video 116

Video Signals 117
Videotape Formats 118

B. Return Codes 121

C. Indigo2 IMPACT Video Nodes and Their Controls 127
VL_DEVICE 129
VL_BLENDER 134
VL_FB 139
VL_MEM 140

VL_MEM Source 140
VL_MEM Drain 147

VL_SCREEN 152
VL_SCREEN Source 152
VL_SCREEN Drain 154

VL_VIDEO 157
VL_VIDEO Source 157
VL_VIDEO Drain 160

Glossary 165

Index 199

vii

List of Figures

Figure 1-1 VL System Components 4
Figure 1-2 Simple VL Path 9
Figure 1-3 Simple VL Blending 10
Figure 2-1 Zoom and Decimation 30
Figure 2-2 Clipping an Image 33
Figure 2-3 Zoom, Size, Offset, and Origin 34
Figure 2-4 vlGetNextValid(), vlGetLatestValid(), and vlPutFree() 45
Figure 5-1 Hardware Representation 75
Figure 5-2 Software Representation 76
Figure 7-1 Blender Node 90
Figure 7-2 Keyer and Flat-Background Generator Locations

on Source Nodes 91
Figure 7-3 Setting Up the Blender Node 92
Figure 7-4 Binary Compositing 95
Figure 7-5 Indigo2 IMPACT Video Keying, Wipe, and

Blender Control Relationships 100
Figure 7-6 Luma Keying Application: Titling 101
Figure 7-7 Relationships Between Indigo2 IMPACT Video

Luma Keying Controls 102
Figure 7-8 Chroma Keying Application: TV Weather Map 103
Figure 7-9 Relationships Between Indigo2 IMPACT Video

Chroma Keying Controls 104
Figure 7-10 Value, Range, and Transition (Keyer Detail)

for a Channel 109
Figure A-1 Fields and Frame 112
Figure A-2 Relationships Between Color-Encoding Methods

and Video Formats 117
Figure A-3 Composite Video Waveform 118

viii

List of Figures

Figure C-1 Rounding for Memory Drain 147
Figure Gl-1 SMPTE Color Bars (75%) 170
Figure Gl-2 Color Burst and Chrominance Signal 171
Figure Gl-3 Component Video Signals 173
Figure Gl-4 Horizontal Blanking 179
Figure Gl-5 Horizontal Blanking Interval 180
Figure Gl-6 Waveform Monitor Readings With and Without Setup 188
Figure Gl-7 SMPTE Time Code 188
Figure Gl-8 Red or Blue Signal 193
Figure Gl-9 Y or Green Plus Sync Signal 193
Figure Gl-10 Video Waveform: Composite Video Signal With Setup

(Typical NTSC) 194
Figure Gl-11 Video Waveform: Composite Video Signal

(Typical PAL) 195

ix

List of Tables

Table 1-1 Video Formats for Indigo2 IMPACT Video 12
Table 2-1 Video Library Calls for Data Transfer 17
Table 2-2 VL Event Masks 23
Table 2-3 Data Transfer Controls 25
Table 2-4 Dimensions for Timing Choices 27
Table 2-5 VL_FORMAT 27
Table 2-6 Packing Types for Eight Bits per Component 28
Table 2-7 Packing Types for Ten Bits per Component 29
Table 2-8 VL_RATE Values (Items per Second) 35
Table 2-9 Buffer Size Requirements 42
Table 2-10 Buffer-Related Calls 45
Table 2-11 Calls for Extracting Data From a Buffer 46
Table 3-1 Device-Independent Controls for

Indigo2 IMPACT Video 52
Table 3-2 VL Control Groupings 57
Table 4-1 VL Events for Indigo2 IMPACT Video 61
Table 4-2 VL Event Handling Routines 65
Table 4-3 VL Event Masks 66
Table 5-1 Dynamic Effects of Various Video Data Path Controls 78
Table 7-1 General Blender Controls 93
Table 7-2 Choices for Blend Functions A and B 96
Table 7-3 Indigo2 IMPACT Luma Keying Controls 101
Table 7-4 Indigo2 IMPACT Video Chroma Keying Controls 103
Table 7-5 Controls for Fades, Tiles, and Wipes 106
Table 7-6 Indigo2 IMPACT Video Controls Specific to Wipes 107
Table A-1 Tape Formats and Video Formats 119

x

List of Tables

Table C-1 Device Node Controls 129
Table C-2 Blender Node Controls 135
Table C-3 Memory Source Node Controls 141
Table C-4 Memory Drain Node Controls 148
Table C-5 Screen Source Node Controls 153
Table C-6 Screen Drain Node Controls 156
Table C-7 Video Source Node Controls 158
Table C-8 Video Drain Node Controls 161
Table Gl-1 Videotape Formats 192

xi

List of Examples

Example 4-1 Using VL Callbacks 69
Example 5-1 vlGetConnection() Example 74
Example 7-1 Setting Up Source, Drain, and Blender Nodes 92

xiii

About This Guide

Indigo2 IMPACT Video™ is a video option that provides a Silicon Graphics®

Indigo2 IMPACT™ workstation with the ability to input and output graphic
and video images and record them to disk or videotape.

Indigo2 IMPACT fully utilizes all calls and controls in the Silicon Graphics
Digital Media library, such as the Video Library, as well as controls that are
native to Indigo2 IMPACT Video only.

This guide explains features of the Video Library™ (VL) and gives
step-by-step instructions for creating VL programs that make use of the
Indigo2 IMPACT Video capabilities.

Audience

This guide is written for the sophisticated video user with a background in
C programming who wishes to develop video programs for Indigo2

IMPACT Video capabilities.

Structure of This Document

This guide contains the following chapters and appendixes:

• Chapter 1, “Features of Indigo2 IMPACT Video,” introduces features
and capabilities of the Indigo2 Video board for Indigo2 IMPACT Video.
It explains VL features and architecture, and presents the VL
programming model.

• Chapter 2, “Creating Video Programs With the Video Library,” explains
how to open a connection to the video daemon and set up a data path,
how to set data transfer parameters, how to display video data
onscreen, how to transfer video data, and how to end data transfer by

xiv

About This Guide

presenting an annotated sample program that displays live video input
in a graphics window.

• Chapter 3, “Using VL Controls,” explains VL control type and values,
VL control fraction ranges, VL control classes, and VL control
groupings.

• Chapter 4, “Event Handling,” presents the VL events for Indigo2

IMPACT Video and details querying VL events, creating a VL event
loop, and creating a main loop with callbacks.

• Chapter 5, “Managing Connections,” explains how to set up more
complex paths in Indigo2 IMPACT Video programs by specifying
connectivity and avoiding dynamic switching problems. It explains
connectivity for Indigo2 IMPACT Video by presenting details of board
and software architecture.

• Chapter 6, “Video Real-Time Capture and Playback,” gives guidelines
for optimizing capture or playback to system memory or disk.

• Chapter 7, “Blending, Keying, and Transitions,” explains how to use VL
to perform chroma keying, luma keying, alpha keying, and transitions.
It explains the blend node, keying, the keyer, and blending controls for
Indigo2 IMPACT Video.

• Appendix A, “Video Basics,” introduces basic video concepts.

• Appendix B, “Return Codes,” lists and explains VL return messages for
Indigo2 IMPACT Video.

• Appendix C, “Indigo2 IMPACT Video Nodes and Their Controls,”
gives information on the Indigo2 IMPACT Video nodes and their
controls.

A glossary and an index complete this guide.

xv

Conventions

These type conventions and symbols are used in this guide:

Helvetica Bold Hardware labels

Italics Executable names, filenames, IRIX commands, manual or
book titles, new terms, program variables, tools, utilities,
variable command line arguments, variable coordinates,
and variables to be supplied by the user in examples, code,
and syntax statements

Bold Function name

Fixed-width type

 Error messages, prompts, and onscreen text

Bold fixed-width type

User input, including keyboard keys (printing and
nonprinting); literals supplied by the user in examples,
code, and syntax statements (see also <>)

“” (Double quotation marks) Onscreen menu items and
references in text to document section titles

[] (Brackets) Surrounding optional syntax statement
arguments

<> (Angle brackets) Surrounding nonprinting keyboard keys,
for example, <Esc> , <Ctrl-D>

1

Chapter 1

1. Features of Indigo2 IMPACT Video

The Indigo2 IMPACT Video option board and the Video Library provide
video input and output for Indigo2 workstations equipped with IMPACT
graphics.

This chapter introduces

• Indigo2 IMPACT Video board capabilities

• Video Library capabilities

• the VL system software architecture

• the VL architectural model of video devices

• Indigo2 IMPACT video formats

For an introduction to video, see Appendix A, “Video Basics.”

Indigo 2 IMPACT Video Board Capabilities

Building on its broadcast-quality, 10-bit digital video architecture, Indigo2

IMPACT Video provides a solid foundation for unlimited applications. You
can use Indigo2 IMPACT graphics with real-time video and keyed or alpha
output of the 32-bit, double-buffered graphics for broadcast applications.
Post-production professionals can use Indigo2 IMPACT Video to capture
and play back uncompressed 10-bit video to and from main system memory.

You can send and receive live component video from any serial
CCIR-601/SMPTE-259M-compliant device. Compatible with 525-line
(NTSC) and 625-line (PAL) standards, Indigo2 IMPACT Video
accommodates all major formats of serial digital video I/O:

• two channels of YUV 4:2:2 (8- or 10-bit) (single-link)

• one channel of YUVA 4:2:2:4 (8- or 10-bit) (dual-link)

2

Chapter 1: Features of Indigo2 IMPACT Video

• one channel of YUVA 4:4:4:4 (8- or 10-bit) (dual-link)

• one channel RP175 (RGBA 8- or 10-bit) (dual-link)

• two channels of arbitrary 8-bit data (single-link)

Additional connections provide genlock input, genlock loopthrough, and
GPI trigger signals. You can use the genlock to lock output to analog house
sync or to either digital input. For conversion to or from component or
composite analog video, use third-party digital-to-analog and
analog-to-digital solutions.

Indigo2 IMPACT Video’s serial digital I/O produces valid output only when
it operates in CCIR non-square pixel mode. The I/O ports are not usable
when the device operates in square pixel mode, although the remainder of
the device is usable. The non-square pixel modes are used with the Indigo2

IMPACT Compression™ option card to capture digital video signals to disk
in real time. Serial digital video I/O coupled with low compression ratios
dramatically reduces storage and network bandwidth requirements, thus
facilitating demanding applications such as spot playback and nonlinear
video editing.

For input, you can use, in any combination

• graphics screen

• Indigo2 IMPACT Compression

• digital video

• main memory

The real-time 8-bit alpha blender and key generator enable live creation of
many fundamental video effects, including overlays, dissolves, fades, wipes,
chroma and luma keying, and shadow.

Video Library Capabilities

3

Video Library Capabilities

The Video Library provides a software interface to the Indigo2 IMPACT
Video board, enabling applications to

• display live video in a window

• capture live video to system memory

• encode graphics to video in real time

• produce high-quality full-rate video output

The Video Library (VL) is a collection of device-independent and
device-dependent C language calls for Silicon Graphics workstations
equipped with video options. The VL provides generic video tools,
including simple tools for importing and exporting digital data to and from
Silicon Graphics systems, as well as to and from third-party video devices
that adhere to the Silicon Graphics architectural model for video devices.
Video tools are described in the Media Control Panels User’s Guide, which you
can view using the IRIS InSight™ viewer; similar applications are supplied
in source-code form as examples in the 4Dgifts directory
(/usr/people/4Dgifts/impact/examples/dmedia/video/vl and
/usr/people/4Dgifts/OpenGL).

The VL works with other Silicon Graphics libraries, such as the OpenGL®

and IRIS Graphics Library™ (GL). The VL does not depend on the X
Window System™, but you can use X Window System libraries or toolkits to
create a windowing interface.

The VL allows programs to get events 60 times per second on a quiescent
system; it also enables programs to share resources or to gain exclusive use
of resources. It supports input and output of video data to or from
locked-down memory at the nominal frame rate. The VL provides an API
that enables applications to

• capture or play back video from system memory

• blend computer graphics with frames from videotape or any video
source

• present video in a window on the workstation screen

4

Chapter 1: Features of Indigo2 IMPACT Video

The software for the Indigo2 IMPACT video board includes a graphical user
interface, /usr/sbin/vcp, that makes it convenient to access VL capabilities.

VL System Software Architecture

This section describes features of these VL system components and tools:

• video daemon

• generic video tools

• library and header files

Figure 1-1 diagrams the interaction between the VL, the video daemon, the
kernel, the hardware, and the X Window System server.

Figure 1-1 VL System Components

The VL communicates with the IRIX kernel for device initialization, vertical
retrace, setup, and maintenance of any device-supported direct memory
access (DMA).

Besides these components, the VL includes a collection of applications that
support device configuration and control setting and retrieval, generic tools
that display video on a workstation, and video control panels.

Video
application

Video
Library

Video
daemon

IRIX kernel

interface
X GL OpenGL

VL System Software Architecture

5

Video Daemon

The video daemon /usr/etc/videod, which has device-dependent and
device-independent portions, handles video device management and status
information.

Device Management

Management that the video daemon performs includes

• multiple client access to multiple devices

The library supports connections from multiple client applications and
manages their access to a limited number of video devices.

• dispatching events

As events are handled and noted by devices, the daemon notifies
applications that have expressed interest in those events.

• handling events

As events are generated by the various devices, the daemon initiates
any action required by an event before it hands the event off to
interested applications.

• maintaining exclusive use

Types of data or control usage for video clients in a Video Library
application are Done Using, Read-only, Lock, and Shared. These usage
levels apply only to write access on controls, not read access. Any
application can open and read the control’s values at any time.

• client cleanup on exit

When a client exits or is terminated abnormally, its connection to the
daemon is broken; the daemon performs any cleanup required of the
system. Any exclusive-use modes that have been set are cleared;
interested clients are notified that the device is no longer in exclusive
use. Controls set by the client might persist, but are not guaranteed to
remain after the client closes the connection.

6

Chapter 1: Features of Indigo2 IMPACT Video

Status Information

Status information for which the video daemon is responsible includes

• system status of video devices

The video devices installed in a system can be queried as to availability
and control status.

• video positioning (offset) information

• control setting and retrieval

Device-independent and device-dependent controls are set and
retrieved through the video daemon.

Generic Video Tools

The generic video tools include:

videopanel (vcp) Use this graphical user interface to set controls, such as hue
or contrast, on devices. The panel resizes itself dynamically
to reflect available video devices.

vlcmd Use the Video Library command-line interface to enter
Video Library shell-level and other commands.

videoin Use the video input window tool to view input video in a
window.

videoout Use the video output tool to output video from a
rectangular area of the screen on hardware that supports the
screen-to-video path.

vlinfo Use the video info tool to display information about video
devices available through the VL, such as the name of the X
server, number of devices on the server, and the types and
ID numbers of nodes, sources, and drains on each device.

vintovout Use this tool to display video input on the device attached
to video output.

VL Architectural Model of Video Devices

7

vidtomem Use this tool to capture a single frame (the current video
input) or a specified number of frames, depending on the
hardware limits for burst capture, and write the data to
disk. Capture size can also be specified. The data, which can
be translated or left as raw data, can be used by the
memtovid tool.

memtovid Use this tool to output frames (images) to video out on
hardware that supports the memory-to-video path.

The vlinfo, vidtomem, and memtovid tools are command-line tools. In addition
to their reference pages, these tools have explanations in the Media Control
Panels User’s Guide, which you can view using the IRIS InSight viewer.
Similar applications are supplied in source-code form as examples in the
4Dgifts directory (/usr/people/4Dgifts/impact/examples/dmedia/video/vl and
/usr/people/4Dgifts/examples/OpenGL).

Library and Header Files

The client library is /usr/lib/libvl.so. The header files for the VL are in
/usr/include/dmedia. The header file for the VL, vl.h, contains the main
definition of the VL API and controls. The header files for Indigo2 IMPACT
Video are /usr/include/dmedia/dev_mgv.h (linked to /usr/include/vl/vl_mgv.h)
and /usr/include/dmedia/dev_impact.h (linked to /usr/include/vl/vl_impact.h).

The header file /usr/include/dmedia/vl_impact.h (linked to
/usr/include/vl/dev_impact.h) contains definitions common to the Indigo2

IMPACT Video and Indigo2 IMPACT Compression devices.

VL Architectural Model of Video Devices

The VL recognizes these classes of objects:

• devices, each including sets of nodes

• nodes: sources, drains, and internal nodes

• paths, connecting sources and drains

• ports, the entities on nodes that produce or consume video data

8

Chapter 1: Features of Indigo2 IMPACT Video

• controls, or parameters, that modify how data flows through nodes; for
example:

– video device parameters, such as blanking width, gamma value,
horizontal phase, sync source

– video data capture parameters

– blending parameters

• buffers, for sending frame data to and receiving frame data from host
memory; the VL buffers contain a number of blocks; each with a
pointer, a size, and pointers to the head (oldest) and tail (newest) valid
data

Central concepts for VL are path, node, and port.

Path

The path is an abstraction for a way of moving data around. A path is a set
of nodes with video routes (connections) between the ports on the nodes.

Node

The node is an endpoint or internal processing element of the path, such as
a video source like a VTR, video drain (such as to the Indigo2 IMPACT
screen), a device (video), or the blender in which video sources are combined
for output to a drain.

A path defines the useful connections between video sources and video
drains. Figure 1-2 shows a simple path in which a frame from a videotape is
displayed in a workstation window.

VL Architectural Model of Video Devices

9

Figure 1-2 Simple VL Path

Figure 1-3 shows a more complex path with two video sources: a frame from
a videotape and a computer-generated image are blended and output to a
workstation window. This path is set up in stages.

qweryiuo qwbkkh
qweryiuo qwwbkkh
wbkkh
qweryiuo qwbkkh
qweryiuo qwwbkkh
wbkkh

qweryiuo qwbkkh
qweryiuo qwwbkkh
wbkkh
qweryiuo qwbkkh
qweryiuo qwwbkkh
wbkkh

Source Drain

VTR

10

Chapter 1: Features of Indigo2 IMPACT Video

Figure 1-3 Simple VL Blending

Port

The port is an entity on a node that produces or consumes video data.

Most nodes have only one port, such as the video in or video out nodes. Each
internal node has at least two ports, input (drain) and output (source). The
blend node has several ports (A alpha in, A pixel in, B alpha in, B pixel in,
pixel out, alpha out).

Ports have several attributes:

• link type: single-link or dual-link

• data type: alpha, pixel, or pixel-alpha (dual-link)

Source1

Source2

qweryiuo qwbkkh
qweryiuo qwwbkkh
wbkkh
qweryiuo qwbkkh
qweryiuo qwwbkkh
wbkkh

qweryiuo qwbkkh
qweryiuo qwwbkkh
wbkkh
qweryiuo qwbkkh
qweryiuo qwwbkkh
wbkkh

qweryiuo qwbkkh
qweryiuo qwwbkkh
wbkkh
qweryiuo qwbkkh
qweryiuo qwwbkkh
wbkkh

qweryiuo qwbkkh
qweryiuo qwwbkkh
wbkkh
qweryiuo qwbkkh
qweryiuo qwwbkkh
wbkkh

VTR

Drain

Source1 Drain

/*Create the screen to video path */
vlPath = vlCreatePath(vlScr, devicenum, src_scr, drn_vid);

/* Add the video source node */
vlAddNode(vlSvr, vlPath, src_vid);

VL Architectural Model of Video Devices

11

A device can use this attribute internally to handle data conversions or
routing. For example, the Indigo2 IMPACT Video board includes an
alpha LUT to convert CCIR-range pixel data to full-range alpha values.

• direction: source or drain

• enumerator: A, B, C, and so on, used if a path has several ports with the
same link type, data type, and direction

Ports produce or consume various types of data: pixel, alpha, or dual-link
data. The identification of the port as pixel or alpha may cause the video
stream to be treated differently. For example, alpha data, which can be
supplied to Indigo2 IMPACT video in the CCIR range only, is internally
expanded to full range before it is used. No range expansion is performed
for pixel data. Dual-link channels carry both alpha and pixel data, although
one data type may be ignored depending on the format.

Ports have generic names; for example:

• VL_IMPACT_PORT_PIXEL_SRC_A: source of a pixel stream (first, or
only, port instance)

• VL_IMPACT_PORT_ALPHA_DRN_B: drain of an alpha stream
(second port instance)

For the symbolic names for ports, see /usr/include/dmedia/dev_impact.h.
Appendix C, “Indigo2 IMPACT Video Nodes and Their Controls,” in this
guide gives the ports associated with each node.

Connections

The connections between ports on nodes determine the topology of a path.

Single-link ports can be connected to single-link ports only; dual-link ports
can be connected to double-link ports only.

Data flows from a source port to a drain port. It is not permissible to connect
a source port to another source port, or a drain port to another drain port.

Connections obey stream-usage levels set with vlSetupPaths(). Usage is
drain-centric: the usage levels of the path(s) using the drain node serve as the
usage level of the connection.

12

Chapter 1: Features of Indigo2 IMPACT Video

The functions vlSetConnection() and vlGetConnection() manipulate
connections:

• vlSetConnection() sets a connection between a source pair (node, port)
pair and a drain pair (node, port).

• vlGetConnection() returns the set of connections entering or leaving a
node or port.

Chapter 5, “Managing Connections,” provides more information about
specifying connections.

Indigo 2 IMPACT Video Formats

The Indigo2 IMPACT Video board translates video signals into a form usable
by the Indigo2 workstation. It also does the reverse, translating graphics
from the Indigo or Indigo2 display into video signals. This section describes
the Indigo2 IMPACT video board’s I/O interface.

Table 1-1 summarizes the formats that the Indigo2 IMPACT Video board
supports.

Table 1-1 Video Formats for Indigo2 IMPACT Video

Format Signal Nodes

Digital component YCrCbA serial
(VL_FORMAT_DIGITAL_COMPONENT_SERIAL)

YCrCb 4:2:2 serial digital signal with 8- or
10-bit words. Component ranges are 16 to
235 (8-bit) or 64 to 940 (10-bit).

This format is also used to specify YCrCbA
4:4:4:4. Two streams are required to carry
this format. The first is 4:2:2 YCrCb (u0, y0,
v0, y1, u2, y2...). The second is 4:2:2 ACrCb
(u1, a0, v1, a1, u3, a2...).

Conforms to the CCIR-601/656
specification.

All memory nodes

SMPTE YUV (VL_FORMAT_SMPTE_YUV) Contains YUV components in the range
1-254; superblack and superwhite values
can be present.

All memory nodes

Indigo2 IMPACT Video Formats

13

For information on videotape formats, see “Videotape Formats” in
Appendix A in this guide. For information on the requirements for
recording to and from video, see the Indigo2 IMPACT Video Owner’s Guide
(007-3184-001).

Digital component RGB serial
(VL_FORMAT_DIGITAL_COMPONENT_RGB_SERIAL)

Dual-link RGBA signal with GBR 4:2:2 (b0,
g0, r0, g1, b2, g2, r2...) on the first link and
ABR 4:2:2 (b1, a0, r1, a1, b3, a2, r3...) on the
second link. Component ranges are 16 to 235
(8-bit) or 64-940 (10-bit).

Conforms to the RP175 specification.

All VGI1 memory
nodes

RGB (VL_FORMAT_RGB) Full-range 8-bit or 10-bit per component
RGBA. Component range is 0 to 255 (8-bit)
and 0-1023 (10-bit).

All VGI1 memory
nodes

Raw data (VL_FORMAT_RAW_DATA) Used for encoding arbitrary 8-bit data
values (0 to 255 range) in a 10-bit video
signal. Within the coded 10-bit word, bit 9 is
0, bit 8 is 1, and bits 7 through 0 carry the
8-bit data value. When this format is used,
the packing is irrelevant.

All VGI1 single-link
nodes

Table 1-1 (continued) Video Formats for Indigo2 IMPACT Video

Format Signal Nodes

15

Chapter 2

2. Creating Video Programs With the Video
Library

Video Library (VL) calls let you perform video teleconferencing, blend
computer-generated graphics with frames from videotape or any video
source, and output the input video source to the graphics monitor, to a video
device such as a VCR, or both.

This chapter explains the basics of creating video programs for Indigo2

IMPACT Video:

• the VL programming model

• performing preliminary steps

• opening a connection to the video daemon

• specifying nodes

• creating and setting up a data path

• setting parameters for data transfer to or from memory

• displaying video data onscreen

• transferring video data to and from devices

• ending data transfer

• descriptions of some example programs

The VL Programming Model

Syntax elements are as follows:

• VL types and constants begin with uppercase VL; for example,
VLServer

• VL functions begin with lowercase vl; for example, vlOpenVideo()

16

Chapter 2: Creating Video Programs With the Video Library

Data transfers fall into two categories:

• transfers involving memory (video to memory, memory to video),
which require setting up a VL buffer

• transfers not involving memory (such as video to screen and graphics
to video), which do not require a VL buffer

For the two categories of data transfer, based on the VL programming
model, the process of creating a VL application consists of these steps:

1. Open a connection to the video daemon (vlOpenVideo()); if necessary,
determine which device the application will use (vlGetDevice(),
vlGetDeviceList()).

2. Specify nodes on the data path (vlGetNode()).

3. Create the path (vlCreatePath()).

4. (Optional step) Add more connections to a path (vlAddNode()).

5. Set up the hardware for the path (vlSetupPaths()).

6. Specify path-related events to be captured (vlSelectEvents()).

7. Set input and output parameters (controls) for the nodes on the path
(vlSetControl()).

8. For transfers involving memory, create a VL buffer to hold data for
memory transfers (vlGetTransferSize(), vlCreateBuffer()).

9. For transfers involving memory, register the buffer
(vlRegisterBuffer()).

10. Set the path topology (vlSetConnection()).

11. Start the data transfer (vlBeginTransfer()).

12. For transfers involving memory, get the data (vlGetNextValid() or
vlGetLatestValid(), vlGetActiveRegion(), vlPutFree()) to manipulate
frame data.

13. Clean up (vlEndTransfer(), vlDeregisterBuffer(), vlDestroyPath(),
vlDestroyBuffer(), vlCloseVideo()).

Performing Preliminary Steps

17

Table 2-1 lists calls explained in this chapter.

Performing Preliminary Steps

To run VL, you must

• install the dmedia_dev option

• link with libvl.so

• include vl.h and dev_mgv.h

The client library is /usr/lib/libvl.so. The header files for the VL are in
/usr/include/dmedia. The header file for the VL, vl.h, contains the main
definition of the VL API and controls. The header files for Indigo2 IMPACT
Video are /usr/include/dmedia/dev_mgv.h (linked to /usr/include/vl/vl_mgv.h)
and /usr/include/dmedia/dev_impact.h (linked to /usr/include/vl/vl_impact.h).

Note: When building a VL-based program, you must add -lvl to the linking
command.

Table 2-1 Video Library Calls for Data Transfer

All Transfers Transfers Involving Memory Setting Controls

vlOpenVideo()
vlGetDevice()
vlGetDeviceList()
vlGetNode()
vlCreatePath()
vlSetConnection()
vlGetConnection()
vlAddNode()
vlRemoveNode()
vlSetupPaths()
vlSelectEvents()
vlBeginTransfer()
vlEndTransfer()
vlDestroyPath()
vlCloseVideo()

vlGetTransferSize()
vlCreateBuffer()
vlRegisterBuffer()
vlGetNextValid()
vlGetLatestValid()
vlPutValid()
vlGetNextFree()
vlGetActiveRegion()
vlPutFree()
vlGetDMediaInfo()
vlGetImageInfo()
vlDeregisterBuffer()
vlDestroyBuffer()

vlSetControl()
vlGetControl()
vlControlList()
vlGetControlInfo()

18

Chapter 2: Creating Video Programs With the Video Library

Opening a Connection to the Video Daemon

The first thing a VL application must do is open the device with
vlOpenVideo(). Its function prototype is

VLServer vlOpenVideo(const char *sName)

where sName is the name of the server to which to connect; set it to a NULL
string for the local server. For example:

vlSvr = vlOpenVideo("")

Specifying Nodes on the Data Path

Use vlGetNode() to specify nodes; this call returns the node’s handle. Its
function prototype is

VLNode vlGetNode(VLServer vlSvr, int type, int kind, int
number)

where

VLNode is a handle for the node, used when setting controls or
setting up paths

vlSvr names the server (as returned by vlOpenVideo())

type specifies the type of node:

• VL_SRC: source

• VL_DRN: drain

• VL_INTERNAL: internal node, such as the blend node

• VL_DEVICE: device for device-global controls

Note: If you are using VL_DEVICE, the kind should be
set to 0.

kind specifies the kind of node:

• VL_BLENDER

Note: The use of VL_BLENDER is explained in
Chapter 7, “Blending, Keying, and Transitions,” later in
this guide.

Creating and Setting Up the Data Path

19

• VL_FB: internal frame buffer node for freezing video

• VL_MEM: region of workstation memory

• VL_SCREEN: workstation screen

• VL_VIDEO: connection to a video device; for example,
a video tape deck or camera

Note: Appendix C, “Indigo2 IMPACT Video Nodes and
Their Controls,” gives full details of all Indigo2 IMPACT
Video nodes except VL_BLENDER and VL_CSC.

number is the number of the node in cases of two or more identical
nodes, such as two video source nodes

To discover which node the default is, use the control
VL_DEFAULT_SOURCE after getting the node handle the normal way. The
default video source is maintained by the VL. For example:

vlGetControl(vlSvr, path, VL_ANY, VL_DEFAULT_SOURCE, &ctrlval);
nodehandle = vlGetNode(vlSvr, VL_SRC, VL_VIDEO, ctrlval.intVal);

In the first line above, the last argument is a struct that retrieves the value.
Corresponding to VL_DEFAULT_SOURCE, the control
VL_DEFAULT_DRAIN gets the default VL_SRC node.

Creating and Setting Up the Data Path

Once nodes are specified, use VL calls to

• create the path

• get the device ID

• add nodes (optional step)

• set up the data path

• specify the path-related events to be captured

20

Chapter 2: Creating Video Programs With the Video Library

Creating the Path

Use vlCreatePath() to create the data path. Its function prototype is

VLPath vlCreatePath(VLServer vlSvr, VLDev vlDev
 VLNode src, VLNode drn)

This code fragment creates a path if the device is unknown:

if ((path = vlCreatePath(vlSvr, VL_ANY, src, drn)) < 0) {
 vlPerror(_progName);
 exit(1);
}

This code fragment creates a path that uses a device specified by parsing a
devlist:

if ((path = vlCreatePath(vlSvr, devlist[devicenum].dev, src,
 drn)) < 0) {
 vlPerror(_progName);
 exit(1);
}

Note: If the path contains one or more invalid nodes, vlCreatePath() returns
VLBadNode.

Getting the Device ID

If you specify VL_ANY as the device when you create the path, use
vlGetDevice() to discover the device ID selected. Its function prototype is

VLDev vlGetDevice(VLServer vlSvr, VLPath path)

For example:

devicenum = vlGetDevice(vlSvr, path);
deviceName = devlist.devices[devicenum].name;
printf("Device is: %s/n", deviceName);

Creating and Setting Up the Data Path

21

Adding a Node

For this optional step, use vlAddNode(). Its function prototype is

int vlAddNode(VLServer vlSvr, VLPath vlPath, VLNodeId node)

where

vlSvr names the server to which the path is connected

vlPath is the path as defined with vlCreatePath()

node is the node ID

This example fragment adds a source node and a blend node:

vlAddNode(vlSvr, vlPath, src_vid);
vlAddNode(vlSvr, vlPath, blend_node);

Setting Up the Data Path

Use vlSetupPaths() to set up the data path. Its function prototype is

int vlSetupPaths(VLServer vlSvr, VLPathList paths,
 u_int count, VLUsageType ctrlusage,
 VLUsageType streamusage)

where

vlSvr names the server to which the path is connected

paths specifies a list of paths you are setting up

count specifies the number of paths in the path list

ctrlusage specifies usage for path controls:

• VL_SHARE: other paths can set controls on this node;
this control is the desired setting for other paths,
including vcp, to work

Note: When using VL_SHARE, pay attention to events.
If another user has changed a control, a
VLControlChanged event occurs.

• VL_READ_ONLY: controls cannot be set, only read; for
example, this control can be used to monitor controls

22

Chapter 2: Creating Video Programs With the Video Library

• VL_LOCK: prevents other paths from setting controls
on this path; controls cannot be used by another path

• VL_DONE_USING: the resources are no longer
required; the application releases this set of paths for
other applications to acquire

streamusage specifies usage for the data:

• VL_SHARE: transfers can be preempted by other
users; paths contend for ownership

Note: When using VL_SHARE, pay attention to events.
If another user has taken over the node, a
VLStreamPreempted event occurs.

• VL_READ_ONLY: the path cannot perform transfers,
but other resources are not locked; set this value to use
the path for controls

• VL_LOCK: prevents other paths that share data
transfer resources with this path from transferring;
existing paths that share resources with this path will
be preempted

• VL_DONE_USING: the resources are no longer
required; the application releases this set of paths for
other applications to acquire

This example fragment sets up a path with shared controls and a locked
stream:

if (vlSetupPaths(vlSvr, (VLPathList)&path, 1, VL_SHARE,
 VL_LOCK) < 0)
{
 vlPerror(_progName);
 exit(1);
}

Note: The Video Library infers the connections on a path if
vlBeginTransfer() is called and no drain nodes have been connected using
vlSetConnection() (implicit routing). To specify a path that does not use the
default connections, use vlSetConnection() (explicit routing). Chapter 5,
“Managing Connections,” explains the use of this function and related
requirements.The following rules are used in determining the connections:

Creating and Setting Up the Data Path

23

• For each internal node on the path, all unconnected input ports are
connected to the first source node added to the path. Pixel ports are
connected to pixel ports and alpha ports are connected to alpha ports.

• For each drain node on the path, all unconnected input ports are
connected to the first internal node placed on the path, if there is an
internal node, or to the first source node placed on the path. Pixel ports
are connected to pixel ports and alpha ports are connected to alpha
ports.

Note: Do not combine implicit and explicit routing.

Specifying the Path-Related Events to Be Captured

Use vlSelectEvents() to specify the events you want to receive. Its function
prototype is

int vlSelectEvents(VLServer vlSvr, VLPath path, VLEventMask
eventmask)

where

vlSvr names the server to which the path is connected

path specifies the data path.

eventmask specifies the event mask; Table 2-2 lists the possibilities

Table 2-2 lists and describes the VL event masks.

Table 2-2 VL Event Masks

Symbol Meaning

VLStreamBusyMask Stream is locked

VLStreamPreemptedMask Stream was grabbed by another path

vlStreamChangedMask Video routing on this path has been changed by
another path

VLAdvanceMissedMask Time was already reached

VLSyncLostMask Irregular or interrupted signal

24

Chapter 2: Creating Video Programs With the Video Library

For example:

vlSelectEvents(vlSvr, path, VLTransferCompleteMask);

Event masks can be Or’ed; for example:

vlSelectEvents(vlSvr, path, VLTransferCompleteMask |
 VLTransferFailedMask);

VLSequenceLostMask Field or frame dropped

VLControlChangedMask A control has changed

VLControlRangeChangedMask A control range has changed

VLControlPreemptedMask Control of a node has been preempted, typically
by another user setting VL_LOCK on a path that
was previously set with VL_SHARE

VLControlAvailableMask Access is now available

VLTransferCompleteMask Transfer of field or frame complete

VLTransferFailedMask Error; transfer terminated; perform cleanup at
this point, including vlEndTransfer()

VLEvenVerticalRetraceMask Vertical retrace event, even field

VLOddVerticalRetraceMask Vertical retrace event, odd field

VLFrameVerticalRetraceMask Frame vertical retrace event

VLDeviceEventMask Device-specific event, such as a trigger

VLDefaultSourceMask Default source changed

Table 2-2 (continued) VL Event Masks

Symbol Meaning

Setting Parameters for Data Transfer to or From Memory

25

Setting Parameters for Data Transfer to or From Memory

Transferring data to or from memory requires creating a VL buffer; its size is
determined by the size of the frame data you are transferring.

To set frame data size and to convert from one video format to another, apply
controls to the nodes. The use of source node controls and drain node
controls is explained separately in this section.

Setting Node Controls for Data Transfer

Important data transfer controls for source and drain nodes are summarized
in Table 2-3. They should be set in the order in which they appear in the
table.

These controls are highly interdependent, so the order in which they are set
is important. In most cases, the value being set takes precedence over other
values that were previously set.

Note: For drain nodes, VL_PACKING must be set first. Note that changes in
one parameter may change the values of other parameters set earlier; for
example, clipped size may change if VL_PACKING is set after VL_SIZE.

Table 2-3 Data Transfer Controls

Control Basic Use Video Nodes Memory Nodes Screen Nodes

VL_FORMAT Video format on the
physical connector

See “Using
VL_FORMAT”
in this chapter

N/A N/A

VL_TIMING Video timing See Table 2-4
for values

Not applicable Not applicable

VL_CAP_TYPE Setting type of field(s) or
frame(s) to capture; see
“Interlacing” in
Appendix A

Not applicable VL_CAPTURE_NONINTERLEAVED
VL_CAPTURE_INTERLEAVED
VL_CAPTURE_EVEN_FIELDS
VL_CAPTURE_ODD_FIELDS
VL-CAPTURE_FIELDS

Not applicable

VL_PACKING Pixel packing (conversion)
format

Not applicable Changes pixel format of captured
data; see Table 2-6 for values

Not applicable

26

Chapter 2: Creating Video Programs With the Video Library

To determine default values, use vlGetControl() to query the values on the
video source or drain node before setting controls. The initial offset of the
video node is the first active line of video.

Similarly, the initial size value on the video source or drain node is the full
size of active video being captured by the hardware, beginning at the default
offset. Because some hardware can capture more than the size given by the
video node, this value should be treated as a default size.

For all these controls, it pays to track return codes. If the value returned is
VLValueOutOfRange, the value set is not what you requested.

To specify the controls, use vlSetControl(), for which the function prototype
is

int vlSetControl(VLServer vlSvr, VLPath vlPath, VLNode node,
 VLControlType type, VLControlValue * value)

The use of VL_TIMING, VL_FORMAT, VL_PACKING, VL_SIZE,
VL_OFFSET, VL_CAP_TYPE, and VL_RATE is explained in more detail in
the following sections.

VL_SIZE Clipping size Full size of
video; read
only

Clipped size Clipped size

VL_OFFSET Position within larger area Position of
active region

Offset relative to video offset Pan within the video

VL_ORIGIN Position within video Not applicable Not applicable Screen position of first
pixel displayed

VL_WINDOW Setting window ID for
video in a window

Not applicable Not applicable Window ID

VL_RATE Field or frame transfer
speed

Depends on
capture type as
specified by
VL_CAP_TYPE

Not applicable Not applicable

Table 2-3 (continued) Data Transfer Controls

Control Basic Use Video Nodes Memory Nodes Screen Nodes

Setting Parameters for Data Transfer to or From Memory

27

Using VL_TIMING

Timing type expresses the timing of video presented to a source or drain.
Table 2-4 summarizes dimensions for VL_TIMING.

Using VL_FORMAT

To specify video input and output formats of the video signal on the physical
connector, use VL_FORMAT.

Table 2-4 Dimensions for Timing Choices

Timing
Maximum
Width

Maximum
Height

VL_TIMING_525_SQ_PIX (12.27 MHz) 640 486

VL_TIMING_625_SQ_PIX (14.75 MHz) 768 576

VL_TIMING_525_CCIR601 (13.50 MHz) 720 486

VL_TIMING_625_CCIR601 (13.50 MHz) 720 576

Table 2-5 VL_FORMAT

Format Explanation Supported by Node

VL_FORMAT_DIGITAL
_COMPONENT_SERIAL

8- or 10-bit YCrCb Single-link and dual-link

VL_FORMAT_SMPTE_YUV Backwards compatibility: 8- or 10-bit
YCrCb

Single-link and dual-link

VL_FORMAT_RAW_DATA Arbitrary 8-bit data (non-video
format)

Single-link only

VL_FORMAT_RGB Full-range 8-bit (0-255) or 10-bit
(0-1023) RGBA

Dual-link only

VL_FORMAT_DIGITAL
_COMPONENT_RGB_SERIAL

RP175 standard RGBA Dual-link only

28

Chapter 2: Creating Video Programs With the Video Library

Using VL_PACKING

A video packing describes how a video signal is stored in memory, in contrast
with a video format, which describes the characteristics of the video signal.
For example, the memory source nodes—CC1 and both VGI1 nodes—accept
packed video from a VL buffer and output video in a given format.

Packings are specified through the VL_PACKING control on the memory
nodes. This control also converts one video output format to another in
memory, within the limits of the nodes.

Note: On dual-linked VGI1 memory nodes, only native packings are
available; no conversions can be performed.

Packing types for eight bits per component are summarized in Table 2-6. In
this table, the Native To column lists the nodes to which the packing is
native; no software conversion is required, so these packings are fastest.

Table 2-6 Packing Types for Eight Bits per Component

Type Native To 63-56 55-48 47-40 39-32 31-24 23-16 15-8 7-0

VL_PACKING_YVYU_422_8
YUV 4:2:2, single-link

All memory nodes U0 Y0 V0 Y1 U2 Y2 V2 Y3

VL_PACKING_YUVA_4444_8
YUVA 4:4:4:4, dual-link

VGI1 memory nodes A0 U0 Y0 V0 A1 U1 Y1 V1

VL_PACKING_AUYV_4444_8
AUYV 4:4:4:4, dual-link

VGI1 memory nodes V0 Y0 U0 A0 V1 Y1 U1 A1

VL_PACKING_RGBA_8
RGBA, dual-link

VGI1 memory nodes A0 B0 G0 R0 A1 B1 G1 R1

VL_PACKING_ABGR_8
ABGR, dual-link

VGI1 memory nodes R0 G0 B0 A0 R1 G1 B1 A1

VL_PACKING_RGB_332_P
RGB, single-link
Each 8-bit pixel, Pn,
is shown as BBGGGRRR

None P7 P6 P5 P4 P3 P2 P1 P0

Setting Parameters for Data Transfer to or From Memory

29

Packing types for ten bits per component are summarized in Table 2-7. The
ten data bits are left-aligned within a 16-bit word. The hardware sets the
lower six bits to zero before it writes them to memory. When reading from
memory, the lower six bits are ignored.

In addition, Indigo2 IMPACT Video also supports dual-link AYUAYV, a
packed format with three 10-bit components per 32-bit word, with the
lowest two bits set to 0. It is native to VGI1 memory nodes. Bits are

• 63-32: [U0][Y0][A0]00

• 31-0: [V0][Y1][A1]00

Note: Other libraries may use different packing names.

VL_PACKING_Y_8_P
Grayscale (luminance only),
single-link

None Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0

VL_PACKING_RGB_8
RGB, single-link
24-bit word, Xn are ignored

None X0 B0 G0 R0 X1 B1 G1 R1

Table 2-7 Packing Types for Ten Bits per Component

Type Native To 63-48 47-32 31-16 15-0

VL_PACKING_YVYU_422_10
YUV 4:2:2, single-link

VGI1 memory nodes [U0]000000 [Y0]000000 [V0]000000 [Y1]000000

VL_PACKING_YUVA_4444_10
YUVA 4:4:4:4, dual-link

VGI1 memory nodes [A0]000000 [U0]000000 [Y0]000000 [V0]000000

VL_PACKING_AUYV_4444_10
AUYV 4:4:4:4, dual-link

VGI1 memory nodes [V0]000000 [Y0]000000 [U0]000000 [A0]000000

VL_PACKING_RGBA_10
RGBA, dual-link

VGI1 memory nodes [A0]000000 [B0]000000 [G0]000000 [R0]000000

VL_PACKING_ABGR_10
ABGR, dual-link

VGI1 memory nodes [R0]000000 [G0]000000 [B0]000000 [A0]000000

Table 2-6 (continued) Packing Types for Eight Bits per Component

Type Native To 63-56 55-48 47-40 39-32 31-24 23-16 15-8 7-0

30

Chapter 2: Creating Video Programs With the Video Library

For example:

VLControlValue val;

val.intVal = VL_PACKING_RGBA_10;
vlSetControl(vlSvr, path, memdrn, VL_PACKING, &val);

If the single-link packings VL_PACKING_RGB_332_P,
VL_PACKING_RGB_8, and VL_PACKING_Y_8_P are requested of a
memory drain node, the Video Library performs a software conversion to
translate the data from a native packing and format. The application receives
data in the requested packing and format, although the capture rate may be
degraded.

Using VL_ZOOM

VL_ZOOM controls the expansion or decimation of the video image. Values
greater than one expand the video; values less than one perform decimation.
Figure 2-1 illustrates zooming and decimation.

Note: Indigo2 IMPACT Video screen drain nodes support the full range of
VL_ZOOM (7/1, 6/1, 5/1, 4/1, 3/1, 2/1, 1/1, 1/2, 1/3, 1/4, 1/5, 1/6, 1/7,
1/8). Screen source nodes support 1/1 and 1/2. Other nodes support zoom
and decimation ratios of 1:1 only, that is, no zoom or decimation.

Figure 2-1 Zoom and Decimation

Zoom

Decimation

Original image factor: 2/1

factor: 1/2

Setting Parameters for Data Transfer to or From Memory

31

VL_ZOOM takes a nonzero fraction as its argument; do not use negative
values. For example, this fragment captures half-size decimation video to
the screen:

val.fractVal.numerator = 1;
val.fractVal.denominator = 2;
if (vlSetControl(server, screen_path, screen_drain_node,
VL_ZOOM, &val)){
 vlPerror("Unable to set zoom");
 exit(1);
}

Note: For a source, zooming takes place before blending; for a drain,
blending takes place before zooming.

This fragment captures half-size decimation video to the screen, with
clipping to 320 × 243 (NTSC size minus overscan):

val.fractVal.numerator = 1;
val.fractVal.denominator = 2;
if (vlSetControl(server,screen_path, screen_drain_node,

VL_ZOOM, &val))
{
 vlPerror("Unable to set zoom");
 exit(1);
}
val.xyVal.x = 320;
val.xyVal.y = 243;
if (vlSetControl(server, screen_path, screen_drain_node,

VL_SIZE, &val))
{
 vlPerror("Unable to set size");
 exit(1);
}

32

Chapter 2: Creating Video Programs With the Video Library

This fragment captures xsize × ysize video with as much decimation as
possible, assuming the size is smaller than the video stream:

if (vlGetControl(server, screen_path, screen_source,
VL_SIZE, &val))
{
 vlPerror("Unable to get size");
 exit(1);
}
if (val.xyVal.x/xsize < val.xyVal.y/ysize)
 zoom_denom = (val.xyVal.x + xsize - 1)/xsize;
else
 zoom_denom = (val.xyVal.y + ysize - 1)/ysize;
val.fractVal.numerator = 1;
val.fractVal.denominator = zoom_denom;

if (vlSetControl(server, screen_path, screen_drain_node,
VL_ZOOM, &val))

{
 /* allow this error to fall through */
 vlPerror("Unable to set zoom");
}
val.xyVal.x = xsize;
val.xyVal.y = ysize;
if (vlSetControl(server, screen_path, screen_drain_node,

VL_SIZE, &val))
{
 vlPerror("Unable to set size");
 exit(1);
}

Using VL_SIZE

VL_SIZE controls how much of the image sent to the drain is used, that is,
how much clipping takes place. This control operates on the zoomed image;
for example, when the image is zoomed to half size, the limits on the size
control change by a factor of 2. Figure 2-2 illustrates clipping.

Setting Parameters for Data Transfer to or From Memory

33

Figure 2-2 Clipping an Image

For example, to display PAL video in a 320 × 243 space, clip the image to that
size, as shown in the following fragment:

VLControlValue value;
value.xyval.x=320;
value.xyval.y=243;
vlSetControl(vlSvr, path, drn, VL_SIZE, &value);

Note: Because this control is device-dependent and interacts with other
controls, always check the error returns. For example, if offset is set before
size and an error is returned, set size before offset.

Clipping a zoomed image

Clipping an unzoomed image

Image to fit into this space

Placement of clipping area
depends on the value of VL_OFFSET

Original image

34

Chapter 2: Creating Video Programs With the Video Library

Using VL_OFFSET

VL_OFFSET puts the upper left corner of the video data at a specific
position; it sets the beginning position for the clipping performed by
VL_SIZE. The values you enter are relative to the origin.

This example places the data ten pixels down and ten pixels in from the left:

VLControlValue value;
value.xyval.x=10;
value.xyval.y=10;
vlSetControl(vlSvr, path, drn, VL_OFFSET, &value);

To capture the blanking region, set offset to a negative value.

Figure 2-3 shows the relationships between the source and drain size, offset,
and origin.

Note: For memory nodes, VL_OFFSET and VL_SIZE in combination define
the active region of video that is transferred to or from memory.

Figure 2-3 Zoom, Size, Offset, and Origin

VL_SIZE

VL_ORIGIN (VL_DRN=SCR only)

VL_ZOOM

VL_OFFSET

Subset of video source:
zoomed portion (zoom factor)

VL_SIZE

VL_OFFSET

Source

Drain

Setting Parameters for Data Transfer to or From Memory

35

Using VL_CAP_TYPE and VL_RATE

An application can request that Indigo2 IMPACT Video capture or play back
a video stream in a number of ways. For example, the application can
request that each field be placed in its own buffer, that each buffer contain an
interleaved frame, or that only odd or even fields be captured. This section
enumerates the capture types that Indigo2 IMPACT Video supports.

A field mask is useful for identifying which fields will be captured and played
back and which fields will be dropped. A field mask is a bit mask of 60 bits
for NTSC or 50 bits for PAL (two fields per frame). A numeral 1 in the mask
indicates that a field is captured or played back, while a zero indicates that
no action occurs.

For example, the following field mask indicates that every other field will be
captured or played back:

10101010101010101010...

Capture types are as follows:

• VL_CAPTURE_NONINTERLEAVED

• VL_CAPTURE_INTERLEAVED

• VL_CAPTURE_EVEN_FIELDS

• VL_CAPTURE_ODD_FIELDS

• VL_CAPTURE_FIELDS

VL_RATE determines the data transfer rate by field or frame, depending on
the capture type as specified by VL_CAP_TYPE, as shown in Table 2-8.

Table 2-8 VL_RATE Values (Items per Second)

VL_CAP_TYPE Value VL_RATE Value

VL_CAPTURE_NONINTERLEAVED,
VL_CAPTURE_INTERLEAVED

NTSC: 1-30 frames/second
PAL: 1-25 frames/second

VL_CAPTURE_EVEN_FIELDS,
VL_CAPTURE_ODD_FIELDS

NTSC: 1-30 fields/second
PAL: 1-25 fields/second

VL_CAPTURE_FIELDS NTSC: 1-60 fields/second
PAL: 1-50 fields/second

36

Chapter 2: Creating Video Programs With the Video Library

Note: Not all rates are supported on all memory nodes; see Appendix C,
“Indigo2 IMPACT Video Nodes and Their Controls,” for details. The buffer
size must be set in accordance with the capture type, as listed in Table 2-9
later in this chapter.

VL_CAPTURE_NONINTERLEAVED

The VL_CAPTURE_NONINTERLEAVED capture type specifies that frame-
size units are captured noninterleaved. Each field is placed in its own buffer,
with the dominant field in the first buffer. If one of the fields of a frame is
dropped, all fields are dropped. Consequently, an application is guaranteed
that the field order is maintained; no special synchronization is necessary to
ensure that fields from different frames are mixed.

The rate (VL_RATE) for noninterleaved capture is in terms of fields and
must be even. For NTSC, the capture rate may be from 2-60 fields per second,
and for PAL 2-50 fields per second. Because a frame is always captured as a
whole, a rate of 30 fields per second results in the following field mask:

1100110011001100...

The first bit in the field mask corresponds to the dominant field of a frame.
Indigo2 IMPACT Video waits for a dominant field before it starts the transfer.

If VL_CAPTURE_NONINTERLEAVED is specified for playback, similar
guarantees apply as for capture. If one field is lost during playback, it is not
possible to “take back” the field. Indigo2 IMPACT Video resynchronizes on
the next frame boundary, although black or “garbage” video might be
present between the erring field and the frame boundary.

The rate during playback also follows the rules for capture. For each 1 in the
mask above, a field from the VL buffer is output. During the 0 fields, the
previous frame is repeated. Note that the previous frame is output, not just
the last field. If there are a pair of buffers, the dominant field is placed in the
first buffer.

Setting Parameters for Data Transfer to or From Memory

37

VL_CAPTURE_INTERLEAVED

Interleaved capture interleaves the two fields of a frame and places them in
a single buffer; the order of the frames depends on the value set for
VL_MGV_DOMINANCE_FIELD (see Table C-3 or Table C-4 in Appendix C
for details). Indigo2 IMPACT Video guarantees that the interleaved fields are
from the same frame: if one field of a frame is dropped, then both are
dropped.

The rate for interleaved frames is in frames per second: 1-30 frames per
second for NTSC and 1-25 frames per second for PAL. A rate of 15 frames per
second results in every other frame being captured. Expressed as a field
mask, the following sequence is captured:

1100110011001100....

As with VL_CAPTURE_NONINTERLEAVED, Indigo2 IMPACT Video
begins processing the field mask when a dominant field is encountered.

During playback, a frame is deinterleaved and output as two consecutive
fields, with the dominant field output first. If one of the fields is lost, Indigo2

IMPACT Video resynchronizes to a frame boundary before playing the next
frame. During the resynchronization period, black or “garbage” data may be
displayed.

Rate control follows similar rules as for capture. For each 1 in the mask
above, a field from the interleaved frame is output. During 0 periods, the
previous frame is repeated.

VL_CAPTURE_EVEN_FIELDS

In the VL_CAPTURE_EVEN_FIELDS capture type, only even (F2) fields are
captured, with each field placed in its own buffer. Expressed as a field mask,
the captured fields are

1010101010101010...

Indigo2 IMPACT Video begins processing this field mask when an even field
is encountered.

38

Chapter 2: Creating Video Programs With the Video Library

The rate for this capture type is expressed in even fields. For NTSC, the range
is 1-30 fields per second, and for PAL 1-25 fields per second. A rate of 15
fields per second (NTSC) indicates that every other even field is captured,
yielding a field mask of

1000100010001000...

During playback, the even field is repeated as both the F1 and F2 fields, until
it is time to output the next buffer. If a field is lost during playback, black or
“garbage” data might be displayed until the next buffer is scheduled to be
displayed.

VL_CAPTURE_ODD_FIELDS

The VL_CAPTURE_ODD_FIELDS capture type works the same way as
VL_CAPTURE_EVEN_FIELDS, except that only odd (F1) fields are
captured, with each field placed in its own buffer. The rate for this capture
type is expressed in odd fields. A rate of 15 fields per second (NTSC)
indicates that every other odd field is captured. Field masks are the same as
for VL_CAPTURE_EVEN_FIELDS.

VL_CAPTURE_FIELDS

The VL_CAPTURE_FIELDS capture type captures both even and odd fields
and places each in its own buffer. Unlike
VL_CAPTURE_NONINTERLEAVED, there is no guarantee that fields are
dropped in frame units. Field synchronization can be performed by
examining the UST, the MSC, or the dmedia info sequence number
associated with each field.

The rate for this capture type is expressed in fields. For NTSC, the range is
1-60 fields per second, and for PAL 1-50 fields per second. A rate of 30 fields
per second (NTSC) indicates that every other field is captured, resulting in
the following field mask:

101010101010101010...

Contrast this with the rate of 30 for VL_CAPTURE_NONINTERLEAVED,
which captures every other frame.

Field mask processing begins on the first field after the transfer is started;
field dominance, evenness, oddness plays no role in this capture type.

Displaying Video Data Onscreen

39

Displaying Video Data Onscreen

To set up a window for live video, follow these steps, as outlined in the
example program simplev2s.c.

1. Open an X display window; for example:

if (!(dpy = XOpenDisplay("")))
 exit(1);

2. Connect to the video daemon; for example:

if (!(vlSvr = vlOpenVideo("")))
 exit(1);

3. Create a window to show the video; for example:

vwin = XCreateSimpleWindow(dpy, RootWindow(dpy, 0), 10,
 10, 640, 486, 0,
 BlackPixel(dpy,DefaultScreen(dpy)),
 BlackPixel(dpy, DefaultScreen(dpy));
XMapWindow(dpy, vwin);
XFlush(dpy);

4. Create a source node on a video device and a drain node on the screen;
for example:

src = vlGetNode(vlSvr, VL_SRC, VL_VIDEO, VL_ANY);
drn = vlGetNode(vlSvr, VL_DRN, VL_SCREEN, VL_ANY);

5. Create a path on the first device that supports it; for example:

if ((path = vlCreatePath(vlSvr, VL_ANY, src, drn)) < 0)
 exit(1);

6. Set up the hardware for the path and define the path use; for example:

vlSetupPaths(vlSvr, (VLPathList)&path, 1, VL_SHARE,
 VL_SHARE);

7. Set the X window to be the drain; for example:

val.intVal = vwin;
vlSetControl(vlSvr, path, drn, VL_WINDOW, &val);

8. Get X and VL into the same coordinate system; for example:

XTranslateCoordinates(dpy, vwin, RootWindow(dpy,
 DefaultScreen(dpy)), 0, 0,&x, &y, &dummyWin);

40

Chapter 2: Creating Video Programs With the Video Library

9. Set the live video to the same location and size as the window; for
example:

val.xyVal.x = x;
val.xyVal.y = y;
vlSetControl(vlSvr, path, drn, VL_ORIGIN, &val);
XGetGeometry(dpy, vwin, &dummyWin, &x, &y, &w, &h, &bw,
 &d);
val.xyVal.x = w;
val.xyVal.y = h;
vlSetControl(vlSvr, path, drn, VL_SIZE, &val);

10. Begin the data transfer:

vlBeginTransfer(vlSvr, path, 0, NULL);

11. Wait until the user finishes; for example:

printf("Press return to exit.\n");
c = getc(stdin);

12. End the data transfer, clean up, and exit:

vlEndTransfer(vlSvr, path);
vlDestroyPath(vlSvr, path);
vlCloseVideo(vlSvr);

Transferring Video Data to and From Devices

The processes for data transfer are as follows:

• creating a buffer for video data (for transfers involving memory)

• registering the VL buffer with the path (for transfers involving
memory)

• starting data transfer

• reading data from the buffer (for transfers involving memory)

Each process is explained separately.

Transferring Video Data to and From Devices

41

Creating a Buffer for Video Data

Once you have specified frame parameters in a transfer involving memory
(or have determined to use the defaults), create a buffer for the video data.
In this case, video data is frames or fields, depending on the capture type:

• frames if the capture type is VL_CAPTURE_NONINTERLEAVED

• fields if the capture type is anything else

Like other libraries in the IRIX digital media development environment, the
VL uses VL buffers. Vl buffers provide a way to read and write varying sizes
of video data. A frame of data consists of the actual frame data and an
information structure describing the underlying data, including device-
specific information.

When a VL buffer is created, constraints are specified that control the total
size of the data segment and the number of frame or field buffers (sectors) to
allocate.

A head and a tail flag are automatically set in a VL buffer so that the latest
frame can be accessed. A sector is locked down if it is not called; that is, it
remains locked until it is read. When the VL buffer is written to and all
sectors are occupied, data transfer stops. The sector last written to remains
locked down until it is released.

All sectors in a VL buffer must be of the same size, which is the value
returned by vlGetTransferSize(). Its function prototype is

long vlGetTransferSize(VLServer vlSvr, VLPath path)

For example:

transfersize = vlGetTransferSize(vlSvr, path);

where transfersize is the size of the data in bytes.

42

Chapter 2: Creating Video Programs With the Video Library

To create a VL buffer for the frame data, use vlCreateBuffer(). Its function
prototype is

VLBuffer vlCreateBuffer(VLServer vlSvr, VLPath path,
 VLNode node, int numFrames)

where

VLBuffer is the handle of the buffer to be created

vlSvr names the server to which the path is connected

path specifies the data path

node specifies the memory node containing data to transfer to or
from the VL buffer

numFrames specifies the number of sectors in the buffer (fields or
frames, depending on the capture type)

For example:

buf = vlCreateBuffer(vlSvr, path, src, 1);

Table 2-9 shows the relationship between capture type and minimum VL
buffer size.

Note: For VGI1 memory nodes, real-time memory or video transfer can be
performed only as long as buffer sectors are available to the Indigo2 IMPACT
Video device.

Table 2-9 Buffer Size Requirements

Capture Type Minimum Sectors
for Capture

Minimum Sectors
for Playback

VL_CAPTURE_NONINTERLEAVED 2 4

VL_CAPTURE_INTERLEAVED 1 2

VL_CAPTURE_EVEN_FIELDS 1 2

VL_CAPTURE_ODD_FIELDS 1 2

VL_CAPTURE_FIELDS 1 2

Transferring Video Data to and From Devices

43

Registering the VL Buffer

Use vlRegisterBuffer() to register the VL buffer with the data path. Its
function prototype is

int vlRegisterBuffer(VLServer vlSvr, VLPath path,
 VLNode memnodeid, VLBuffer buffer)

where

vlSvr names the server to which the path is connected

path specifies the data path

memnodeid specifies the memory node ID

buffer specifies the VL buffer handle

For example:

vlRegisterBuffer(vlSvr, path, drn, Buffer);

Starting Data Transfer

To begin data transfer, use vlBeginTransfer(). Its function prototype is

int vlBeginTransfer(VLServer vlSvr, VLPath path, int count,
 VLTransferDescriptor* xferDesc)

where

vlSvr names the server to which the path is connected

path specifies the data path

count specifies the number of transfer descriptors

xferDesc specifies an array of transfer descriptors

Tailor the data transfer by means of transfer descriptors. Multiple transfer
descriptors are supplied; they are executed in order. The transfer descriptors
are

xferDesc.mode Transfer method:

• VL_TRANSFER_MODE_DISCRETE: a specified
number of frames are transferred (burst mode)

44

Chapter 2: Creating Video Programs With the Video Library

• VL_TRANSFER_MODE_CONTINUOUS (default):
frames are transferred continuously, beginning
immediately or after a trigger event occurs (such as a
frame coincidence pulse), and continues until transfer
is terminated with vlEndTransfer()

• VL_TRANSFER_MODE_AUTOTRIGGER: frame
transfer takes place each time a trigger event occurs;
this mode is a repeating version of
VL_TRANSFER_MODE_DISCRETE

xferDesc.count Number of frames to transfer; if mode is
VL_TRANSFER_MODE_CONTINUOUS, this value is
ignored.

xferDesc.delay Number of frames from the trigger at which data transfer
begins.

xferDesc.trigger Set of events to trigger on; an event mask. This transfer
descriptor is always required. VLTriggerImmediate
specifies that transfer begins immediately, with no pause for
a trigger event. VLDeviceEvent specifies an external trigger.

If xferDesc is NULL, then VL_TRIGGER_IMMEDIATE and
VL_TRANSFER_CONTINOUS_MODE are assumed and
one transfer is performed.

This example fragment transfers the entire contents of the buffer
immediately.

xferDesc.mode = VL_TRANSFER_MODE_DISCRETE;
xferDesc.count = imageCount;
xferDesc.delay = 0;
xferDesc.trigger = VLTriggerImmediate;

This fragment shows the default descriptor, which is the same as passing in
a null for the descriptor pointer. Transfer begins immediately; count is
ignored.

xferDesc.mode = VL_TRANSFER_MODE_CONTINUOUS;
xferDesc.count = 0;
xferDesc.delay = 0;
xferDesc.trigger = VLTriggerImmediate;

Transferring Video Data to and From Devices

45

Reading Data From the Buffer

If your application uses a buffer, use various VL calls for reading frames,
getting pointers to active buffers, freeing buffers, and other operations.
Table 2-10 lists the buffer-related calls.

Figure 2-4 illustrates the difference between vlGetNextValid() and
vlGetLatestValid(), and their interaction with vlPutFree().

Figure 2-4 vlGetNextValid(), vlGetLatestValid(), and vlPutFree()

Table 2-10 Buffer-Related Calls

Call Purpose

vlGetNextValid() Returns a handle on the next valid frame or field of data

vlGetLatestValid() Reads only the most current frame or field in the buffer,
discarding the rest

vlPutValid() Puts a frame or field into the valid list (memory to video)

vlPutFree() Puts a valid frame or field back into the free list (video to
memory)

vlGetNextFree() Gets a free buffer into which to write data (memory to
video)

vlBufferDone() Informs you if the buffer has been vacated

vlBufferReset() Resets the buffer so that it can be used again

vlGetNextValid() vlGetLatestValid()

Starting buffer and
pointer status

Call

Get data from here

Result

Get data from here

Clear sector

46

Chapter 2: Creating Video Programs With the Video Library

Table 2-11 lists the calls that extract information from a buffer.

Caution: None of these calls has count or block arguments; appropriate
calls in the application must deal with a NULL return in cases of no data
being returned.

In summary, for video-to-memory transfer, use

buffer = vlCreateBuffer(vlSvr, path, memnode1);
vlRegisterBuffer(vlSvr, path, memnode1, buffer);
vlBeginTransfer(vlSvr, path, 0, NULL);
info = vlGetNextValid(vlSvr, buffer);
/* OR vlGetLatestValid(vlSvr, buffer); */
dataptr = vlGetActiveRegion(vlSvr, buffer, info);

/* use data for application */
…
vlPutFree(vlSvr, buffer);

For memory-to-video transfer, use

buffer = vlCreateBuffer(vlSvr, path, memnode1);
vlRegisterBuffer(vlSvr, path, memnode1, buffer);
vlBeginTransfer(vlSvr, path, 0, NULL);
buffer = vlGetNextFree(vlSvr, buffer, bufsize);
/* fill buffer with data */
…
vlPutValid(vlSvr, buffer);

These calls are explained in separate sections.

Table 2-11 Calls for Extracting Data From a Buffer

Call Purpose

vlGetActiveRegion() Gets a pointer to the data region of the buffer (video to
memory); called after vlGetNextValid() and
vlGetLatestValid()

vlGetDMediaInfo() Gets a pointer to the DMediaInfo structure associated with
a frame; this structure contains timestamp and field count
information

vlGetImageInfo() Gets a pointer to the DMImageInfo structure associated
with a frame; this structure contains image size
information

Transferring Video Data to and From Devices

47

Reading the Frames to Memory From the Buffer

Use vlGetNextValid() to read all the frames in the buffer or get a valid frame
of data. Its function prototype is

VLInfoPtr vlGetNextValid(VLServer vlSvr, VLBuffer vlBuffer)

Use vlGetLatestValid() to read only the most current frame in the buffer,
discarding the rest. Its function prototype is

VLInfoPtr vlGetLatestValid(VLServer vlSvr, VLBuffer vlBuffer)

After removing interesting data, return the buffer for use with vlPutFree()
(video to memory). Its function prototype is

int vlPutFree(VLServer vlSvr, VLBuffer vlBuffer)

Sending Frames From Memory to Video

Use vlGetNextFree() to get a free buffer to which to write data. Its function
prototype is

VLInfoPtr vlGetNextFree(VLServer vlSvr, VLBuffer vlBuffer,
 int size)

After filling the buffer with the data you want to send to video output, use
vlPutValid() to put a frame into the valid list for output to video (memory to
video). Its function prototype is

int vlPutValid(VLServer vlSvr, VLBuffer vlBuffer)

Caution: These calls do not have count or block arguments; appropriate
calls in the application must deal with a NULL return in cases of no data
being returned.

Getting DMediaInfo and Image Data From the Buffer

Use vlGetActiveRegion() to get a pointer to the active buffer. Its function
prototype is

void * vlGetActiveRegion(VLServer vlSvr, VLBuffer vlBuffer,
 VLInfoPtr ptr)

48

Chapter 2: Creating Video Programs With the Video Library

Use vlGetDMediaInfo() to get a pointer to the DMediaInfo structure
associated with a frame. This structure contains timestamp and field count
information. The function prototype for this call is

DMediaInfo * vlGetDMediaInfo(VLServer vlSvr,
 VLBuffer vlBuffer, VLInfoPtr ptr)

Use vlGetImageInfo() to get a pointer to the DMImageInfo structure
associated with a frame. This structure contains image size information. The
function prototype for this call is

DMImageInfo * vlGetImageInfo(VLServer vlSvr,
 VLBuffer vlBuffer, VLInfoPtr ptr)

Ending Data Transfer

To end data transfer, use vlEndTransfer(). Its function prototype is

int vlEndTransfer(VLServer vlSvr, VLPath path)

A discrete transfer is finished when the last frame of the sequence is output.
The two types of memory nodes behave differently at the last frame:

• The CC1 memory source stops transferring data from main memory to
the Indigo2 IMPACT Video device, but continues to output to video the
last frame transferred, which is held in a frame buffer associated with
the CC1 memory node.

• The VGI1 memory nodes have no associated frame buffer and
consequently emit black video output after a transfer (discrete or
continuous) has been completed.

To accomplish the necessary cleanup to exit gracefully, use the following
functions:

• for transfers involving memory: vlDeregisterBuffer(), vlDestroyPath(),
vlDestroyBuffer()

• for all transfers: vlCloseVideo()

The function prototype for vlDeregisterBuffer() is

int vlDeregisterBuffer(VLServer vlSvr, VLPath path,
 VLNode memnodeid, VLBuffer ringbufhandle)

Example Programs

49

where

vlSvr is the server handle

path is the path handle

memnodeid is the memory node ID

ringbufhandle is the VL buffer handle

The function prototypes for vlDestroyPath(), vlDestroyBuffer() and
vlCloseVideo() are, respectively,

int vlDestroyPath(VLServer vlSvr, VLPath path)

int vlDestroyBuffer(VLServer vlSvr, VLBuffer vlBuffer)

int vlCloseVideo(VLServer vlSvr)

This example ends a data transfer that used a buffer:

vlEndTransfer(vlSvr, path);
vlDeregisterBuffer(vlSvr, path, memnodeid, buffer);
vlDestroyPath(vlSvr, path);
vlDestroyBuffer(vlSvr, buffer);
vlCloseVideo(vlSvr);

Example Programs

The directory /usr/people/4Dgifts/impact/examples/dmedia/video/vl includes a
number of example programs. These programs illustrate how to create
simple video applications; for example:

• a simple screen application: simplev2s.c

This program shows how to send live video to the screen.

• a video-to-memory frame grab: simplegrab.c

This program demonstrates video frame grabbing.

• a memory-to-video frame output simplem2v.c

This program sends a frame to the video output.

• a continuous frame capture: simpleccapt.c

This program demonstrates continuous frame capture.

50

Chapter 2: Creating Video Programs With the Video Library

Note: To simplify the code, these examples do not check returns. However,
you should always check returns.

See Chapter 4 for a description of eventex.c and Chapter 7 for descriptions of
simpleblend.c and simplewipe.c.

The directory /usr/people/4Dgifts/examples/dmedia/video/vl/OpenGL contains
three example OpenGL programs:

• contcapt.c: performs continuous capture using buffering and sproc

• mtov.c: uses the Silicon Graphics Movie Library to play a movie on the
selected video port

• vidtomem.c: captures an incoming video stream to memory

Note that these programs differ from the programs with the same names in
/usr/people/4Dgifts/impact/examples/dmedia/video/vl.

51

Chapter 3

3. Using VL Controls

Video Library (VL) controls enable you to

• specify data transfer parameters, such as the frame rate or count

• specify the capture region and decimation, or output window

• specify video format and timing

• adjust signal parameters, such as hue, brightness, vertical sync, and
horizontal sync

• specify sync source

This chapter explains

• VL control type and values

• VL control fraction ranges

• VL control classes

• VL control groupings

Device-independent controls are documented in /usr/include/dmedia/vl.h.
Device-dependent controls for the Indigo2 IMPACT video option are
documented in the header files /usr/include/dmedia/dev_mgv.h (linked to
/usr/include/vl/vl_mgv.h) and /usr/include/dmedia/dev_impact.h (linked to
/usr/include/vl/vl_impact.h).

Note: For information on the controls used for specific nodes, see
Appendix C, “Indigo2 IMPACT Video Nodes and Their Controls.” For
information on controls for blending and keying, see Chapter 7, “Blending,
Keying, and Transitions.”

52

Chapter 3: Using VL Controls

Table 3-1 lists device-independent VL controls alphabetically, along with
their values or ranges.

Table 3-1 Device-Independent Controls for Indigo2 IMPACT Video

Control Purpose Comments

VL_BLEND_A Input source for foreground (channel A) image VLNode type derived from vlGetNode(); must
be one of the source nodes

VL_BLEND_B Input source for background (channel B) image VLNode type derived from vlGetNode(); must
be one of the source nodes

VL_BLEND_A_ALPHA Input source for foreground (channel A) alpha

VL_BLEND_B_ALPHA Input source for background (channel B) alpha

VL_BLEND_A_FCN Blend function that controls mixing of foreground
(channel A) signals

VL_BLDFCN_ZERO
VL_BLDFCN_ONE
VL_BLDFCN_A_ALPHA
VL_BLDFCN_MINUS_A_ALPHA

VL_BLEND_B_FCN Blend function that controls mixing of background
(channel B) signals

VL_BLDFCN_ZERO
VL_BLDFCN_ONE
VL_BLDFCN_B_ALPHA
VL_BLDFCN_MINUS_B_ALPHA

VL_BLEND_A_NORMALIZE Follows Porter-Duff model (background [channel
B]’ pixels premultiplied by their corresponding
alphas before blending); premultiplies foreground
(channel A) by alpha

1 = off

VL_BLEND_B_NORMALIZE Follows Porter-Duff model (background [channel
A]’ pixels premultiplied by their corresponding
alphas before blending); premultiplies foreground
(channel B) by alpha

0 = off
1 = on

VL_CAP_TYPE Type of frame(s) or field(s) to capture; see
“Interlacing” in Appendix A

VL_DEFAULT_SOURCE Default source for the video path

VL_DEFAULT_DRAIN Default drain for the video path

VL_FORMAT Video format

VL_FREEZE Data transfer freeze; suspends transfer at the drain
node, used only for video out (FB node)

0 = off
1 = on

53

Note: For information on controls for keying, blending, or wipes, see
Chapter 7, “Blending, Keying, and Transitions.” For detailed information on
using VL_CAP_TYPE, VL_FORMAT, VL_OFFSET, VL_PACKING,
VL_RATE, VL_SIZE, and VL_TIMING, see “Setting Parameters for Data
Transfer to or From Memory” in Chapter 2.

VL_OFFSET On VL_VIDEO nodes, the offset to the active region
of the video; on all other nodes, the offset within the
video

Because the default is 0,0, use negative values to get
blanking data

VL_ORIGIN Upper left corner of image in drain (usually a
window); the offset within the node;

Coordinates; default is 0,0

VL_PACKING Packing of video data at source or drain

VL_RATE Transfer rate in fields or frames

VL_SIZE On VL_VIDEO nodes, the size of the video; on all
other nodes, the clipped size of the video

VL_SYNC Sync mode VL_SYNC_INTERNAL
VL_SYNC_GENLOCK

VL_SYNC_SOURCE Sets sync source for analog breakout box Reference input: GEN_PORT
Input 1: GEN_DIN1
Input 2: GEN_DIN2

VL_TIMING Video timing

VL_WINDOW Window ID for video in a window (screen node
only)

Integer

VL_ZOOM Zoom and decimation Screen drain nodes support 7/1, 6/1, 5/1, 4/1, 3/
1, 2/1, 1/1, 1/2, 1/3, 1/4, 1/5, 1/6, 1/7, 1/8.
Screen source nodes support 1/1 and 1/2. Other
nodes support zoom and decimation ratios of 1:1
only, that is, no zoom or decimation.

Table 3-1 (continued) Device-Independent Controls for Indigo2 IMPACT Video

Control Purpose Comments

54

Chapter 3: Using VL Controls

VL Control Type and Values

The type of VL controls is

typedef long VLControlType;

Common types used by the VL to express the values returned by the controls
are

typedef struct __vlControlInfo {
 char name[VL_NAME_SIZE]; /* name of control */
 VLControlType type; /* e.g. WINDOW, HUE, BRIGHTNESS */
 VLControlClass ctlClass; /* SLIDER, DETENT, KNOB, BUTTON */
 VLControlGroup group; /* BLEND, VISUAL QUALITY, SIGNAL, SYNC */
 VLNode node; /* associated node */
 VLControlValueType valueType; /* what kind of data do we have */
 int valueCount; /* how many data items do we have */
 int numFractRanges; /* number of ranges to describe control */
 VLFractionRange *ranges; /* range of values of control */

 int numItems; /* number of enumerated items */
 VLControlItem *itemList; /* the actual enumerations */
} VLControlInfo;

To store the value of different controls, libvl.a uses this struct:

typedef union {
 VLFraction fractVal;
 VLBoolean boolVal;
 int intVal;
 VLXY xyVal;
 char stringVal[96]; /* beware of trailing NULLs! */
 float matrixVal[3][3];
 uint pad[24]; /* reserved */
} VLControlValue;

typedef struct {
 int numControls;
 VLControlInfo *controls;
} VLControlList;

The control info structure is returned by a vlGetControlInfo() call, and it
contains many of the items discussed above.

VL Control Fraction Ranges

55

VLControlInfo.number is the number of the VLControlInfo.node that the
information pertains to. There may be several controls of the same type on a
particular node, but usually there is just one.

VLControlInfo.numFractRanges is the number of fraction ranges for a
particular control. The names correspond 1-to-1 with the rangeNames, up to
the number of range names, numRangeNames. That is, there may be fewer
names than ranges, but never more.

VL Control Fraction Ranges

The VL uses fraction ranges to represent the values possible for a control. A
VLFractionRange generated by the VL is guaranteed never to generate a
fraction with a zero denominator, or a fractional numerator or denominator.

For a range type of VL_LINEAR, numerator.increment and
denominator.increment are guaranteed to be greater than zero, and the limit is
always guaranteed to be {numerator,denominator}.base, plus some integral
multiple of {numerator,denominator}.increment.

The type definition for fraction types in the header file is

typedef struct {
 VLRange numerator;
 VLRange denominator;
} VLFractionRange;

VL Control Classes

The VL defines control classes for user-interface developers. The classes are
hints only; they are the VL developer’s idea of how the control is commonly
represented in the real world.

#define VL_CLASS_NO_UI 0
#define VL_CLASS_SLIDER 1
#define VL_CLASS_KNOB 2
#define VL_CLASS_BUTTON 3
#define VL_CLASS_TOGGLE 4
#define VL_CLASS_DETENT_KNOB 5
#define VL_CLASS_LIST 6

56

Chapter 3: Using VL Controls

In the list above, VL_CLASS_NO_UI is often used for controls that have no
user-interface metaphor and are not displayed in the video control panel or
saved in the defaults file.

The VL controls can be read-only, write-only, or both. The VL includes these
macros:

#define VL_CLASS_RDONLY 0x8000 /* control is read-only */
#define VL_CLASS_WRONLY 0x4000 /* control is write-only */
#define VL_CLASS_NO_DEFAULT 0x2000 /* don’t save in default files */

#define VL_IS_CTL_RDONLY(x) ((x)->ctlClass & VL_CLASS_RDONLY)
#define VL_IS_CTL_WRONLY(x) ((x)->ctlClass & VL_CLASS_WRONLY)
#define VL_IS_CTL_RW(x) (!(VL_IS_CTL_RDONLY(x) || VL_IS_CTL_WRONLY(x)))

The macros test these conditions:

#define VL_CLASS_MASK 0xfff

typedef unsigned long VLControlClass; /* from list above */

VL Control Groupings

Like control class, control grouping is an aid for the user-interface developer.
The groupings are the VL developer’s idea of how the controls would be
grouped in the real world. These groupings are implemented in the video
control panel vcp.

The type definition for groupings is

typedef char NameString[80];
#define VL_CTL_GROUP_PATH 9 /* Path Controls */

The maximum length of a control or range name is VL_NAME_SIZE.

VL Control Groupings

57

Table 3-2 summarizes the VL control groupings.

Table 3-2 VL Control Groupings

Grouping Includes controls for...

VL_CTL_GROUP_BLENDING Blending; for example, VL_BLEND_B_FCN

VL_CTL_GROUP_VISUALQUALITY Visual quality of sources or drains; for example, VL_H_PHASE or
VL_V_PHASE

VL_CTL_GROUP_SIGNAL Signal of sources or drains; for example, VL_HUE

VL_CTL_GROUP_CODING Encoding or decoding sources or drains; for example, VL_TIMING or
VL_FORMAT

VL_CTL_GROUP_SYNC Synchronizing video sources or drains; for example, VL_SYNC

VL_CTL_GROUP_ORIENTATION Orientation or placement of video signals; for example, VL_ORIGIN

VL_CTL_GROUP_SIZING Setting the size of the video signal; for example, VL_SIZE

VL_CTL_GROUP_RATES Setting the rate of the video signal; for example, VL_RATE

VL_CTL_GROUP_WS Specifying the windowing system of the workstation; for example,
VL_WINDOW

VL_CTL_GROUP_PATH Specifying the data path through the system; these controls, often marked
with the VL_CLASS_NO_UI, are often internal to the VL, with no direct
access for the user

VL_CTL_GROUP_SIGNAL_ALL Specifying properties of all signals

VL_CTL_GROUP_SIGNAL_COMPOSITE Specifying properties of composite signals

VL_CTL_GROUP_SIGNAL_CLUT_COMPOSITE Specifying properties of composite color lookup table (CLUT) controls

VL_CTL_GROUP_KEYING Specifying properties of chroma or luma keying controls, such as
VL_KEYER_FG_OPACITY

VL_CTL_GROUP_PRO Specifying values not commonly found on the front panel of a real-world
video device; for example, a wipe control

VL_CTL_GROUP_MASK Masking optional bits to extract only the control group

59

Chapter 4

4. Event Handling

The Video Library (VL) provides several ways of handling data stream
events, such as completion or failure of data transfer, vertical retrace event,
loss of the path to another client, lack of detectable sync, or dropped fields
or frames. The method you use depends on the kind of application you’re
writing:

• For a strictly VL application, use

– vlSelectEvents() to choose the events to which you want the
application to respond

– vlAddCallback() to specify the function called when the event
occurs

– your own event loop or a main loop (vlMainLoop()) to dispatch the
events

• For an application that also accesses another program or device driver,
or if you’re adding video capability to an existing X or OpenGL
application, set up an event loop in the main part of the application and
use the IRIX file descriptor (FD) of the event(s) you want to add.

This chapter explains

• Indigo2 IMPACT Video VL events

• querying VL events

• creating a VL event loop

• creating a main loop with callbacks

It concludes with an example illustrating a main loop and event loops.

60

Chapter 4: Event Handling

Indigo 2 IMPACT Video VL Events

This section describes the events that the Indigo2 IMPACT Video device
generates. Each event has a standard header, which can be followed by
additional data. The additional data can be accessed through the appropriate
structure member of the VLEvent union, specified for each of the events
listed below.

The VLEvent union and its structures are found in /usr/include/dmediavl.h.

The standard header for a VL event contains

• int reason: the event ID, such as VLControlChanged

• VLServer server: the server from which the event originated

• VLDev device: the device from which the event originated

• VLPath path: the path on which the event originated

• uint serial: the serial number of the last request read from the server
connection

• uint time: the time at which the event was generated

Note: Hardware-generated events, such as vertical retrace, are not available
on pure video source-to-video drain paths. To receive these events, a path
must make use of the screen, blender, frame buffer, or memory nodes. A path
receives a VLBadPath error from vlSelectEvents() if it attempts to register
for events it cannot receive.

Indigo2 IMPACT Video VL Events

61

Table 4-1 summarizes the VL events for Indigo2 IMPACT Video.

Table 4-1 VL Events for Indigo2 IMPACT Video

Event Structure Description

VLStreamPreempted vlstreampreempted Generated when a path is preempted by another path that requires some
resource that the first path also requires. The paths may be contending
over a node (such as a video drain), a part of a node (such as a dual-link
input node or one of the single-link nodes that comprise it), or other
resource (such as a connector required to route a path).

The preempted path is indicated by the path member of the
vlstreampreempted structure. Once preempted, the path has a stream
usage of VL_READ_ONLY. When the stream becomes available again,
the path is downgraded to a control usage of VL_SHARE, unless control
usage was at VL_READ_ONLY before the stream was preempted. In this
case, the level remains at VL_READ_ONLY.

A VLStreamAvailable event is delivered when the path can be set up
again to a stream usage of VL_SHARE or VL_LOCK.

VLStreamAvailable vlstreamavailable Generated when all nodes required by a path become available for setup
with a stream usage of VL_SHARE or VL_LOCK. Typically, such a path
becomes available when another path that was using the nodes is set up
with stream usage VL_READ_ONLY or VL_DONE_USING, or is
destroyed. The path in question is indicated by the path member of the
vlstreamavailable structure.

VLStreamAvailable is delivered to all registered paths with a stream
usage of VL_READ_ONLY. Consequently, a rare condition can occur in
which several paths are set up when they receive this event, so that the
last path that was set up “wins.”

VLSyncLost vlsynclost Generated when a node on a path detects invalid timing. The path on
which the timing error occurred is specified by the path member of the
vlsynclost structure. Some memory nodes, such as the VGI1 memory
nodes, have controls to abort a transfer when they detect invalid timing.
In that case, a VLTransferFailed event is generated in its place.

62

Chapter 4: Event Handling

VLSequenceLost vlsequencelost Generated when a video unit (field or frame, depending on the capture
type) is dropped. The path on which the unit was dropped is specified by
the path member of the vlsequencelost structure. If a group of contiguous
units is dropped, only one VLSequenceLost event is generated. The client
can register for VLTransferComplete events to determine when capture
or playback resumes.

Note that VLSequenceLost represents a “soft” error and video transfer
continues on the path. This event is in contrast to VLTransferFailed,
which signals a “hard” error that causes the transfer to abort.

The event is delivered as soon as the missed unit is detected. Note that
for VGI1 memory nodes; this event may not be generated until a valid
unit is transferred.

VLControlChanged vlcontrolchanged Generated when a control’s value changes. In order for a path to receive
this event, it must contain the node on which the control resides. The
node is specified in the node member of the vlcontrolchanged structure,
and the control’s ID is specified by the type member. Use vlGetControl to
retrieve the new value of the control.

This event is never delivered to the path causing the event, that is, the
path on which vlSetControl was called.

Note that the vlcontrolchanged structure contains a value member. This
member is not currently used and does not contain the new value of the
control.

VLTransferComplete vltransfercomplete Generated each time a video unit is captured or played back on a path.
The video unit is a field or a frame, depending on the capture type. The
path on which the event occurred is specified in the path member of the
vltransfercomplete structure.

This event is generated by paths containing memory nodes only.
VLTransferComplete is not sent on “jack-to-jack” paths, for example, a
video input to video output path.

Table 4-1 (continued) VL Events for Indigo2 IMPACT Video

Event Structure Description

Indigo2 IMPACT Video VL Events

63

VLTransferFailed vltransferfailed Generated when a catastrophic error occurs while a path is capturing or
playing back a video unit. The memory transfer is halted. The path on
which the failure occurred is specified by the path member of the
vltransferfailed structure. Note that this event is in contrast to the
VLSyncLost or VLSequenceLost events, which are generated when
noncatastrophic errors are detected.

This event is generated by paths containing memory nodes only.
VLTransferFailed is not sent on “jack-to-jack” paths, for example, a video
input to video output path.

VLEvenVerticalRetrace vlevenverticalretrace Generated at the vertical retrace for each even field in the video stream.
The path on which the event occurred is specified by the path member of
the vlevenverticalretrace structure.

A path must contain a memory, screen, or blender node to receive
VLEvenVerticalRetrace events.

VLOddVerticalRetrace vloddverticalretrace Generated at the vertical retrace for each odd field in the video stream.
The path on which the event occurred is specified by the path member of
the vloddverticalretrace structure.

A path must contain a memory, screen, or blender node to receive
VLOddVerticalRetrace events.

VLFrameVerticalRetrace vlframeverticalretrace Generated at the vertical retrace for each frame. The path to which the
event is delivered is specified by the path member of the
vlframeverticalretrace structure.

A path must contain a memory, screen, or blender node to receive
VLFrameVerticalRetrace events.

VLDeviceEvent vldeviceevent Generated when the external trigger fires. The event is delivered to all
paths registered for it. The path to which an event record is delivered is
specified by the path member of the vldeviceevent structure.

Trigger polarity, trigger line, and other parameters controlling the trigger
are specified by controls on the device node.

VLDefaultSource vldefaultsource Generated when a vlSetControl() on the VL_DEFAULT_SOURCE
control changes the default video source. The new source is specified by
the node member of the vldefaultsource structure.

In order for a path to receive this event, it must contain the new default
source node.

Table 4-1 (continued) VL Events for Indigo2 IMPACT Video

Event Structure Description

64

Chapter 4: Event Handling

VLControlRangeChanged vlcontrolrangechanged Generated when the range for a control changes. In order for a path to
receive this event, it must contain the node on which the control resides.
The node is specified in the node member of the vlcontrolrangechanged
structure, and the control’s ID is specified by the type member.

VLControlPreempted vlcontrolpreempted Delivered to a path that has acquired a node with VL_SHARE control
usage (the preempted path) when a path with VL_LOCK control usage
(the preempting path) is set up. The preempted path retains VL_SHARE
control usage, but is prevented from changing any controls while the
preempting path is set up with control usage VL_LOCK. A
VLControlAvailable event is sent when the controls are unlocked.

The node whose controls have been locked is specified by the node
member of the vlcontrolpreempted structure. The path containing the
node is identified by the path member.

VLControlAvailable vlcontrolavailable Delivered to a path whose controls were previously preempted (see
VLControlPreempted), when controls are unlocked, that is, when the
control usage of the locking path is dropped to VL_SHARE,
VL_READ_ONLY, or VL_DONE_USING.

The node whose controls have been unlocked is specified by the node
member of the vlcontrolavailable structure. The path containing the node
is identified by the path member.

VLDefaultDrain vldefaultdrain Generated when a vlSetControl() changes the default video drain to
VL_DEFAULT_DRAIN control. The new drain is specified by the node
member of the vldefaultdrain structure.

In order to receive this event, the path must contain the new default drain
node.

VLStreamChanged vlstreamchanged Generated when the connectivity of the device is changed by
vlSetConnection(), or by connections generated by the Indigo2 IMPACT
Video device on a path’s behalf. This event is sent to all paths containing
the drain node whose input has changed. Paths containing only the
source node do not receive this event, nor does the path causing the
connectivity change. The affected path is specified by the path member
of the vlstreamchanged structure. The affected drain (node, port) pair are
specified by the drnnode and drnport members. The new source (node,
port) pair is specified by the srcnode and srcport members.

If the source or drain (node, port) pair cannot be represented on the path
because it does not contain the node in question, then the (node, port)
pair has the value (VLUnknownNode, VLUnknownPort).

Table 4-1 (continued) VL Events for Indigo2 IMPACT Video

Event Structure Description

Querying VL Events

65

Querying VL Events

General VL event handling routines are summarized in Table 4-2.

The event type is an integer. vlEventToName() allows you to get the
character string with the name of the event, so that you can use the event
name, for example, in messages.

Table 4-2 VL Event Handling Routines

Routine Use

vlGetFD() Retrieves a file descriptor for a VL server

vlNextEvent() Obtains the next event; blocks until the next event from
the queue is obtained

vlCheckEvent() Like a nonblocking vlNextEvent(), checks to see if you
have an event waiting of the type you specify and reads
it off the queue without blocking

vlPeekEvent() Copies the next event from the queue but, unlike
vlNextEvent(), does not update the queue, so that you
can see the event without processing it

vlSelectEvents() Selects video events of interest

vlPending() Queries whether there is an event waiting for the
application

vlEventToName() Retrieves the character string with the name of the
event; for example, to use in messages

vlAddCallback() Adds a callback; use for VL events

vlRemoveCallback() Removes a callback for the events specified if the client
data matches that supplied when adding the callback

vlRemoveAllCallbacks() Removes all callbacks for the specified path and events

vlCallCallbacks() Creates a handler; used when creating a main loop or
using a supplied, non-VL main loop

vlRegisterHandler() Registers an event handler; use for non-VL events

vlRemoveHandler() Removes an event handler

66

Chapter 4: Event Handling

Table 4-3 summarizes VL event masks.

Call vlGetFD() to get a file descriptor usable from select(2) or poll(2).

Call vlSelectEvents() to express interest in one or more event. For example:

vlSelectEvents(svr, path, VLTransferCompleteMask);

Table 4-3 VL Event Masks

Symbol Meaning

VLStreamBusyMask Stream is locked

VLStreamPreemptedMask Stream was grabbed by another application

VLStreamChangedMask Stream topology has changed

VLAdvanceMissedMask Time was already reached

VLSyncLostMask Irregular or interrupted signal

VLSequenceLostMask Field or frame dropped

VLControlChangedMask A control has changed

VLControlRangeChangedMask A control range has changed

VLControlPreemptedMask Control of a node has been preempted, typically
by another user setting VL_LOCK on a path that
was previously set with VL_SHARE

VLControlAvailableMask Access is now available

VLTransferCompleteMask Transfer of field or frame complete

VLTransferFailedMask Error; transfer terminated; perform cleanup at
this point, including vlEndTransfer()

VLEvenVerticalRetraceMask Vertical retrace event, even field

VLOddVerticalRetraceMask Vertical retrace event, odd field

VLFrameVerticalRetraceMask Frame vertical retrace event

VLDeviceEventMask Device-specific event, such as a timing change
on a node

VLDefaultSourceMask Default source changed

Creating a VL Event Loop

67

The VLEvent structure returned by vlNextEvent or vlCheckEvent identifies
the type of event that occurred and provides additional information on the
event; for example, the VLControlChanged event, accompanied by the node
on which the control resides and by the new value of the control. These
additional pieces of information can be obtained through the members of the
VLEvent union corresponding to each event.

Event masks can be Or’ed together. For example:

vlSelectEvents(svr, path, VLTransferCompleteMask |
 VLTransferFailedMask);

Depending on whether you want to block processing or not, use
vlNextEvent() (blocking) or vlCheckEvent() (nonblocking) to get the next
event.

Use vlPeekEvent() to see what the next event in the queue is without
removing it from the queue. For example, the part of the code that actually
gets the event from the event loop uses vlNextEvent(), whereas another part
of the code that just wants to know about it, for example, for priority
purposes, uses vlPeekEvent().

Creating a VL Event Loop

You can set an event loop to run until a specific condition is fulfilled. The
routine vlSelectEvents() allows you to specify which event the application
will receive.

Using an event loop requires creating an event mask to specify the events you
want. The VL event mask symbols are combined with the bitwise OR
operator. For example, to set an event mask to express interest in either
transfer complete or control changed events, use

VLTransferCompleteMask | VLControlChangedMask

To create an event loop, follow these steps:

1. Define the event; for example:

VLEvent ev;

68

Chapter 4: Event Handling

2. Set the event mask; for example:

vlSelectEvents(vlServer, path, VLTransferCompleteMask |
VLControlChangedMask)

3. Block on the transfer process until at least one event is waiting:

for(;;){
vlNextEvent(vlServer, &ev);

4. Create the loop and define the choices; for example:

switch(ev.reason){
 case VLTransferComplete:
 …
 break;
 case VLControlChanged:
 …
 break;
 }
}

Creating a Main Loop With Callbacks

vlMainLoop() is provided as a convenience routine and constitutes the main
loop of VL applications. This routine first reads the next incoming video
event; it then dispatches the event to the appropriate registered procedure.
Note that the application does not return from this call.

Applications are expected to exit in response to some user action. There is
nothing special about vlMainLoop(); it is simply an infinite loop that calls
the next event and then dispatches it. An application can provide its own
version of this loop, for example, to test a global termination flag or to test
that the number of top-level widgets is larger than zero before circling back
to the call to the next event.

To specify callbacks, that is, routines that are called when a particular VL
event arrives, use vlAddCallback(). Its function prototype is

int vlAddCallback(VLServer vlServer, VLEvent * event,
 void * clientdata, VLEventMask events,
 VLCallbackProc callback, void *clientData)

Example 4-1 illustrates the use of vlAddCallback().

Creating a Main Loop With Callbacks

69

Example 4-1 Using VL Callbacks

main()
{
 …
 /* Set up the mask for control changed events and Stream preempted events */
 if (vlSelectEvents(vlSvr, vlPath, VLTransferComplete | VLStreamPreemptedMask))
 doErrorExit(“select events”);

 /* Set ProcessEvent() as the callback for VL events */
 vlAddCallback(vlSvr, vlPath, VLTransferCompleteMask | VLStreamPreemptedMask,
 ProcessEvent, NULL);

 /* Start the data transfer immediately (i.e. don’t wait for trigger) */
 if (vlBeginTransfer(vlSvr, vlPath, 0, NULL))
 doErrorExit(“begin transfer”);

 /* Get and dispatch events */
 vlMainLoop();
}

/* Handle VL events */
void
ProcessEvent(VLServer svr, VLEvent *ev, void *data)
{
 switch (ev->reason)
 {
 case VLTransferComplete:
 /* Get the valid video data from that frame */
 dataPtr = vlGetActiveRegion(vlSvr, transferBuf, info);
 /* Done with that frame, free the memory used by it */
 vlPutFree(vlSvr, transferBuf);
 frameCount++;
 break;

 case VLStreamPreempted:
 fprintf(stderr, “%s: Stream was preempted by another Program\n”,
 _progname);
 docleanup(1);
 break;

 default:
 break;
 }
}

70

Chapter 4: Event Handling

Delete a callback with vlRemoveCallback() or vlRemoveAllCallbacks().
Their function prototypes are

int vlRemoveCallback(VLServer vlServer, VLPath * path,
 VLEventMask events, VLCallbackProc callback, void
 *clientData)

int vlRemoveAllCallbacks(VLServer vlServer, VLPath * path, VLEventMask events)

The functions vlAddHandler() and vlRemoveHandler() are analogous to
vlAddCallback() and vlRemoveCallback(), respectively. Use them for
non-VL events.

In /usr/people/4Dgifts/examples/dmedia/video/vl, the example program eventex.c
illustrates how to create a main loop and event loops.

Caution: To simplify the code, this example does not check returns. You
should, however, always check returns.

71

Chapter 5

5. Managing Connections

You can use the Video Library to set up complex paths in Indigo2 IMPACT
Video programs. This chapter explains

• specifying connectivity

• avoiding dynamic switching problems

Specifying Connectivity

The Video Library infers the connections on a path if vlBeginTransfer() is
called and no drain nodes have been connected using vlSetConnection().
This situation simplifies application development for simple paths and
supports the existing set of applications that do not use vlSetConnection()

Thus, the use of vlSetConnection() to specify the path connectivity is
optional. The following rules are used in determining the connections:

• For each internal node on the path, all unconnected input ports are
connected to the first source node added to the path. Pixel ports are
connected to pixel ports and alpha ports are connected to alpha ports.

• For each drain node on the path, all unconnected input ports are
connected to the first internal node placed on the path, if there is an
internal node, or to the first source node placed on the path. Pixel ports
are connected to pixel ports and alpha ports are connected to alpha
ports.

Because existing connections are preserved, vlSetConnection() can be used
to override part of the default routes, as long as all drain nodes remain
unconnected.

The function prototype of vlSetConnection() is

int vlSetConnection(VLServer vlSvr, VLPath path, VLNode source_node, VLPort
source_port, VLNode drain_node, VLPort drain_port, VLBoolean preempt)

72

Chapter 5: Managing Connections

where

vlSvr names the server to which the path is connected.

path specifies the data path whose connectivity is being changed.

source_node names the node that data will flow from. This is either a
source or internal node.

source_port specifies the port on the source node to use.

drain_node specifies the node that data will flow to. This is either a
drain or internal node.

drain_port specifies the port on the drain node to use.

preempt specifies whether other paths should be preempted (TRUE)
or not (FALSE) in order to route the connection.

Connections must be specified only if

• the path contains multiple internal nodes; in this case, the ordering of
the internal nodes is ambiguous and may not be inferred properly by
the Video Library

• the default connections, described below, are not the ones that the
application desires

• the application wants to change a path’s topology after the path has
started transferring (note that the change in hardware route may cause
a timing glitch in the video stream, depending on the device)

Connections are set up one at a time using vlSetConnection() and take effect
either immediately or at the next vertical interval, depending on the device.
In other words, if vlSetConnection() completes successfully, the hardware
connection has been established.

Paths may be preempted in order to set a connection since scarce connector
resources may be required to route a connection from the source (node, port)
to the drain (node, port). The ability to preempt a path follows the rules for
stream usage defined with vlSetupPaths(). The ability to set a connection, as
opposed to only getting (retrieving) it, follows the rules for control usage.

Specifying Connectivity

73

This example fragment sets the blender node’s foreground pixel input, that
is, input A, to come from the frame buffer node output:

if (vlSetConnection(vlSvr, path, fb_node, VL_IMPACT_PORT_PIXEL_SRC,
blender_node, VL_IMPACT_PORT_PIXEL_DRN_A, FALSE) < 0)
{
 vlPerror(_progName);
 exit(1);
}

If vlSetConnection() returns with -1, an error has occurred. In addition to
the standard error codes, the following have special meaning for
vlSetConnection():

VLNoRoute No physical route could be found from the source to the
drain.

VLPathInUse A physical route exists between the source and drain, but
the required connector resources are in use. The application
has requested that no paths be preempted by specifying
FALSE as the preempt parameter, or another path has the
resources locked.

Getting Connections

Use vlGetConnection() to retrieve the connections originating or
terminating at a given (node, port). Its function prototype is

int vlGetConnection(VLServer vlSvr, VLPath path, VLNode
node, VLPort port, VLNode *nodelist, VLPort *portlist, int
*n)

where

vlSvr specifies the server the application is connected to

path specifies the path whose connectivity is being checked

node specifies the node on the path

port specifies the port on the node

nodelist is an array of VLNode where the connected nodes will be
returned

74

Chapter 5: Managing Connections

portlist is an array of VLPort where the connected ports are
returned

*n specifies the size of the nodelist and portlist arrays; on exit,
*n is updated to reflect the actual number of elements filled
in

On successful exit, each (nodelist[i], portlist[i]) pair specifies one connection
to (node, port). If port is a source port, then (nodelist[i], portlist[i]) specifies
the drain ports it broadcasts to. If the port is a drain port, then (nodelist[0],
portlist[0]) specifies the input. Because a drain port can have only one input,
only the first entry is used.

If vlGetConnection() returns with -1, an error has occurred. In addition to
the generic error codes, the error code VLNotEnoughSpace has special
meaning to vlGetConnection(). It indicates that the array size, *n, is too
small to contain the list of connections. *n is updated to reflect the required
array length.

The fragment in Example 5-1 illustrates vlGetConnection().

Example 5-1 vlGetConnection() Example

/*
 * Connect to the video daemon
 */
svr = vlOpenVideo(““);

/*
 * Acquire video source and drain nodes.
 */
srcnode = vlGetNode(svr, VL_SRC, VL_VIDEO, VL_ANY);
drnnode = vlGetNode(svr, VL_DRN, VL_VIDEO, VL_ANY);

/*
 * Create a path with these nodes.
 */
path = vlCreatePath(svr, VL_ANY, srcnode, drnnode);

/*
 * Connect the two nodes. Since this is a simple path with obvious
 * video routing, this step is optional. If the path contained
 * multiple internal nodes or the video route was not obvious, then
 * we would need to explicitly state the connections.

Specifying Connectivity

75

 */
vlSetConnection(svr, path, srcnode, VL_IMPACT_PORT_PIXEL_SRC, drnnode,
VL_IMPACT_PORT_PIXEL_DRN, FALSE);

/*
 * Begin the transfer
 */
vlBeginTransfer(svr, path, 0, NULL);

Figure 5-1 diagrams the Indigo2 IMPACT Video board architecture and
shows which data can flow between blocks.

Figure 5-1 Hardware Representation

Two-channel
DMA engine
(VGI1 asic)

Keyer/Blender
(CC/AB ASICs)

Video input
processing Video output

processing

Reference
black
(genlock)

Static 8-bit
YUV 4:2:2
frame buffer

YUV 4:2:2

2 streams YUV 4:2:2 or arbitrary 8-bit
1 stream any format

Serial
digital
video
input

To Main Memory

YUV 4:2:2 (1 or 2)
YUVA 4:2:2:4
8-bit or 8 expanded to 10-bit

12x14 crosspoint
(any source can drive
many destinations)

Window A
32-bit RGB(A)

Window B/C
1 32-bit or 2 12-bit aid->screen

“RGB to” or “RGBA from” graphics screen

YUV 4:2:2 (1 or 2)
arbitrary 8-bit (1 or 2)
YUVA 4:2:2:4
YUVA 4:4:4:4
RGBA RP175
8 or 10 bit

YUV 4:2:2 (1 or 2)
arbitrary 8-bit (1 or 2)
YUVA 4:2:2:4
YUVA 4:4:4:4
RGBA RP175
8 or 10 bit

10-bit YUV 4:2:2
connections to
compression (8-bit)

Note: Loopback does
not work on the
keyer/blender

Serial
digital
video
output

This wire indicates
capacity for 1 YUV
4:2:2 8 or 10-bit:

76

Chapter 5: Managing Connections

Figure 5-2 is a software model of Indigo2 IMPACT Video node connectivity.
Each multiplexer (mux) is a full crossbar: any source can simultaneously
broadcast to all destinations. An ellipsis joining two links indicates that the
two links can be used either as separate nodes or as a single dual-link mode.

Figure 5-2 Software Representation

The link with the alpha is called the pixel-alpha link, since it can carry pixel
or alpha streams. See the VL_MGV_ALPHA_LUT control in “VL_DEVICE”
in Appendix C for an explanation of this LUT.

Video Src 1

Video Src 2

Video Drn 1

Video Drn 2

VGI Mem Src 1

VGI Mem Src 2

VGI Mem Drn 1

VGI Mem Drn 2

CC1 Mem Src 1
FB

Blender

Srcn Src A

Srcn Src B

Srcn Drn A

Scrn Drn B

Scrn Drn C

VBAR mux

Video Drn DL

Video Src DL VGI Mem Src DL

VGI Mem Drn DL

Pixel

Alpha
Alpha Pixel

Alpha
Mux

Crosspoint mux

Alpha
LUT

Alpha
LUT

Specifying Connectivity

77

• At most two video streams can flow from the VBAR mux to the
crosspoint mux, and at most two video streams can flow from the
crosspoint mux to the VBAR mux. Attempts to set up paths that require
more cross-mux streams result in VLPathInUse return codes, or in the
path(s) using the links to be preempted.

• Because only one link in each direction has a specific alpha LUT, at
most one alpha stream can be routed into and at most on one alpha
stream routed out of the crosspoint mux.

• If a path uses a pixel-alpha link for a pixel stream and locks it (that is,
sets stream usage to VL_LOCK), no alpha stream can be routed in that
direction.

The allocation of the links is as follows:

• If the target is a blender alpha input, the pixel-alpha link is allocated.

• If the target is anything other than a blender alpha input, then the pixel
link is used if it is available. Otherwise, the pixel-alpha link is used.

The dual-link video and memory nodes are composed of their single-link
counterparts. Consequently, when a dual-link node is used, its single-link
counterparts become unavailable. For example, when the dual-link video
source is in use, video source 1 and video source 2 become unavailable.

Contention for the component single-link resources by the dual-link and
single-link nodes follow normal preemption rules. A path using a dual-link
node with stream usage VL_SHARE can be preempted by another path
using one of its single-link constituents with stream usage VL_SHARE or
VL_LOCK.

The CC1 memory source node and the frame buffer node share the same
processing element. Consequently, only one can be in use at a time.

Unlike most sources, which feed directly into one of the muxes, the alpha
from a screen source node can be fed only to blender alpha input. This
restriction is enforced both by the VL_BLEND_A_ALPHA and
VL_BLEND_B_ALPHA controls as well as by vlSetConnection().

78

Chapter 5: Managing Connections

Note: When a screen source is designated as source A alpha, the blender can
extract alpha from it, because a screen source “contains” alpha. Otherwise,
any other pixel stream is 4:2:2. If a source other than screen is designated as
source A alpha, the blender uses the Y value as alpha and discards the U and
V values.

Avoiding Dynamic Switching Problems

vlSetConnection() allows path topology to be changed while the path is
transferring, with certain restrictions. This section explains what
connections should and should not be switched during a transfer (dynamic
switching). Possible failures include the following:

• Picture glitch: Dynamic switching causes the output for one field to
consist partly of the field before the switch (usually the top part), the
field after the switch (usually the bottom part), and potentially a few
garbage pixels at the transition. This glitch is due to the lack of vertical
boundary resampling of the switching. However, there is no timing or
synchronization glitch.

• Timing glitch: Dynamic switching causes a temporary loss of
synchronization. Picture monitors can tear, VTRs can slew, and
downstream equipment hiccups in one way or another but eventually
recovers. This glitch is unacceptable for any “live” situation.

In general, a glitch ripples downstream to other nodes. Changing video
standards (PAL/NTSC or square pixel/CCIR601) always causes a timing
glitch. Table 5-1 shows the effects of changing various controls. Glitches
caused by changes in the video routing are explained more fully in the
following section.

Table 5-1 Dynamic Effects of Various Video Data Path Controls

At Video Node Timing Glitch Possible
Causes

Picture Glitch Possible
Causes

Causes No Glitch

Serial digital video output Synchronizer bypass,
horizontal phase, genlock
reference sources

Crosspoint selection to video
out; various blanking

Freeze

Serial digital video input External interruption,
autophase mode

Truncation or rounding N/A

Avoiding Dynamic Switching Problems

79

As indicated in Figure 5-1, Indigo2 IMPACT Video has timing restrictions for
the crosspoint mux and for the VGI1 memory source.

Crosspoint Mux Timing Restrictions

The two outputs of the VBAR mux going into the crosspoint mux must be
locked to within six pixels of each other if they are to be blended or displayed
in windows B and C. To do this, make sure that the two video input channels
are locked by enabling the input autophaser: set the
VL_MGV_AUTO_PHASE to a value other than
VL_MGV_AUTOPHASE_OFF. (Autophasing locks the video inputs to each
other if, on input, their phase differences are not too great.)

Note: “VL_DEVICE” in Appendix C describes the use of these controls.

When one of the VBAR-to-crosspoint links is not in use, the following is
done:

• If the pixel-alpha link is not in use, it is set to the same input as the pixel
link.

• If the pixel link is not in use, it is set to the same input as the pixel-alpha
link.

• If neither links is in use, the output of the black generator is sent to both
links.

This arrangement guarantees that if only one link is in use, the two links are
locked. If two links are in use, then the application should ensure that the
inputs are locked by enabling the input autophaser.

VGI1 memory drain VBAR select to VGI1 Truncation or rounding N/A

VGI1 memory source VGI1 timing source N/A N/A

Blender and screen source VBAR to crosspoint mux Alpha LUT select, various
blanking and rounding,
internal crosspoint

Keyer/blender
controls

Table 5-1 (continued) Dynamic Effects of Various Video Data Path Controls

At Video Node Timing Glitch Possible
Causes

Picture Glitch Possible
Causes

Causes No Glitch

80

Chapter 5: Managing Connections

Note: The autophaser can affect only the two serial digital inputs.

Sending a video signal with bad timing into the crosspoint mux from the
VBAR mux may cause the nodes attached to the crosspoint mux to operate
inconsistently. These nodes derive master timing from the signal on the
pixel-alpha link.

VGI1 Memory Source Timing Restrictions

The VGI1 memory sources derive their timing from the genlock source, or
from an internal black generator if genlock is disabled. Consequently,
changing controls associated with the genlock source may result in a transfer
error on the memory node. Changing the autophase mode, for example,
causes a timing glitch in the video stream.

Disconnecting the genlock source while a transfer is in progress causes the
transfer to fail.

81

Chapter 6

6. Video Real-Time Capture and Playback

The Indigo2 IMPACT Video VGI1 memory nodes are capable of full video-
rate capture and playback to the Video Library buffers. This chapter explains
how to optimize capture or playback to system memory or disk.

• Video Library buffers

• caching

• buffer alignment

• direct I/O to disk

• syssgi

• asynchronous I/O

This chapter concludes with descriptions of examples.

Video Library Buffers

Data transfer between the VL and an application takes place through a VL
buffer. This buffer is created through the vlCreateBuffer() routine and is
associated with a memory node by the vlRegisterBuffer() routine. A VL
buffer is composed of a number of elements of field or frame size, depending
on the capture type. The number of elements comprising a buffer is specified
to vlCreateBuffer().

When Indigo2 IMPACT Video transfers data from the Video Library to an
application, it places data in a buffer element and marks the element as valid.
The application can retrieve the element through the vlGetNextValid() and
vlGetLatestValid() routines. When the application is done, it uses the
vlPutFree() routine to alert the video device that the buffer element can be
reused.

82

Chapter 6: Video Real-Time Capture and Playback

When Indigo2 IMPACT Video transfers data from the application to the
Video Library, the application retrieves an empty buffer using
vlGetNextFree(). After placing data in it, the application marks the buffer
valid using the vlPutValid() routine. When the video device is done reading
from the buffer, it marks the buffer as free.

All operations on a VL buffer operate in FIFO order. That is, the first element
retrieved by vlGetNextValid() is the first returned by vlPutFree(). This
function does not take an element as a parameter and always puts back the
oldest outstanding element.

Caching

Use the vlBufferAdvise() routine to mark a VL buffer as cacheable or not. It
has the following prototype:

int vlBufferAdvise(VLBuffer buffer, int advice)

where

buffer specifies the ring buffer to be advised

advice specifies the type of advisory being made:

• VL_BUFFER_ADVISE_NOACCESS marks the buffer
as non-cacheable

• VL_BUFFER_ADVISE_ACCESS marks the buffer as
cacheable

Marking the buffer non-cacheable indicates that the CPU cache does not
have to be flushed or invalidated when data is read or written to system
memory via DMA. However, any access to the buffer through the CPU must
then bypass the cache and must always go to system memory. This
arrangement can severely degrade the performance of an application that
directly manipulates the video data.

Buffer Alignment

83

Consequently, marking a buffer cacheable or noncacheable is application-
dependent. In general:

• If the application manipulates the data, even if it is only to copy the
data into or out of another region of system memory, the buffer should
be set cacheable. This setting is the default for a buffer.

• If the application does not manipulate data, and all transfer is done
strictly through DMA, then performance is optimized by setting the
buffer to noncacheable. This is the case, for example, when video is read
into the ring buffer and then written directly to disk with raw or direct
I/O.

Note: If raw or direct I/O is not used, the data is first copied into the
filesystem cache. In that case, the buffer should be kept cacheable.

Buffer Alignment

The performance of the memcpy() and bcopy() routines is greatly affected
by the alignment of the source and destination buffers. For copy operations
between buffers with the same alignment, throughput is approximately
400% greater than between buffers with mismatched alignments. On a
200 MHz R4400 IMPACT system, aligned copies typically yield 80 MB per
second. In contrast, unaligned copies yield approximately 21 MB per second.

For memcpy() and bcopy(), the source and target buffers can be considered
aligned if the following condition is met:

(src % 4) == (dest % 4)

In other words, the source and destination buffer addresses are equally
distant from a word boundary.

Because the VL buffers used with the Indigo2 IMPACT Video device are
page-aligned, performance is maximized if the application’s buffers are
word-aligned. Note that the memory allocation routines such as malloc()
return double-word (64-bit aligned) buffers.

84

Chapter 6: Video Real-Time Capture and Playback

Direct I/O to Disk

Capture or playback from a disk subsystem can be greatly improved by
using direct I/O. Direct I/O bypasses the filesystem’s buffer cache,
eliminating a data copy and other overhead. The buffer can also be marked
noncacheable, yielding further performance gains.

Because the filesystem cache is bypassed, device buffer alignment and block
size restrictions fall onto the application. These restrictions can be obtained
using

fcntl(int fd, F_DIOINFO, struct dioattr *dioattr)

The device can, for example, require that the buffer be page-aligned. Disk
devices usually require that the buffer’s size be a multiple of 512 bytes (the
disk sector size), or a multiple of the stripe size.

In addition, device performance can be improved with certain alignments or
sizes. For example, a device operating on a non-page-aligned buffer can
internally break the request into a nonaligned part and an aligned part,
yielding the overhead of two requests instead of one. In striped disk
subsystems, performance is usually improved by reading or writing entire
stripes at a time.

VL buffer elements used with the Indigo2 IMPACT Video device are always
page-aligned, which satisfies the alignment constraints of most devices.

The VL_MGV_BUFER_QUANTUM control is provided so that an
application can specify the block size that should be applied to a video unit.
(The video unit is a field or frame, depending on the capture type.) For
example, setting this control to 512 rounds the frame or field size, as reported
by vlGetTransferSize(), up to a multiple of 512. This control should be set to
a multiple of the block size returned by fcntl(fd, F_DIOINFO, ...), or to the
optimal block size for the device.

When VL_MGV_BUFFER_QUANTUM is set to a value other than 1, the
video data is padded at the end with random values. Consequently, it is
important to use the same value for VL_MGV_BUFFER_QUANTUM on
capture and on playback. Making the value the same can be a problem if a
file is copied from one device to another with a different allowable block
size. It is recommended that the control be set to a common multiple of the

syssgi

85

allowable sizes. For example, 4096 satisfies most devices. Otherwise, the file
may need to be reformatted.

syssgi

Some of the standard I/O routines support files sizes only up to 2 GB
because file position is expressed as a signed integer. lseek, for example,
only operates up to a 2 GB range. (Note that it is possible to use the read or
write system calls to read or write past the 2 GB mark, up to the filesystem
size).

The syssgi system call can be used to read or write raw disk partitions
greater than 2 GB when used with the following parameters:

int syssgi(int request, int fd, char *data, int blockoffset,
int numblocks)

where

request is SGI_READB for a read operation or SGI_WRITEB for a
write operation

fd is a file descriptor of a character special device, as obtained
by the open system call

data points to the buffer to be written from or read to

blockoffset is the block position where reading or writing should
commence

numblocks is the number of blocks to read or write starting at
blockoffset

Note that syssgi operates in units of device blocks as opposed to bytes. For
disk subsystems, a block is usually 512 bytes, allowing 240 bytes of disk
space to be addressed.

As with direct I/O, the application is responsible for ensuring that the data
buffer is properly aligned and that block size constraints are followed.

86

Chapter 6: Video Real-Time Capture and Playback

Asynchronous I/O

Asynchronous I/O allows an application to process multiple read or write
requests simultaneously. On Silicon Graphics platforms, asynchronous I/O
is available through the aio facility. The aio64 facility additionally supports
64-bit file sizes and offsets.

Because multiple I/O requests might be outstanding when asynchronous
I/O is used, the round-trip delay between making a request, having it
serviced, and issuing another request is removed. Asynchronous I/O also
eliminates any process-scheduling delay between these steps. In addition,
the device being read from or written to might be able to optimize
performance by carrying out the requests simultaneously.

The following points should be kept in mind when using asynchronous
I/O with VL buffers:

• The VL buffer is a first-in first-out mechanism. When putting a buffer
element back into the buffer using vlPutValid(), the “oldest” element
retrieved by vlGetNextFree() is used. There is no way to specify that a
different element should be used.

• Because asynchronous I/O operations can complete out of order, the
application may need to keep a list of filled elements. When the oldest
element is filled, the application can then call vlPutValid() to place it
back into the buffer, and check to see if any other elements are also
ready.

• The same restriction applies to vlPutFree() for elements obtained with
vlGetNextValid() or vlGetLatestValid().

Caution: Software conversion can severely degrade capture or playback
performance.

Capture and Playback Examples

87

Capture and Playback Examples

The following examples of real-time capture and playback are available in
~4Dgifts/examples/dmedia/video/impact:

• vidtodsk: video to disk using direct I/O (up to the disk subsystem rate)

• dsktovid: disk to video using direct I/O (up to the disk subsystem rate)

• vidtodsk_aio: video to disk using asynchronous and direct I/O (up to the
disk subsystem rate)

• dsktovid_aio: disk to video using asynchronous and direct I/O (up to the
disk subsystem rate)

89

Chapter 7

7. Blending, Keying, and Transitions

This chapter explains how to combine video frame information and
computer-generated graphics on the Indigo2 workstation. Use the VL and
the Indigo2 IMPACT Video board to perform three types of blending:

• Chroma keying: overlaying one image on another by choosing a key
color. For example, if chroma keying is set to blue, image A might show
through image B everywhere the color blue appears in image B. A
common example is the TV weather reporter standing in front of the
satellite weather map. The weather reporter, wearing any color but
blue, stands in front of a blue background; keying on blue shows the
satellite picture everywhere blue appears. Because there is no blue on
the weatherperson, he or she appears to be standing in front of the
weather map.

• Luma keying: overlaying one image on another by choosing a level of
luminance. For example, to overlay bright text (such as a caption) on
video, a graphics source is created with the text on a dark background.
The video source is made to show through the dark areas of the
graphics; the bright text remains on top of the video.

• Transitions: fades, tiles, and wipes, such as single, double, or corner
wipes, for which you can set the angle or center.

The choice “Blend/Wipe Node” in the Pro menu of the panel vcp, a graphical
user interface for VL and the Indigo2 IMPACT Video board, provides
convenient access to blending, keying, and transition controls.

This chapter explains

• the VL blender node

• VL keying

• the keyer

The chapter concludes with descriptions of example application programs
that are included in the software.

90

Chapter 7: Blending, Keying, and Transitions

The Blender Node

Blending takes place in the VL’s internal blender node, which mixes the
foreground and background video signals by applying a blend function to
the foreground and background pixels.

The blender node is supplied by four independent inputs:

• pixel from a foreground source (A)

• the alpha value for source A

• pixel from a background source (B)

• the alpha value for source B

Figure 7-1 diagrams the blender node.

Figure 7-1 Blender Node

The blender node has four multiplier stages, indicated by ⊗ in Figure 7-1,
and one adder stage, indicated by ⊕. The values in the four multiplier stages
are based on the blending functions selected and on the input normalization
controls.

+ Pixel out

Source A
(set by
VL_BLEND_A_FCN)

Source B
(set by
VL_BLEND_B_FCN)

fbg(a)

X

Source A alpha
(set by
VL_BLEND_A_ALPHA) ffg(a)

X

ffg(a)

X

fbg(a)

X

Source B alpha
(set by
VL_BLEND_B_ALPHA)

The Blender Node

91

Of the four inputs shown in Figure 7-1, two have alternate sources. The
Indigo2 IMPACT Video keyer is hard-wired to alpha source A and the flat--
background generator is hard-wired to pixel source B, as diagrammed in
Figure 7-2.

Figure 7-2 Keyer and Flat-Background Generator Locations on Source Nodes

The keyer produces an alpha stream from a pixel stream, generating a key
for each pixel in each source node. It is described in detail in “The Keyer”
later in this chapter. The flat-background generator sets the background
pixel stream (source B pixel) to a default background color or to another
color.

Note: When a screen source is designated as source A alpha, the blender can
extract alpha from it, because a screen source “contains” alpha. Otherwise,
any other pixel stream is 4:2:2. If a source other than screen is designated as
source A alpha, the blender uses the Y value as alpha and discards the U and
V values.

The rest of this section explains

• setting up the blender node

• setting normalization

• setting and turning off flat background

• adding shadows

SourceDrain

Blender

Source A pixel

Source A alpha

Source B pixel

Source B alpha

Pixel output
Alpha output

Keyer

Flat
background

92

Chapter 7: Blending, Keying, and Transitions

Setting Up the Blender Node

Figure 7-3 diagrams setting up the blender node.

Figure 7-3 Setting Up the Blender Node

The blender node is created with the vlGetNode() function. The code
fragment in Example 7-1 sets up source, drain, and blender nodes. Notice
that the drain nodes are set up before the source nodes.

Example 7-1 Setting Up Source, Drain, and Blender Nodes

/* variable definitions */
{
 VLServer vlSvr;
 VLPath path;
 VLNode drn_scr, drn_vid, src_scr, src_vid, blend_node;
}

/* Open a video device */
vlSvr = vlOpenVideo(“”);

/* Set up drain nodes on the screen and video */
drn_scr = vlGetNode(vlSvr, VL_DRN, VL_SCREEN, VL_ANY);
drn_vid = vlGetNode(vlSvr, VL_DRN, VL_VIDEO, VL_ANY);

/* Set up source nodes on the screen and video */
src_scr = vlGetNode(vlSvr, VL_SRC, VL_SCREEN, VL_ANY);
src_vid = vlGetNode(vlSvr, VL_SRC, VL_VIDEO, VL_ANY);

Blender
Source2

Source1 Drain

Source2

Source1 Drain

Source1 Draindrn_scr = vlGetNode(vlSvr, VL_DRN, VL_SCREEN, VL_ANY);
drn_vid = vlGetNode(vlSvr, VL_DRN, VL_VIDEO, VL_ANY);
src_scr = vlGetNode(vlSvr, VL_SRC, VL_SCREEN, VL_ANY);
src_vid = vlGetNode(vlSvr, VL_SRC, VL_VIDEO, VL_ANY);

blend_node = vlGetNode(vlSvr, VL_INTERNAL, VL_BLENDER, VL_ANY);

The Blender Node

93

/* Set up internal blending node */
blend_node = vlGetNode(vlSvr, VL_INTERNAL, VL_BLENDER,
 VL_ANY);

Table 7-1 summarizes the generic VL blending controls. For all these
controls, access is GST:

• G: The value can be retrieved through vlGetControl().

• S: The value can be set through vlSetControl() while the path is not
transferring.

• T: The value can be set through vlSetControl() while the path is
transferring.

Table 7-1 General Blender Controls

Control Values Selects

VL_BLEND_A_FCN
type intVal

VL_BLDFCN_ZERO
VL_BLDFCN_ONE (default)
VL_BLDFCN_B_ALPHA
VL_BLDFCN_MINUS_B_ALPHA

Blend function that controls mixing of
foreground signals, and, with
VL_BLEND_B_FCN, provides 16 possible
blends of Pixel A and Pixel B, although not
all are useful. This control is superseded by
vlSetConnection().

VL_BLEND_B_FCN
type intVal

VL_BLDFCN_ZERO
VL_BLDFCN_ONE
VL_BLDFCN_A_ALPHA
VL_BLDFCN_MINUS_A_ALPHA (default)

Blend function that controls mixing of
background signals; see VL_BLEND_B_FCN
for more information. This control is
superseded by vlSetConnection().

VL_BLEND_A
type intVal

VLNode type, derived from vlGetNode();
must be one of the two pixel source nodes

Sets input source A pixel (foreground).

VL_BLEND_B
type intVal

Same as for VL_BLEND_A Sets input source B pixel (background).

VL_BLEND_A_ALPHA
type intVal

VLNode type, derived from vlGetNode();
must be one of the two alpha source nodes

Sets input source A alpha (foreground). If
this control is set to a screen node, screen
alpha is used.

VL_BLEND_B_ALPHA
type intVal

Same as for VL_BLEND_A_ALPHA Sets input source B alpha (background). If
this control is set to a screen node, screen
alpha is used.

94

Chapter 7: Blending, Keying, and Transitions

Some of the operations are not very useful, for example VL_BLDFCN_ONE,
VL_BLDFCN_ONE adds the two images; the hardware clips pixels that are
too bright.

Note: When sending the blender output to video, it is best to blank the
chroma.

Setting Normalization

You can compose the 12 standard Porter-Duff operations by combining the
values of VL_BLEND_A_FCN and VL_BLEND_B_FCN. Figure 7-4 gives
some examples of compositing, assuming normalized inputs. Normalized
background pixels for a frame are premultiplied by their corresponding
alphas before they are blended.

VL_BLEND_A_NORMALIZE
type boolVal

(0,1)
0 = off (not supported), 1 = on (default)

Selects normalization for A pixel and alpha
streams. The pixel and alpha of each stream
are applied before the blend operation.
Follows Porter-Duff model (background
pixels premultiplied by their corresponding
alphas before blending)

VL_BLEND_B_NORMALIZE
type boolVal

(0,1)
0 = off, 1 = on (default)

If set to TRUE, the pixel and alpha of each
stream are applied before the blend
operation. For screen inputs, set this control
to FALSE if you are in
VL_MGV_KEYERMODE_NONE mode;
alpha has been applied once by the graphics
in most cases. Otherwise, leave set to TRUE.
Many special effects can be done by altering
this control. Follows Porter-Duff model.

Table 7-1 (continued) General Blender Controls

Control Values Selects

The Blender Node

95

Figure 7-4 Binary Compositing

Operation Diagram f(A)= f(B)=

Clear 0 0

A 1

B 1

A over B 1 1−f(A)

B over A 1−f(B) 1

A in B f(B)

B in A f(A)

A held out by B 1−f(B)

B held out by A 1−f(A)

A atop B f(B) 1−f(A)

B atop A 1−f(B) f(A)

A xor B (union of A
out B and B out A) 1−f(B) 1−f(A)

��
��

��
��

��
��

�
�

�
�

�
�
�

�
�

 Table derived from Thomas Porter and Tom Duff, “ Compositing Digital
 Images,” published by the Association of Computing Machinery, 1984.

96

Chapter 7: Blending, Keying, and Transitions

Table 7-2 shows the choices for the two blend functions A and B, which
correspond exactly.

The value 0.0 sets the display to black (cut the foreground or background
value); the value 1.0 sets the display to white (pass the foreground or
background value):

• If both foreground and background are set to 0.0, the result is black
(both foreground and background are cut).

• If foreground is set to 0.0 and background is set to 1.0, foreground is cut
(ignored) and background is passed (displayed).

• If foreground is set to 1.0 and background is set to 1-f(A), background
obscures and overlaps foreground, resulting in compositing.

Normally, chroma is multiplied (scaled) by the selected alpha. For example,
the value on source A can be multiplied by its own alpha value or that from
source B. In a normal blend, f(A), the incoming alpha of source A is applied
to the value for A. In the inverse of this blend, f(A)=1-f(A), the region that
was considered opaque (turned off), that is, outside the volume defined for
keying, is applied to source A.

In another way of blending, the alpha from source B can be applied to the
component represented by source A. In the inverse of this blend, f(A)=1-f(B),
the region that was turned off for source B is applied to source A.

For screen inputs, set VL_BLEND_B_NORMALIZE to FALSE if the keyer
mode is set to pass-through (VL_KEYERMODE_NONE), because the alpha
has been applied once by the graphics in most cases. In other words, set
VL_BLEND_B_NORMALIZE to FALSE if it is following another blender.

Table 7-2 Choices for Blend Functions A and B

Blend Function A Blend Function B

f(A) = 0.0 f(B) = 0.0

f(A) = 1.0 f(B) = 1.0

f(A) = f(A) f(B) = f(B)

f(A) = 1 - f(A) f(B) = 1 - f(B)

The Blender Node

97

For foreground-to-background wipes, background alpha is set to a constant
value of 1.0, so that the background shows through the foreground.

Setting and Turning Off Flat Background

For Indigo2 IMPACT Video, pixel source B is normally a flat background,
supplied by a flat-background generator on this wire (see Figure 7-2).
However, you can use device-dependent controls to set the background as
desired:

• VL_MGV_BLEND_B_FLAT (default: off)

When this control is TRUE (on), the background pixel source is used for
pixel timing only and live video from pixel source B goes to the blender.

When this control is off, you can set three controls listed below to
values of your choosing for the background. The default value for the
background is gray.

Note: Set this value before the background is turned on if you wish to
avoid a flash.

• VL_MGV_BLEND_B_Y (default: 128)

The legal range of Y is 16 to 235.

• VL_MGV_BLEND_B_U (default: 128 (50% gray))

The legal range of U is 16 to 240.

• VL_MGV_BLEND_B_V (default: 128)

The legal range of V is 16 to 240.

The software does not prevent you from using values outside of the range
(1-254):

• The values of 1 and 254 are superblack and superwhite.

• The setting Y=235, U=128, V=128 is 100% white.

98

Chapter 7: Blending, Keying, and Transitions

Adding Shadows

The shadow hardware adds back the Y information from the area that was
cut by the keyer. If a shadow exists in the cut area, the effect is to dim the
pixels in the area of that shadow in the replaced background.

Use these device-dependent controls to set the shadow values:

• VL_MGV_BLEND_SHADOW_ON

Set this control to TRUE to activate the shadow hardware.

• VL_MGV_BLEND_SHADOW_GAIN

The range for this control is 0.0 to 3.0, which shifts the value.

Use this control and the next one to make the shadow darker or lighter
than the “real” shadow you see in the input video.

Note: Darkening a very light shadow can result in noise.

• VL_MGV_BLEND_SHADOW_OFFSET

The range for this control is 0 to 255, which is added to the value.

Shadows that are very dark may be hard to key. These registers affect only
the background pixels; foreground areas are passed through by the blender.
Tune the values for the best effect.

Keying

99

Keying

For each kind of keying—luma keying, chroma keying, and transitions—
further VL controls enable you to specify the properties of the blend.

The values for the Indigo2 IMPACT Video “master” keyer control,
VL_MGV_KEYER_MODE, determine the type of keying performed:

• luma keying: VL_MGV_KEYERMODE_LUMA

• chroma keying: VL_MGV_KEYERMODE_CHROMA

• transitions, that is, fades, tiles, or wipes:
VL_MGV_KEYERMODE_SPATIAL

For example, the following fragment specifies a fade:

VLControlType val;
val.intVal = VL_MGV_WIPETYPE_FADE;
vlSetControl(vlSvr, vlPath, blend_node, VL_MGV_WIPE_TYPE,
 &val);

Each type of keying is explained separately in this section. Figure 7-5 shows
the relationships between the Indigo2 IMPACT Video board keying and
wipe controls.

100

Chapter 7: Blending, Keying, and Transitions

Figure 7-5 Indigo2 IMPACT Video Keying, Wipe, and Blender Control
Relationships

Note: Controls are enclosed in lozenges;

VL_MGV_KEYER_VALUE_LUMA

values are not.

VL_MGV_KEYERMODE_LUMA

VL_MGV_KEYERMODE_CHROMA

VL_MGV_KEYERMODE_SPATIAL
VL_MGV_KEYER_RANGE_LUMA

VL_MGV_KEYER_VALUE_CHROMA_U

VL_MGV_KEYER_VALUE_CHROMA_V

VL_MGV_KEYER_RANGE_CHROMA_U

VL_MGV_KEYER_RANGE_CHROMA_V

VL_MGV_KEYER_DETAIL

VL_MGV_WIPE_FUZZ

VL_MGV_KEYER_MODE

* Applies only when VL_MGV_WIPE_SYMMETRY is set.

VL_MGV_KEYER_FG_OPACITY

VL_MGV_KEYER_DETAIL

VL_MGV_WIPE_TYPE

VL_MGV_WIPE_ANGLE

VL_MGV_WIPE_POSN

VL_MGV_WIPE_POSN_PERP

VL_MGV_WIPE_CENT

V
L_

M
G

V
_W

IP
E

T
Y

P
E

_F
A

D
E

V
L_

M
G

V
_W

IP
E

T
Y

P
E

_T
IL

E

V
L_

M
G

V
_W

IP
E

T
Y

P
E

_S
IN

G
LE

V
L_

M
G

V
_W

IP
E

T
Y

P
E

_D
O

U
B

LE

V
L_

M
G

V
_W

IP
E

T
Y

P
E

_C
O

R
N

E
R

VL_MGV_WIPE_CENT_PERP

VL_MGV_WIPE_REPT

VL_MGV_WIPE_REPT_PERP

VL_MGV_WIPE_SYMMETRY

VL_MGV_WIPE_INVERT

X X X

X XX X X

X XX X X

X X X

* * *

X X X

X

X

X

*

X XX X X

X

*
Blender controls

Keying

101

Luma Keying

Luma keying is typically used to overlay a fixed image on video, such as the
name and title of an individual being interviewed, a cable channel’s logo, or
a symbol that denotes an ongoing news story during a newscast. Figure 7-6
illustrates the results of luma keying.

Figure 7-6 Luma Keying Application: Titling

The Indigo2 IMPACT Video luma keying controls are summarized in
Table 7-3. For each, the type is intVal and access is GST. The default value is
persistent: it is initially obtained from the defaults file, but is never reset.
Many controls available through the video control panel vcp (for example,
the default video input) fall into this category. For this value, changes made
by vlSetControl() are persistent across paths, even if the node goes into an
unused state.

Table 7-3 Indigo2 IMPACT Luma Keying Controls

Control Range Sets

VL_MGV_KEYER_VALUE_LUMA (0,255) Central luma value. This control sets the luma value at which the background
shows through the foreground.

VL_MGV_KEYER_RANGE_LUMA (0,255) One-sided range of the center value. This control determines the range of luma
values where the background shows through the foreground.

Kim Lee
Agriculture

xxx

Background

ForegroundKim Lee
Agriculture

Kim Lee
Agriculture

xxx xxxxx

xxx

xxx xxxxxBlend

102

Chapter 7: Blending, Keying, and Transitions

Figure 7-7 diagrams the relationships between these controls.

Figure 7-7 Relationships Between Indigo2 IMPACT Video Luma Keying
Controls

VL_MGV_KEYER_FG_OPACITY (0,255) Opacity of the foreground, thus limiting the value of foreground alpha at any
point.

VL_MGV_KEYER_DETAIL,
VL_MGV_KEYER_SHARPNESS,
VL_MGV_KEYER_FUZZ

(-8,7) Sharpness of transition between foreground and background allowing blurring
of edges. The value -8 yields the most gradual transition, +7 the sharpest.

Table 7-3 (continued) Indigo2 IMPACT Luma Keying Controls

Control Range Sets

255

2550

All
foreground

All
background

Mixture

Alpha

Pixel luma

Level set by VL_MGV_KEYER_FG_OPACITY

Sharpness of transition set by VL_MGV_KEYER_DETAIL

yr
yv

yv = VL_MGV_KEYER_VALUE_LUMA
yr = VL_MGV_KEYER_RANGE_LUMA

Keying

103

Chroma Keying

Chroma keying overlays one image on another based on the color value.
Figure 7-8 illustrates an example of chroma keying.

Figure 7-8 Chroma Keying Application: TV Weather Map

Table 7-4 summarizes the controls for Indigo2 IMPACT video chroma keying
and gives their ranges. For each, default is persistent, access is GST, and type
is intVal.

Table 7-4 Indigo2 IMPACT Video Chroma Keying Controls

Control Range Sets

VL_MGV_KEYER_VALUE_CHROMA_U (-226,226) Central U value at which the background shows through the
foreground.

VL_MGV_KEYER_RANGE_CHROMA_U (0,452) One-sided range of U where the background shows through the
foreground.

VL_MGV_KEYER_VALUE_CHROMA_V (-179,179) Central V value at which the background shows through the
foreground.

VL_MGV_KEYER_RANGE_CHROMA_V (0,358) One-sided range of V where the background shows through the
foreground.

VL_MGV_KEYER_DETAIL,
VL_MGV_KEYER_SHARPNESS,
VL_MGV_KEYER_FUZZ

(-8,7) Sharpness of transition between foreground and background

Blend

104

Chapter 7: Blending, Keying, and Transitions

Note: VL_MGV_KEYER_FG_OPACITY has no effect on Indigo2 IMPACT
Video in chroma key mode.

Figure 7-9 diagrams the relationships between these controls.

Figure 7-9 Relationships Between Indigo2 IMPACT Video Chroma Keying
Controls

vr = VL_MGV_KEYER _RANGE_CHROMA_V

vv = VL_MGV_KEYER _VALUE_CHROMA_V

ur = VL_MGV_KEYER _RANGE_CHROMA_U

uv = VL_MGV_KEYER _VALUE_CHROMA_U

Sharpness of transition set by
VL_MGV_KEYER_DETAIL

Foreground

Alpha

255

−179

vr
vv

Pixel v
179

Background

ur

uv

−226 Pixel u
226

0

Keying

105

Fades, Tiles, and Wipes

The values used with the control VL_MGV_WIPE_TYPE determine the type
of blending performed:

• from all-foreground to all-background: VL_MGV_WIPETYPE_FADE

• from all-foreground to all-background by randomly tiling screen with
rectangles of a specified size: VL_MGV_WIPETYPE_TILE

• wipe to cross the screen as a vertical, diagonal, or horizontal “front,”
with a specified angle: VL_MGV_WIPETYPE_SINGLE

• wipe in two orthogonal directions simultaneously (two single wipes at
the same time): VL_MGV_WIPETYPE_DOUBLE

• wipe in two orthogonal directions, with the perpendicular position
locked to the normal, or in-line position:
VL_MGV_WIPETYPE_CORNER

For example, the following fragment specifies that a fade is to be performed:

VLControlType val;
val.intVal = VL_MGV_WIPETYPE_FADE;
vlSetControl(vlSvr, vlPath, blend_node, VL_MGV_WIPE_TYPE,
 &val);

Fades, tiles, and wipes go from all-foreground (VL_MGV_WIPE_POSN=0)
to all-background (VL_MGV_WIPE_POSN=1000), unless
VL_MGV_WIPE_INVERT control is set, in which case they go from all-
background (VL_MGV_WIPE_POSN = 0) to all-foreground
(VL_MGV_WIPE_POSN = 1000).

106

Chapter 7: Blending, Keying, and Transitions

Table 7-5 summarizes controls common to all wipe types.

Table 7-5 Controls for Fades, Tiles, and Wipes

Control Values Sets

VL_MGV_WIPE_POSN
type fractVal

Numerator (0,1000)
Denominator (1000)

Amount of progress of wipe, from none (numerator = 0) to full
(numerator = 1000).

VL_MGV_WIPE_REPT
type intVal

(0,15) Number of repetitions of pattern in direction of wipe, usually
louvers on single, corner, or double wipe, and length of one
side of rectangles for a tile wipe.
Note that this control does not apply to fades.

VL_MGV_WIPE_INVERT
type intVal

(0,1)
0 = off, 1 = on

Reversal of foreground and background regions of a wipe.
When set to 0, wipes proceed from foreground (position =
minimum) to background (position = maximum). When set to
1, wipes proceed from background (position = minimum) to
foreground (position = maximum).

This value is buffered (does not go into effect) until another
blending control is set.

Keying

107

Table 7-6 summarizes the controls specific to wipes or that work differently
for wipes. For each, access is GST and the default is persistent, except
VL_MGV_WIPE_SYMMETRY and VL_MGV_WIPE_INVERT, for which it is
FALSE. Some of these controls work in conjunction with each other.

Table 7-6 Indigo2 IMPACT Video Controls Specific to Wipes

Control Values Sets

VL_MGV_WIPE_DIRECTION
(VL_MGV_WIPE_ANGLE)
type intVal

VL_MGV_WIPEANGLE_E
VL_MGV_WIPEANGLE_NE
VL_MGV_WIPEANGLE_N
VL_MGV_WIPEANGLE_NW
VL_MGV_WIPEANGLE_W
VL_MGV_WIPEANGLE_SW
VL_MGV_WIPEANGLE_S
VL_MGV_WIPEANGLE_SE

Wipe vector direction, that is, the direction in which the
wipe appears to be proceeding as its position increases.

Note: VL_MGV_WIPEANGLE_N and
VL_MGV_WIPEANGLE_S do not work for the wipe
types VL_MGV_WIPETYPE_DOUBLE and
VL_MGV_WIPETYPE_CORNER

VL_MGV_WIPE_FUZZ
(VL_MGV_WIPE
_SHARPNESS)
type intVal

(-8,7) Sharpness of wipe transition band. As for
VL_MGV_KEYER_DETAIL, -8 is most gradual, +7 is
sharpest.

VL_MGV_WIPE_SYMMETRY
type intVal

(0,1)
0 = off, 1 = on

Wipe symmetry (on or off) so that wipe proceeds in both
directions at once from the center line. Effect depends on
type of wipe: no effect for fades or tiling; enables
VL_MGV_WIPE_CENT for single, double, and corner
wipes; enables VL_MGV_WIPE_CENT_PERP control for
double and corner wipes.

VL_MGV_WIPE_POSN_PERP
type fractVal

numerator (0,1000)
denominator (1000)

Amount of progress of wipe, from none (numerator = 0)
to full (numerator = 1000), along a direction
perpendicular to normal wipe position
VL_MGV_WIPE_POSN.

VL_MGV_WIPE_CENT
type fractVal

numerator (0,1000)
denominator (1000)

Offset that is center of a symmetrical wipe along wipe
position. 0 means center is where
VL_MGV_WIPE_POSN is 0, and 1000 means center is
where VL_MGV_WIPE_POSN is 1000. For this control to
work for single, double, and corner wipes,
VL_MGV_WIPE_SYMMETRY must be on.

108

Chapter 7: Blending, Keying, and Transitions

The Keyer

The role of the keyer is to take a pixel stream and produce an alpha stream.
It generates a key for each pixel in each source node:

• If luma keying is set, the keyer assesses the brightness of each pixel.

• If chroma keying is set, the keyer assesses the color of each pixel.

• If spatial, or transition, keying (fade, tile, wipe) is set, the keyer assesses
the (x,y) coordinates for each pixel.

The keyer determines the alpha value (opacity) of a pixel and sets a value for
it ranging from 0 (completely transparent) to 1 (completely opaque). This
alpha value can be used downstream for further layering operations. The
program simpleblend.c illustrates this procedure; it is included in the software
and described at the end of this chapter.

The control VL_MGV_BLEND_H_FILT is a horizontal smoothing filter that,
if set to TRUE, filters pixel information before the alpha extraction. It
smooths the alpha output of the key generator, softening the edges of the
image.

VL_MGV_WIPE_CENT_PERP
type fractVal

numerator (0,1000)
denominator (1000)

Offset that is center of a symmetrical wipe along a
perpendicular wipe position. 0 means center is where
VL_WIPE_POSN_PERP is 0, and 1000 means center is
where VL_WIPE_POSN_PERP is 1000.
VL_WIPE_SYMMETRY must be on for this control to
work for double and corner wipes.

VL_MGV_WIPE_REPT_PERP
type intVal

(0,15) Number of repetitions perpendicular to wipe direction
for single, double, and corner wipes, and length of other
side of rectangles for tile wipe.

Table 7-6 (continued) Indigo2 IMPACT Video Controls Specific to Wipes

Control Values Sets

VL Blending Examples

109

Figure 7-10 shows the relationships between value, range, and detail
(transition) for a single channel (for example, A).

Figure 7-10 Value, Range, and Transition (Keyer Detail) for a Channel

VL Blending Examples

This section explains two example programs from /usr/people/4Dgifts/impact/
examples/dmedia/video/vl:

• simpleblend.c

• simplewipe.c

Because the programs are lengthy, they are not duplicated here. Look at the
source code in a separate window, or print them out to look at while you
read their descriptions.

Caution: To simplify the code, these examples do not check returns.
However, you should always check returns.

Value

Range

Detail Detail

Range

110

Chapter 7: Blending, Keying, and Transitions

Blending Video and Graphics

simpleblend.c blends video with graphics and outputs it to both a graphics
window and video out. The program

• constrains the window’s aspect ratio

• checks that the device the user requested is in the device list

• sets up a path between the source (screen) and the drain (video)

• adds video source and a screen drain nodes to create the blend

• sets the keyer mode, keyer source, and blend controls

• displays the drain window and sets the video to appear in it

• specifies appropriate event handling

• starts data transfer

• specifies that video is updated if the user changes the size of the
window

Creating a Simple Wipe Effect

Like simpleblend.c, simplewipe.c blends video with graphics and outputs it to
a graphics window and video out. When the user presses the w key, it
executes a wipe.

Specifically, in addition to doing everything that simpleblend.c does,
simplewipe.c

• sets up blend parameters (VL_WIPE_TYPE, VL_WIPE_ANGLE or
VL_WIPE_DIRECTION, VL_WIPE_CENT, VL_WIPE_REPT)

• calls a loop that sets the keyer mode to spatial and sets the position in
the loop; doswitchloop() and dowipe() execute the loop

• checks for the w key and calls dowipe(), which in turn calls
doswitchloop()

111

Appendix A

A. Video Basics

Computer graphics and video differ in a number of ways; understanding the
differences can help you produce better results with the VL and your Silicon
Graphics video option. This appendix introduces some of the important
terms and concepts used in conjunction with video. For more detail about a
particular term, see the Glossary included in this guide.

Video differs from computer graphics in these ways:

• interlacing

• broadcast standards

• color encoding

• video signals

• tape formats

Interlacing

Most video signals are interlaced: each time the video screen is refreshed,
only every other one of the horizontal lines are drawn. On the next refresh,
the alternate lines are drawn. That is, each frame is composed of two fields.

During one screen refresh, the video monitor draws the first field, which
contains all the odd-numbered lines; during the next refresh, it draws the
second field, which contains all the even-numbered lines. Therefore, two
refresh cycles are required to draw one frame.

The display rate of interlaced video signals can be measured either in terms
of field rate or refresh rate, or in terms of frame rate, which equals half of the
field rate, because each frame contains two fields.

112

Appendix A: Video Basics

Figure A-1 shows a frame and its two fields for NTSC, the broadcast
standard used in North America and some other parts of the world, and
PAL, the broadcast standard used in much of Europe and elsewhere.

Figure A-1 Fields and Frame

In contrast, the Silicon Graphics workstation monitor is typically
noninterlaced: it draws every line each time it refreshes the screen. Refresh
rates vary, depending on the type of monitor your Silicon Graphics
workstation has. The video output capability of the graphics subsystem for
some Silicon Graphics workstation models supports interlaced monitor
formats, including component RGB at 525 and 625 lines per frame.

.

.

.

1
2
3
4
5

.

.

.

482
483
484
485

FrameFrame (raster)
line number

Field 1

Field 2

Odd Field
(242.5 lines;

Even Field
(242.5 lines;

no blanking)

no blanking)

NTSC/

PAL/

Component 525

Component 625

.

.

.

2
3
4
5

.

.

.

572
573
574
575

FrameFrame (raster)
line number

2
4
.

572
574

.

.

.

1
3
5
.

573
575

.

.

.

Field 2

Field 1

Frame (raster)
line number

Odd Field
(287.5 lines;

Even Field
(287.5 lines;

no blanking)

no blanking)

1/2

1/2

1/2

6
.

1/2

1/2

2
4
.

482
484

.

.

.

1
3
5
.

483
485

.

.

.

Frame (raster)
line number

1/2

6
.

1

Broadcast Standards

113

Broadcast Standards

Broadcast standards, or video timing formats, are ways of encoding video
information for broadcast to television receivers. These standards are also
used to describe the display capabilities of video monitors and are thus also
called video timing formats or video output formats (VOFs). The three
broadcast standards are:

NTSC Named after the National Television Systems Committee,
which developed it, this standard is used in all of North and
South America, except Brazil, and in much of East Asia.

PAL (Phase Alternated by Line) This standard is used in western
Europe, including the United Kingdom but excluding
France, and in East Asia, including Australia.

SECAM (Sequentiel Couleur avec Memoire) This standard is used in
France, eastern Europe, the Near East and Mideast, and
parts of Africa and the Caribbean.

Note: NTSC implementations can vary slightly by country; PAL and
SECAM implementations can vary considerably.

NTSC employs a total of 525 horizontal lines per frame, with two fields per
frame of 262.5 lines each. Each field refreshes at 60 Hz (actually 59.94 Hz).
NTSC encodes brightness, color, and synchronizing information in one
signal.

PAL employs a total of 625 horizontal lines per frame, with two fields per
frame of 312.5 lines per frame. Each field refreshes at 50 Hz. PAL encodes
brightness, color, and synchronizing information in one signal also, but in a
different way from NTSC.

SECAM transmits the same number of lines at the same rate as PAL, but
transmits each color difference signal on alternate lines, using the frequency
modulation of the subcarrier.

These numbers of horizontal lines—525 and 625, respectively—are a
shorthand description of what actually happens. For NTSC, the first (odd)
field starts with a whole line and ends with a half line; the second (even) field
starts with a half line and ends with a whole line. Each NTSC field contains
242.5 active lines and 20 lines of vertical blanking.

114

Appendix A: Video Basics

Similarly, for PAL, the first (even) field starts with a half line and ends with
a whole line; the second (odd) field starts with a whole line and ends with a
half line. Each PAL field contains 287.5 active lines and 25 lines of vertical
blanking.

In each case, the numbers 525 and 625 refer to transmitted lines; the active
video lines are fewer—typically, 486 for NTSC and 576 for PAL. The
remaining lines are used for delimiting frame boundaries and for
synchronization and other information.

To minimize frame flickering and reduce the bandwidth of the video signal,
the active video lines are interlaced, as explained earlier in this chapter.

NTSC and PAL can be recorded digitally; these recording techniques are
referred to as D2 525 (digital NTSC) and D2 625 (digital PAL).

Color Encoding

Color-encoding methods are:

• RGB (component)

• YUV (component)

• YIQ (component)

• YC (separate luminance (Y) and chrominance (C)), YC-358, YC-443,
S-Video

• composite video

RGB

RGB is the color-encoding method used by most graphics computers, as well
as some professional-quality video cameras. The three colors red, green, and
blue are generated separately; each is carried on a separate wire.

Color Encoding

115

YUV

YUV, a form of which is used by the PAL video standard and by Betacam®

and D1 cameras and VCRs, is also a component color-encoding method, but
in a different way from RGB. In this case, brightness, or luminance, is carried
on a signal known as Y. Color is carried on the color difference signals, U and
V, which are B-Y and R-Y respectively.

The YUV matrix multiplier derives colors from RGB via the following
formula:

Y = .299R + .587 G + .114 B
CR = R-Y
CB = B-Y

in which Y represents luminance and R-Y and B-Y represent the color
difference signals used by this format. In this system, which is sometimes
referred to as Y/R-Y/B-Y, R-Y corresponds to CR and V, and B-Y
corresponds to CB and U. R-Y and B-Y are obtained by subtracting
luminance (Y) from the red (R) and blue (B) camera signals, respectively. CR,
CB, V, and U are derived through different normalization methods,
depending on the video format used. The U and V signals are sometimes
subsampled by a factor of 2 and then carried on the same signal, which is
known as 4:2:2.

YUV component color encoding can be recorded digitally, according to the
CCIR 601 standard; this recording technique is referred to as D1.

YIQ

YIQ color encoding, which is typically used by the NTSC video format,
encodes color onto two signals called I and Q (for intermodulation and
quadrature, respectively). These two signals have different phase
modulation in NTSC transmission. Unlike the U and V components of YUV,
I and Q are carried on different bandwidths.

116

Appendix A: Video Basics

The YIQ formula is as follows:

Y = .299 R + .587 G + .114 B (the same as for YUV)
I = .596 R - .275 G - .321 B
Q = .212 R - .523 G + .311 B

YC, YC-358, YC-443, or S-Video

YC, a two-wire signal, results when I and Q are combined into one signal,
called chrominance (C). Chrominance is a quadrature phase
amplitude-modulated signal. In the NTSC broadcast standard, U is the
0-degree modulation and V is at 90 degrees. In the PAL broadcast standard,
the V component is modulated at +/- 90 degrees line-to-line for the active
picture and +/- 135 degrees for the reference burst.

 YC-358 is the most common NTSC version of this luminance/chrominance
format; YC-443 is the most common PAL version. These formats are also
known as S-Video; S-Video is one of the formats used for S-VHS™ videotape
recorders.

Composite Video

The composite color-encoding schemes combine the brightness and color
signals into one signal for broadcast. NTSC and PAL both combine
brightness and color but use different methods.

Figure A-2 shows the relationships between color-encoding methods and
video formats.

Video Signals

117

Figure A-2 Relationships Between Color-Encoding Methods and Video Formats

Video Signals

The video signal, whatever the broadcast standard being used, carries other
information besides video (luminance and chrominance) and audio. For
example, horizontal and vertical synchronization information is required, as
well as a color phase reference, which is called color sync burst. Figure A-3
shows a composite video signal waveform.

RGB

YUV

YIQ

D2 625

YC-358

PAL

D1 525, D1 625

YC-443

NTSC

118

Appendix A: Video Basics

Figure A-3 Composite Video Waveform

Videotape Formats

Videotape recorders are available for analog and digital recording in various
formats. They are further classified by performance level or market:
consumer, professional, and broadcast. In addition, during postproduction
(editing, including addition of graphics), the original footage can be
transferred to digital media; digital videotape formats are available for
composite and component video formats. There are no official standards for
videotape classifications.

Active video Active video

100% sync

50% sync

0% sync

Line lock
0 phase point

Burst lock
0 phase point

Back porch

+7.5 IRE

0 IRE
Black level
Blanking level

Setup or

Leading edge
of sync

pedestal

Videotape Formats

119

Table A-1 summarizes the formats.

Although the VL and other software for Silicon Graphics video options do
not distinguish between videotape formats, you need to know what kind of
connector your video equipment uses. For example, the Galileo board has
composite and S-Video connectors.

Most home VCRs use composite connectors. S-Video, on the other hand,
carries the color and brightness components of the picture on separate wires;
hence, S-Video connectors are also called Y/C connectors. Most S-VHS and
Hi-8mm VCRs feature S-Video connectors.

Note: For definitions of video terms, consult the Glossary at the end of this
guide.

Table A-1 Tape Formats and Video Formats

Electronics Consumer Professional Broadcast Postproduction

Analog VHS cassette
(composite)

U-Matic™ (SP)
cassette,
3/4-inch
(composite)

Type C
reel-to-reel,
1-inch
(composite)

S-VHS
(YC, composite)

Type B (Europe)
(composite)

S-Video (YC-358) S-Video (YC-358)

Beta (composite)

8 mm
(composite)

Hi-8mm™
(YC, composite)

Hi-8mm (YC)

Betacam
(component)

Betacam SP
(YUV, YIQ,
composite)

MII™
(YUV, YIQ,
composite)

Digital D1 525 (YUV)

D1 625 (YUV)

D2 525 (NTSC)

D2 625 (PAL)

121

Appendix B

B. Return Codes

This appendix explains the return codes that are used with the Video Library
for Indigo2 IMPACT Video. The return code is accessible through the
vlGetErrno() routine; see also vlPerror() and vlStrError().

VLSuccess

The Video Library routine completed without error.

VLBadAccess

The client attempted to perform an operation that is illegal
given the state of the client, the node, or the path. This error
is returned, for example, if the client attempts to add a node
to a path that has been set up, or call vlSetControl() on a
path with control usage est to VL_READ_ONLY.

VLBadAlloc

The Video Library could not allocate the system resources
required for the requested operation, for example, memory
and semaphores. If the source of the error is not evident
(that is, sufficient physical memory and paging space was
present), report this error to technical support.

VLBadAtom

The server does not recognize the value specified by the
atom parameter in the request as a valid atom ID.

VLBadBuffer

The value of the buffer parameter is not a ring buffer ID
recognized by the Video Library.

122

Appendix B: Return Codes

VLBadControl

The value specified by the control parameter is not
recognized by the node the request was made to.
The node to which the request was made does not recognize
the value specified by the control parameter for
vlSetControl() or vlGetControl().

VLBadDevice

The server does not recognize the value specified by the
device parameter in the request as a valid device ID. See
also VLBadMatch .

VLBadImplementation

An internal processing error occurred. Report the error and
the context in which it occurred to Customer Service.

VLBadIoctl

An error occurred between the video daemon and the
device driver associated with the video device. This error
can result from an invalid parameter setting in
vlSetControl(), although it can also represent an internal
processing error. This error should be reported to technical
support.

VLBadLength

The video daemon received a request with an invalid
length. Report this internal processing error to Customer
Support.

VLBadMatch

The arguments specified for the node, path, or device
parameters are not consistent. The node may not reside on
the path, or the path may not reside on the device.

VLBadNode

The server does not recognize the value specified by the
node parameter in the request as a valid node ID. See also
VLBadMatch .

123

VLBadPath

The server does not recognize the value specified by the
path parameter in the request as a valid path. See also
VLBadMatch .

VLBadPort

The value specified by the port parameter is not a
recognized port on the associated node.

VLBadRequest

The daemon has received a bad request code. Report this
internal processing error to technical support.

VLBadServer

The value of the server parameter is not a server ID
recognized by the Video Library.

VLBadSize

The size of the ring buffer elements associated with a
memory node are not compatible with the size of a video
unit (field or frame), given the node’s control settings.

VLBadValue

The value of a parameter is invalid. When generated by
vlGetControl(), VLBadValue can indicate that the incorrect
control value type was used, that the value is not within the
range for the control, or that the node cannot accept the
specified value due to a conflict with other node settings.

VLBadWinAlloc

vlSetupPaths() can return this code if there is insufficient
screen space to place a screen source or drain. See
Appendix C, “Indigo2 IMPACT Video Nodes and Their
Controls,” for placement constraints.

124

Appendix B: Return Codes

VLBufferTooSmall

The size of the ring buffer elements associated with a
memory node are smaller than the size of a video unit (field
or frame) given the node’s control settings.

VLInputsNotLocked

The processing element associated with a node cannot lock
to the input signal. This code may indicate that no signal is
present or that the supplied video signal uses a different
timing standard than that expected by the node (see
VL_TIMING on the input or device node).

VLNoRoute

vlSetConnection() can return this error if no route could be
found from the source (node, port) to the drain (node, port).
The probable reason is that all connector resources are in
use.

VLNotEnoughSpace

The supplied data region did not contain enough space to
hold the information returned by the server.

VLNotSupported

vlSetConnection() or vlGetConnection() can return this
code if the video device does not support explicit
connections.

125

VLPathInUse

This error is generated if a required resource, for example a
node (vlSetupPaths()) or a connector (vlSetConnection())
cannot be acquired.

• In the case of vlSetupPaths(), the node cannot be
acquired because the path has requested VL_SHARE
stream usage while another path has the required
nodes with a stream of VL_LOCK, or the path has
requested VL_SHARE control usage while another
path has the required nodes with a control usage of
VL_LOCK.

• For vlSetConnection(), the paths using the required
connector could not be preempted because the
application has requested that no preemption occur, or
because a path using the connector has stream usage
set to VL_LOCK.

VLSetupFailed

A general failure occurred during a vlSetupPaths() request.
If multiple paths were specified for vlSetupPaths(), some or
none of the paths may have been set up. In addition, some
paths may have been preempted in order to set up those
paths.

It is recommended that the application set up the paths
again to stream usage VL_READ_ONLY and control usage
VL_READ_ONLY or VL_SHARE in order to reset the state
of all paths. This combination of control and stream usage is
guaranteed to succeed.

VLValueOutOfRange

The control value specified for a vlSetControl() operation is
not within the range accepted by the node. The value was
adjusted before being set. (Compare with VLBadValue ,
where the control’s value is not changed at all.) Use the
vlGetControlInfo() routine to retrieve the valid ranges for
the control.

127

Appendix C

C. Indigo2 IMPACT Video Nodes and Their
Controls

This appendix describes the nodes available to Indigo2 IMPACT Video. It
lists the ports and controls associated with each node, as well as special
considerations involved in node usage.

In the tables that summarize the control set for a node, the columns are as
follows:

Default The default value for the control. If the value is Dynamic,
the default value depends on the value of other controls. For
example, frame size is dependent on device timing. The
default value is described in the verbose description of the
control.

If the value is Persistent, the default value is initially
obtained from the defaults file, but is never reset. Many
controls available through the video control panel vcp (for
example, the default video input) fall into this category. For
this value, changes made by vlSetControl() are persistent
across paths, even if the node goes into an unused state.

If the default is a specific value or is Dynamic, the control is
reinitialized to the default value when the node is no
longer in use, that is, when all application paths have been
destroyed and the only applications remaining are
supervisory. At present, the vcp is the only supervisory
application.

Some controls, such as VL_WINDOW, have a default value
of None. This value means that the control must be set
before a transfer can be started on a path containing the
node.

Type The member of the VLControlValue union used to set or get
the value of the control.

128

Appendix C: Indigo2 IMPACT Video Nodes and Their Controls

Access Access is one or more of the following:

• G: The value can be retrieved through vlGetControl().

• S: The value can be set through vlSetControl() while
the path is not transferring.

• T: The value can be set through vlSetControl() while
the path is transferring.

The nodes are

• VL_DEVICE

• VL_BLENDER

• VL_FB: internal frame buffer node for freezing video

• VL_MEM: region of workstation memory

• VL_SCREEN: workstation screen

• VL_VIDEO: connection to a video device; for example, a video tape
deck or camera

VL_DEVICE

129

VL_DEVICE

The device node (digital video source node) provides controls that affect the
operation of the Indigo2 IMPACT Video device as a whole. These controls
include global parameters such as timing, as well as default information
such as the default source or drain.

• type: VL_DEVICE

• kind: 0

• number: 0

• port: none

Table C-1 lists device node controls. For all these controls, access is GST,
except VL_MGV_TRIGGER_WAIT, which is G only.

Table C-1 Device Node Controls

Control Default Type Use

VL_DEFAULT_DRAIN Persistent intVal The VL_DEFAULT_DRAIN control determines the drain node the
Video Library selects when a node is acquired with
vlGetNode(VL_DRAIN, VL_VIDEO, VL_ANY). The value of the
control is a video drain node number, as reported by
vlGetDeviceList().

Once a path is set up, the node number is fixed for the lifetime of the
path. Consequently, changing this control does not change paths
previously set up using a default drain node. Paths can register for
the VLDefaultDrain event to be notified when this control’s value is
changed.

VL_DEFAULT_SOURCE Persistent intVal The VL_DEFAULT_SOURCE control determines the source node the
Video Library selects when a node is acquired with
vlGetNode(VL_SRC, VL_VIDEO, VL_ANY). The value of the
control is a video source node number, as reported by
vlGetDeviceList().

Once a path is set up, the node number is fixed for the lifetime of the
path. Consequently, changing this control does not change paths
previously set up using a default source node. Paths can register for
the VLDefaultSource event to be notified when this control’s value is
changed using vlSelectEvents().

130

Appendix C: Indigo2 IMPACT Video Nodes and Their Controls

VL_SYNC Persistent intVal The Indigo2 IMPACT Video device can derive timing from an
external source or can use an internal free-running clock. If VL_SYNC
is set to VL_SYNC_INTERNAL, the internal timing source is used.
When VL_SYNC is set to VL_SYNC_GENLOCK, timing is derived
from an external clock selected by the VL_SYNC_SOURCE control.

VL_SYNC_SOURCE Persistent intVal When the VL_SYNC control is set to VL_SYNC_GENLOCK, this
control selects the source of synchronization for the Indigo2 IMPACT
Video device. The device can accept external timing from

GEN_PORT analog reference input

GEN_DIN1 serial digital input 1

GEN_DIN2 serial digital input 2

VL_TIMING Persistent intVal This control selects the input timing for the Indigo2 IMPACT Video
device and affects the timing for all nodes. The device supports the
following modes:

VL_TIMING_525_SQ_PIX: NTSC, 525-line square pixel timing

VL_TIMING_525_CCIR601: CCIR 601, 525-line non-square pixel
timing

VL_TIMING_625_SQ_PIX: PAL, 625-line square pixel timing

VL_TIMING_625_CCIR601: CCIR 601, 625-line non-square pixel
timing

Square pixel modes are used with the Indigo2 IMPACT Compression
option only.

Table C-1 (continued) Device Node Controls

Control Default Type Use

VL_DEVICE

131

VL_MGV_AUTOPHASE Persistent intVal Autophasing allows the video inputs to be locked to each other if, on
input, their phase differences are not too great. This control selects
whether input autophasing is enabled and, if enabled, the type of
autophasing performed. Options for this control are:

VL_MGV_AUTOPHASE_NORMAL: This mode synchronizes the
video inputs to the reference input. It can accommodate a vertical
interval switch with a maximum deviation of +/- 1/2 line from the
reference.

VL_MGV_AUTOPHASE_EXTENDED: This extended autophase
mode allows frequency-locked inputs to be +/- 4 lines relative to the
reference input.

VL_MGV_AUTOPHASE_VARIABLE: The variable mode allows the
two inputs to be nonsynchronous with the reference and can
accommodate inputs that are offset by up to +/- 4 lines. Variable
autophasing uses the clock from the “last” input as the clock for both
video channels. The last input is determined by monitoring the field
(F) bit of channel 1 and 2. If channel 2 is already in the odd field when
channel 1 enters the odd field, channel 1 is assumed to be the latest
input.

VL_MGV_AUTOPHASE_OFF: Autophasing is disabled; signals are
passed through with their original timing.

Table C-1 (continued) Device Node Controls

Control Default Type Use

132

Appendix C: Indigo2 IMPACT Video Nodes and Their Controls

VL_MGV_INPUT
_ALPHA_LUT_SELECT

VL_MGV
_ALPHA_LUT
_CCIR601

intVal This control selects the type of LUT to be used when video data is
routed into the crosspoint mux (see “Getting Connections” in
Chapter 5) to a blender alpha input. The LUT is generally used to
expand limited-range data to full-range value for use as alpha. The
following LUTs are available:

VL_MGV_ALPHA_LUT_PASS: A pass-through LUT for use when
the input is video (not alpha). Values 2-253 are passed unmodified.
Input values 254 and 1 are mapped to 255 and 0, respectively.

VL_MGV_ALPHA_LUT_CCIR601: Used to expand CCIR-range
input to full-range input. Values >=235 are mapped to 255, values
<=16 are mapped to 0, and values 17-234 are mapped to 1-254.

VL_MGV_ALPHA_LUT_SUPERBLACK: Used for inputs that have
been quantized with setup and the key extends into the blanking
level. Values >=235 are mapped to 255, value 1 to 0, and values 2-234
to 1-254.

VL_MGV_ALPHA_LUT_REDUCED_RANGE: Used for input keys
that do not extend the full range. Values >=224 are mapped to 255,
values <=32 to 0, and values 32-221 to 1-254. This control takes effect
only when video is fed from the VBAR mux to the blender alpha
input; when video is fed into a pixel input, then
VL_MGV_ALPHA_LUT_PASS is always selected.

VL_MGV_OUTPUT
_ALPHA_LUT_SELECT

VL_MGV
_ALPHA_LUT
_CCIR601

intVal This control selects the LUT to use when alpha data is routed from the
blender out of the crosspoint mux. Its function is to map the
full-range alpha values to CCIR or other range values. The values for
this control are the same as for
VL_MGV_INPUT_ALPHA_LUT_SELECT, with the inverse
mappings applied.

Table C-1 (continued) Device Node Controls

Control Default Type Use

VL_DEVICE

133

VL_MGV_TRIGGER
_WAIT

Default: none

None boolVal Allows a client to “sniff” the GPI trigger. A vlGetControl() call with
VL_MGV_TRIGGER_WAIT blocks the client application until the
trigger goes off. While the application is blocked, events received
from the video daemon are queued on the client’s connection to the
daemon.

For an application to be notified when the trigger fires, it must be
registered for VLDeviceEvent. Using the event mechanism has the
advantage that the client application can continue to interact with the
Video Library or perform local processing while waiting for the
event. VL_MGV_TRIGGER_WAIT is provided for applications that
require a faster response to the trigger than can be provided with
VLDeviceEvent.

VL_MGV_TRIGGER
_LINE

Persistent intVal This control reports the line on which the GPI trigger input is
sampled. The Indigo2 IMPACT Video device samples the trigger on a
per-field basis at lines 4 and 266 for NTSC (reported as line 4 by
vlGetControl()) and lines 1 and 313 for PAL (reported as 1 by
vlGetControl()).

VL_MGV_TRIGGER
_POLARITY

Persistent intVal This control selects the polarity, indicating that the GPI trigger has
gone off. Valid values are

POLAR_NEG: The GPI trigger input has become negative.

POLAR_POS: The GPI trigger input has become positive.

Table C-1 (continued) Device Node Controls

Control Default Type Use

134

Appendix C: Indigo2 IMPACT Video Nodes and Their Controls

VL_BLENDER

The blender node provides two-layer blending and keying. The foreground
pixel input (PIXEL_DRN_A) can be used as an input to the keyer to provide
for chroma and luma key generation. The blender can also be used with
external pixel and alpha sources to perform user-defined blend operations:

• type: VL_INTERNAL

• kind: VL_BLENDER

• number: VL_MGV_NODE_NUMBER_BLENDER

• ports:

– VL_IMPACT_PORT_PIXEL_DRN_A, foreground pixel input

– VL_IMPACT_PORT_ALPHA_DRN_A, foreground pixel input

– VL_IMPACT_PORT_PIXEL_DRN_B, background pixel input

– VL_IMPACT_PORT_ALPHA_DRN_B, background pixel input

– VL_IMPACT_PORT_PIXEL_SRC_A, pixel output

– VL_IMPACT_PORT_ALPHA_SRC_B, alpha output

The blender is the only node that can use the screen node alpha information.
To use the screen alpha you must route the screen pixel data to blender alpha
inputs. The blender alpha output can then be sent to the video outputs or
memory.

Note: The blender operates only on YUV:4:2:2 8 bit video. When sending the
blender output to video, it is best to blank the chroma.

The Indigo2 IMPACT Video blender is a Porter-Duff style blender; see
“Setting Normalization” in Chapter 7, “Blending, Keying, and Transitions,”
for more information.

The blender does not stop you from doing special-effects blends. The output
is clipped into the standard range. For a nice effect, try looping the output of
the blender through a frame buffer back to the input of the blender in various
modes.

Note: For more information on blending and keying, see Chapter 7,
“Blending, Keying, and Transitions.”

VL_BLENDER

135

Table C-2 lists blender controls. Access for all controls is GST. For more
information on blender node controls, see Chapter 7, “Blending, Keying,
and Transitions.”

Table C-2 Blender Node Controls

Control Default Type Use

VL_BLEND_A_FCN VL_BLDFCN_MINUS
_A_ALPHA

intVal Sets blend function that controls mixing of
foreground signals.

VL_BLEND_B_FCN VL_BLDFCN_ONE intVal Sets blend function that controls mixing of
background signals.

VL_BLEND_A Dynamic intVal Sets input source for foreground image.

VL_BLEND_B Dynamic intVal Sets input source for background image.

VL_BLEND_A_ALPHA Dynamic intVal Sets input source for foreground alpha.

VL_BLEND_B_ALPHA Dynamic intVal Sets input source for background alpha.

VL_BLEND_A_NORMALIZE TRUE boolVal Sets normalization; off is not supported by
Indigo2 IMPACT Video.

VL_BLEND_B_NORMALIZE TRUE boolVal Sets normalization, following Porter-Duff model
(background pixels premultiplied by their
corresponding alphas before blending).

VL_MGV_KEYER_MODE Persistent intVal Selects “master” keyer control that determines
the type of keying performed (luma, chroma, or
spatial).

VL_MGV_KEYER_DETAIL Persistent intVal Sets sharpness of transition between foreground
and background allowing blurring of edges. The
value -8 yields the most gradual transition, +7 the
sharpest.

VL_MGV_KEYER_FG_OPACITY Persistent intVal Sets opacity of the foreground, thus limiting the
value of foreground alpha at any point.

VL_MGV_KEYER_VALUE_LUMA Persistent intVal Sets central luma value. This control sets the luma
value at which the background shows through
the foreground.

136

Appendix C: Indigo2 IMPACT Video Nodes and Their Controls

VL_MGV_KEYER_RANGE
_LUMA

Persistent intVal Sets one-sided range of the center value. This
control determines the range of luma values
where the background shows through the
foreground.

VL_MGV_KEYER_VALUE
_CHROMA_U

Persistent intVal Sets central U value at which the background
shows through the foreground.

VL_MGV_KEYER_RANGE
_CHROMA_U

Persistent intVal Sets one-sided range of U where the background
shows through the foreground.

VL_MGV_KEYER_VALUE
_CHROMA_V

Persistent intVal Sets central V value at which the background
shows through the foreground.

VL_MGV_KEYER_RANGE
_CHROMA_V

Persistent intVal Sets one-sided range of V where the background
shows through the foreground.

VL_MGV_WIPE_SYMMETRY FALSE intVal Sets wipe symmetry (on or off) so that wipe
proceeds in both directions at once from the
center line. Effect depends on type of wipe: no
effect for fades or tiling; enables
VL_MGV_WIPE_CENT for single, double, and
corner wipes; enables
VL_MGV_WIPE_CENT_PERP control for double
and corner wipes.

VL_MGV_WIPE_INVERT FALSE intVal Reverses foreground and background regions of
a wipe. When set to 0, wipes proceed from
foreground (position = minimum) to background
(position = maximum). When set to 1, wipes
proceed from background (position = minimum)
to foreground (position = maximum).

This value is buffered (does not go into effect)
until another blending control is set.

VL_MGV_WIPE Persistent intVal Sets autowiper on.

VL_MGV_WIPE_TYPE Persistent intVal Selects type of blending (wipe) performed.

Table C-2 Blender Node Controls

Control Default Type Use

VL_BLENDER

137

VL_MGV_WIPE_ANGLE
VL_MGV_WIPE_DIRECTION

Persistent intVal Sets wipe vector direction, that is, the direction in
which the wipe appears to be proceeding as its
position increases.

Note: VL_MGV_WIPEANGLE_N and
VL_MGV_WIPEANGLE_S do not work for the
wipe types VL_MGV_WIPETYPE_DOUBLE and
VL_MGV_WIPETYPE_CORNER.

VL_MGV_WIPE_SHARPNESS Persistent intVal Sets sharpness of wipe transition band. As for
VL_MGV_KEYER_DETAIL, -8 is most gradual,
+7 is sharpest.

VL_MGV_WIPE_FUZZ Persistent intVal Same as VL_MGV_WIPE_SHARPNESS.

VL_MGV_WIPE_SPEED Persistent intVal Sets speed at which the autowiper sweeps the
wipe. The value is the speed of the wipe in units
of number of fields for each wipe position change.

VL_MGV_WIPE_POSN Persistent fractVal Sets amount of progress of wipe, from none
(numerator = 0) to full (numerator = 1000).

VL_MGV_WIPE_POSN_PERP Persistent fractVal Sets amount of progress of wipe, from none
(numerator = 0) to full (numerator = 1000), along
a direction perpendicular to normal wipe
position VL_MGV_WIPE_POSN.

VL_MGV_WIPE_CENT Persistent intVal Sets offset that is center of a symmetrical wipe
along wipe position. 0 means center is where
VL_MGV_WIPE_POSN is 0, and 1000 means
center is where VL_MGV_WIPE_POSN is 1000.
For this control to work for single, double, and
corner wipes, VL_MGV_WIPE_SYMMETRY
must be on.

VL_MGV_WIPE_CENT_PERP Persistent intVal Sets offset that is center of a symmetrical wipe
along a perpendicular wipe position. 0 means
center is where VL_WIPE_POSN_PERP is 0, and
1000 means center is where
VL_WIPE_POSN_PERP is 1000.
VL_WIPE_SYMMETRY must be on for this
control to work for double and corner wipes.

Table C-2 Blender Node Controls

Control Default Type Use

138

Appendix C: Indigo2 IMPACT Video Nodes and Their Controls

VL_MGV_WIPE_REPT Persistent intVal Sets number of repetitions of pattern in direction
of wipe, usually louvers on single, corner, or
double wipe, and length of one side of rectangles
for a tile wipe. This control does not apply to
fades.

VL_MGV_WIPE_REPT_PERP Persistent intVal Sets number of repetitions perpendicular to wipe
direction for single, double, and corner wipes,
and length of other side of rectangles for tile wipe.

VL_MGV_WIPE_EXT_TRIG FALSE boolVal If set to TRUE, causes the trigger to initiate an
automatic wipe (autowipe).

VL_MGV_WIPE_SPEED 10 intVal Sets duration of an autowipe in tenths of a
second.

VL_MGV_BLEND_B_FLAT Persistent intVal Sets flat-background generator on, so that
background pixel source is used for pixel timing
only and live video from pixel source B goes to
the blender.

VL_MGV_BLEND_B_Y Persistent intVal Sets value of background Y.

VL_MGV_BLEND_B_U Persistent intVal Sets value of background U.

VL_MGV_BLEND_B_V Persistent intVal Sets value of background V.

VL_MGV_BLEND_SHADOW_ON Persistent boolVal Activates shadow hardware. See “Adding
Shadows” in Chapter 7 for information.

VL_MGV_BLEND_SHADOW
_GAIN

Persistent intVal Sets value shift for shadow.

VL_MGV_BLEND_SHADOW
_OFFSET

Persistent intVal Adds to shadow value. Note that darkening a
very light shadow can result in noise.

VL_MGV_BLEND_H_FILT Persistent boolVal Sets horizontal smoothing filter that filters pixel
information before the alpha extraction and
smooths the alpha output of the key generator.

Table C-2 Blender Node Controls

Control Default Type Use

VL_FB

139

VL_FB

The frame buffer node provides a mechanism for freezing a video stream.
This node is most useful when it is used with the video source nodes, which
lack freeze capability. It is also suitable when a snapshot of a video stream is
required and the application cannot freeze the input because the live feed is
used elsewhere.

Note that the memory and screen source nodes have inherent freeze
capability. For the frame buffer node,

• type: VL_INTERNAL

• kind: VL_FB

• number: VL_MGV_NODE_NUMBER_FB

• ports:

– VL_IMPACT_PORT_PIXEL_SRC_A, 8-bit single-link output

– VL_IMPACT_PORT_PIXEL_DRN_A, 8-bit single-link input

The frame buffer node imposes a one-frame delay on the video stream.

The frame buffer element is shared between this node and the CC1 memory
source node. Consequently, only one of the two can be in use at a time.
Attempts to set up both on a path with stream usage VL_SHARE or
VL_LOCK result in the first path being preempted. If the frame buffer node
and the CC1 memory source node are set up on the same path, an error is
returned.

The frame buffer node is internal to the crosspoint mux. Consequently, to
avoid consuming the (scarce) VBAR-crosspoint connectors, ensure that its
use is required in the path. For example, this node is usually not needed to
freeze the video output, since the video drain nodes have freeze capability

The default control for this node is VL_FREEZE. If set to TRUE, this control
freezes the video stream passing through the frame buffer. If set to FALSE,
live video resumes. For this control, the default is FALSE, type is boolVal,
access is GST.

140

Appendix C: Indigo2 IMPACT Video Nodes and Their Controls

VL_MEM

This discussion divides the VL_MEM nodes into their manifestations as
source and drain.

VL_MEM Source

Indigo2 IMPACT Video supports four memory source nodes: VGI1 1, VGI1
2, VGI1 DL, and CC1. The VGI1 memory sources provide real-time single
and dual-link paths from main memory to Indigo2 IMPACT Video. For the
memory source node,

• type for all four memory source nodes: VL_SRC

• kind for all four memory source nodes: VL_MEM

• number: VL_MGV_NODE_NUMBER_VGI_1,
VL_MGV_NODE_NUMBER__VGI_2, and
VL_MGV_NODE_NUMBER__VGI_DL, and
VL_MGV_NODE_NUMBER__CC, respectively

• ports:

– memory source nodes VGI1 1 and VGI1 2:
VL_PORT_PIXEL_SRC_A: single-link 8- or 10-bit video stream
capable of real-time operation

– dual-link video source node: VL_PORT_DUALLINK_SRC_A:
dual-link 8- or 10-bit video stream capable of real-time operation

– memory source node CC1:
VL_PORT_PIXEL_SRC_A: single-link 8-bit video stream, no 10-bit
support, does not guarantee real-time operation, but has attached
frame buffer

The CC1 node is used mostly to support alpha for the blender. If
the blender uses an image from this frame buffer, the Y value is
interpreted as alpha and the blender uses it accurately. Data in this
buffer allows you to put a nonrectangular shape (for example, a
heart or an irregularly shaped logo) as a matte around an image.

VL_MEM

141

The CC1 memory source node is also useful for slide shows or
other static-image situations in which video input changes only
every 10 or 20 seconds and real-time performance is not critical.
Because the CC1 node has its own frame buffer, there is no CPU
overhead.

Table C-3 lists memory source node controls. For all these controls, access is
GS.

Table C-3 Memory Source Node Controls

Control Default Type Use

VL_CAP_TYPE CAP_TYPE
_INTERLEAVED

intVal Specifies the type of video units—fields or frames—that the
application obtains from the ring buffer. Valid capture types
are VL_CAPTURE_NONINTERLEAVED,
VL_CAPTURE_INTERLEAVED,
VL_CAPTURE_EVEN_FIELDS,
VL_CAPTURE_ODD_FIELDS, and VL_CAPTURE_FIELDS.
See “Using VL_CAP_TYPE and VL_RATE” in Chapter 2 for
information on capture types.

VL_FORMAT VL_FORMAT_DIGITAL
_COMPONENT_SERIAL

intVal Specifies the type of video format to be produced. See “Using
VL_FORMAT” in Chapter 2 for formats and explanations.

VL_PACKING Single link:
VL_PACKING_YVYU
_422_8

Dual link:

VL_PACKING_YUVA
_4444_8

intVal Specifies the bit order in which the video components are
stored in memory. The native packings supported by
VL_MGV_NODE_NUMBER_VGI_[1,2] are
VL_PACKING_YVYU_422_8 and
VL_PACKING_YVYU_422_10.

Supported non-native single link packings (implemented
automatically in software) are VL_PACKING_Y_8_P,
VL_PACKING_RGB_332_P, and VL_PACKING_RGB_8.

The native packings supported by
VL_MGV_NODE_NUMBER_VGI_DL are
VL_PACKING_YUVA_4444_8,
VL_PACKING_YUVA_4444_10,
VL_PACKING_AUYV_4444_8,
VL_PACKING_AUYV_4444_10, VL_PACKING_RGBA_8,
VL_PACKING_RGBA_10, VL_PACKING_ABGR_8,
VL_PACKING_ABGR_10, and VL_PACKING_AYU_AYV_10.

See “Using VL_PACKING” in Chapter 2 for the specifications
of each packing.

142

Appendix C: Indigo2 IMPACT Video Nodes and Their Controls

VL_OFFSET (0,0) xyVal Specifies the upper left corner of a video region to be output.
The coordinates are offsets of the upper left corner of the active
video and take precedence over the size. Therefore, in order to
accommodate the given offset, the size may be changed. A
VLControlChanged event is generated to inform interested
parties of any change in size.

VL_RATE Dynamic; depends on
timing and capture type

fractVal Specifies the rate at which the hardware extracts video units
(fields or frames, depending on the capture type) are extracted
from the ring buffer. The video unit is repeated, or black is
output, to achieve the video output rate of 60 fields per second
(NTSC) or 50 fields per second (PAL). The VGI1 memory
source nodes can consume video units from system memory at
any rate up to the video standard rate.

For VL_CAPTURE_NONINTERLEAVED and VL_CAPTURE
FIELDS, valid ranges are:

NTSC: 1 through 60 units per second (must be multiple of
fields per frame for noninterleaved)

PAL: 1 through 50 units per second (must be multiple of fields
per frame for noninterleaved)

For VL_CAPTURE_INTERLEAVED,
VL_CAPTURE_EVEN_FIELDS, or
VL_CAPTURE_ODD_FIELDS, valid ranges are 1 through 30
units per second for NTSC and 1 through 25 units per second
for PAL.

VL_SIZE Dynamic; depends on
timing and capture type

xyVal Specifies the width (pixels) and height (lines) of the video data
contained within each ring buffer entry. These values, along
with VL_PACKING, determine the size in bytes of each ring
buffer entry and thus the transfer size. The width must be a
multiple of four pixels. The length must be a minimum of one
line for field capture types, and two lines for frames.

The specified size is constrained by the maximum allowable
(as dictated by the device timing) and by the current offset
position (VL_OFFSET). If the size is too large, it is reduced. The
offset is not changed. It is recommended that VL_OFFSET be
set before VL_SIZE.

Table C-3 (continued) Memory Source Node Controls

Control Default Type Use

VL_MEM

143

VL_TIMING Dynamic; from device node intVal Retrieves the current device-wide video timing value. See
“VL_DEVICE” in this chapter for more details. Setting this
control on any other node type has no effect.

VL_ZOOM 1.0 fractVal Specifies the amount of scaling to be applied to the video
before it is transferred to memory. The VGI1 memory source
nodes have no scaling ability. The only legal value is 1.0.

Table C-3 (continued) Memory Source Node Controls

Control Default Type Use

144

Appendix C: Indigo2 IMPACT Video Nodes and Their Controls

VL_MGV
_DOMINANCE
_FIELD

VL_MGV_DOMINANCE
_F1

intVal Sets the field dominance mode, which determines the order in
which the fields are read from memory. This control applies
only to the frame-oriented capture types
(VL_CAPTURE_INTERLEAVED and
VL_CAPTURE_NONINTERLEAVED).

For VL_CAPTURE_INTERLEAVED, values are:

VL_MGV_DOMINANCE_F1: For video timings
VL_TIMING_525_CCIR601 and VL_TIMING_525_SQ_PIX, F1
(also known as odd) dominance dictates that data for the F1
field resides in memory after that for F2. For
VL_TIMING_625_CCIR601 and VL_TIMING_625_SQ_PIX,
the data for F1 resides in memory before that of F2.

VL_MGV_DOMINANCE_F2: For VL_TIMING_525_CCIR601
and VL_TIMING_525_SQ_PIX, F2 (also known as even
timings), dominance dictates that data for the F1 field resides
in memory before that for F2. For VL_TIMING_625_CCIR601
and VL_TIMING_625_SQ_PIX, the data for F1 resides in
memory after that of F2.

The meaning of before and after depends on the capture type.
For interleaved frames, before indicates that the data
comprising the first line of the designated field begins at the
first byte of the buffer. In this format, the lines of F1 and F2 are
interleaved within the one ring buffer, thus the second line of
the buffer belongs to the other field, and so forth.

For noninterleaved frames, before indicates that the dominant
field is in a buffer preceding the buffer(s) containing
nondominant fields.

For VL_CAPTURE_NONINTERLEAVED, values are:

VL_MGV_DOMINANCE_F1: The F1 field is in the first buffer
of the pair, and the F2 field in the second.

VL_MGV_DOMINANCE_F2: The F2 field is in the first buffer
of the pair, the F1 field in the second.

Table C-3 (continued) Memory Source Node Controls

Control Default Type Use

VL_MEM

145

VL_MGV_BUFFER
_QUANTUM

1 intVal The granularity, or quantum, of data transfer required by the
application. The video data is padded at the end so that the
size of a field/frame is a multiple of
VL_MGV_BUFFER_QUANTUM. This control is intended for
applications that do I/O directly from the ring buffer, and may
consequently require the frame or field size to be a multiple of
the device block size. Direct I/O, for example, usually requires
that 512 bytes of data be transferred at a time.

VL_MGV_DMA
_ERROR_RESTART

VL_MGV_DMA_RESTART
_ON

intVal If enabled (VL_MGV_DMA_RESTART_ON), a video transfer
continues when an error is encountered. Otherwise
(VL_MGV_DMA_RESTART_OFF), the video transfer is
aborted. This control covers three types of errors:

The reference video timing is not clean, resulting in short/long
lines, fields, or both. These errors are with respect to the
programmed size and offset.

The system GIO bus bandwidth was insufficient to transfer
video from system memory at video rates.

The video clock was interrupted.

VL_MGV_DMA
_VOUT_EXPAND

VL_MGV_DMA_EXPD
_OFF

intVal Specifies whether or not 8-bit data read from memory is
expanded to 10-bit data before being output by the DMA
channel to the VBAR mux. If enabled
(VL_MGV_DMA_EXPD_ON), then zeroes are inserted into
the least significant two bits; otherwise
(VL_MGV_DMA_EXPD_OFF), all 10 bits are output
unmodified.

Table C-3 (continued) Memory Source Node Controls

Control Default Type Use

146

Appendix C: Indigo2 IMPACT Video Nodes and Their Controls

VL_MGV_DMA
_VOUT
_STARVATION

VL_MGV_DMA_VO
_STARV_RPT

intVal Sets the video output policy to use when the memory node
underflows the ring buffer (that is, the application has not
filled the ring buffer at the rate that the memory node
consumes it). An application can choose between two
starvation policies. In each case, video output from system
memory resumes when the application places the next
field/frame in the ring buffer via vlPutValid().

VL_MGV_DMA_VO_STARV_BLK: Outputs black fields or
frames. This choice does not involve further access to memory
until a new buffer becomes available.

VL_MGV_DMA_VO_STARV_RPT: Repeats the last unit (field
or frame) that was transferred from main memory. The
repetition is performed by continuing to transfer the same
field/frame from memory to video until a new buffer becomes
available or the transfer is ended. This results in system bus
bandwidth continuing to be consumed.

Caution: In order to maintain compatibility with the behavior
of the CC1 memory source node as well as the earlier Galileo
Video™ products, where a frame buffer is incorporated, the
default value for this control is
VL_MGV_DMA_VO_STARV_RPT. Therefore the ring buffer
used in the transfer must contain a minimum of two buffer
entries (four for VL_CAPTURE_NONINTERLEAVED), so that
one buffer can be repeated by the system while the application
is filling the second. If only one buffer is used, then the first
buffer output is repeated indefinitely and vlGetNextFree()
never returns a free buffer.

Table C-3 (continued) Memory Source Node Controls

Control Default Type Use

VL_MEM

147

VL_MEM Drain

Indigo2 IMPACT Video supports three memory drain nodes: VGI1 1,
VGI1 2, and VGI1 DL. The VGI1 memory drains provide real-time single-
and dual-link paths from the Indigo2 IMPACT Video device to ring buffers.
For the memory drain,

• type for all three memory drain nodes: VL_DRN

• kind for all three memory drain nodes: VL_MEM

• number: VL_MGV_NODE_NUMBER_VGI1_1,
VL_MGV_NODE_NUMBER__VGI1_2, and
VL_MGV_NODE_NUMBER__VGI1_DL, respectively

• ports:

– memory drain nodes VGI1 1 and VGI 2:
VL_PORT_PIXEL_DRN_A: single-link source for 8- or 10-bit video
stream capable of real-time operation

– dual-link video drain node: VL_PORT_DUALLINK_DRN_A:
dual-link source for 8- or 10-bit video stream capable of real-time
operation

With the VL_MGV_DMA_VIN_ROUND control enabled, the components
of the 10-bit video signal applied to the VGI1 memory drain are rounded to
8 bits; otherwise all 10 bits are passed through and written to memory.

With rounding disabled, setting an 8-bit packing while capturing 10-bit data
truncates the data to 8 bits.

Figure C-1 shows the bit relationships for the CCIR 601 8- and 10-bit video
format components

Figure C-1 Rounding for Memory Drain

0123456789

8-bits/component

10-bits/component

LS
B

M
S

B

148

Appendix C: Indigo2 IMPACT Video Nodes and Their Controls

When rounding is enabled, 10-bit data is converted to 8-bit data depending
on the rounding type and the randomized rounding mode. In simple
rounding, if bit 1 is set, then the value is rounded up (one is added to bit 2),
otherwise it is rounded down.

Randomized rounding involves using a 22-bit shift register to generate two
pseudo-random bits to be added to bits 1 and 0 of the 10-bit component,
which may or may not result in a carry to bit 2.

The behavior of the shift register is dictated by the randomized rounding
mode. With repeated randomized rounding, the shift register is initialized to
the same value at the start of each odd (F1) field. Thus, the same
pseudo-random sequence will be used for each frame. However, in
free-wheel mode, the shift register is never reset and the sequence becomes
totally random. The shift register is guaranteed never to become stuck at
zero.

Rounding occurs only on active lines and during the digital active line
between, and not including, SAV and EAV. The digital blanking data is not
modified.

Table C-4 lists memory drain node controls. For all these controls, access is
GS.

Table C-4 Memory Drain Node Controls

Control Default Type Use

VL_CAP_TYPE CAP_TYPE_
INTERLEAVED

intVal Specifies the type of video units—fields or frames—that the
application obtains from the ring buffer by the application.
Valid capture types are VL_CAPTURE_NONINTERLEAVED,
VL_CAPTURE_INTERLEAVED,
VL_CAPTURE_EVEN_FIELDS,
VL_CAPTURE_ODD_FIELDS, and VL_CAPTURE_FIELDS.
See “Using VL_CAP_TYPE and VL_RATE” in Chapter 2 for
information on capture types.

VL_FORMAT Dynamic intVal Specifies the type of video format to be produced. See “Using
VL_FORMAT” in Chapter 2 for formats and explanations.

VL_MEM

149

VL_PACKING Single link:
VL_PACKING_YVYU
_422_8

Dual link:

VL_PACKING_YUVA
_4444_8

intVal Specifies the bit order in which the video components are
stored in memory. The native packings supported by
VL_MGV_NODE_NUMBER_VGI_[1,2] are
VL_PACKING_YVYU_422_8 and
VL_PACKING_YVYU_422_10.

Supported non-native single link packings (implemented
automatically in software) are VL_PACKING_Y_8_P,
VL_PACKING_RGB_332_P, and VL_PACKING_RGB_8.

The native packings supported by
VL_MGV_NODE_NUMBER_VGI_DL are
VL_PACKING_YUVA_4444_8,
VL_PACKING_YUVA_4444_10,
VL_PACKING_AUYV_4444_8,
VL_PACKING_AUYV_4444_10, VL_PACKING_RGBA_8,
VL_PACKING_RGBA_10, VL_PACKING_ABGR_8,
VL_PACKING_ABGR_10, and VL_PACKING_AYU_AYV_10.

See “Using VL_PACKING” in Chapter 2 for the specifications
of each packing.

VL_OFFSET (0,0) xyVal Specifies the upper left corner of a video region to be output.
The coordinates are offsets of the upper left corner of the active
video and takes precedence over the size. Therefore, in order to
accommodate the given offset, the size may be changed. A
VLControlChanged event is generated to inform interested
parties of any change in size.

Table C-4 (continued) Memory Drain Node Controls

Control Default Type Use

150

Appendix C: Indigo2 IMPACT Video Nodes and Their Controls

VL_RATE Dynamic; depends on
timing and capture type

fractVal Specifies the rate at which video units (fields or frames
depending on capture type) the hardware extracts from the
ring buffer. The video unit is repeated, or black is output, to
achieve the video output rate of 60 fields per second (NTSC) or
50 fields per second (PAL). The VGI1 memory source nodes
can consume video units from system memory at any rate up
to the video standard rate.

For VL_CAPTURE_NONINTERLEAVED and VL_CAPTURE
FIELDS, valid rates are

NTSC: 1 through 60 units per second (must be multiple of
fields per frame for noninterleaved)

PAL: 1 through 50 units per second (must be multiple of fields
per frame for noninterleaved)

For VL_CAPTURE_INTERLEAVED,
VL_CAPTURE_EVEN_FIELDS, or
VL_CAPTURE_ODD_FIELDS, valid ranges are 1 through 30
units per second for NTSC and 1 through 25 units per second
for PAL.

VL_SIZE Dynamic; depends on
timing and capture type

xyVal Specifies the width (pixels) and height (lines) of the video data
contained within each ring buffer entry which, along with
VL_PACKING, determines the size in bytes of each ring buffer
entry and thus the transfer size. The width must be a multiple
of four pixels. The length must be a minimum of one line for
field capture types, and two lines for frames.

The specified size is constrained by both the maximum
allowable (as dictated by the device timing and capture type)
as well as the current offset position (VL_OFFSET). If the size
is too large, it is reduced. The offset is not changed. It is
recommended that VL_OFFSET be set before VL_SIZE.

VL_TIMING Dynamic; from device node intVal Retrieves the current device-wide video timing value. See
“VL_DEVICE” in this chapter for more details. Setting this
control on any other node type has no effect.

VL_ZOOM 1.0 fractVal Specifies the amount of scaling to be applied to the video
before it is transferred to memory. The VGI1 memory drain
nodes have no scaling ability. The only legal value is 1.0.

Table C-4 (continued) Memory Drain Node Controls

Control Default Type Use

VL_MEM

151

VL_MGV_BUFFER
_QUANTUM

1 intVal The granularity, or quantum, of data transfer required by the
application. The video data is padded at the end so that the
size of a field/frame is a multiple of
VL_MGV_BUFFER_QUANTUM. This control is intended for
applications that do I/O directly from the ring buffer, and may
consequently require the frame or field size to be a multiple of
the device block size. Direct I/O, for example, usually requires
that 512 bytes of data be transferred at a time.

VL_MGV
_DOMINANCE
_FIELD

VL_MGV_DOMINANCE
_F1

intVal Sets the field dominance mode, determining the order in
which the fields are read from memory. This control applies
only to the frame-oriented capture types
(VL_CAPTURE_INTERLEAVED and
VL_CAPTURE_NONINTERLEAVED. See the discussion of
VL_MGV_DOMINANCE_FIELD in Table C-3 earlier in this
appendix for more details.

VL_MGV_DMA
_ERROR_RESTART

VL_MGV_DMA
_ERROR_RESTART_OFF

intVal If enabled (VL_MGV_DMA_RESTART_ON), a video transfer
continues when an error is encountered. Otherwise
(VL_MGV_DMA_RESTART_OFF), the video transfer is
aborted. This control covers three types of errors:

The reference video timing is not clean, resulting in short/long
lines, fields, or both. These errors are with respect to the
programmed size and offset.

The system GIO bus bandwidth was insufficient to transfer
video from system memory at video rates.

The video clock was interrupted.

VL_MGV_DMA
_ROUND_TYPE

VL_MGV_DMA_RND
_SMPLE

intVal Specifies type of rounding algorithm to be used. The simple
rounding method (VL_MGV_DMA_RND_SMPLE) rounds up
if bit 1 is one or rounds down if bit 1 is zero. The randomized
rounding method (VL_MGV_DMA_RND_RAND) makes the
decision whether or not to round up based on comparing the
two least significant bits to a random sequence.

Table C-4 (continued) Memory Drain Node Controls

Control Default Type Use

152

Appendix C: Indigo2 IMPACT Video Nodes and Their Controls

VL_SCREEN

This discussion divides the VL_SCREEN nodes into their manifestations as
source and drain.

VL_SCREEN Source

Indigo2 IMPACT Video supports two screen source nodes: A and B.

The screen source nodes provide a means of using the graphics screen as a
source of video data. Both pixel and alpha information can be extracted from
the screen source area (although note that the alpha data can be sent only to
the blender node’s alpha inputs).

• type for both screen drain nodes: VL_SRC

• kind for both screen drain nodes: VL_SCREEN

• number: VL_MGV_NODE_NUMBER_SCREEN_A
andVL_MGV_NODE_NUMBER_SCREEN_B, respectively

• ports:

– VL_IMPACT_PORT_ALPHA_SRC_[A,B], single-link 8-bit CCIR
pixel stream derived from a graphics window’s alpha contents

– VL_IMPACT_PORT_PIXEL_SRC_[A,B], single-link 8-bit CCIR
pixel stream derived from a graphics window’s pixel contents

VL_MGV_DMA
_RAND_ROUND
_MODE

VL_MGV_DMA
_RND_RAND
_RPT

intVal Determines whether or not the random sequence used for
randomized rounding is repeated. If the sequence is to be
repeated (VL_MGV_DMA_RND_RAND_RPT), then a shift
register is seeded to a fixed value at the start of each odd field.
Otherwise, the shift register free-wheels.

VL_MGV_DMA
_VIN_ROUND

VL_MGV_DMA_RND_OFF intVal Enables (VL_MGV_DMA_RND_ON) or disables
(VL_MGV_DMA_RND_OFF) rounding of 10-bit video data to
8 bits per component. Only the active area data is rounded.

Table C-4 (continued) Memory Drain Node Controls

Control Default Type Use

VL_SCREEN

153

Certain constraints apply to window positioning. If an application attempts
to place the window at an illegal position, the node attempts to place the
window at a valid location. The size of the window can also be changed. If
either the position or size is changed, the application is notified by a
VLValueChanged event. If the window cannot be placed anywhere on the
screen, vlSetControl() returns VLBadValue.

Make sure your application meets these constraints:

• Windows A and B must not overlap vertically.

• The vertical distance between windows A and B must be greater than
12 pixels.

Table C-5 lists screen source node controls. For all these controls, access is
GST.

Table C-5 Screen Source Node Controls

Control Default Type Use

VL_FREEZE FALSE boolVal When set to TRUE, this control freezes the contents of the screen
drain. Updates to the graphics frame buffer continue to be displayed
on the graphics display but are not reflected on the video output. If
set to FALSE, live output resumes.

VL_OFFSET (0, 0) xyVal Specifies the upper left corner of a subregion of the graphics area
used to produce the video output. The offset is relative to
VL_ORIGIN. See also VL_SIZE, which defines the size of the
subregion.

VL_ORIGIN (0, 0) xyVal Specifies the upper left corner of a frame-size graphics area used to
produce the video. The origin is specified in X Windows
root-window coordinates. VL_OFFSET and VL_SIZE can be used to
specify a subregion of this area.

VL_SIZE CCIR 601 525: 720x486

CCIR 601 625: 768x576

NTSC: 640x486

PAL: 768x576

xyVal Specifies the size of a subregion of the graphics area used to produce
the video output. See also VL_OFFSET, which specifies the location
of the subregion, and VL_ORIGIN, which maps a graphics window
area to a frame.

This control is applied before VL_ZOOM.

154

Appendix C: Indigo2 IMPACT Video Nodes and Their Controls

VL_SCREEN Drain

Indigo2 IMPACT Video supports three screen drain nodes: A, B, and C.

The screen drain nodes provide a means of displaying video data in a
graphics window. The Indigo2 IMPACT Video device displays the video
over a specified window, obscuring any graphics contents that may have
been there. Note that the Indigo2 IMPACT Video device does not place the
video data into the frame buffer, but instead injects data directly into the
raster. Consequently, an lrectwrite() operation returns the contents that were
drawn into the window, not the video data. For the screen drain,

• type for all three screen drain nodes: VL_DRN

• kind for all three screen drain nodes: VL_SCREEN

• number: VL_MGV_NODE_NUMBER_SCREEN_A,
VL_MGV_NODE_NUMBER_SCREEN_B, and
VL_MGV_NODE_NUMBER_SCREEN_C, respectively

• port: VL_IMPACT_PORT_PIXEL_DRN_[A,B,C], single-link 8-bit drain
of CCIR-601 range video for display in a graphics window

To display live video using the graphics frame buffer, video frames should
be captured using one of the VGI1 memory drain nodes, and then drawn
using GL or OpenGL functions.

VL_ZOOM 1.0 fractVal Sets the amount of zoom that is applied to the graphics area before it
is converted to video. Valid values are 1 and 1/2.

Note: The 1/2 zoom value selects full-screen video output and
should be used only when the Indigo2 IMPACT Video device is
operating on square-pixel timing (used with the Indigo2 IMPACT
Compression option only).

VL_MGV_
DEINTERLACE

TRUE boolVal Specifies how the video fields are generated from the frame-size
graphics area with origin VL_ORIGIN. If this control is set to TRUE,
a video field line is produced by averaging the corresponding
graphics frame lines. If set to FALSE, the corresponding graphics line
is selected depending on the field dominance and is output verbatim.

Table C-5 (continued) Screen Source Node Controls

Control Default Type Use

VL_SCREEN

155

Screen drains B and C share the same physical frame buffer. When only drain
B is used, the frame buffer is 24 bits deep. When drains B and C are used, or
when only C is used, the frame buffer is split into two 12-bit logical frame
buffers.

A 12- to 24-bit dithering is applied to produce the output of each window.
While windows B and C can accept data from different sources, the
following controls affect both nodes when applied to either:

• VL_SIZE

• VL_ZOOM

• VL_FREEZE

Window positioning has certain constraints. If an application attempts to
place the window at an illegal position, the node attempts to place the
window at a valid location. The size of the window can also be changed. If
either the position or size is changed, the application is notified by a
VLValueChanged event. If the window cannot be placed anywhere on the
screen, vlSetControl() returns VLBadValue.

Make sure your application meets these constraints:

• Windows A, B, and C must not overlap.

• Window A must not overlap window B or C vertically.

• Window C must be to the right of window B by at least 45 pixels.

• The top of window C must be the same as or below window B.

• The bottom of window B must be the same as or higher than the bottom
of window C.

• The vertical distance between window A and window B or C must be
greater than 12 pixels.

156

Appendix C: Indigo2 IMPACT Video Nodes and Their Controls

Table C-6 lists screen drain node controls. For all these controls, access is
GST, except VL_MGV_DEINTERLACE and VL_WINDOW, which are GS.

Table C-6 Screen Drain Node Controls

Control Default Type Use

VL_FREEZE FALSE boolVal If set to TRUE, this control freezes the contents of the screen drain. If
set to FALSE, live video display resumes.

VL_OFFSET (0, 0) xyVal Specifies the upper left corner of a subregion of the video frame to be
displayed. See also VL_SIZE, which specifies the size of the
subregion. When used with VL_ZOOM, VL_OFFSET is applied after
VL_ZOOM.

VL_ORIGIN (0, 0) xyVal Specifies the location on the screen where the video is displayed. The
window coordinates are X-Server window coordinates.

VL_SIZE CCIR 601 525: 720 x
486

CCIR 601 625: 768 x
576

NTSC: 640 x 486

PAL: 768 x 576

xyVal Specifies the size of a subregion of the video frame to be displayed.
See also VL_OFFSET, which specifies the location of the subregion.
When used with VL_ZOOM, VL_SIZE is applied after VL_ZOOM.

VL_WINDOW None intVal Specifies the window in which the video is displayed. The value set
is the X Server window ID, as returned by XtWindow(), for example.
The window ID cannot be changed while a screen drain is
transferring.

VL_ZOOM 1.0 fractVal Sets the amount of zoom applied to the video data before it is
displayed. Valid values are 7/1, 6/1, 5/1, 4/1, 3/1, 2/1, 1/1, 1/2, 1/3, 1/4,
1/5, 1/6, 1/7, and 1/8. Zoom is applied before offset (pan) and size.

VL_VIDEO

157

VL_VIDEO

This discussion divides the VL_VIDEO node into its manifestations as
source and drain.

VL_VIDEO Source

Indigo2 IMPACT Video supports three digital video source nodes: 1, 2, and
dual-link.

The video source nodes correspond to two video input connectors available
on the Indigo2 IMPACT Video device. These connectors can be used
separately to feed CCIR-601 video to Indigo2 IMPACT Video, or as a dual
link to supply RP-175 RGB or YUV 4:4:4:4 or 4:2:2:4 video. When used in
dual-link mode, the connector labelled 1 is used for pixel input while the
connector labelled 2 is used for alpha input.

VL_MGV_ALPHA
_NOT_PIXEL

TRUE boolVal Specifies whether the screen drain should take pixel or alpha data
from the source node. The preferred mechanism for specifying this
information is to use vlSetConnection(); this function overrides the
value of this control.

If VL_MGV_ALPHA_NOT_PIXEL is set to TRUE, the screen drain
takes input from the source’s alpha port. Otherwise, it takes input
from the source’s pixel port. If the source node has no alpha port,
then the pixel port is used.

VL_MGV
_DEINTERLACE

FALSE boolVal Sets deinterlacing method.

Converting video, which is interlaced, to graphics, which is
progressive scan, requires deinterlacing the image: that is, replacing
the missing lines with something. Two types of deinterlace methods
are available: replacing the missing lines with black lines (the
simplest method) or interpolating missing lines by simple filtering of
adjacent lines.

If set to TRUE, then the average of the adjacent lines is used to
produce a full-brightness deinterlaced screen. If set to FALSE, then
the lines contain black, producing a half-brightness window but with
the same interlacing as video.

Table C-6 (continued) Screen Drain Node Controls

Control Default Type Use

158

Appendix C: Indigo2 IMPACT Video Nodes and Their Controls

The uses of the connectors in single- or dual-link modes are mutually
exclusive. When either of the single-linked nodes are in use, the dual-linked
node is unavailable. Similarly, if the dual-link node is in use, both
single-linked nodes are considered to be in use. Mutual exclusion takes place
when paths are set up with stream usage VL_SHARE or VL_LOCK. Mutual
exclusion conditions are not applied to paths with stream usage
VL_READ_ONLY. For the video source,

• type for all three screen drain nodes: VL_SRC

• kind for all three screen drain nodes: VL_VIDEO

• number: VL_MGV_NODE_NUMBER_VIDEO_1
VL_MGV_NODE_NUMBER_VIDEO_2, and
VL_MGV_NODE_NUMBER_VIDEO_DL, respectively

• ports:

– video source nodes 1 and 2: VL_IMPACT_PORT_PIXEL_SRC_A.
single-link serial digital video input

– dual-link video source node:
VL_IMPACT_PORT_DUALLINK_SRC_A - RP-175 style RGB or
YUV dual-link serial digital video

Table C-7 lists video source node controls. For all these controls, access is
GST, except VL_FORMAT, which is GS.

Table C-7 Video Source Node Controls

Control Default Type Use

VL_FREEZE FALSE boolVal Freezes the input video stream. Because the Indigo2 IMPACT
Video device does not support frozen inputs, this control can
be set only to FALSE.

VL_FORMAT VL_FORMAT_DIGITAL_
COMPONENT_SERIAL
(single-link)

VL_FORMAT_DIGITAL_
COMPONENT_DUAL_
SERIAL (dual-link)

intVal Specifies the format of the incoming video. Valid values for the
single-link nodes are
VL_FORMAT_DIGITAL_COMPONENT_SERIAL and
VL_FORMAT_RAW_DATA.

Valid values for the dual-link node are
VL_FORMAT_DIGITAL_COMPONENT_DUAL_SERIAL and
VL_FORMAT_DIGITAL_COMPONENT_RGB_SERIAL. See
“Using VL_FORMAT” in Chapter 2 for format explanations.

VL_VIDEO

159

VL_OFFSET (0, 0) xyVal Pans within the video. The Indigo2 IMPACT Video source
nodes support an offset of (0, 0) only.

VL_SIZE Dynamic xyVal Reports the width and height of the active video region. The
values are fixed for each timing mode:

CCIR 525: 720 x 486

CCIR 625: 720 x 576

NTSC square pixel: 640 x 486

PAL square pixel: 768 x 576

Square pixel modes are used with the Indigo2 IMPACT
Compression option only. Timing is specified through the
VL_TIMING control on the device node.

VL_MGV_
INPUT_8BIT

FALSE boolVal Enables 10-bit to 8-bit truncating when 10-bit video input is
supplied. Internally, Indigo2 IMPACT Video treats all video
streams as 10-bit. As a result, when this control is set to TRUE,
the lower two bits are forced to zero. If set to FALSE, the input
stream passes unmodified. If the input video contains 8-bit
data, then it is left-shifted two bits to produce a 10-bit value.
The lower two bits contain zeros.

Table C-7 (continued) Video Source Node Controls

Control Default Type Use

160

Appendix C: Indigo2 IMPACT Video Nodes and Their Controls

VL_VIDEO Drain

Indigo2 IMPACT Video supports three digital video drain nodes: 0, 1, and 2.

The video drain nodes correspond to two video output connectors available
on the Indigo2 IMPACT Video device. These connectors can be used
separately to output CCIR-601 video from Indigo2 IMPACT Video, or as a
dual link to output RP-175 RGB or YUV 4:4:4:4 or 4:2:2:4 video. When used
in dual-link mode, the connector labelled 1 is used for pixel output while the
connector labelled 2 is used for alpha output.

The uses of the connectors in single or dual-link modes are mutually
exclusive. When either of the single-linked nodes are in use, the dual-linked
node is unavailable. Similarly, if the dual-link node is in use, both
single-linked nodes are considered to be in use. Mutual exclusion takes place
when paths are set up with stream usage VL_SHARE or VL_LOCK. Mutual
exclusion conditions are not applied to paths with stream usage
VL_READ_ONLY. For the video drain,

• type for all three video drain nodes: VL_DRN

• kind for all three video drain nodes: VL_VIDEO

• number: VL_MGV_NODE_NUMBER_VIDEO_1
VL_MGV_NODE_NUMBER_VIDEO_2, and
VL_MGV_NODE_NUMBER_VIDEO_DL, respectively

• ports:

– video source nodes 1 and 2: VL_IMPACT_PORT_PIXEL_SRC_A:
single-link serial digital video input

– dual-link video source node:
VL_IMPACT_PORT_DUALLINK_SRC_A: RP-175 style RGB or
YUV dual-link serial digital video

VL_VIDEO

161

Table C-8 lists video drain node controls. For all these controls, access is GST,
except VL_FORMAT, which is GS.

Table C-8 Video Drain Node Controls

Control Default Type Use

VL_FREEZE FALSE boolVal If set to TRUE, the output of the drain node is frozen. For
dual-link, both outputs are frozen simultaneously. Use the
VL_MGV_OUTPUT_DL_SELECT_FREEZE control to set
which links of the dual-link node are frozen.

Note: VL_MGV_OUTPUT_FSYNC must be set to TRUE in
order for the video to freeze.

VL_FORMAT VL_FORMAT_DIGITAL_
COMPONENT_SERIAL
(single-link)

VL_FORMAT_DIGITAL_
COMPONENT_DUAL_
SERIAL (dual-link)

intVal Specifies the format of the incoming video. Valid values for the
single-link nodes are
VL_FORMAT_DIGITAL_COMPONENT_SERIAL and
VL_FORMAT_RAW_DATA: Arbitrary 8-bit data.

Valid values for the dual-link node are
VL_FORMAT_DIGITAL_COMPONENT_DUAL_SERIAL and
VL_FORMAT_DIGITAL_COMPONENT_RGB_SERIAL.

VL_OFFSET (0, 0) xyVal Sets offset; the Indigo2 IMPACT Video drain nodes support an
offset of (0, 0) only.

VL_SIZE Dynamic xyVal Reports the width and height of the active video region. The
values are fixed for each timing mode:

CCIR 525: 720 x 486

CCIR 625: 72 0x 576

NTSC square pixel: 640 x 486

PAL square pixel: 768 x 576

Square pixel modes are used with the Indigo2 IMPACT
Compression option only. Timing is specified through the
VL_TIMING control on the device node.

VL_MGV_ALPHA
_NOT_PIXEL

FALSE boolVal If the node supplying the video drain node has both pixel and
alpha outputs, this control selects whether the alpha (TRUE) or
pixel (FALSE) channel is selected.

This control is provided only for compatibility with Galileo
Video applications. It is recommended that the application use
vlSetConnection() to specify the output port.

162

Appendix C: Indigo2 IMPACT Video Nodes and Their Controls

VL_MGV_OUTPUT
_BLANK

Persistent boolVal If this control is set to TRUE, the video output is blanked, that
is, video black is output on the serial digital port. If set to
FALSE, live video is displayed.

VL_MGV_OUTPUT_FSYNC must be set to TRUE for this
control to have any effect.

VL_MGV_OUTPUT
_CHROMA

Persistent boolVal If set to TRUE, the chroma portion of a video stream is passed
through. If set to FALSE, chroma is blanked.

VL_MGV_OUTPUT_FSYNC must be set to TRUE for this
control to have any effect.

VL_MGV_OUTPUT
_FSYNC

Persistent boolVal If set to TRUE, this control enables the output synchronization
hardware.

The output synchronizer must be enabled for the VL_FREEZE,
VL_MGV_OUTPUT_BLANK, VL_MGV_OUTPUT_HPHASE,
or VL_MGV_OUTPUT_CHROMA controls to have any effect.

VL_MGV_OUTPUT
_HPHASE

0xC00 intVal Specifies the horizontal phase of the video output with respect
to the video input. It is a 12-bit unsigned integer that
increments in steps of the pixel clock (typically 74 nsec). The
output occurs later in time as the value of this control
increases.

This control has a range of 1 to 0xFFF, which can advance the
output by slightly more than three lines or delay the output by
slightly more than one line. The default value 0xC00 makes the
output match the timing of the video input. The value 0 is
illegal.

VL_MGV_OUTPUT_FSYNC must be set to TRUE for this
control to have any effect.

VL_MGV_L
_BLANK

VL_MGV_DL_SELECT
_ALL

intVal Selects the channels (pixel, alpha, both) on the dual-link node
to blank. Valid values are VL_MGV_DL_SELECT ALPHAL
(alpha channel only). VL_MGV_DL_SELECT_PIXEL (pixel
channel only), and VL_MGV_DL_SELECT_AL (pixel and
alpha channels).

VL_MGV_OUTPUT
_DL_SELECT
_CHROMA

VL_MGV_DL_SELECT
_ALL

intVal Selects the channels (pixel, alpha, both) on the dual-link node
on which chroma should be blanked. Valid values are the same
as for VL_MGV_OUTPUT_DL_SELECT_BLANK.

Table C-8 (continued) Video Drain Node Controls

Control Default Type Use

VL_VIDEO

163

VL_MGV_OUTPUT
_DL_SELECT
_FREEZE

VL_MGV_DL_SELECT
_ALL

intVal Selects the channels (pixel, alpha, both) on the dual-link node
to freeze. If both channels are selected, the freeze is performed
atomically on both channels. Valid values are the same as for
VL_MGV_OUTPUT_DL_SELECT_BLANK.

VL_MGV_OUTPUT
_DL_SELECT
_FSYNC

VL_MGV_DL_SELECT
_ALL

intVal Selects which output on the dual-link node synchronizers to
enable or disable. Valid values are the same as for
VL_MGV_OUTPUT_DL_SELECT_BLANK.

Table C-8 (continued) Video Drain Node Controls

Control Default Type Use

165

Glossary

active video

The portion of the video signal containing the chrominance or luminance
information; all video lines not occurring in the vertical blanking signal
containing the chrominance or luminance information. See also chrominance,
composite video, horizontal blanking, luminance, and video waveform.

aliasing

One of several types of digital video artifact appearing as jagged edges.
Aliasing results when an image is sampled that contains frequency
components above the Nyquist limit for the sampling rate. See also Nyquist
limit.

alpha

See alpha value.

alpha blending

Overlaying one image on another so that some of the underlying image may
or may not be visible. See also key.

alpha plane

A bank of memory that stores alpha values; the values are 8 bits per pixel.

alpha register

Registers that stores an alpha value.

alpha value

The component of a pixel that specifies the pixel's opacity, translucency, or
transparency. The alpha component is typically output as a separate
component signal.

166

Glossary

antialiasing

Filtering or blending lines of video to smooth the appearance of jagged
edges in order to reduce the visibility of aliasing.

APL

Average Picture Level, with respect to blanking, during active picture time,
expressed as a percentage of the difference between the blanking and
reference white levels. See also blanking level.

artifact

In video systems, an unnatural or artificial effect that occurs when the
system reproduces an image; examples are aliasing, pixellation, and
contouring.

aspect ratio

The ratio of the width to the height of an electronic image. For example, the
standard aspect ratio for television is 4:3.

back porch

The portion of the horizontal pedestal that follows the horizontal
synchronizing pulse. In a composite signal, the color burst is located on the
back porch, but is absent on a YUV or GBR signal. See also blanking level,
video waveform.

Betacam

A component videotape format developed by Sony® that uses a Y/R-Y/B-Y
video signal and 1/2-inch tape.

Betacam format

Advanced form (Superior Performance) of Betacam using special metal tape
and offering longer recording time (90 minutes instead of 30 minutes) and
superior performance.

bit map

A region of memory that contains the pixels representing an image. The
pixels are arranged in the sequence in which they are normally scanned to
display the image.

167

Glossary

bitplane

One of a group of memory arrays for storing an image in bitmap format on
a workstation. The workstation reads the bitplanes in parallel to re-create the
image in real time.

black burst

Active video signal that has only black in it. The black portion of the video
signal, containing color burst. See also color burst.

black level

In the active video portion of the video waveform, the voltage level that
defines black. See also horizontal blanking and video waveform.

blanking level

The signal level at the beginning and end of the horizontal and vertical
blanking intervals, typically representing zero output (0 IRE). See also video
waveform and IRE units.

blend

To combine proportional amounts of a 3D graphic over a clip frame by
frame, pixel by pixel, with the alpha determining how they are combined.
See also key, frame, and alpha.

breezeway

In the horizontal blanking part of the video signal, the portion between the
end of the horizontal sync pulse and the beginning of the color burst. See
also horizontal blanking and video waveform.

broad pulses

Vertical synchronizing pulses in the center of the vertical interval. These
pulses are long enough to be distinguished from other pulses in the signal;
they are the part of the signal actually detected by vertical sync separators.

Bruch blanking

In PAL signals, a four-field burst blanking sequence used to ensure that burst
phase is the same at the end of each vertical interval.

burst, burst flag

See color burst.

168

Glossary

burst lock

The ability of the output subcarrier to be locked to input subcarrier, or of
output to be genlocked to an input burst.

burst phase

In the RS-170A standard, burst phase is at field 1, line 10; in the European
PAL standards, it is at field 1, line 1. Both define a continuous burst
waveform to be in phase with the leading edge of sync at these points in the
video timing. See also vertical blanking interval and video waveform.

B-Y (B minus Y) signal

One of the color difference signals used on the NTSC and PAL systems,
obtained by subtracting luminance (Y) from the blue camera signal (B). This
signal drives the horizontal axis of a vectorscope. Color mixture is close to
blue; phase is 180 degrees opposite of color sync burst; bandwidth is 0.0 to
0.5 MHz. See also luminance, R-Y signal, Y signal, and Y/R-Y/B-Y.

C signal

Chrominance; the color portion of the signal. For example, the Y/C video
format used for S-VHS has separate Y (luminance) and C (chrominance)
signals. See also chrominance.

CAV

Component Analog Video; a generic term for all analog component video
formats, which keep luminance and chrominance information separate. D1
is a digital version of this signal. See also component video.

C format

Type C, or one-inch reel-to-reel videotape machine; an analog composite
recording format still used in some broadcast and postproduction
applications.

CCIR 601

The digital interface standard developed by the CCIR (Comite’ Consultatif
International de Radiodiffusion, International Radio Consultative
Committee) based on component color encoding, in which the luminance
and chrominance (color difference) sampling frequencies are related in the
ratio 4:2:2: four samples of luminance (spread across four pixels), two
samples of CR color difference, and two samples of CB color difference. The

169

Glossary

standard, which is also referred to as 4:2:2, sets parameters for both 525-line
and 625-line systems.

chroma

See chrominance.

chroma keying

Overlaying one video source on another by choosing a key color. For
example, if chroma keying is on blue, video source A might show through
video source B everywhere the color blue appears in video source B. A
common example is the TV weather reporter standing in front of the satellite
weather map. The weather reporter, wearing any color but blue, stands in
front of a blue background; keying on blue shows the satellite picture
everywhere blue appears. Because there is no blue on the weatherperson, he
or she appears to be standing in front of the weather map.

chroma signal

A 3.58 MHz (NTSC) or 4.43 MHz (PAL) subcarrier signal for color in
television. SECAM uses two frequency-modulated color subcarriers
transmitted on alternate horizontal lines; SCR is 4.406 MHz and SCB is 4.250
MHz.

chrominance

In an image reproduction system, a separate signal that contains the color
information. Black, white, and all shades of gray have no chrominance and
contain only the luminance (brightness) portion of the signal. However, all
colors have both chrominance and luminance.
Chrominance is derived from the I and Q signals in the NTSC television
system and the U and V signals in the PAL television system. See also
luminance.

chrominance signal

Also called the chroma, or C, signal. The high-frequency portion of the video
signal (3.58 MHz for NTSC, 4.43 MHz for PAL) color subcarrier with
quadrature modulation by I (R-Y) and Q (B-Y) color video signals. The
amplitude of the C signal is saturation; the phase angle is hue. See also color
subcarrier, hue, and saturation.

170

Glossary

client

In the context of the Video Library, an application that has connected to the
video daemon to perform video requests.

clip

Segment of video, audio, or both. An image is a clip that is one frame long.

color bars

A test pattern used by video engineers to determine the quality of a video
signal, developed by the Society of Television and Motion Picture Engineers
(SMPTE). The test pattern consists of equal-width bars representing black,
white, red, green, blue, and combinations of two of the three RGB values:
yellow, cyan, and magenta. These colors are usually shown at 75% of their
pure values. Figure Gl-1 diagrams the color bars.

Figure Gl-1 SMPTE Color Bars (75%)

color burst

Also called burst and burst flag. The segment of the horizontal blanking
portion of the video signal that is used as a reference for decoding color
information in the active video part of the signal. The color burst is required
for synchronizing the phase of 3.58 MHz oscillator in the television receiver
for correct hues in the chrominance signal.
In composite video, the image color is determined by the phase relationship
of the color subcarrier to the color burst. The color burst sync is 8 to 11 cycles
of 3.58 MHz color subcarrier transmitted on the back porch of every
horizontal pulse; the hue of the color sync phase is yellow-green.

Blue Black100%
WhiteBlue

75
%

 w
hi

te

Ye
llo

w

C
ya

n

G
re

en

M
ag

en
ta

R
ed

B
lu

e

(lo
ok

s
gr

ay
)

171

Glossary

Figure Gl-2 diagrams the relationship of the color burst and the chrominance
signal. See also color subcarrier and video waveform.

Figure Gl-2 Color Burst and Chrominance Signal

color difference signals

Signals used by color television systems to convey color information so that
the signals go to zero when the picture contains no color; for example,
unmodulated R-Y and B-Y, I and Q, U, and V.

color-frame sequence

In NTSC and S-Video, a two-frame sequence that must elapse before the
same relationship between line pairs of video and frame sync repeats itself.
In PAL, the color-frame sequence consists of four frames.

color space

A color component encoding format defined by three color components,
such as R, G, and B or Y, U, and V.

color subcarrier

A portion of the active portion of a composite video signal that carries color
information, referenced to the color burst. The color subcarrier’s amplitude

t

t

Zero
phase

reference

Zero
phase

reference

Color burst

C signal

0
180°

90° 57° 147°

(R - Y) (B - Y)
I

Q

172

Glossary

determines saturation; its phase angle determines hue. Hue and saturation
are derived with respect to the color burst. Its frequency is defined as 3.58
MHz in NTSC and 4.43 MHz in PAL. See also color burst.

complementary color

Opposite hue and phase angle from a primary color. Cyan, magenta, and
yellow are complementary colors for red, green, and blue, respectively.

comb filtering

Process that improves the accuracy of extracting color and brightness
portions of the signal from a composite video source.

component video

A color encoding method for the three color signals—R, G, and B; Y, I, and
Q; or Y, U, and V—that make up a color image. See also RGB, YIQ, and YUV.

component video signals

A video signal in which luminance and chrominance are send as separate
components, for example:

• RGB (basic signals generated from a camera)

• YIQ (used by the NTSC broadcasting standard)

• Y/R-Y/B-Y (used by Betacam and M-II recording formats and SECAM
broadcasting standard)

• YUV (subset of Y/R-Y/B-Y used by the PAL broadcasting standard)
Separating these components yields a signal with a higher color bandwidth
than that of composite video.
Figure Gl-3 depicts video signals for one horizontal scan of a color-bar test
pattern. The RGB signals change in relation to the individual colors in the
test pattern. When a secondary color is generated, a combination of the RGB
signals occurs. Since only the primary and secondary colors are being
displayed at 100% saturation, the R, G, and B waveforms are simply on or
off. For more complex patterns of color, the individual R, G, and B signals
would be varying amplitudes in the percentages needed to express that
particular color.
See also composite video, RGB, YUV, Y/R-Y/B-Y, and YIQ.

173

Glossary

Figure Gl-3 Component Video Signals

W
hi

te

Y
el

lo
w

C
ya

n

G
re

en

M
ag

en
ta

R
ed

B
lu

e

One horizontal
scanning line

1.0

0

1.0

0

0.89 0.70 0.59 0.41 0.30 0.11

0
+

- 0.31 0.21
0.52

0.52
0.21 0.31

0
+

-

0.32

0.60
0.28

0.28
0.60

0.32

0
+

-

0.45 0.63 0.59 0.63 0.450.59
3.58 MHz
subcarrier

H blanking
period begins

H sync pulse

1.0
1.34 1.33 1.18 1.00 0.93

0.56
0.44

0.07 0 -0.18
-0.34

3.58 MHz
color burst

1.0

0

Time

174

Glossary

compositing

Combining graphics with another image.

composite video

A color encoding method or a video signal that contains all of the color,
brightness, and synchronizing information in one signal. The chief
composite television standard signals are NTSC, PAL, and SECAM. See also
NTSC, PAL, and SECAM.

cross-chrominance, cross-luminance

Also known as cross-color, hanging dots, dot crawl; moving colors on
stationary objects. This undesirable artifact is caused by high bandwidth
luminance information being misinterpreted as color information. Hanging
dots are a byproduct of the comb filters (used to help separate the color and
brightness information) found in most modern television receivers. This
artifact can be reduced or eliminated by using S-Video or a component video
format.

cross-fade

A type of transition in which one video clip is faded down while another is
faded up.

D1

Digital recording technique for component video; also known as CCIR 601,
4:2:2. D1 is the best choice for high-end production work where many
generations of video are needed. D1 can be an 8-bit or 10-bit signal. See also
CCIR 601.

D2

Digital recording technique for composite video. As with analog composite,
the luminance and chrominance information is sent as one signal. A D2 VTR
offers higher resolution and can make multiple generation copies without
noticeable quality loss, because it samples an analog composite video signal
at four times the subcarrier (using linear quantization), representing the
samples as 8-bit digital words. D2 is not compatible with D1.

D3, DX

Developed by Panasonic, a 1/2-inch tape version of D2. More often called
DX.

175

Glossary

decoder

Hardware or software that converts, or decodes, a composite video signal
into the various components of the signal. For example, to grab a frame of
composite video from a VHS tapedeck and store it as an RGB file, it would
have to be decoded first. Several Silicon Graphics video options have
on-board decoders.

dithering

Approximating a signal value on a chroma-limited display device by
producing a matrix of color values that fool human perception into believing
that the signal value is being reproduced accurately. For example, dithering
is used to display a true-color image on a display capable of rendering only
256 unique colors, such as IndigoVideo images on a Starter Graphics display.

drain

In the context of the Video Library, a target or consumer of video signals.

editing

The process in which data is examined, created, and modified. In video, the
part of the postproduction process in which the finished videotape is
derived from raw video footage. Animation is a subset of editing.

encoder

Device that combines the R, G, and B primary color video signals into hue
and saturation for the C portion of a composite signal. Several Silicon
Graphics video options have on-board encoders.

equalizing pulse

Pulse of one half the width of the horizontal sync pulse, transmitted at twice
the rate of the horizontal sync pulse, during the portions of the vertical
blanking interval immediately before and after the vertical sync pulse. The
equalizing pulse makes the vertical deflection start at the same time in each
interval, and also keeps the horizontal sweep circuits in step during the
portions of the vertical blanking interval immediately before and after the
vertical sync pulse.

176

Glossary

event

Exceptional or noteworthy condition produced during video processing,
such as loss of sync, dropping of frames or fields, and synchronization with
other applications.

exclusive use

A term applied to usage of the video data stream and controls on a pathway.
A pathway in exclusive-use mode is available for writing of controls only to
the client that requested the exclusive use, yet any application may read the
controls on that pathway.

fade

To modify the opacity and/or volume of a clip. A faded-up clip is
unaffected, a clip faded down to 50% has 50% less opacity or volume, and a
faded-down clip is completely transparent of turned off.

field

One of two (or more) equal parts of information in which a frame is divided
in interlace scanning. A vertical scan of a frame carrying only its
odd-numbered or its even-numbered lines. The odd field and even field
make up the complete frame. See also frame and interlace.

field averaging

A filter that corrects flicker by averaging pixel values across successive
fields. See also flicker.

field blanking

The blanking signals at the end of each field, used to make the vertical
retrace invisible. Also called vertical blanking; see vertical blanking and
vertical blanking interval.

filter

To process a clip with spatial or frequency domain methods. Each pixel is
modified by using information from neighboring (or all) pixels of the image.
Filter functions include blur (low-pass) and crisp (high-pass).

177

Glossary

flicker

The effect caused by a one-pixel-deep line in a high-resolution graphics
frame that is output to a low-resolution monitor, because the line is in only
one of the alternating fields that make up the frame. This effect can be
filtered out by field averaging. See also field and frame.

frame

The result of a complete scanning of one image. In television, the odd field
(all the odd lines of the frame) and the even field (all the even lines of the
frame) make up the frame. In motion video, the image is scanned repeatedly,
making a series of frames.

freeze, freeze-frame

A condition on the digitized video signal where the digitizing is stopped and
the contents of the signal appear frozen on the display or in the buffer.
Sometimes used to capture the video data for processing or storage.

frequency

Signal cycles per second.

frequency interlace

Placing of harmonic frequencies of C signal midway between harmonics of
horizontal scanning frequency Fh. Accomplished by making color
subcarrier frequency exactly 3.579545 MHz. This frequency is an odd
multiple of H/2.

front porch

The portion of the video signal between the end of active video and the
falling edge of sync. See also back porch, horizontal blanking, and video
waveform.

G-Y signal

Color mixture close to green, with a bandwidth 0.0 MHz to 0.5 MHz. Usually
formed by combining B-Y and R-Y video signals.

178

Glossary

gamma correction

Correction of gray-scale inconsistency. The brightness characteristic of a CRT
is not linear with respect to voltage; the voltage-to-intensity characteristic is
usually close to a power of 2.2. If left uncorrected, the resulting display has
too much contrast and detail in black regions is not reproduced.
To correct this inconsistency, a correction factor using the 2.2 root of the input
signal is included, so that equal steps of brightness or intensity at the input
are reproduced with equal steps of intensity at the display.

genlocking

Synchronizing with another video signal serving as a master timing source.
The master timing source can be a composite video signal, a video signal
with no active video (only sync information), or, for video studio, a device
called house sync. When there is no master sync available, VideoFramer, for
example, can be set to “free run” (or “stand-alone”) mode, so that it becomes
the master timing device to which other devices sync. See also line lock.

gray-scale

Monochrome or black-and-white, as in a monitor that does not display color.

H rate

Number of complete horizontal lines, including trace and retrace, scanned
per second.

HDTV

High-definition television. Though there is more than one proposal for a
broadcast standard for HDTV, most currently available equipment is based
on the 1125/60 standard, that is, 1125 lines of video, with a refresh rate of
60Hz, 2:1 interlacing (same as NTSC and PAL), and aspect ratio of 16:9 (1920
x 1035 viewable resolution), trilevel sync, and 30 MHz RGB and luminance
bandwidth.

Hi-8mm

An 8mm recording format developed by Sony; accepts composite and
S-Video signals.

179

Glossary

horizontal blanking

The period when the electron beam is turned off, beginning when each scan
line finishes its horizontal path (scan) across the screen (see Figure Gl-4).

Figure Gl-4 Horizontal Blanking

Visible
Video
Picture

Active Video Area

Front
Porch

Hor.
Sync
Pulse

Back
Porch

Front
Porch

Hor.
Sync
Pulse

Back
Porch

Blanking
Period

Blanking
Period

(NOT DRAWN

Setup Level 7.5 IRESetup Level 7.5 IRE

Front porch = 1.5 sec.
Hor. sync = 4.7 sec
Back porch = 4.7 sec.

FCC NTSC standards:

Blanking period = 10.9 sec.

TO SCALE)

180

Glossary

horizontal blanking interval

Also known as the horizontal retrace interval, the period when a scanning
process is moving from the end of one horizontal line to the start of the next
line. This portion of the signal is used to carry information other than video
information. See also video waveform.

Figure Gl-5 Horizontal Blanking Interval

horizontal drive

The portion of the horizontal blanking part of the video signal composed of
the sync pulse together with the front porch and breezeway; that is,
horizontal blanking minus the color burst. See also video waveform.

horizontal sync

The lowest portion of the horizontal blanking part of the video signal, it
provides a pulse for synchronizing video input with output. Also known as
h sync. See also horizontal blanking and video waveform.

100

80

60

40

20

0

-20

-40

7.5

NTSC

Color burst signal

Horizontal
sync pulse

Start of horizontal
blanking period

Video black

Level 7.5 IRE

End of horizontal
blanking period

Breezeway
(period between the sync
pulse and color burst.)

Back porch

+

+

-

-
Line lock

0 phase point

Burst lock
0 phase point

Setup

181

Glossary

HSI

See hue-saturation-intensity.

HSV

Hue-saturation-value; see hue-saturation-intensity.

hue

The designation of a color in the spectrum, such as cyan, blue, magenta.
Sometimes called tint on NTSC television receivers. The varying phase
angles in the 3.58 MHz (NTSC) or 4.43 MHz (PAL) C signal indicate the
different hues in the picture information.

hue-saturation-intensity

A tristimulus color system based on the parameters of hue, saturation, and
intensity (luminance). Also referred to as HSI or HSV.

I signal

Color video signal transmitted as amplitude modulation of the 3.58 MHz C
signal (NTSC). The hue axis is orange and cyan. This signal is the only color
video signal with a bandwidth of 0 to 1.3 MHz.

image plane

See bitplane.

image processing

Manipulating an image by changing its color, brightness, shape, or size.

interlace

A technique that uses more than one vertical scan to reproduce a complete
image. In television, the 2:1 interlace used yields two vertical scans (fields)
per frame: the first field consists of the odd lines of the frame, the other of the
even lines. See also field and frame.

IRE units

A scale for measuring analog video signal levels, normally starting at the
bottom of the horizontal sync pulse and extending to the top of peak white.
Blanking level is 0 IRE units and peak white level is 100 IRE units (700mv).
An IRE unit equals 7.14mv (+100 IRE to -40 IRE = 1v). IRE stands for Institute
of Radio Engineers, a forerunner of the IEEE.

182

Glossary

keying

Combining proportional amounts of two frames, pixel by pixel, with
optional opacity. This process resembles taking two panes of glass with
images on them and placing one pane on top of the other. The opacity of the
top pane determines the parts of the bottom pane that show. Usually, keying
is a real-time continuous process, as in the “over the shoulder” graphics in
TV news programs. The alpha component of each pixel, which defines its
opacity, determines how the images are combined. Combining images based
on the alpha component is often called alpha keying or luma keying. See also
compositing and mixing.

leading edge of sync

The portion of the video waveform after active video, between the sync
threshold and the sync pulse. See also video waveform.

level

Signal amplitude.

line

The result of a single pass of the sensor from left to right across the image.

line blanking

The blanking signal at the end of each horizontal scanning line, used to make
the horizontal retrace invisible. Also called horizontal blanking.

line frequency

The number of horizontal scans per second, normally 15,734.26 times per
second for NTSC color systems. The line frequency for the PAL 625/50H.
system is 15,625 times per second.

line lock

Input timing that is derived from the horizontal sync signal, also implying
that the system clock (the clock being used to sample the incoming video) is
an integer multiple of the horizontal frequency and that it is locked in phase
to the horizontal sync signal. See also at video waveform.

linear matrix transformation

The process of combining a group of signals through addition or subtraction;
for example, RGB signals into luminance and chrominance signals.

183

Glossary

live video

Video being delivered at a nominal frame rate appropriate to the format.

luma

See luminance.

luminance

The video signal that describes the amount of light in each pixel. Luminance
is a weighted sum of the R, G, and B signals. See also chrominance and Y
signal.

map

Numerical lookup of pixel data that modifies each pixel without using
neighboring pixels. This large category of video editing functions includes
clip/gain, solarization, and histogram equalization.

MII (M2)

A second-generation recording format based on a version of the Y/R-Y/B-Y
video signal. Developed by Panasonic, MII is also marketed by other video
manufacturers. Though similar to Betacam, it is nonetheless incompatible.

matrix transformation

The process of converting analog color signals from one tristimulus format
to another, for example, RGB to YUV. See also tristimulus color system.

mixing

In video editing, combining two clips frame by frame, pixel by pixel.
Usually, a linear interpolation between the pixels in each clip is used, with
which one can, for example, perform a cross-fade. Other operations include
averaging, adding, differencing, maximum (non-additive mix), minimum,
and equivalence (white where equal, else black). See also compositing and
keying.

multiburst

A test pattern consisting of sets of vertical lines with closer and closer
spacing; used for testing horizontal resolution of a video system.

184

Glossary

NTSC

A color television standard or timing format encoding all of the color,
brightness, and synchronizing information in one signal. Used in North
America, most of South America, and most of the Far East, this standard is
named after the National Television Systems Committee, the standardizing
body that created this system in the U.S. in 1953. NTSC employs a total of 525
horizontal lines per frame, with two fields per frame of 262.5 lines each. Each
field refreshes at 60Hz (actually 59.94Hz).

Nyquist limit

The highest frequency of input signal that can be correctly sampled without
aliasing. The Nyquist limit is equal to half of the sampling frequency.

offset

In the context of a video signal, the relative coordinates from the upper left
corner of the video image where signal sampling begins.

overscan

To scan a little beyond the display raster area of the monitor so that the edges
of the raster are not visible. Television is overscanned; computer displays are
underscanned.

PAL

A color television standard or timing format developed in West Germany
and used by most other countries in Europe, including the United Kingdom
but excluding France, as well as Australia and parts of the Far East. PAL
employs a total of 625 horizontal lines per frame, with two fields per frame
of 312.5 lines per frame. Each field refreshes at 50Hz. PAL encodes color
differently from NTSC. PAL stands for Phase Alternation Line or Phase
Alternated by Line, by which this system attempts to correct some of the
color inaccuracies in NTSC. See also NTSC and SECAM.

pathway

In the Video Library, a connection of sources and drains that provide useful
processing of video signals. Pathways have controls and video streams.
Pathways can be locked for exclusive use, and are the target of events
generated during video processing. See also exclusive use and event.

185

Glossary

pedestal

See setup; see also video waveform.

pixel

Picture element; the smallest addressable spatial element of the computer
graphics screen. A digital image address, or the smallest reproducible
element in analog video. A pixel can be monochrome, gray-scale, or color,
and can have an alpha component to determine opacity or transparency.
Pixels are referred to as having a color component and an alpha component,
even if the color component is gray-scale or monochrome.

pixel map

A two-dimensional piece of memory, any number of bits deep. See also
bitmap.

postproduction

The processes that occur before release of the finished video product,
including editing, painting (2D graphics), production, and 3D graphics
production.

primary colors

Red, green, and blue. Opposite voltage polarities are the complementary
colors cyan, magenta, and yellow.

Q signal

The color video signal that modulates 3.58 MHz C signal in quadrature with
the I signal. Hues are green and magenta. Bandwidth is 0.0 MHz to 0.5 MHz.
See also C signal, I signal, YC, and YIQ.

quantization error

The magnitude of the error introduced in a signal when the actual signal is
between levels, resulting from subdividing a video signal into distinct
increments, such as levels from 0 to 255.

raster

The scanning pattern for television display; a series of horizontal lines,
usually left to right, top to bottom. In NTSC and PAL systems, the first and
last lines are half lines.

186

Glossary

raster operation, raster op

A logical or arithmetic operation on a pixel value.

registration

The process of causing two frames to coincide exactly. In component video
cameras or displays, the process of causing the three color images to coincide
exactly, so that no color fringes are visible.

resolution

Number of horizontal lines in a television display standard; the higher the
number, the greater a system’s ability to reproduce fine detail.

RGB

Red, green, blue; the basic component set used by graphics systems and
some video cameras, in which a separate signal is used for each primary
color.

RGB format

The technical specification for NTSC color television. Often (incorrectly)
used to refer to an RGB signal that is being sent at NTSC composite timings,
for example, a Silicon Graphics computer set to output 640 x 480. The timing
would be correct to display on a television, but the signal would still be split
into red, green and blue components. This component signal would have to
go through an encoder to yield a composite signal (RS-170A format) suitable
for display on a television receiver.

R-Y (R minus Y) signal

A color difference signal obtained by subtracting the luminance signal from
the red camera signal. It is plotted on the 90 to 270 degree axis of a vector
diagram. The R-Y signal drives the vertical axis of a vectorscope. The color
mixture is close to red. Phase is in quadrature with B-Y; bandwidth is 0.0
MHz to 0.5 MHz. See also luminance, B-Y (B minus Y) signal, Y/R-Y/B-Y, and
vectorscope.

sample

To read the value of a signal at evenly spaced points in time; to convert
representational data to sampled data (that is, synthesizing and rendering).

187

Glossary

sampling rate, sample rate

Number of samples per second.

saturation

Color intensity; zero saturation is white (no color) and maximum saturation
is the deepest or most intense color possible for that hue. Different saturation
values are varying peak-to-peak amplitudes in the 3.58 MHz modulated C
signal. In signal terms, saturation is determined by the ratio between
luminance level and chrominance amplitude. See also hue.

scaling

To change the size of an image.

scan

To convert an image to an electrical signal by moving a sensing point across
the image, usually left to right, top to bottom.

SECAM

Sequentiel Couleur avec Memoire, the color television system developed in
France and used there as well as in eastern Europe, the Near East and
Mideast, and parts of Africa and the Caribbean.

setup

The difference between the blackest level displayed on the receiver and the
blanking level (see Figure Gl-6). A black level that is elevated to 7.5 IRE
instead of being left at 0.0 IRE, the same as the lowest level for active video.
Because the video level is known, this part of the signal is used for
black-level clamping circuit operation. Setup is typically used in the NTSC
video format and is typically not used in the PAL video format; it was
originally introduced to simplify the design of early television receivers,
which had trouble distinguishing between video black levels and horizontal
blanking. Also called pedestal.

188

Glossary

Figure Gl-6 shows waveform displays of a signal with and without setup.
See also video waveform.

Figure Gl-6 Waveform Monitor Readings With and Without Setup

smear

An artifact usually caused by mid-frequency distortions in an analog system
that results in the vertical edges of the picture spreading horizontally.

SMPTE time code

A signal specified by the Society of Motion Picture and Television Engineers
for facilitating videotape editing; this signal uniquely identifies each frame
of the video signal. Program originators use vertical blanking interval lines
12 through 14 to store a code identifying program material, time, frame
number, and other production information (see Figure Gl-7).

Figure Gl-7 SMPTE Time Code

100

80

60

40

20

0

-20

-40

7.5

NTSC

Without Setup level

100

80

60

40

20

0

-20

-40

7.5

NTSC

With Setup level

00:00:00.00

Hours

Minutes

Seconds

Frame

PAL = 25 frames/sec. (0-24)

NTSC = 30 frames/sec. (0-29)

189

Glossary

source

In the context of the Video Library, a provider of video input signals.

subcarrier

A portion of a video signal that carries a specific signal, such as color. See
color subcarrier.

subpixel

A unit derived from a pixel by using a filter for sizing and positioning.

S-VHS, S-Video

Video format in which the Y (luminance) and C (chrominance) portions of
the signal are kept separate. Also known as YC.

sync information

The part of the television video signal that ensures that the display scanning
is synchronized with the broadcast scanning. See also video waveform.

sync pulse

A vertical or horizontal pulse (or both) that determines the display timing of
a video signal. Composite sync has both horizontal and vertical sync pulses,
as well as equalization pulses. The equalization pulses are part of the
interlacing process.

sync tip

The lowest part of the horizontal blanking interval, used for
synchronization. See also video waveform.

synchronize

To perform time shifting so that things line up.

texturing

Applying images to three-dimensional objects to give additional realism to
displayed renderings.

190

Glossary

termination

To send a signal through a transmission line accurately, there must be an
impedance at the end which matches the impedance of the source and of the
line itself. Amplitude errors, frequency response, and pulse distortions and
reflections (ghosting) occur on a line without proper termination. Video is a
75Ohm system; therefore a 75Ohm terminator of .5% to .25% accuracy must
be installed at the end of the signal path.

threshold

In a digital circuit, the signal level that is specified as the division point
between levels used to represent different digital values; for example, the
sync threshold is the level at which the leading edge of sync begins. See also
video waveform.

time-base errors

Analog artifacts caused by nonuniform motion of videotape or of the tape
head drum. Time-base errors usually cause horizontal display problems,
such as horizontal jitter.

time code

See SMPTE time code.

time-delay equalization

Frame-by-frame alignment of all video inputs to one sync pulse, so that all
frames start at the same time. This alignment is necessary because cable
length differences cause unequal delays. See time-base errors.

transcoder

A device that converts a component video signal to a different component
video signal, for example, RGB to Y/R-Y/B-Y, or D1 to RGB.

transducer

A microphone, video camera, or other device that can convert sounds or
images to electrical signals.

transform

The geometric perspective transformation of 3-D graphics models and
planar images.

191

Glossary

tristimulus color system

A system of transmitting and reproducing images that uses three color
signals, for example, RGB, YIQ, and YUV.

U signal

One of the chrominance signals of the PAL color television system, along
with V. Sometimes referred to as B-Y, but U becomes B-Y only after a
weighting factor of 0.493 is applied. The weighting is required to reduce
peak modulation in the composite signal.

U-Matic

Sony trademark of its 3/4-inch composite videotape format. SP U-Matic is
an improved version using metal tape.

underscan

To scan a television screen so that the edges of the raster are visible. See also
overscan.

V signal

One of the chrominance signals of the PAL color television system, along
with U. Sometimes referred to as R-Y, but V becomes R-Y only after a
weighting factor of 0.877 is applied. The weighting is required to reduce
peak modulation in the composite signal.

vectorscope

A specialized oscilloscope that demodulates the video signal and presents a
display of R-Y versus B-Y for NTSC (V and U for PAL). Video engineers use
vectorscopes to measure the amplitude (gain) and phase angle (vector) of the
primary (red, green, and blue) and the secondary (yellow, cyan, and
magenta) color components of a television signal.

vertical blanking

The portion of the video signal that is blanked so that the vertical retrace of
the beam is not visible.

192

Glossary

vertical blanking interval

The blanking portion at the beginning of each field. It contains the
equalizing pulses, the vertical sync pulses, and vertical interval test signals
(VITS). Also the period when a scanning process is moving from the lowest
horizontal line back to the top horizontal line.

video level

Video signal amplitude.

video output

See drain.

video signal

The electrical signal produced by a scanning image sensor.

videotape formats

Table Gl-1 lists major videotape formats.

Table Gl-1 Videotape Formats

Electronics Consumer Professional Broadcast Postproduction

Analog VHS cassette U-Matic (SP) cassette, 3/4-inch Type C reel-to-reel, 1-inch composite

S-VHS Type B (Europe), composite

S-Video (YC-358) S-Video (YC-358)

Beta

8mm

Hi-8mm (YC) Hi-8mm (YC)

Betacam (component)

Type MII (component)

Digital D1 525/625 (YUV)

D2 525 (NTSC)

D2 625 (PAL)

193

Glossary

video waveform

The main components of the video waveform are the active video portion
and the horizontal blanking portion. Certain video waveforms carry
information during the horizontal blanking interval.
Figure Gl-8 and Figure Gl-9 diagram a typical red or blue signal, which
carries no information during the horizontal blanking interval, and a typical
Y or green-plus-sync signal, which carries a sync pulse.

Figure Gl-8 Red or Blue Signal

Figure Gl-9 Y or Green Plus Sync Signal

Horizontal Blanking

Active Video Active Video

Horizontal Blanking

Active Video Active Video

194

Glossary

Figure Gl-10 and Figure Gl-11 show the video waveform and its components
for composite video in more detail. The figures show the composite video
waveform with and without setup, respectively.
Figure Gl-10 shows a composite video signal with setup.

Figure Gl-10 Video Waveform: Composite Video Signal With Setup (Typical
NTSC)

Active Video Active Video

100% Sync

50% Sync

0% Sync

Line Lock
0 Phase Point

Burst Lock
0 Phase Point

Back Porch

+7.5 IRE

0 IRE
Black Level
Blanking Level

Setup or

Leading Edge
of Sync

Pedestal

195

Glossary

Figure Gl-11 shows a composite video signal without setup.

Figure Gl-11 Video Waveform: Composite Video Signal (Typical PAL)

white level

In the active video portion of the video waveform, the 1.0-volt (100 IRE)
level. See also video waveform.

Y signal

Luminance, corresponding to the brightness of an image. See also luminance
and Y/R-Y/B-Y.

Active Video Active Video

Back Porch

100 IRE
1.0 Volts

0 IRE

-40 IRE
0.0 Volts

Burst

Breezeway

Sync or
Front
Porch

H Sync

Horizontal
Blanking

White Level

Blanking

Sync Tip

and Black Level

196

Glossary

YC

A color space (color component encoding format) based on YIQ or YUV. Y is
luminance, but the two chroma signals (I and Q or U and V) are combined
into a composite chroma called C, resulting in a two-wire signal. C is derived
from I and Q as follows:
C - I cos(2 fsct) + Q sin(2 fsct)
where fsc is the subcarrier frequency. YC-358 is the NTSC version of this
luminance/chrominance format; YC-443 is the PAL version. Both are
referred to as S-Video formats.

YIQ

A color space (color component encoding format) used in decoding, in
which Y is the luminance signal and I and Q are the chrominance signals.
The two chrominance signals I and Q (in-phase and quadrature,
respectively) are two-phase amplitude-modulated; the I component
modulates the subcarrier at an angle of 0 degrees and the Q component
modulates it at 90 degrees. The color burst is at 33 degrees relative to the Q
signal.
The amplitude of the color subcarrier represents the saturation values of the
image; the phase of the color subcarrier represents the hue value of the
image.
Y = 0.299R + 0.587G + 0.114B
I = 0.596R - 0.275G - 0.321B
Q = 0.212R - 0.523G + 0.311B

Y/R-Y/B-Y

A name for the YUV color component encoding format that summarizes
how the chrominance components are derived. Y is the luminance signal
and R-Y and B-Y are the chrominance signals. R-Y (red minus Y) and B-Y
(blue minus Y) are the color differences or chrominance components. The
color difference signals R-Y and B-Y are derived as follows:
Y = 0.299R + 0.587 + 0.114B
Y/R-Y/B-Y has many variations, just as NTSC and PAL do. All component
and composite color encoding formats are derived from RGB without scan
standards being changed. The matrix (amount of red, green, and blue)
values and scale (amplitude) factors can differ from one component format
to another (YUV, Y/R-Y, B-Y, SMPTE Y/R-Y, B-Y).

197

Glossary

YUV

A color space (color component encoding format) used by the PAL video
standard, in which Y is the luminance signal and U and V are the
chrominance signals. The two chrominance signals U and V are two-phase
amplitude-modulated. The U component modulates the subcarrier at an
angle of 0 degree, but the V component modulates it at 90 degrees or 180
degrees on alternate lines. The color burst is also line-alternated at +135 and
-135 degrees relative to the U signal. The YUV matrix multiplier derives
colors from RGB via the following formula:
Y = .299R + .587 G + .114 B
CR = R - Y
CB = B - Y
In this formula, Y represents luminance; red and blue are derived from it: CR
denotes red and (V), CB denotes blue. V corresponds to CR; U corresponds
to CB c. The U and V signals are carried on the same bandwidth. This system
is sometimes referred to as Y/R-Y/B-Y.
The name for this color encoding method is YUV, despite the fact that the
order of the signals according to the formula is YVU.

199

Index

A

application
creating, 15-49
sample, location, 3, 7

asynchronous I/O, 86
autophase

and crosspoint mux, 79
and timing glitch, 80
control, 131

autowipe, 138

B

Betacam, 115
blender node, 90-98, 134-138

controls, 135-138
blending, 89-110

before or after zooming, 31
node, 90-98

setting up, 92-94
brightness. See luminance
buffer, 8

alignment, 83
and data transfer, 81-82
creating for video data, 41-42
getting DMediaInfo and image data from, 47
reading data from, 45-48
reading frames to memory from, 47
registering, 43

B-Y video signal, 115

C

caching, 82-83
capture, 81-87
CC1 memory source node, 139, 140-141
CCIR 601 video standard, 115
chroma

blanking when sending blender output
to video, 94

keying, 89, 103-104, 108
client, 5
color

encoding, 114-117
sync burst, 118

composite video, 116-117, 118
connection, 11-12, 71-78
connectivity. See connection
contcapt.c (OpenGL), 50
control, 8, 25-38, 51-57, 127-163

access, 93, 128
and nodes, 127-163
blender, 93-94
blending, 90, 92
classes, 55-56
default values explained, 127
fraction ranges, 55
groupings, 56-57
in header file, 51
keying, 99-108

listed, 100
type and values, 54-55

200

Index

type explained, 127
VL, listed, 52-53

conventions, xv
crosspoint mux, 139

and LUT, 132
timing restrictions, 79-80

ctrlusage, 21

D

D1, 115
D2 525 (digital NTSC), 114
D2 625 (digital PAL), 114
daemon, video, 5-6

opening connection to, 18
data transfer, 16

ending, 48-49
starting, 43-44
to and from memory, 25-34

decimation, 30-32, 34
deinterlacing control, 157
dev_mgv.h, 7, 17
device, 7

ID, getting, 20
management, 5
node, 129-133

controls, 129-133
video, transferring data, 40-48

digital video formats, 114
direct I/O to disk, 84
DMediaInfo, getting from buffer, 47
drain, 8

blending and zooming, 31
control for default, 129
contrrol for default, 19
node controls, setting, 25-38
See also memory node, screen node, video node

dual-link
video drain node, 147
video source node, 140

E

equations
YIQ, 116
YUV, 115

error codes, 121-125
event

handling, 59-70
routines, 65

listed, 61-64
masks, 23-24, 66
querying, 65-67
specifying path-related, 23-24
trigger, 44
type, 65

eventex.c, 70
explicit routing, 22-23

F

fades, 105-108
field, 111-112
field dominance

memory drain node control, 151
memory source node control, 144

field mask, 35
filter, horizontal smoothing, 108, 138
flat background

controls, 97
generator, 91
setting and turning off, 97

format, video, 113

201

Index

frame, 111-112
rate, 111

frame buffer node, 139
and CC1 memory, 139

G

glitch, 78-79
GPI trigger, controls, 133
GST control access, 93, 128

H

header file
Indigo2 IMPACT Video, 7, 17
VL, 7, 17

horizontal smoothing filter, 108, 138

I

image data, getting from buffer, 47
implicit and explicit routing, 22-23

See alsoconnection
interlacing, 111-112
I/O, direct to disk, 84

K

keyer, 108-109
and alpha source A, 91
controls, 135-136
purpose, 91

keying, 89, 99-108
See also chroma keying, luma keying, transitions

L

linking, 17
luma keying, 89, 101-102, 108
luminance, 115
LUT

selecting, control for, 132
-lvl, 17

M

memory
and data transfer, 25-34
node, 140-152

drain, 147-152
controls, 148-152
rounding, 147-148

source, 140-146
CC1 and frame buffer, 139
controls, 141-146

reading from buffer to, 47
sending frames to video from, 47

memtovid, 7
monitor, noninterlaced, 112
mtov.c (OpenGL), 50
multiple clients, 5

N

node, 7, 127-163
adding, 21
blender, 90-98, 134-138

controls, 135-138
setting up, 92-94

defined, 8-10
device, 129-133

controls, 129-133

202

Index

frame buffer, 139
memory, 140-152

drain, controls, 148-152
source, controls, 141-146

screen, 152-157
drain, controls, 156-157
source, controls, 153

setting controls, 25-38
specifying, 18-19
video, 157-163

drain, controls, 161-163
source, controls, 158

noninterlaced monitor, 112
normalization, 90, 94-97, 135
NTSC, 113-114, 116

digital recording, 114
resolution, 113
YIQ encoding, 115

O

OpenGL programs, 50

P

PAL, 113-114, 116
digital recording, 114
resolution, 113
YUV encoding, 115

path, 7
blending, 10
creating, 20
creating and setting up, 19-24
defined, 8-10
setting up, 21-22
specifying events, 23-24
specifying nodes on, 18-19

picture glitch, 78-79

playback, 81-87
port

defined, 10-11
VL_BLENDER, 134
VL_DEVICE, 129
VL_FB, 139
VL_MEM

drain, 147
source, 140

VL_SCREEN
drain, 154
source, 152

VL_VIDEO
drain, 160
source, 158

Porter-Duff model, 94, 135
See also normalization

R

resolution, 113
return codes, 121-125
RGB, 114
rounding for memory drain, 147-148
R-Y video signal, 115

S

sample programs, location, 3, 7
screen node, 152-157

drain, controls, 156-157
source, controls, 153

SECAM, 113
shadow, 98

controls, 98, 138
simpleccapt.c, 49
simplegrab.c, 49

203

Index

simplem2v.c, 49
simplev2s.c, 49
source, 8

blending and zooming, 31
control for default, 19, 129
node controls, setting, 25-38
See also memory node, screen node, video node

starvation policy, 146
status information, 6
streamusage, 22
S-VHS, 116
S-Video, 116
sync burst, 118
syntax, 15
syssgi, 85

T

tape formats, 118-119
tiles, 105-108
timing glitch, 78-79
tools, VL, 6-7
transitions, 89, 105-108
trigger, 44

U

U-V signal. See chrominance

V

VBAR mux, 76, 79-80
vcp, 6
VGI1 1, VGI1 2 memory drain nodes, 147
VGI1 1, VGI1 2 memory source nodes, 140

VGI1 memory source timing restrictions, 80
video

broadcast standards, 113-114
composite, 116-117, 118
daemon, 5-6

opening connection to, 18
data transfer, 40-48

ending, 48-49
starting, 43-44
to and from memory, 25-34

digital recording, 114
displaying data onscreen, 39-40
drain, 8
encoding, 114-117
field, 111-112
format, 113

and color encoding methods, 117
and videotape formats, 119
converting, 28-30
Indigo2 IMPACT Video, 12-13

frame, 111-112
interlacing, 111-112
luminance, 115
node, 157-163

drain, 160-163
controls, 161-163

source, 157-159
controls, 158

resolution, 113
sending frames from memory to, 47
signal, 117-118
source, 8
S-Video, 116
sync burst, 118
unit, defined, 141

videod, 5-6
videoin, 6
Video Library. See VL
videoout, 6
videopanel, 6

204

Index

videotape formats, 118-119
vidtomem, 7
vidtomem.c (OpenGL), 50
vintovout, 6
VL

capabilities, 3-4
control, 25-38, 51-57

blending, 90, 92
keying, 99-108
See also control

device management, 5
header files, 7, 17
programming model, 15-16
requirements for running, 17
status information, 6
syntax, 15
system software architecture, 4
tools, 6-7

VL_BLENDER. See blender
VL_CAP_TYPE, 35-38

See also control and nodes
VL_DEVICE. See device node
VL_FB. See frame buffer node
VL_FORMAT, 27

See also control and nodes
VL_MEM. See memory node
vl_mgv.h, 7, 17
VL_OFFSET, 34

See also control and nodes
VL_ORIGIN, 34

See also control and nodes
VL_PACKING, 25, 28-30

See also control and nodes
VL_RATE, 35-38

See also control and nodes
VL_SCREEN. See screen node
VL_SIZE, 32-33, 34

See also control and nodes

VL_TIMING, 27
See also control and nodes

VL_VIDEO. See video node
VL_ZOOM, 30-32, 34

See also control and nodes
vlAddCallback(), 59
vlAddNode(), 21
vlBeginTransfer(), 43
VL buffer, 41-43
vlCheckEvent(), 67
vlCloseVideo(), 48-49
vlcmd, 6
vlCreateBuffer(), 42
vlCreatePath(), 20
vlDeregisterBuffer(), 48
vlDestroyBuffer(), 48-49
vlDestroyPath(), 48-49
vlEndTransfer(), 44, 48
vlEventToName(), 65
vlGetActiveRegion(), 47
vlGetControl(), 26
vlGetDevice(), 20
vlGetDMediaInfo(), 48
vlGetFD(), 66
vlGetImageInfo(), 48
vlGetLatestValid(), 45, 47
vlGetNextFree(), 47
vlGetNextValid(), 45, 47
vlGetNode(), 18, 92
vlGetTransferSize(), 41
vl.h, 7, 17
vlinfo, 6
vlMainLoop(), 59
vlNextEvent(), 67
vlOpenVideo(), 18

205

Index

vlPeekEvent(), 67
vlPutFree(), 45, 47
vlPutValid(), 47
vlRegisterBuffer(), 43
vlSelectEvents(), 23, 59, 66, 67
vlSetConnection(), 22-23
vlSetConnection(), 71-78
vlSetControl(), 26
vlSetupPaths(), 21

W

wipes, 97, 105-108
controls, 136-138

Y

YC, 116
YC-358, 116
YC-443, 116
YIQ, 115

equations, 116
Y signal. See luminance
YUV, 115

equation, 115

Z

zoom, 30-32, 34
before or after blending, 31

Tell Us About This Manual

As a user of Silicon Graphics documentation, your comments are important
to us. They help us to better understand your needs and to improve the
quality of our documentation.

Any information that you provide will be useful. Here is a list of suggested
topics to comment on:

• General impression of the document

• Omission of material that you expected to find

• Technical errors

• Relevance of the material to the job you had to do

• Quality of the printing and binding

Please include the title and part number of the document you are
commenting on. The part number for this document is
007-3182-001.

Thank you!

Three Ways to Reach Us

The postcard opposite this page has space for your comments. Write your
comments on the postage-paid card for your country, then detach and mail
it. If your country is not listed, either use the international card and apply the
necessary postage or use electronic mail or FAX for your reply.

If electronic mail is available to you, write your comments in an e-mail
message and mail it to either of these addresses:

• If you are on the Internet, use this address: techpubs@sgi.com

• For UUCP mail, use this address through any backbone site:
[your_site]!sgi!techpubs

You can forward your comments (or annotated copies of manual pages) to
Technical Publications at this FAX number:

415 965-0964

NO POSTAGE

NECESSARY

IF MAILED

IN THE

UNITED STATES

BUSINESS REPLY MAIL

Silicon Graphics, Inc.

2011 N. Shoreline Blvd.

Mountain View, CA 94043

