
OpenVault™ Application
Programmer’s Guide

Document Number 007-3216-002

OpenVault™ Application Programmer’s Guide
Document Number 007-3216-002

CONTRIBUTORS

Written by Bill Tuthill
Production by Allen Clardy
Engineering contributions by Curtis Anderson, Loellyn Cassell, and Joshua Toub

© 1997-1998, Silicon Graphics, Inc.— All Rights Reserved
The contents of this document may not be copied or duplicated in any form, in whole
or in part, without the prior written permission of Silicon Graphics, Inc.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure of the technical data contained in this document by
the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS 52.227-7013
and/or in similar or successor clauses in the FAR, or in the DOD or NASA FAR
Supplement. Unpublished rights reserved under the Copyright Laws of the United
States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd.,
Mountain View, CA 94043-1389.

OpenGL, Silicon Graphics, and the Silicon Graphics logo are registered trademarks,
and GL, Graphics Library, IRIS InSight, IRIXPro, OpenVault, Performance Co-Pilot,
and XFS are trademarks of Silicon Graphics, Inc.

POSIX is a registered trademark of the Institute of Electrical & Electronic Engineers.
EXABYTE is a trademark of EXABYTE Corp. IBM is a registered trademark of
International Business Machines Corp. Sony is a registered trademark of Sony Corp.
UNIX is a registered trademark of X/Open Company, Ltd. StorageTek is a registered
trademark of Storage Technology Corp. Quantum is a registered trademark, and DLT
is a trademark, of Quantum Corp. Ampex is a registered trademark of Ampex Corp.

iii

Contents

List of Figures ix

List of Tables xi

About This Guide xiii
Intended Audience xiii
What This Guide Contains xiii
Conventions Used in This Guide xiv

1. OpenVault Overview 1
What OpenVault Does 1
Why OpenVault Is Needed 2
OpenVault as Middleware 2
OpenVault Architecture 3

MLM Server 4
Cartridge Naming 5
Communication Paths 5

OpenVault Interfaces 5
CAPI for Client Applications 6
AAPI for Administrative Applications 6
Abstract Library Interface (ALI) 7
Abstract Drive Interface (ADI) 9
Administrative Commands 10

iv

Contents

2. Client and Administrative API 11
Communication Protocols 11

Version Negotiation Language 11
Authentication Requests 12
Command Phases 12
Protocol Layers 13
Language Conventions 14

Persistent Storage 15
CAPI/AAPI Operational Model 16

Command Sequencing 16
Objects and Their Attributes 17
Relationships Between Objects 26
Function Oriented Commands 26
Security Model 26

Contents

v

AAPI Command Descriptions 27
Character Set and Quoting Considerations 27
Command Element Ordering 28
Session Management Commands 28

Hello Command 28
Goodbye Command 29
Detach Command 29
Attach Command 29

Device Control Commands 29
Mount Command 29
Unmount Command 30
Reject Command 31
Move Command 31
Inject Command 32
Eject Command 32

Database Manipulation Commands 32
Show Command 33
Attribute Command 33
Rename Command 34
Allocate Command 35
Deallocate Command 35
Forget Command 36
Create Command 36
Delete Command 37

vi

Contents

Semantics of Common Syntactic Elements 37
General Order of Operator Evaluation 37
Description of Shared Syntax Elements 38

Object Type and Field Name 38
volname Operator 38
match Operator 39
order Operator 39
number Operator 40
The report and reportMode Operators 41
text Operator 42

Glossary of match Keywords 42
Command Return Formats and Values 44

AAPI Command Examples 44

3. OpenVault Programming With perl 45
What You Need 45
Disabling Security 45
Opening a Socket 46
Sending CAPI Strings 46

4. Programming the C Interface 47
About CAPI and AAPI 47
Client Development Framework 47

OpenVault Client-Server IPC 47
CAPI Generator and CAPI/R Parser 48
C Library Routines 48
Common Framework 49

Defined Tokens List 50
Cartridge Form Factors 50
Cartridge Types 50
Media Bit Formats 51
Drive Capabilities 53
Partition Names 54
Attribute Names 54

Contents

vii

A. Error Messages 57
AAPI Error Messages and Commands 57
AAPI Command Error Messages 58

B. Syntax Specification 59
AAPI Language Syntax 59
CAPI Language Differences 68

Glossary 69

Index 71

viii

Contents

ix

List of Figures

Figure 1-1 OpenVault Architecture 3
Figure 2-1 Communication Layers 13

xi

List of Tables

Table 2-1 OpenVault Objects 17
Table 2-2 String Comparison Suffixes 43
Table 4-1 ADI and ADI/R Lexical Library Routines 48
Table 4-2 Predefined Cartridge Form Factor Tokens 50
Table 4-3 Predefined Media Type Tokens 50
Table 4-4 Predefined Bit Format Tokens 52
Table 4-5 Predefined Mount Tokens 53
Table 4-6 Predefined Partition Name Tokens 54
Table 4-7 Predefined Attribute Name Tokens 54
Table A-1 Error Messages for AAPI and CAPI 57
Table A-2 AAPI Commands and Their Error Messages 58
Table B-1 AAPI and CAPI Language Syntax 59

xiii

About This Guide

OpenVault is a software product that allows multiple applications to manage, mount,
and unmount removable media. This product supports a wide range of removable media
libraries and drives. OpenVault helps simplify the administration and programming of
removable media devices.

This document describes the client side of OpenVault, where applications make requests
that the media library manager (MLM) fulfills by directing control programs to perform
media management operations (including mount and unmount) on storage devices.

The OpenVault Infrastructure Programming Guide describes the server side of OpenVault,
showing how to write control programs for removable media libraries and driives.

Intended Audience

This document is intended for application programmers and system administrators who
are involved in supporting removable media libraries and drives. By using standard
OpenVault interfaces, you can improve return on hardware investments by sharing
devices between multiple applications, partitioning for security where necessary.

What This Guide Contains

Here is an overview of the material in this book:

• Chapter 1, “OpenVault Overview,” contains a thumbnail sketch of components.

• Chapter 2, “Client and Administrative API,” describes the client and administrative
application programming interface.

• Chapter 3, “OpenVault Programming With perl,” offers a tutorial introduction to
writing CAPI applications.

• Appendix A, “Error Messages,” lists error messages and originating commands.

xiv

About This Guide

• Appendix B, “Syntax Specification,” provides a synopsis of CAPI and AAPI syntax.

Conventions Used in This Guide

These are the typographic conventions used in this guide:

Purpose Example

Names of keywords and functions The match function can customize library setup.

Names of shell commands The ov_stat command displays OpenVault status.

Titles of manuals Refer to the OpenVault Infrastructure Programming Guide.

A term defined in the glossary The unit of OpenVault storage is a cartridge.

Filenames and pathnames The control path to the drive is /dev/rmt/tps0d4.

What you type, with variables in italic testclient clientName

Exact quotes of computer output Error: invalid command name

1

Chapter 1

1.OpenVault Overview

OpenVault helps simplify the engineering of software to control removable media
libraries, by providing standard interfaces for robotic libraries, loadable drives, client
applications, and library administration.

This chapter describes in more detail what this product provides and why it is useful,
and gives an overview of OpenVault architecture and its standard interfaces.

What OpenVault Does

OpenVault is a package of mediation software that helps other applications manage
removable media. This facility can support a wide range of removable media libraries, as
well as a variety of drives interfaced to these libraries. The modular design of OpenVault
eases the task of adding support for new robotic libraries and drives.

A unit of removable media is called a cartridge. This could be a tape reel, a tape cartridge,
an optical disc, a removable magnetic disk, or a videotape.

OpenVault itself does not provide an end-user interface, nor does it generally become
involved in I/O operations to cartridges loaded in drives. User interfaces are provided
by OpenVault client applications, which perform I/O to drives using system facilities
after control programs have mounted and loaded a cartridge for the application.

The following tertiary storage applications can all benefit from OpenVault:

• tape access, for example with tar or cpio

• backup, to guard against system crash or accidental data loss

• archive, for long-term storage of unused data

• hierarchical storage management (HSM)

• CD-ROM jukeboxes or information libraries

• broadcast libraries containing videotapes

2

Chapter 1: OpenVault Overview

Why OpenVault Is Needed

Because of the proliferation of data, many information professionals have trouble putting
their fingers on the data they want. Secondary storage on disk drives is usually near
capacity, and is generally devoted to system overhead and working files. Tertiary storage
often contains the desired data, but is reachable only after expenditure of time and effort.
Attentive management of removable media libraries can enhance the availability of
information without significantly increasing overall system cost.

The traditional way of dealing with robotic libraries is with specialized applications that
interface to particular libraries and drives. Generally, devices are monopolized by a
single application. This approach has several shortcomings:

• Manufacturers of robotic libraries and drives have to develop device drivers for
each new product on all supported system platforms.

• Software vendors must develop additional code to integrate new robotic libraries
and drives, resulting in product support delays.

• Computer system providers have a difficult time offering a complete range of
robotic libraries and applications when customers want them.

• Users and administrators have no access to the removable media library except as
granted by a specialized application—sharing is not possible.

OpenVault solves these problems by providing a set of standard interfaces that raise the
level of abstraction, enabling rapid deployment of removable media libraries, drives,
systems, and client applications.

OpenVault as Middleware

Software that mediates between operating systems and application programs is called
middleware. Middleware creates a common language so that users can access data in a
variety of formats or using devices from different vendors. OpenVault is middleware in
the sense that it mediates between client applications and device control programs,
making it possible for different users to share a removable media library.

Middleware can often improve release independence. With its modular architecture,
OpenVault assists vendors in adding support for new removable media libraries and
drives and delivering upgraded client applications, without requiring rerelease of other
OpenVault components.

OpenVault Architecture

3

OpenVault Architecture

OpenVault is organized as a set of cooperating components, as shown in Figure 1-1.

Figure 1-1 OpenVault Architecture

CAPI
CAPI/R

LCP

ALI

ALI/RDCP

ADI

ADI/R

AAPI

AAPI/R

MLM server
Client

application
Administrator

interface

Persistent
storage

Removable
media library

/dev/mount/* drive

4

Chapter 1: OpenVault Overview

The central mediation component is the media library manager (MLM), a multithreaded
process that accepts client connections and fulfills access requests by forwarding them to
appropriate library and drive control programs. The MLM server maintains persistent
storage containing information about cartridges in the system, and descriptions of
authorized applications, libraries, and drives.

OpenVault consists of the following pieces:

1. One MLM server process mediates among other components.

2. Any number of client applications can make requests using the client application
programming interface, CAPI; the MLM server replies in CAPI response (CAPI/R).

3. An administrative interface makes system requests in a similar but less restricted
administrative API, AAPI; the MLM server replies in AAPI response (AAPI/R).

4. Persistent storage (a database) tracks cartridges and system components.

5. A library control program (LCP) is required for each removable media library
controlled by the MLM server.

The MLM server talks to an LCP using the abstract library interface (ALI), and
receives answers in ALI response (ALI/R). An LCP translates from ALI to the actual
library control interface, and replies in ALI/R.

6. A drive control program (DCP) is required for each drive controlled by the MLM
server. Some removable media libraries contain multiple drives, in which case each
drive has its own DCP. Drives need not be associated with a robotic library.

The MLM server talks to a DCP using the abstract drive interface (ADI), and
receives answers in ADI response (ADI/R). A DCP translates from ADI to the
actual drive control interface, and replies in ADI/R.

The OpenVault languages consist entirely of ASCII strings.

MLM Server

The MLM server accepts requests from applications, and forwards commands to an LCP
and DCP, which translate them into low-level robotic and drive control operations to
serve that request. MLM also schedules competing requests from different applications,
creates and enforces cartridge groups for each application, and maps logical cartridge
names (used by applications) to physical cartridge labels (used by libraries).

OpenVault Interfaces

5

The MLM server manages cartridges, directing LCP and DCP to mount and unmount a
cartridge. Often, cartridges store data. After requesting that a cartridge be mounted, the
client application may read and write the media using POSIX® standard I/O interfaces.
Cartridges can also store audio-video streams for broadcast. In either case, MLM is not
directly involved in I/O operations.

Client applications, libraries, and drives may be added to a live MLM server. The system
administrator installs new programs on the appropriate hosts, and issues administrative
commands on a live system to inform the MLM server that these new programs exist.

Cartridge Naming

Client applications may choose their own names for cartridges. Because OpenVault client
applications operate in separate name spaces, different applications may use the same
name for different cartridges. Moreover, cartridges used by one application are not
visible to or accessible from another application, unless the system administrator permits
specific cartridges to be moved from one application to another.

Some robotic libraries can interpret barcodes and labels affixed to cartridges. It is the
responsibility of the LCP to pass any physical cartridge label (PCL) information to the
MLM server.

Communication Paths

The OpenVault languages CAPI, CAPI/R, AAPI, AAPI/R, ALI, ALI/R, ADI, and ADI/R
are expressed exclusively in text strings, which travel between components by means of
TCP sockets. The underlying communications layer is encapsulated in a C library, so
OpenVault developers need not worry about the details.

OpenVault Interfaces

This section describe the various OpenVault programming interfaces.

6

Chapter 1: OpenVault Overview

CAPI for Client Applications

CAPI (client application programming interface) is the language client applications use
to communicate with the MLM server.

The command-response format is semi-asynchronous. After submitting each command,
the application waits for the server to acknowledge receiving the command, but need not
wait for results before sending the next command. CAPI communications libraries can
also work synchronously if this makes implementation more convenient.

Access to the server is session-oriented. The application initiates a session with the hello
command, and ends with a goodbye. Meanwhile, the application may send commands to
the server to mount and unmount removable media, or to change attributes of media.

Here is a list of CAPI commands organized alphabetically:

• allocate requests volumes for use by this application.

• attribute sets attribute-value pairs associated with OpenVault volumes.

• deallocate returns volumes to the free pool.

• mount asks the MLM server to provide volumes for data access.

• reject tells the server to recategorize a volume.

• rename declares a new name for a volume.

• show displays information about OpenVault volumes.

• unmount says that volumes are no longer needed for data access.

• unwelcome informs the client of an MLM server version mismatch.

• welcome tells the client which version of the MLM server is responding.

The OpenVault Application Programming Guide describes how to program CAPI.

AAPI for Administrative Applications

AAPI (administrative API) is the language that administrative applications use to
communicate with the MLM server. AAPI commands and responses are ASCII strings.
As with CAPI, the command-response format is semi-asynchronous, and access to the
server is session-oriented. AAPI is a superset of CAPI.

OpenVault Interfaces

7

Here is a list of AAPI commands organized alphabetically:

• attribute sets attribute-value pairs associated with OpenVault volumes.

• create establishes a volume or object in the OpenVault database.

• delete removes a volume or object from the OpenVault database.

• eject pushes a cartridge out of a library into the operator’s hand.

• export removes a volume from the OpenVault database.

• inject allows the operator to insert a cartridge into a library.

• mount tells the MLM server to provide data access to a volume.

• move relocates a cartridge from one slot in a library to another.

• rename declares a new name for a volume.

• show displays information about OpenVault volumes.

• unwelcome informs the client of an MLM server version mismatch.

• unmount says that volumes are no longer needed for data access.

• welcome tells the client which version of the MLM server is responding.

The OpenVault Application Programming Guide describes how to program the AAPI.

Abstract Library Interface (ALI)

A library control program (LCP) is a part of OpenVault that deals with low-level details
of a removable media library and its configuration and control procedures. There is at
least one LCP associated with each MLM-managed library. The purpose of an LCP is to
expose library configuration to the MLM server, and to control a library as requested.

The MLM server issues directives to the LCP in a language called ALI. The LCP replies
to the MLM server in a language called ALI response (ALI/R).

ALI/R implements a different command set from ALI, reflecting different needs of an
LCP and the MLM server. The ALI language is primarily a library control interface,
whereas ALI/R constitutes a status reporting interface with support for administration
and configuration. Like CAPI, ALI and ALI/R are semi-asynchronous.

8

Chapter 1: OpenVault Overview

If you are developing a library control program, your program must be able to read ALI
from, and write ALI/R to, the MLM server. The OpenVault infrastructure developer’s kit
includes an ALI parser and ALI/R generator. The parser and generator, as well as the
communications layer, are delivered with a C language interface.

Here is a list of ALI commands organized alphabetically:

• activate disable forces the LCP to stop talking to the library.

• activate enable forces the LCP to resynchronize its internal information with the
physical state of the library, and keep it synchronized.

• attribute sets and unsets named attributes in the LCP.

• barrier tells the LCP to complete all asynchronous commands before continuing.

• cancel revokes a command that the LCP has queued but not yet started.

• eject pushes a cartridge out of the library immediately, or queues a cartridge to be
pushed out of the library (if queueing is implemented).

• exit tells the LCP to store state information, clean up, and exit.

• mount asks the LCP to put cartridges into drives.

• move requests transfer of a cartridge from one physical slot into another.

• openPort instructs the LCP to open the library door, so that cartridges can be added
to or removed from the library.

• reset instructs the LCP to reinitialize its library.

• scan has the LCP ask its library to verify physical labels of cartridges in the library.

• show obtains the current value of an attribute.

• unmount tells the LCP to take cartridges out of drives.

Here is a list of ALI/R commands organized alphabetically:

• attribute sets and unsets named attributes in the OpenVault database.

• cancel prevents execution of a command that has been queued but not yet started.

• config copies information (such as slot state) from the LCP to the MLM server.

• goodbye asks MLM to end this session (vice versa for ALI).

• message sends a message of a specified severity level to an operator or logfile.

• ready tells the MLM server about library status for cartridge operations.

OpenVault Interfaces

9

• response indicates success or failure of an ALI command, and returns results.

• show obtains values of attributes stored in the OpenVault database.

The OpenVault Infrastructure Programming Guide describes the ALI and ALI/R languages,
and offers an introduction to creating library control programs.

Abstract Drive Interface (ADI)

A drive control program (DCP) manages the configuration of drives, and performs the
drive control tasks associated with CAPI mount and unmount requests. There is at least
one DCP associated with each MLM-managed drive. The purpose of DCP is to expose
the drive configuration to the MLM server, and to control drives as requested.

The MLM server issues directives to the DCP in a language called ADI. The DCP replies
to the MLM server in a language called ADI response (ADI/R).

ADI/R implements a different command set from ADI, reflecting different needs of a
DCP and the MLM server. The ADI language is primarily a drive control interface,
whereas the ADI/R language constitutes a status reporting interface with support for
administration and configuration. Like CAPI, ADI and ADI/R are semi-asynchronous

If you are developing a drive control program, your program must be able to read ADI
from, and write ADI/R to, the MLM server. The OpenVault infrastructure developer’s kit
includes an ADI parser and ADI/R generator. The parser and generator, as well as the
communications layer, are delivered with a C language interface.

Here is a list of ADI commands organized alphabetically:

• activate disable forces the DCP to store persistent state and stop communicating with
its hardware.

• activate enable forces the DCP to resynchronize with its drive hardware, ensuring
that the DCP has the current drive state.

• attach selects the appropriate access method, and binds it to a drive handle.

• attribute sets and unsets named attributes in the DCP.

• barrier tells the DCP to complete all asynchronous commands before continuing.

• cancel requests the DCP to stop execution of a command, if possible.

• detach removes the access method binding created by an attach command.

10

Chapter 1: OpenVault Overview

• exit tells the DCP to store state information, clean up, and exit.

• load pushes a cartridge into the drive and engages media at the media access point
(read/write head), or verifies that the drive is loaded.

• reset instructs the DCP to attempt drive reinitialization.

• show asks the DCP to return state or configuration information.

• unload rewinds if necessary, disengages media from the media access point, and
returns media to its cartridge.

Here is a list of ADI/R commands organized alphabetically:

• attribute stores persistent state in the OpenVault database.

• cancel tells OpenVault to prevent execution of a particular command, if possible.

• config tells OpenVault about access modes, form factors, and media formats.

• goodbye asks MLM to end this session (vice versa for ADI).

• message sends a message of some severity level to an operator or logfile.

• ready informs OpenVault of the status of the DCP’s connection to the drive.

• response indicates success or failure of an ADI command, and returns results.

• show queries persistent state stored in the OpenVault database.

The OpenVault Infrastructure Programming Guide describes the ADI and ADI/R
languages, and offers an introduction to creating drive control programs.

Administrative Commands

OpenVault can be administered with commands given from the system prompt. Most of
these commands cause MLM to forward library or drive requests to a particular LCP or
DCP. Most OpenVault commands produce helpful usage messages when invoked with
the wrong syntax or with the -help option. For a list of OpenVault commands, type:

man -k ov_

The user mount shell, umsh, is a system command that provides user and administrator
access to OpenVault volumes. See the umsh(1M) reference page for details.

11

Chapter 2

2.Client and Administrative API

The Client Application Programming Interface (CAPI) and Administrative Application
Programming Interface (AAPI) are languages that OpenVault client and administrative
programs use to communicate with the MLM server. CAPI commands are a subset of
AAPI commands, which are more powerful.

Communication Protocols

CAPI and AAPI are based on message passing. OpenVault client and administrative
programs communicate with the MLM server through TCP/IP sockets. Only ASCII
strings travel across these sockets. The hello-welcome command sequence establishes an
IPC connection based on a socket.

Once an IPC connection has been established, the entity at either end of the connection
may send and receive commands compatible with the negotiated language and version.
The sender of a command generates a unique task ID for that command. The task ID is
used in subsequent responses to that command. In some releases, the sender may also
use the task ID to cancel the command or to obtain command status.

Version Negotiation Language

To allow partial upgrades and peaceful coexistence of different language versions,
OpenVault includes a session initiation facility to negotiate language version. When
connecting to the MLM server, a client or administrative program announces which
language it uses, and which versions of the language it understands. The MLM server
selects one version and says which one to use for the current session.

The OpenVault session is demarcated by version negotiation (hello and welcome or
possibly unwelcome) at the beginning, and close of session (goodbye) at the end.

12

Chapter 2: Client and Administrative API

Authentication Requests

Before a session can be established between the initiator and its recipient, authentication
is needed. OpenVault employs public key session verification to provide a modicum of
security while still avoiding export restrictions.

As an example, assume that Alice represents the client that initiates communication with
the MLM server. Bob represents the MLM server. The authentication process begins with
Alice sending her name to Bob. Bob replies by generating a 32-bit random number (R1)
and sending it to Alice as a challenge. Upon receiving this number, Alice encrypts it with
the key she shares with Bob and sends this value, along with another 32-bit random
number she has generated herself (R2) to Bob. After checking to make sure that Alice has
successfully encrypted R1, Bob then encrypts R2 and generates a third random number
(R3). Bob now sends the encrypted R2 and R3 to Alice. Alice verifies that R2 has been
properly encrypted and then decrypts R3 and stores it as the session key.

Application developers do not need to be concerned about details of the OpenVault
authentication method. The OpenVault transport layer handles authentication requests
from client applications transparently.

Command Phases

A communication session between the MLM server and a client or control program
employs a stylized sequence of phases. Since the interface is a full-duplex bidirectional
peer-to-peer interface, phase sequencing applies to both directions of a session. The
phases are as follows:

command In this phase, the sender transmits the text of the command, plus a task
ID it assigns to the command, to help track responses.

ack The receiver sends back an intermediate response indicating that it
accepted a command with the given task ID. The receiver may send back
an unacceptable response if the command was incorrectly constructed, in
which case there is no data phase. The sender cannot transmit another
command until it receives an accepted or unaccepted response.

data The receiver of the command sends back a final response, including the
task ID, so as to identify the original command, a return value, which
could be an indication of success or failure, and possibly some data.

Communication Protocols

13

Associated CAPI/R or AAPI/R commands may intervene between transmission of a
command and receipt of the corresponding final response.

Because sessions are full-duplex, each endpoint must be prepared both to read and write
on a session without blocking for either. For example, if the application is sending but the
MLM server is not responding and its buffers are full, the application must remain ready
to accept incoming data from the server. The only permitted blocking I/O operation is a
select() function call. This requirement helps reduce the likelihood of deadlocks.

Protocol Layers

Figure 2-1 shows OpenVault communication layers, which are described in this section.

Figure 2-1 Communication Layers

TCP/IP Sockets Layer
OpenVault IP

C Layer
Over-th

e-Wire ALI or ADI

Parser and Generator Layer

Semantic Layer

Implementing CAPI or AAPI commands
Acknowledgment processing
Ready state transitions
Response sequencing
Handling device state changes

Language version negotiation
Session establishment
Convert between ASCII and C structures

Pure ASCII representation
Phases: command, acknowledgment, data
Conforms to language conventions

Provides server/client communications
Underlying session and packetization
Performs authentication

Employs standard networks, even when
used on local host

14

Chapter 2: Client and Administrative API

The function of the semantic layer is the same for CAPI and AAPI. It is responsible for

• implementation of CAPI and AAPI commands

• ack processing—synchronizing commands by ensuring that a command is not sent
until an acknowledgment is received for the previous command

• response sequencing

• detection and handling of device state changes

The parser and generator layer uses the POSIX compliant GNU utilities bison and flex,
and is responsible for

• language version negotiation and session establishment

The source files involved are ovsrc/include/hello.h and ovsrc/libs/hellor/*.

• converting commands between C data structures and ASCII representations

The source files involved are ovsrc/include/capi.h and ovsrc/libs/{capi,capir}/*.

The over-the-wire CAPI and CAPI/R layer employs nothing but ASCII strings, and is
responsible for

• transitioning between command phases (command, ack, data)

• conforming to language conventions (the parser enforces this)

The OpenVault IPC layer is responsible for

• providing OpenVault interprocess communication between clients and the server

• implementing underlying session connections for OpenVault processes, including
the packetization of over-the-wire ASCII commands

• authentication

The TCP/IP socket layer employs standard networks to aid portability.

Language Conventions

All commands are designed so that the basic arguments of the command may be entered
in any order. For example, these two commands are equivalent:

mount slot["#12", "vol.001", "sideA"] drive["DLT2"];
mount drive["DLT2"] slot["#12", "vol.001", "sideA"];

Persistent Storage

15

OpenVault strings are composed of ASCII characters in the range 32 to 126 (decimal).
Strings must be quoted with either a double-quote or single-quote (“ or ‘). OpenVault
considers these different quote characters to be identical. To include either quote
character in a string, precede it with backslash (\). To include a single backslash character
in a string, put two backslash characters in a row.

For example:

"This string contains a backslash \\ and a double quote \" character."

Potential return value types depend on the command issued. In general, when a
command is successful, the return value specification is the following:

response success text [retValue(s)]

When a command is unsuccessful, the error return value conforms to the following
specification:

response error errorSpec

Persistent Storage

The OpenVault persistent store is implemented as a database subsystem that resides in
the MLM server. This is a multiuser, in-memory relational database subsystem whose
clients are the modules that make up core OpenVault services. Each OpenVault module
is linked with a C library to handle

• constructing queries and other data update operations

• assembling and disassembling the data update structures

One important OpenVault process is the Catalog Manager, which handles database
startup and recovery, manages the on-disk transactional log file, and takes periodic
snapshots of the database.

The OpenVault applications programmer does not need to be concerned about details of
the OpenVault database. The MLM server handles database operations triggered by
hardware events or by CAPI requests from client applications transparently. Client
applications interact with the persistent store through the CAPI language.

16

Chapter 2: Client and Administrative API

CAPI/AAPI Operational Model

CAPI and AAPI use a hybrid of an object attribute interface and procedural commands
to accomplish tasks required in a media management system.

The command-response format is semi-asynchronous. After submitting each command,
the application waits for the server to acknowledge receiving the command, but need not
wait for results before sending the next command. CAPI communications libraries can
also work synchronously if this makes implementation more convenient.

Command Sequencing

During a session, the client sends a command with task ID, and waits for the MLM server
to acknowledge receipt of that command. Some time later the MLM server sends the
client a response to the command, including the original task ID. The client application
can thus determine which response goes with which command. Some examples follow
to help clarify this arrangement (arrows indicate command direction):

The client application sends a command to the MLM server:

→ mount task["1"] match[streq(VOLUME."VolumeName" "v1")];

The MLM server sends an acknowledgment:

← response task["1"] accepted;

Some time later, MLM sends a response to the original command:

← reponse task["1"] success;

Because the application can determine which response came from the execution of each
individual command, the sequence could look something more like this:

→ mount task["1"] match[streq(VOLUME."VolumeName" "v1")];
← response task["1"] accepted;
→ attribute task["a43"] match[streq(VOLUME."VolumeName" "v1")]
 set[VOLUME."Color" "green"];
← response task["a43"] accepted;
← response task["a43"] success;
← response task["1"] success;

In this example, the client sent a second command before the first command completed.
In fact, the second command completed before the first.

CAPI/AAPI Operational Model

17

Objects and Their Attributes

OpenVault defines 27 types of objects that comprise a media environment. Table 2-1
provides a complete list of object types known to OpenVault, the predefined attributes
for each object, and a short description of the object type. Applications can add more
attributes to any given instance of an object, and can modify the values of most
predefined attributes, but may not remove a predefined attribute.

Table 2-1 OpenVault Objects

Object Type and
Class Name

Predefined Attributes Object Description

Application Instance

AI

AIKey
AIName
ApplicationName
Entity

An instance of an application.
Holds the security key as well
as language and version
information for the
point-to-point
communication link relating
to this AI. Used as a storage
location for attribute
name/value data. For
applications, the SELF
meta-object resolves to a
particular AI.

Application

APPLICATION

ApplicationName
Language

An application. Used as a
storage location for attribute
name/value data. Declares
the language used (either
“AAPI” or “CAPI”). For
applications, the PARENT
meta-object resolves to a
particular APPLICATION.

Bay

BAY

BayAccessible
BayName
LCPName

A physical region of a robot.
This is the only specifier of
locality or adjacency that is
exposed, or indeed known to
OpenVault, for slots and
drives within a robot. This
exists both for efficiency and
administrability.

18

Chapter 2: Client and Administrative API

Cartridge

CARTRIDGE

ApplicationName
CartridgeGroupName
CartridgeID
CartridgeNumberMounts
CartridgeNumberVolumes
CartridgePCL
CartridgeState
CartridgeTimeCreated
CartridgeTimeMountedLast
CartridgeTimeMountedTotal
CartridgeTypeName
LibraryName

A physical cartridge, for
example a DLT cartridge or a
3480 cartridge. A cartridge
contains media, which is
physically organized into one
or more sides. Each side is
logically organized as one or
more partitions.

Cartridge Group

CARTRIDGEGROUP

CartridgeGroupName
CartridgeGroupPriority

Data for one of the two
permissions-related parts of
OpenVault; the other is the
DriveGroup abstraction. Each
cartridge is in exactly one
cartridge group.

Cartridge Group
Application

CARTRIDGE GROUP
APPLICATION

ApplicationName
CartridgeGroupApplicationPriority
CartridgeGroupName

Data for one of the two
permissions-related parts of
OpenVault; the other is the
DriveGroup abstraction. Each
Cartridge Group Application
object shows the relationship
between one application and
one cartridge group. If and
only if there exists a cartridge
group application object
referencing both the
application and the cartridge
group, an application can
allocate volumes on cartridges
in that cartridge group.

Table 2-1 (continued) OpenVault Objects

Object Type and
Class Name

Predefined Attributes Object Description

CAPI/AAPI Operational Model

19

Cartridge Type

CARTRIDGETYPE

CartridgeTypeMediaLength
CartridgeTypeMediaType
CartridgeTypeName
CartridgeTypeNumberSides
SlotTypeName

A CARTRIDGETYPE
describes a particular type of
cartridge. This includes the
cartridge’s media type, media
length, number of sides (for a
tape, this is always 1), and the
name of the type of slot into
which this cartridge fits.

Client Connection

CONNECTION

ConnectionClientHost
ConnectionClientPort
ConnectionID
ConnectionTimeCreated
ConnectionTimeLastActive
Entity
SessionID

Every time a client (an LCP,
DCP, CAPI or AAPI client)
connects to MLM, the server
creates a CONNECTION
object that uniquely defines
the connection. This object
allows request responses to be
returned to the requestor, and
allows the OpenVault
administrator a better view of
the running system.

Drive Control Program

DCP

DCPHost
DCPKey
DCPName
DCPStateHard
DCPStateSoft
DriveName
Entity

For a drive to function, at least
one DCP object is required for
that drive. More than one DCP
can be used per drive in
fault-tolerant configurations.

Drive Control Program
Capability

DCPCAPABILITY

DCPCapabilityName
DCPName

A DCPCAPABILITY holds the
tag attached to a particular set
of simultaneously available
capabilities of a drive, as
exposed by a particular DCP.
For example, in the OpenVault
sample source, the EXB-8505
DCP encodes the capabilities
{“norewind” “variable_block”
“compression”} under the tag
named “nrvc”.

Table 2-1 (continued) OpenVault Objects

Object Type and
Class Name

Predefined Attributes Object Description

20

Chapter 2: Client and Administrative API

Drive Control Program
Capability String

DCPCAPABILITYSTRING

DCPCapabilityName
DCPCapabilityStringName
DCPName

There is one of these objects
for each of the strings listed
above in DCPCAPABILITY.
Each DCPCAPABILITY can be
thought of as a container that
holds some number of
DCPCAPABILITYSTRING
objects.

Drive

DRIVE

BayName
CartridgePCL
DCPName
DriveBroken
DriveGroupName
DriveLibraryAccessible
DriveLibraryOccupied
DriveName
DriveOnline
DriveStateHard
DriveStateSoft
DriveTimeCreated
DriveTimeLastMounted
DriveTimeMountedTotal
LibraryName

A device to access the contents
of a piece of media. This refers
to the drive, and not to the
DCP that controls it. For
example, a tape drive,
magneto-optical drive,
CDROM drive, and so forth.
This object is in a one-to-one
relationship with the physical
pieces of hardware.

Drive Group

DRIVEGROUP

DriveGroupName
DriveGroupUnloadTime

Data for one of the two
permissions-related parts of
OpenVault. The other is the
cartridge group abstraction.
Each drive is in exactly one
drive group.

Table 2-1 (continued) OpenVault Objects

Object Type and
Class Name

Predefined Attributes Object Description

CAPI/AAPI Operational Model

21

Drive Group Application

DRIVE GROUP
APPLICATION

ApplicationName
DriveGroupApplicationPriority
DriveGroupApplicationUnloadTime
DriveGroupName

Data for one of the two
permissions-related parts of
OpenVault. The other is the
cartridge group abstraction.
Each drive is in exactly one
drive group. Each Drive
Group Application object
shows the relationship
between one application and
one drive group. If and only if
there exists a drive group
application object referencing
both the application and the
drive group, an application
can mount volumes in drives
belonging to that drive group.

Library Control Program

LCP

Entity
LCPHost
LCPName
LCPStateHard
LCPStateSoft
LibraryName

For a library to function, at
least one LCP object is
required for that library. More
than one LCP can be used per
library in certain fault-tolerant
configurations.

Library

LIBRARY

LCPName
LibraryBroken
LibraryName
LibraryOnline
LibraryStateHard
LibraryStateSoft

This refers to the library, and
not the LCP that controls it. A
library can be automated (a
robotic tape changer) or
manual (a person changing
tapes).

Table 2-1 (continued) OpenVault Objects

Object Type and
Class Name

Predefined Attributes Object Description

22

Chapter 2: Client and Administrative API

Logical Mount

MOUNTLOGICAL

ApplicationName
DCPCapabilityName
DCPName
DriveName
MountLogicalHandle
MountLogicalTimeWhenMounted
PartitionName
VolumeName

The MOUNTLOGICAL object
stores information about a
particular logical mount. One
MOUNTLOGICAL object is
created by MLM for each
drive access handle that is
returned as the result of a
CAPI or AAPI mount request.
The object is destroyed during
the processing of a CAPI or
AAPI unmount request.

Physical Mount

MOUNTPHYSICAL

CartridgeID
CartridgePCL
DriveName
LibraryName
MountPhysicalState
MountPhysicalTimeWhenMounted
SideNumber
SlotName

The MOUNTPHYSICAL
object stores information
about a particular physical
mount. MLM creates one such
object when a cartridge is
inserted into a drive, and
deletes it when that cartridge
is removed.

Partition

PARTITION

CartridgeID
PartitionAllocatable
PartitionBitFormat
PartitionName
PartitionNumberMounts
PartitionSignature
PartitionSize
PartitionTimeCreated
PartitionTimeMountedLast
PartitionTimeMountedTotal
SideNumber

A logical subrange of a side.
Some tape technologies
support multiple partitions
per side. For example, a
filesystem resides in a disk
partition.

Table 2-1 (continued) OpenVault Objects

Object Type and
Class Name

Predefined Attributes Object Description

CAPI/AAPI Operational Model

23

Request

REQUEST

RequestAcceptances
RequestID
RequestInitiatorSessionID
RequestRequest
RequestResponderSessionID
RequestResponse
RequestState
RequestTimeAccepted
RequestTimeClosed
RequestTimeCreated
RequestType

LCPs, DCPs, and CAPI/AAPI
clients may request actions by
the OpenVault operator. Each
request command causes the
creation of a REQUEST object
in MLM. When the original
requestor receives its results,
the REQUEST object is
deleted.

Session

SESSION

ApplicationName
Language
SessionAttached
SessionClientHost
SessionClientPort
SessionID
SessionTimeCreated
SessionTimeLastActive

Every time a CAPI or AAPI
client makes a recognized
(authorized) connection to
MLM, the server creates a
SESSION object. The session
name (SessionID) ties the
client to other objects in MLM.
When a CAPI or AAPI client
sends the goodbye command,
its session object is destroyed.
When a CAPI or AAPI client
sends the detach command,
its SESSION lives on, but its
CONNECTION is destroyed.
The session object can be
reattached to the client if the
client sends an attach
command upon reconnection.

Table 2-1 (continued) OpenVault Objects

Object Type and
Class Name

Predefined Attributes Object Description

24

Chapter 2: Client and Administrative API

Side

SIDE

CartridgeID
SideNumber
SideNumberMounts
SideTimeCreated
SideTimeMountedLast
SideTimeMountedTotal

SIDE objects are created
automatically at
cartridge-creation time. When
a cartridge object is created,
one of the fields required is
CartridgeTypeName. From
the CARTRIDGETYPE object,
MLM determines the number
of sides to make, and creates
them. Sides exist as objects so
that partitions can be attached
to them.

Slot

SLOT

BayName
CartridgeID
CartridgePCL
LCPName
SlotAccessible
SlotName
SlotOccupied
SlotTypeName

A position in the library that
can hold a cartridge. It may
contain a cartridge or it may
be empty.

Slot Configuration

SLOTCONFIG

BayName
LCPName
SlotConfigNumberFree
SlotConfigNumberTotal
SlotTypeName

One or more SLOTCONFIG
objects must be declared for
each SlotTypeName of each
BAY that an LCP declares
within a LIBRARY. Each of
these objects stores the total
number of slots and also the
number of free slots of that
particular slot type.

Slot Type

SLOTTYPE

SlotTypeName The family of SLOTTYPE
objects defines the registry of
valid slot types that may be
used in SlotTypeName fields
in various other object types.

Table 2-1 (continued) OpenVault Objects

Object Type and
Class Name

Predefined Attributes Object Description

CAPI/AAPI Operational Model

25

The show and attribute commands are used to query the state of an object’s attributes and
set them, respectively.

Each object has various attributes that either describe its current state or control its
behavior. An example of a state attribute is “SlotOccupied”—true if there is a cartridge
in the slot and false if there is none. An example of behavior controlling attribute is
“LibraryOnline”—if set to false, MLM does not use that library even if everything it
requires is available and functioning perfectly (this is an administrative disable switch).

See the OpenVault Infrastructure Programmer’s Guide for more information about library
and drive hardware and control programs.

System Attributes

SYSTEM

Administrator There is only one SYSTEM
object in MLM. It stores the
e-mail address of the system
administrator, and all the
attribute/value pairs that the
administrator has attached as
annotations to the system as a
whole.

Volume

VOLUME

ApplicationName
CartridgeID
PartitionName
SideNumber
VolumeName
VolumeNumberMounts
VolumeTimeCreated
VolumeTimeMountedLast
VolumeTimeMountedTotal

An application’s view of a
partition. There can be zero,
one, or many volumes that
map to a particular partition.
If zero, then no CAPI
application can mount that
partition. Since AAPI
applications can mount
partitions and sides as well as
volumes, this restriction does
not apply. If only one volume
exists for a given partition, the
partition is owned by a
particular application; if more
than one volume exists for a
given partition, it is shared by
several applications.

Table 2-1 (continued) OpenVault Objects

Object Type and
Class Name

Predefined Attributes Object Description

26

Chapter 2: Client and Administrative API

Relationships Between Objects

OpenVault objects are all related to each other. Some relationships are physical, such as
those between cartridges, sides, partitions, and those between libraries, bays, and slots.
Some relationships are logical, such as the connection between applications, volumes,
and partitions.

The system administrator must understand these relationships in order to administer the
OpenVault environment effectively.

Function Oriented Commands

In addition to objects and their attributes, an administrative application can directly
cause some operations to occur. For example, an application can eject a cartridge from a
library into an operator’s hand.

There is a set of commands in the AAPI language that implement those operations. The
objects and the attributes that control them are still active and will influence exactly what
happens when one of the operation-oriented commands is executed. For example, the
current value of any drive group attributes on the drives in the system will affect an
AAPI mount command by influencing which drives are candidates for the mount.

Security Model

The OpenVault security model is based on both applications and the limitations of the
interface to which that application has access. A normal client application has access only
to the CAPI interface, with the limitations in control that implies: no visibility of volume
namespaces for other applications, read-only access to drive or library attributes, no
ability to directly create or destroy objects, and so on. An administrative application has
access to the much more powerful AAPI language, implying: read-write access to
attributes on any object in the system, and the ability to create and destroy objects.

CAPI client applications are protected from each other, but all AAPI applications share
complete access to the entire system. It is expected that in Release 1 of Openvault only
trusted applications will be granted access to the AAPI interface.

AAPI Command Descriptions

27

AAPI Command Descriptions

AAPI and CAPI commands fall into three basic groupings:

• Session Management

– hello initiates a session with the MLM server.

– goodbye ends a session with the MLM server.

– detach disconnects from a session but leaves it running.

– attach reconnects to a previously established session.

• Device Control

– mount tells the MLM server to provide data access to a volume.

– unmount says that volumes are no longer needed for data access.

– reject informs the MLM server that it mounted the wrong volume.

– move relocates a cartridge from one slot in a library to another (AAPI only).

– inject allows the operator to insert a cartridge into a library (AAPI only).

– eject pushes a cartridge out of a library into the operator’s hand (AAPI only).

• Database Manipulation

– show displays information about OpenVault volumes.

– attribute sets attribute-value pairs associated with OpenVault volumes.

– rename declares a new name for a volume.

– allocate associates volume names with a cartridge group (AAPI only).

– deallocate disassociates volume names with a cartridge group (AAPI only).

– forget deletes volumes from the list known to the MLM server (AAPI only).

– create establishes an object in the persistent store (AAPI only).

– delete removes an object from the persistent store (AAPI only).

Character Set and Quoting Considerations

The OpenVault character set for strings includes all 7-bit ASCII characters in the decimal
value range 32 to 126 (hex 20 to 7E).

28

Chapter 2: Client and Administrative API

Strings must be quoted with either a double-quote (") or single-quote (‘) character.
OpenVault treats the single quote and double quote characters as identical. To include a
double quote or single quote in a string, precede it with a backslash (\). To include one
backslash character in a string, put two backslash characters in your string (\\).

Command Element Ordering

All commands are designed so that constituent elements may be entered in any order.

In the syntax summaries below, words in typewriter bold indicate mandatory elements,
words in typewriter represent optional elements, and words in italic represent
variables. Braces enclose phrases where order does not matter. Inside braces, vertical bars
indicate a choice of only one element. Ellipses (...) show where continuation is allowed.

Session Management Commands

This section describes the AAPI and CAPI commands for session management.

Hello Command

The hello command initiates a connection from a client or administrative application to
the MLM server. The syntax is as follows:

hello { client["cli"] instance["inst"] language["lang"] versions["vers"] } ;

MLM returns a hello response, either welcome or unwelcome. The syntax is as follows:

welcome version "ver" ;

unwelcome { error["errNum"] | text["errText"] } ... ;

This example shows the MLM server agreeing to talk version 1.1 of AAPI:

→ hello client[’admin’] instance[’fred’]
 language[’AAPI’] versions[’1.0’ ’1.1’];
← welcome version[’1.1’];

This example shows the MLM server unwilling to talk version 1.2 or 1.7 of AAPI:

→ hello client[’admin’] instance[’jane’]
 language[’AAPI’] versions[’1.2’ ’1.7’];
← unwelcome error[’EBADVERSION’] text[’No Version Supported’];

AAPI Command Descriptions

29

Goodbye Command

The goodbye command severs the connection from an application to the MLM server. The
syntax is as follows:

goodbye task["taskID"] ;

This example shows the application closing a session, and two possible responses from
the MLM server:

→ goodbye task[’1234’];

← response whichtask[’1234’] accepted;
← response whichtask[’1234’] success;

Detach Command

In future protocol revisions, the detach command may relinquish a session connection.

Attach Command

In future protocol revisions, the attach command may reconnect to an earlier session.

Device Control Commands

This section describes AAPI and CAPI commands for controlling cartridge movement.

Mount Command

The mount command provides data access to one or more volumes, partitions, or sides.
Things to be mounted may be explicitly enumerated or may be implicitly declared by a
match operator. The syntax is as follows:

mount
{ mountMode[mountMode]
 volname[volNameSpec ...]
 match[matchSpec(s)]
 order[orderSpec(s)]
 number[number(s)]
 report[reportSpec]
 reportMode[modeName] } ;

30

Chapter 2: Client and Administrative API

See the section “Semantics of Common Syntactic Elements” on page 37 for information
about the match, order, number, and report operators.

The following default applies only to the mount command:

mountMode["read" "write"]

The following defaults apply to all commands containing a number or reportMode clause:

number[FIRST..LAST]
reportMode[value]

Whether volumes are explicitly or implicitly enumerated, any number of volumes may
be specified for mounting. Some volumes must be mounted read-only, others read-write,
or an application can specify a preference, if mount mode is not volume dependent.

The following example mounts volume myVolume-003 for reading and writing:

mount mountMode["read" "write"] volname["myVolume-003"];

The following example mounts the first available DLT volume that is less than 60% full
for reading and writing:

mount mountMode["read" "write"]
 number[FIRST] match[and(
 strEq (CARTRIDGE."CartridgeTypeName" "DLT")
 numLe (VOLUME."percentFull" "60")
)];

Unmount Command

When an application is done accessing a partition, side, or volume, it can use the unmount
command to free the drive for use by another application. The unmount command must
specify currently mounted volumes, either by enumerating volumes to be unmounted,
or by means of a match operation. The thing to be unmounted must be mounted when
this command is given. The syntax is as follows:

unmount
{ volname[volNameSpec ...]
 match[matchSpec(s)]
 order[orderSpec(s)]
 number[number(s)]
 report[reportSpec]
 reportMode[modeName] } ;

AAPI Command Descriptions

31

The unmount command does not immediately unload media—delay is affected by the
default unload time specified as drive group attribute (DriveGroupUnloadTime).

The following example unmounts volume myVolume-003:

unmount volname["myVolume-003"];

The following example unmounts the two volumes in pool “servers” that are nearest to
full capacity (attribute allFull is obviously a lie):

unmount number[2]
 order[numHiLo(VOLUME."pctFull")] match[and (
 strEq (VOLUME."allFull" "true")
 strEq (VOLUME."pool" "servers")
)];

Reject Command

Implemented but currently disabled, this allowed applications to refuse acceptance of
OpenVault-assigned volumes. It is unclear whether this should be allowed.

Move Command

The move command is used by an administrative application when it wants to have a
cartridge moved from one library slot to another. The syntax is as follows:

move
{ fromslot[slotID]
 fromPCL[PCL]
 toslot[slotID]
 match[matchSpec(s)]
 order[orderSpec(s)]
 number[number(s)]
 report[reportSpec]
 reportMode[modeName] } ;

The following example moves the cartridge labeled “AB1234” from slot 12 to slot 24 in
the library named “alexandria” if all these objects exist:

move match[strEQ(LIBRARY."LibraryName" "alexandria")]
 fromslot["slot 12"] fromPCL["AB1234"] toslot["slot 24"];

32

Chapter 2: Client and Administrative API

Inject Command

The inject command is used by an administrative application when it wants to allow the
human operator to insert a cartridge into a library. The syntax is as follows:

inject
{ match[matchSpec(s)]
 order[orderSpec(s)]
 number[number(s)]
 report[reportSpec]
 reportMode[modeName] } ;

The match operator must resolve to a library.

The following example requests the “alexandria” library to accept a new cartridge:

inject match[strEQ(LIBRARY."LibraryName" "alexandria")];

Eject Command

The eject command is used by an administrative application when it wants to have a
media cartridge pushed out of a library into a human’s hand. The syntax is as follows:

eject
{ match[matchSpec(s)]
 order[orderSpec(s)]
 number[number(s)]
 report[reportSpec]
 reportMode[modeName] } ;

The match operator must resolve to a library.

The following example asks the “alexandria” library to eject the cartridge in slot 24:

eject match[and(
 strEQ(LIBRARY."LibraryName" "alexandria")
 strEQ(SLOT."SlotName" "slot 24")
)];

Database Manipulation Commands

This section describes the AAPI and CAPI commands for handling persistent storage.

AAPI Command Descriptions

33

Show Command

The show command displays data from the OpenVault environment to application users,
often in ways not directly supported by the MLM server. The syntax is as follows:

show
{ volname[volNameSpec] ...
 match[matchSpec(s)]
 order[orderSpec(s)]
 number[number(s)]
 report[reportSpec]
 reportMode[modeName] } ;

The application may use the match operator to select objects to be operated on, the order
operator to specify that the results of the command be ordered in some manner, the
number operator to specify that only certain numbers of records be returned, the report
operator to specify attributes of the selected objects to be returned, and the reportMode
operator to specify how the results should be formatted.

Caution: Things can change in MLM between show commands or between a show
command and a command intended to act on the information returned by show.

In the example below, OpenVault reports about all drives known to the MLM server:

show report[DRIVE."DriveName"];

In the example below, the MLM server selects “bay 1” in the library named “alexandria,”
sorts the slot names in ascending order, and reports the names of the first four:

show match[and (strEQ (LIBRARY."BayName" "bay 1")
 strEq (LIBRARY."LibraryName" "alexandria"))]
 order[strLoHi (SLOT."SlotName")]
 number[1..4]
 report[SLOT."SlotName"]
 reportMode[nameValue];

Attribute Command

An administrative application may modify the values of object attributes in OpenVault.
The attribute command modifies behavior-controlling object attributes, thus permitting
administrative control of the MLM server. The syntax is as follows:

attribute
{ volname[volNameSpec] ...

34

Chapter 2: Client and Administrative API

 match[matchSpec(s)]
 order[orderSpec(s)]
 number[number(s)]
 set[setSpec(s)]
 unset[unsetSpec(s)]
 report[reportSpec]
 reportMode[modeName] } ;

Applications can also use the attribute command to attach or remove non-system-defined
attribute-value pairs from objects in the system.

When using the attribute command, the list of objects to operate on is primarily specified
using the match element. There are additional elements that can be used to order the list
of objects and even to restrict that list to a certain subset.

An application may disassociate attributes that it has associated with an object in exactly
the same way it associated them, except that it will use the unset rather than the set
operator. Set and unset operators may be freely mixed, but a single attribute command
may not contain more than one set or unset operator referencing the same attribute.

Note: System-defined attributes may not be disassociated from an object. Any attempt
to do so returns an error.

Examples:

attribute
 match[strEQ(DRIVE."DriveName", "physics1")]
 set[DRIVE."color" "red"];

attribute match[and (strEq (DRIVE."color" "blue")
 strEq (DRIVE."LibraryName" LIBRARY."LibraryName"))]
 set[LIBRARY."hasBlueDrives" "true"]
 report[LIBRARY."LibraryName"];

Rename Command

Client applications may rename their own volumes, while administrative applications
may rename any volumes, using the rename command. The syntax is as follows:

rename
{ volname[volNameSpec]
 volnewname[volNameSpec]
 match[matchSpec(s)]
 order[orderSpec(s)]

AAPI Command Descriptions

35

 number[number(s)]
 report[reportSpec]
 reportMode[modeName] } ;

Because the example below contains no match component, this command renames all
volumes of that name, no matter which application owns the volumes.

rename volname["servers.001"] volnewname["servers.003"];

Allocate Command

Unprivileged applications may obtain ownership of cartridges and create new volumes
on those cartridges. When a volume is created, it immediately takes its place next to all
other volumes owned by that application. No other non-privileged application can see
the new volume or allocate a volume on the same cartridge.The syntax is as follows:

allocate
{ volname[volNameSpec] ...
 match[matchSpec(s)]
 order[orderSpec(s)]
 number[number(s)]
 report[reportSpec]
 reportMode[modeName] } ;

In this example, OpenVault allocates any convenient volume as the first named Servers:

allocate volname["Servers.001"];

Deallocate Command

Applications may delete volumes that they own. The volume immediately disappears—
there is neither a grace period nor an undo operation. Lacking a volume name, that
portion of the cartridge is no longer available to the application for mount operations.
Non-privileged applications can delete only volumes that they own, but they can do so
at any time and with no restrictions. The syntax is as follows:

deallocate
{ volname[volNameSpec] ...
 match[matchSpec(s)]
 order[orderSpec(s)]
 number[number(s)]
 report[reportSpec]
 reportMode[modeName] } ;

36

Chapter 2: Client and Administrative API

In this example, OpenVault deallocates the volume named Servers.001:

deallocate volname["Servers.001"];

Forget Command

An administrative application may delete volumes from the list known to the MLM
server, using the forget command. The volumes cannot be in use by any application.The
syntax is as follows:

forget
{ volname[volNameSpec] ...
 match[matchSpec(s)]
 order[orderSpec(s)]
 number[number(s)]
 report[reportSpec]
 reportMode[modeName] } ;

In the example below, the lack of an application name might cause the MLM server to
delete database information for several volumes from different applications:

forget match[strEQ(VOLUME."VolumeName", "servers.001")];

The example below is more limiting and thus more realistic:

forget match[and (strEq (APPLICATION."ApplicationName" "deadApp")
 strEq (CARTRIDGE."CartridgeTypeName" "8mm-112m"))];

Create Command

Administrative applications may create new objects. Once an object has been created, it
immediately takes its place next to all other objects of that type. The syntax is as follows:

create type[tableNameSpec]
{ set[setSpec] ...
 match[matchSpec(s)]
 order[orderSpec(s)]
 number[number(s)]
 report[reportSpec]
 reportMode[modeName] } ;

The application must specify all required attributes for the type of object being created,
or the MLM server returns failure. The application may specify additional attributes and
values beyond those required.

Semantics of Common Syntactic Elements

37

In the example below, the administrative application creates an object of type LIBRARY
named “alexandria” in group “physics” but not currently online:

create type[LIBRARY]
set[LIBRARY."LibraryName" "alexandria"]
set[LIBRARY."Group" "physics"]
set[LIBRARY."Online" "false"] ;

Delete Command

Administrative applications may delete existing objects. Deleted objects disappear
immediately—there is neither a grace period nor an undo operation. The syntax is as
follows:

delete type[tableNameSpec]
{ match[matchSpec(s)]
 order[orderSpec(s)]
 number[number(s)]
 report[reportSpec]
 reportMode[modeName] } ;

Permission to delete an object is subject to the internal consistency constraints of MLM.
If the object is still in use or being referenced by other objects, then the delete operation
fails. For example, a LIBRARY object may not be deleted until all DRIVE objects for that
library have been deleted.

In the example below, the administrative application deletes the LIBRARY object named
“alexandria” previously created:

delete type[LIBRARY] match[strEQ(LIBRARY."LibraryName" "alexandria")] ;

Semantics of Common Syntactic Elements

Several syntactic elements are common to many AAPI and CAPI commands, including
match, order, number, report, reportMode and others. The meaning of each of these elements
is constant no matter what the command.

General Order of Operator Evaluation

The syntax elements described in the sections below are evaluated in the following order:

38

Chapter 2: Client and Administrative API

1. Start with the whole object name space as the working set.

2. Restrict the working set to objects with specified attributes using the match operator.

3. Sort the working set on values of specified attributes using the order operator.

4. Select specified ordinal elements from the working set using the number operator.

5. Display attributes of objects that remain in the working set using the report operator.

The reportMode operator influences the report output format.

Description of Shared Syntax Elements

The sections below provide a description of common AAPI and CAPI syntax elements.

Object Type and Field Name

An attribute may be interpolated by referring to its object type and field name. This
syntax is used in combination with the match and order operators. The object type is
chosen from a predefined list; see Table 2-1. The field name may be predefined or user
defined. The object type is all uppercase, while the field name is enclosed in quotes:

OBJECTTYPE."fieldname"

The following example reports the physical cartridge labels of all the volumes named
"servers.001", from all applications shows all on the “servers.001” volume:

show volname["servers.001"] report[CARTRIDGE."CartridgePCL"];

The following example reports the name of the library containing the “physics1” drive:

show match[strEQ(DRIVE."DriveName" "physics1")]
report[LIBRARY."LibraryName"];

volname Operator

The volname operator restricts the set of volumes to which a command is applied. It is
shorthand for a much more complicated match statement. If the volname operator is given,
it is illegal to supply a match operator also.

In the following example, the volname operator is given a list of volume names:

volname["servers.001" "servers.002" "servers.003"]

Semantics of Common Syntactic Elements

39

The following example shows a match statement equivalent to volname above:

match[or(
 strEQ(VOLUME."VolumeName" "servers.001")
 strEQ(VOLUME."VolumeName" "servers.002")
 strEQ(VOLUME."VolumeName" "servers.003")
)];

match Operator

The match operator restricts the set of objects to which a command is applied. Restriction
is accomplished by applying various functions to specified object attributes in order to
determine true or false status, which in turn determines membership or exclusion from
the working set.

As an example, suppose the current working set of volumes and attributes is as follows:

With that working set, the following match statement returns “vol3” as its result (the Ne
in “strNe” means not equal to):

match[and(
 strEq(VOLUME."Group" "Servers")
 strNe(VOLUME."Handler" "Marge")
)];

Roughly translated to English, that match statement would read: “Find volumes where
the Group attribute is set to Servers and the Handler attribute is not set to Marge.” After
evaluation of this example, only the volume named “vol3” and related objects remain in
the working set.

order Operator

The order operator sorts the set of objects in the working set. It is useful in cases where
the application wants to optimize its activities as much as possible.

Volume Group Attribute Handler Attribute

"vol1" Group="Servers" Handler="Marge"

"vol2" Group="Clients" Handler="Sam"

"vol3" Group="Servers" Handler="Bill"

"vol4" Group="Clients" Handler="Marge"

40

Chapter 2: Client and Administrative API

As an example, suppose the current working set of volumes and attributes is as follows:

With that working set, this order statement returns “vol3 vol1 vol2 vol4” as its result:

order[numHiLo(VOLUME."pctFull")];

number Operator

The number operator declares which elements in the current working set are reported.
The elements given after number specify ordinal numbers of items in the work list for
further operation. It is possible to specify both single items and ranges of items.

A range is specified by numbers separated by two periods (..) and includes elements at
each end of the range. The additional tokens “FIRST” and “LAST” refer to the initial and
final elements of the work list. Negative numbers are ordinal offsets from the end of the
work list.

The specification “number [1 3 5]” means that the first, third, and fifth items from the
ordered work list should be used. Specifications “number [2..4]” and “number [2 3 4]”
are identical. The specification “number [FIRST..3 7..-8 -3..LAST]” is equivalent to
“number [1 2 3 7 8 9 14 15 16]” if there are 16 elements in the working set.

As an example, suppose the current working set of volumes and attributes is as follows:

With that working set, the following number and report statements

number[2 4]

Volume Attribute

“vol1” pctFull=”40”

“vol2” pctFull=”31”

“vol3” pctFull=”93”

“vol4” pctFull=”11”

Volume Group Attribute Handler Attribute

"vol1" Group="Servers" Handler="Marge"

"vol2" Group="Clients" Handler="Sam"

"vol3" Group="Servers" Handler="Bill"

"vol4" Group="Clients" Handler="Marge"

Semantics of Common Syntactic Elements

41

report[VOLUME."group" VOLUME."VolumeName" VOLUME."handler"]

produce the following output:

text["Clients" "vol2" "Sam"]
text["Clients" "vol4" "Marge"]

The report and reportMode Operators

The report operator declares attributes or attribute values that are to be returned by the
current command.

The reportMode operator declares whether the report contains only the “name” of each
reported attribute, only the “value” of each attribute, or both (specified as “nameValue”).

As an example, suppose the current working set of volumes and attributes is as follows:

With that working set, the following report statement

report[VOLUME."group" VOLUME."VolumeName" VOLUME."handler"]

produces the following output:

text["Servers" "vol1" "Marge"]
text["Clients" "vol2" "Sam"]
text["Servers" "vol3" "Bill"]
text["Clients" "vol4" "Marge"]

Adding a reportMode statement

reportMode[nameValue]

produces the following output:

text[
 text[VOLUME."group" "Servers"]
 text[VOLUME."VolumeName" "vol1"]

Volume Group Attribute Handler Attribute

"vol1" Group="Servers" Handler="Marge"

"vol2" Group="Clients" Handler="Sam"

"vol3" Group="Servers" Handler="Bill"

"vol4" Group="Clients" Handler="Marge"

42

Chapter 2: Client and Administrative API

 text[VOLUME."handler" "Marge"]]
text[
 text[VOLUME."group" "Clients"]
 text[VOLUME."VolumeName" "vol2"]
 text[VOLUME."handler" "Sam"]]
text[
 text[VOLUME."group" "Servers"]
 text[VOLUME."VolumeName" "vol3"]
 text[VOLUME."handler" "Bill"]]
text[
 text[VOLUME."group" "Clients"]
 text[VOLUME."VolumeName" "vol4"]
 text[VOLUME."handler" "Marge"]]

text Operator

The text operator is a general container for lists of character strings or object references.
In some contexts, such as the use of this operator in the rename command, the number of
and content of strings that can be enclosed by the text operator may be constrained. But
usually, command responses are encapsulated in one or more text statements.

This example shows use of the text operator in a reject command:

reject volname["myVolume-003"]
text["This is not what I thought it was"];

Glossary of match Keywords

The functions described in this section operate in the context of the CAPI or AAPI match
operator. For each possible combination of objects in the system, an expression made up
of field references (OBJECT."field") can be evaluated in combination with the following
functions. If the expression returns false, the object is not included in the working set for
the enclosing operation of the match operator. All functions return either true or false.

isAttr (nameSpec)
Returns true if the attribute nameSpec is defined on this object, otherwise
returns false.

noAttr (nameSpec)
Returns false if the attribute nameSpec is defined on this object, otherwise
returns true.

Semantics of Common Syntactic Elements

43

regex ((regExpr) expression)
Returns true if regular expression regExpr matches expression, otherwise
returns false. For regular expression rules, see regcmp(3G).

strXX (expression1 expression2)
Returns true if the defined relationship between the values denoted by
expression1 and expression2 is true, otherwise returns false.

Note: In strXX, replace “XX” with the appropriate suffix in Table 2-2.
Suffixes are case insensitive. Comparisons are made on the entire
lengths of the two strings, based on machine collation ordering.

numXX (value1 value2)
Returns true if the defined relationship between the values denoted by
value1 and value2 is true, otherwise returns false.

Note: In numXX, replace “XX” with the appropriate suffix in Table 2-2.
Suffixes are case-insensitive. Values are defined as numbers expressed as
digits [-0-9] that fit into a signed 32-bit word. Numeric conversion is
performed by atoi() or equivalent.

and (expression ...)
Returns true if all expressions are true, or false if any expression is false.

or (expression ...)
Returns true if any expression is true, or false if all listed expressions are
false.

Table 2-2 String Comparison Suffixes

Suffix Meaning

Eq value1 identical to value2

Ne value1 not identical to value2

Lt value1 less than value2

Le value1 less than or equal to value2

Ge value1 greater than or equal to value2

Gt value1 greater than value2

44

Chapter 2: Client and Administrative API

Command Return Formats and Values

Potential return values and types depend on the command issued. In general, when a
command is successful, the return value specification is the following:

response success successSpec

When a command is unsuccessful, the error return value specification is the following:

response error errorSpec

AAPI Command Examples

This section contains example AAPI commands, each preceded by a short description.

These commands return the volume names of all volumes that have an attribute called
“myNumber” with a numeric value greater that 75:

show match[numGt (VOLUME."myNumber" "75")]
 report[VOLUME."VolumeName"];

These commands set or create an attribute named “zorba” with a value of “greek” on all
volumes that have an attribute named “myNumber” with numeric value greater than 75
and an attribute named “hello” with a “no” value:

attribute
 match[and (
 numGt (VOLUME."myNumber" "75")
 strEq (VOLUME."hello" "no"))]
 set[nameValue[VOLUME."zorba" "greek"]];

45

Chapter 3

3.OpenVault Programming With perl

This chapter describes how write OpenVault applications using the perl language.

What You Need

You can write OpenVault applications in perl (an interpretive programming language by
Larry Wall) without access to the OpenVault application developer’s kit. This is because
perl offers a socket library that can interface to the MLM server.

The perl interpreter is available precompiled in an IRIX subsystem from several locations,
including fw_LWperl5.sw.perl on the Freeware distribution. It can also be compiled from
scratch with modest effort.

Commercial OpenVault applications are best written in C, for two reasons. First, you can
distribute them in binary form to help keep source code proprietary. Second, compiled
applications can take advantage of security features built into the CAPI/AAPI libraries.
See Chapter 4 for an introduction to OpenVault programming in C.

Disabling Security

When new sessions are established, OpenVault employs public key session verification
to authenticate the connecting client. At setup time, the OpenVault system administrator
configures a password for each application, library, and drive. Specifying a password of
“none” disables security checking.

A perl application must be configured with a password of “none” and the MLM server
grants it access only to libraries and drives configured with the “none” password. This
implies that a perl application cannot share libraries or drives with C applications that use
the OpenVault security facilities.

46

Chapter 3: OpenVault Programming With perl

Opening a Socket

The following sample code connects to the MLM server whose hostname is specified in
the first argument, usually at port 44444:

#! /usr/bin/perl -w
require 5.002;
use strict;
use Socket;
my ($remote, $port, $iaddr, $paddr, $proto, $line);

$remote = shift || "localhost";
$port = shift || "44444";
if ($port =~ /\D/) { # contains digit
 $port = getservbyname($port, "tcp");
} die "No port" unless $port;
$iaddr = inet_aton($remote)
 or die "no host: $remote";
$paddr = sockaddr_in($port, $iaddr);

$proto = getprotobyname("tcp");
socket(SOCK, PF_INET, SOCK_STREAM, $proto)
 or die "socket: $!";
connect(SOCK, $paddr)
 or die "connect: $!";
while ($line = <SOCK>) {
 print $line;
 # send CAPI requests
 # process CAPI/R answers
}
close(SOCK)
 or die "close: $!";
exit;

Sending CAPI Strings

For information about AAPI and CAPI commands, see “AAPI Command Descriptions”
on page 27.

47

Chapter 4

4.Programming the C Interface

This chapter introduces CAPI programming, and includes the following topics:

• “Client Development Framework” on page 47 describes CAPI subroutine libraries.

• “Defined Tokens List” on page 50 presents tables of OpenVault tokens.

About CAPI and AAPI

The Client Application Programming Interface (CAPI) and Administrative Application
Programming Interface (AAPI) are languages that OpenVault client and administrative
programs use to communicate with the MLM server. CAPI commands are a subset of
AAPI commands, which are granted more privileges.

A client application speaks to the MLM server in CAPI, and the server replies in CAPI/R.
An administrative application speaks to the MLM server in AAPI, and the server replies
in AAPI/R.

Client Development Framework

The application developer’s kit includes a framework for writing CAPI or AAPI that
helps ease the development, porting, and maintenance effort for client or administrative
applications. This section describes the general source tree layout.

OpenVault Client-Server IPC

OpenVault clients and servers communicate using a custom interprocess communication
(IPC) layer. Modules using this PIC layer need to include the following header file, and
be loaded with the following C library:

ovsrc/include/ov_lib.h
C data structures, macros, and subroutine prototypes for IPC

48

Chapter 4: Programming the C Interface

ovsrc/libs/comm/libov_comm.so
C library containing IPC subroutines

CAPI Generator and CAPI/R Parser

OpenVault includes language parsers and generators. Modules using these facilities
need to include the following header files, and be loaded with the following C libraries:

ovsrc/include/capi.h
Supported CAPI and CAPI/R version number, command enumeration,
definitions for CAPI objects, C data structures for command sequences,
and library function prototypes.

ovsrc/include/hello.h
C data structures for HELLO and WELCOME command representation.

ovsrc/libs/hellor/libov_hello.so
C library (DSO) that contains HELLO parser-generator subroutines.

ovsrc/libs/capi/libov_capi.so
C library (DSO) that contains CAPI parser-generator subroutines.

C Library Routines

Table 4-1 offers a summary of the CAPI and CAPI/R lexical library routines that you
employ when writing client or administrative applications.

Table 4-1 ADI and ADI/R Lexical Library Routines

Purpose of Activity CAPI Function Short Description

Initiate session with
MLM server

CAPI_initiate_session() Begins session with a specific MLM server,
including HELLO version negotiation

Parse CAPI/R
command from
MLM server

CAPIR_receive() Parses a CAPI/R command from the server
and returns a CAPIR_cur_cmd structure

Acknowledge
CAPI/R command

CAPIR_acknowledge() Informs MLM server that the client
received a CAPIR_command

Send string to server CAPI_send_string() Send string from application to the server

Client Development Framework

49

Common Framework

The infrastructure developer’s kit includes common utility code for writing applications.
To use this code, include the following header files, and read the following C module:

ovsrc/include/cctxt.h
Generic command queuing mechanism.

ovsrc/include/ov_lib.h
OpenVault data structures and MLM definitions and limits.

ovsrc/include/queue.h
Generic queue and linked list implementation.

ovsrc/clients/admin/common/capi_utils.c
Convenience routines for writing client and administrative applications.
The capi_utils.h header file defines a simplified CAPI send and receive
interface, used by the ov_* administrative commands.

Formulate CAPI
commands to send
MLM server

CAPI_alloc_cmd()
CAPI_alloc_string()
CAPI_alloc_substring()
CAPI_alloc_attrlist()

Allocates CAPI command structure
Allocates CAPI stringlist structure
Allocates CAPI string sublist
Allocates attribute structure linked into list

Formulate match,
order, and number
clauses for sending
to MLM server

CAPI_alloc_match_binary()
CAPI_alloc_match_unary()
CAPI_alloc_match_object()
CAPI_alloc_match_literal()
CAPI_alloc_order()
CAPI_alloc_number()

Allocates element of MATCH clause list
Allocates element of MATCH clause list
Allocates element of MATCH clause list
Allocates element of MATCH clause list
Allocates element of ORDER clause list
Allocates element of NUMBER clause list

Find attribute in list CAPI_find_attr()
CAPI_find_attr_byvalue()

Return first instance of argument in arg list
Return first match of argument in arg list

CAPI command CAPI_send() Send CAPI command to MLM server

Free CAPI command CAPI_free() Deallocates CAPI command structure

Close session with
MLM server

CAPI_conclude_session() Ends session with a specific MLM server,
including memory deallocation

Table 4-1 ADI and ADI/R Lexical Library Routines

Purpose of Activity CAPI Function Short Description

50

Chapter 4: Programming the C Interface

Defined Tokens List

This section documents the predefined strings that are relevant to CAPI programming.

Cartridge Form Factors

Table 4-2 shows a list of predefined cartridge form factors.

Cartridge Types

Table 4-3 shows tokens used to describe media inside a cartridge.

Table 4-2 Predefined Cartridge Form Factor Tokens

Token Description or Usage

8mm Any generic 8 mm shell

3480 For example: IBM 3480/3490/3495, STK 4480/4490, and so forth

DLT Digital linear tape (Quantum)

DAT 4 mm digital audio tape (DDS1 and DDS2)

D2-S Small DST cartridges (25 GB capacity)

D2-M Medium DST cartridges (75 GB capacity)

D2-L Large DST cartridges (165 GB capacity)

DTF 20 GB cartridges from Sony

VHS For example: Metrum

QIC Quarter inch cartridge

CD-ROM Compact disk read-only memory

Table 4-3 Predefined Media Type Tokens

Token Product Name or Description

8mm-12m 12 meter 8 mm

8mm-60m 60 meter 8 mm

8mm-90m 90 meter 8 mm

8mm-112m 112 meter 8 mm

Defined Tokens List

51

Media Bit Formats

The format of bits recorded on media is independent of external cartridge appearance.
One well-known case is the Exabyte 8200 versus Exabyte 8500 format, both being
recorded on 8 mm media.

8mm-160m 160 meter 8 mm

mammoth Exabyte mammoth

3480 IBM 3480

3490 IBM 3490

3490E IBM 3490E

3495 IBM Magstar native

4480 STK Timberline native

4490 STK Redwood native

DLT2000 Quantum DLT2000

DLT2000XT Quantum DLT2000XT

DLT4000 Quantum DLT4000

DLT7000 Quantum DLT7000

DDS1 DAT 60 meter

DDS2 DAT 90 meter

DDS3 DAT 120 meter

D2-S Ampex DST-310 small format

D2-M Ampex DST-310 medium format

D2-L Ampex DST-310 165GB large format

DTF Sony GY-10

QIC Quarter-inch cartridge tape

ISO9660 CD-ROM

Table 4-3 Predefined Media Type Tokens

Token Product Name or Description

52

Chapter 4: Programming the C Interface

Table 4-4 shows tokens for each bit format, what form factors use it, and a description of
how the format is generated.

Table 4-4 Predefined Bit Format Tokens

Token Form Factor Description

8200 8 mm Exabyte 8200 native

8200c 8 mm Exabyte 8200 compressed

8500 8 mm Exabyte 8500 native

8500c 8 mm Exabyte 8500 compressed

mammoth 8 mm Exabyte mammoth native

mammothc 8 mm Exabyte mammoth compressed

3480 3480 3480 native

3490 3480 3490 native

3490E 3480 3490E native

3495 3480 IBM Magstar native

4480 3480 STK Timberline native

4490 3480 STK Redwood native

DLT2000 DLT DLT2000 native

DLT2000c DLT DLT2000 compressed

DLT4000 DLT DLT4000 native

DLT4000c DLT DLT4000 compressed

DLT7000 DLT DLT7000 native

DLT7000c DLT DLT7000 compressed

DDS1 DAT Digital data storage 1.3 GB

DDS2 DAT Digital data storage 2.0 GB

DDS3 DAT Digital data storage 4.0 GB

D2 D2-[SML] Ampex® DST-310

DTF DTF Sony GY-10

QIC80 QIC Quarter-inch cartridge 80 MB

QIC100 QIC Quarter-inch cartridge 100 MB

QIC150 QIC Quarter-inch cartridge 150 MB

Defined Tokens List

53

Drive Capabilities

OpenVault assumes that there is a default set of drive capabilities. Table 4-5 shows the
tokens that describe changes from a standard drive.

Drive capabilities are entirely extensible, so this list is not exhaustive.

QIC525 QIC Quarter-inch cartridge 525 MB

QIC1024 QIC Quarter-inch cartridge 1024 MB

ISO9660 CD-ROM DOS-like (8.3) filesystem on CD-ROM

Table 4-5 Predefined Mount Tokens

Token Description

read The mount point does not allow writing to the media

write The mount point allows writing to the media

rewind Rewind the media on close of the mount point

compression Attempt compression of the data stream

fixedblock Blocks on the media are a fixed size

variable Blocks on the media are variable sized

status A status-only mount point is also created (in a directory created for the session)

audio Mount point allows playing audio data from media (often unimplemented)

Table 4-4 (continued) Predefined Bit Format Tokens

Token Form Factor Description

54

Chapter 4: Programming the C Interface

Partition Names

The ADI interface assumes that there is a standard set of names used for partitioned
media. Table 4-6 shows the tokens used for naming partitions.

Attribute Names

Table 4-7 shows attributes used in OpenVault, where they are used, and what they mean.

Table 4-6 Predefined Partition Name Tokens

Token Description

PART 1 The first partition on the media. For magneto-optical or two-sided optical
disc, this would be side one or side A.

PART 2 The second partition on the media. On linear media such as a tape, PART 2
immediately follows PART 1. On non-linear media such as a disk, PART 2 is
the second-lowest numbered or lettered partition. Note that PART 2 does not
refer to the next partition that is in use, it refers to the next partition.

Table 4-7 Predefined Attribute Name Tokens

Attribute Name Where Used Possible Values Required? Description

ReadBandwidth ADI config
command,
perf clause

numeric, in
bytes per
second

yes The total effective bandwidth
that an application should be
able to sustain when reading
from that drive using the given
capability set.

WriteBandwidth ADI config
command,
perf clause

numeric, in
bytes per
second

yes The total effective bandwith
that an application should be
able to sustain when writing to
that drive using the given
capability set.

Capacity ADI config
command,
perf clause

numeric, in
bytes

yes The total storage capacity of the
cartridge that an application
should be able to expect when
accessing that drive using the
given capability set.

Defined Tokens List

55

BlockSize ADI config
command,
perf clause

numeric, in
bytes

yes The I/O size that would best
use the drive/cartridge
combination with that drive
with the given capability set.

LoadTime ADI config
command,
perf clause

numeric, in
seconds

yes The number of seconds
between the time a cartridge is
first inserted into a drive and
the time that the drive is ready
to read/write data.

SlotTypeName ADI config
command,
config
clause

Cartridge
FormFactor
token (see
Table 4-2)

yes A supported form factor when
the drive is using the given
capability set.

CartridgeTypeName ADI config
command,
config
clause

MediaType
token

yes A supported media type,
usually indicating tape length.

BitFormat ADI config
command,
config
clause

Bit Format
token

yes A supported recording format
when the drive is using the
given capability set.

NominalLoad ALI config
command,
perf clause

numeric, in
seconds

yes Approximate time it takes for
the library to move a cartridge
from its home location to a
drive, or back, not including
drive load/unload time. This is
analogous to “nominal seek
time” of a disk drive.

It is defined as the total real time
to execute a large number of
cartridge move-load operations
randomly spread through the
physical space of a library,
divided by the number of such
operations performed.

Table 4-7 (continued) Predefined Attribute Name Tokens

Attribute Name Where Used Possible Values Required? Description

57

Appendix A

A. Error Messages

This appendix lists error messages for AAPI, of which CAPI messages are a subset.

AAPI Error Messages and Commands

Table A-1 shows AAPI errors with commands that can encounter them.

Table A-1 Error Messages for AAPI and CAPI

Error Message Originating Commands

duplicate object name create
rename

unknown object name show
attribute
delete
rename
mount
unmount

cannot meet “match” specification show
create
delete
attribute
mount
unmount

cannot meet “mountMode” specification mount

read-only attribute attribute

reserved attribute name attribute

58

Appendix A: Error Messages

AAPI Command Error Messages

Table A-2 shows AAPI commands with the error messages they can produce.

Table A-2 AAPI Commands and Their Error Messages

Command Error Messages

show cannot meet “match” specification
unknown object name

attribute cannot meet “match” specification
read-only attribute
reserved attribute name
unknown object name

create cannot meet “match” specification
duplicate object name

delete unknown object name

rename duplicate object name
unknown object name

mount cannot meet “match” specification
cannot meet “mountMode” specification
volume mounted
unknown object name

unmount cannot meet “match” specification
volume not mounted
unknown object name

59

Appendix B

B. Syntax Specification

This appendix documents AAPI and CAPI syntax, expressed in abstract form. Words in
bold font represent literals, as do square brackets and semicolons. Words in regular font
are substitutable syntax elements.

AAPI Language Syntax

Table B-1 provides a syntax specification for the AAPI language; the CAPI language is a
subset of AAPI.

Table B-1 AAPI and CAPI Language Syntax

Syntactic Element Valid Syntax Statements

commands goodbyeStmt
attachStmt
detachStmt
allocateStmt
deallocateStmt
renameStmt
rejectStmt
mountStmt
unmountStmt
attributeStmt
showStmt
cancelStmt
responseStmt
createStmt
deleteStmt
injectStmt
ejectStmt
moveStmt
forgetStmt

goodbyeStmt goodbye task [string] ;

60

Appendix B: Syntax Specification

attachStmt attach attachArgs ;

attachArgs /* empty */
task [string] attachArgs
match [baseMatchSpec] attachArgs
order [orderSpec] attachArgs
report [listOfObjRefs] attachArgs
reportmode [reportMode] attachArgs

detachStmt detach detachArgs ;

detachArgs /* empty */
task [string] detachArgs
report [listOfObjRefs] detachArgs
reportmode [reportMode] detachArgs

allocateStmt allocate allocateArgs ;

allocateArgs /* empty */
task [string] allocateArgs
volname [listOfStrings] allocateArgs
match [baseMatchSpec] allocateArgs
order [orderSpec] allocateArgs
number [numberSpec] allocateArgs
report [listOfObjRefs] allocateArgs
reportmode [reportMode] allocateArgs

deallocateStmt deallocate deallocateArgs ;

deallocateArgs /* empty */
task [string] deallocateArgs
volname [listOfStrings] deallocateArgs
match [baseMatchSpec] deallocateArgs
order [orderSpec] deallocateArgs
number [numberSpec] deallocateArgs
report [listOfObjRefs] deallocateArgs
reportmode [reportMode] deallocateArgs

rejectStmt reject rejectArgs ;

Table B-1 (continued) AAPI and CAPI Language Syntax

Syntactic Element Valid Syntax Statements

AAPI Language Syntax

61

rejectArgs /* empty */
task [string] rejectArgs
volname [listOfStrings] rejectArgs
text [listOfStrings] rejectArgs
match [baseMatchSpec] rejectArgs
order [orderSpec] rejectArgs
number [numberSpec] rejectArgs
report [listOfObjRefs] rejectArgs
reportmode [reportMode] rejectArgs

renameStmt rename renameArgs ;

renameArgs /* empty */
task [string] renameArgs
newvolname [string] renameArgs
volname [listOfStrings] renameArgs
match [baseMatchSpec] renameArgs
order [orderSpec] renameArgs
number [numberSpec] renameArgs
report [listOfObjRefs] renameArgs
reportmode [reportMode] renameArgs

mountStmt mount mountArgs ;

mountArgs /* empty */
task [string] mountArgs
volname [listOfStrings] mountArgs
match [baseMatchSpec] mountArgs
order [orderSpec] mountArgs
number [numberSpec] mountArgs
report [listOfObjRefs] mountArgs
reportmode [reportMode] mountArgs
mountmode [listOfTexts] mountArgs
type [objectName] mountArgs

unmountStmt unmount unmountArgs ;

Table B-1 (continued) AAPI and CAPI Language Syntax

Syntactic Element Valid Syntax Statements

62

Appendix B: Syntax Specification

unmountArgs /* empty */
task [string] unmountArgs
volname [listOfStrings] unmountArgs
match [baseMatchSpec] unmountArgs
order [orderSpec] unmountArgs
number [numberSpec] unmountArgs
report [listOfObjRefs] unmountArgs
reportmode [reportMode] unmountArgs

attributeStmt attribute attributeArgs ;

attributeArgs /* empty */
task [string] attributeArgs
volname [listOfStrings] attributeArgs
match [baseMatchSpec] attributeArgs
order [orderSpec] attributeArgs
number [numberSpec] attributeArgs
report [listOfObjRefs] attributeArgs
reportmode [reportMode] attributeArgs
set [objectRef string] attributeArgs
unset [objectRef] attributeArgs

showStmt show showArgs ;

showArgs /* empty */
task [string] showArgs
volname [listOfStrings] showArgs
match [baseMatchSpec] showArgs
order [orderSpec] showArgs
number [numberSpec] showArgs
report [listOfObjRefs] showArgs
reportmode [reportMode] showArgs

cancelStmt cancel cancelArgs ;

cancelArgs /* empty */
task [string] cancelArgs
match [baseMatchSpec] cancelArgs
order [orderSpec] cancelArgs
number [numberSpec] cancelArgs
report [listOfObjRefs] cancelArgs
reportmode [reportMode] cancelArgs

Table B-1 (continued) AAPI and CAPI Language Syntax

Syntactic Element Valid Syntax Statements

AAPI Language Syntax

63

responseStmt response responseArgs ;

responseArgs /* empty */
whichtask [string] responseArgs
accepted responseArgs
unacceptable responseArgs
success responseArgs
error [string] responseArgs
cancelled responseArgs
text [listOfStrings] responseArgs

createStmt create createArgs ;

createArgs /* empty */
task [string] createArgs
type [objectName] createArgs
set [objectRef string] createArgs
report [listOfObjRefs] createArgs
reportmode [reportMode] createArgs

deleteStmt delete deleteArgs ;

deleteArgs /* empty */
task [string] deleteArgs
type [objectName] deleteArgs
match [baseMatchSpec] deleteArgs
order [orderSpec] deleteArgs
number [numberSpec] deleteArgs
report [listOfObjRefs] deleteArgs
reportmode [reportMode] deleteArgs

injectStmt inject injectArgs ;

injectArgs /* empty */
task [string] injectArgs
match [baseMatchSpec] injectArgs
order [orderSpec] injectArgs
number [numberSpec] injectArgs
report [listOfObjRefs] injectArgs
reportmode [reportMode] injectArgs

ejectStmt eject ejectArgs ;

Table B-1 (continued) AAPI and CAPI Language Syntax

Syntactic Element Valid Syntax Statements

64

Appendix B: Syntax Specification

ejectArgs /* empty */
task [string] ejectArgs
match [baseMatchSpec] ejectArgs
order [orderSpec] ejectArgs
number [numberSpec] ejectArgs
report [listOfObjRefs] ejectArgs
reportmode [reportMode] ejectArgs

moveStmt move moveArgs ;

moveArgs /* empty */
task [string] moveArgs
fromslot [string] moveArgs
frompcl [string] moveArgs
toslot [string] moveArgs
match [baseMatchSpec] moveArgs
order [orderSpec] moveArgs
number [numberSpec] moveArgs
report [listOfObjRefs] moveArgs
reportmode [reportMode] moveArgs

forgetStmt forget forgetArgs ;

forgetArgs /* empty */
task [string] forgetArgs
match [baseMatchSpec] forgetArgs
order [orderSpec] forgetArgs
number [numberSpec] forgetArgs
report [listOfObjRefs] forgetArgs
reportmode [reportMode] forgetArgs

orderSpec orderSpecOne orderSpecMore

orderSpecMore orderSpecOne orderSpecMore
/* empty */

orderSpecOne orderOpSpec (orderMultiSpec

orderMultiSpec matchSpec orderMultiSpecMore

orderMultiSpecMore matchSpec orderMultiSpecMore)

Table B-1 (continued) AAPI and CAPI Language Syntax

Syntactic Element Valid Syntax Statements

AAPI Language Syntax

65

orderOpSpec strLoHi
strHiLo
numLoHi
numHiLo

baseMatchSpec unaryOpSpec (matchSpec)
binaryOpSpec (matchSpec matchSpec)
multiOpSpec (matchMultiSpec

matchSpec baseMatchSpec
objectRef
string
number

matchMultiSpec matchSpec matchMultiSpecMore

matchMultiSpecMore matchSpec matchMultiSpecMore)

unaryOpSpec isAttr
noAttr
not

binaryOpSpec regx
streq
strne
strlt
strle
strgt
strge
numeq
numne
numlt
numle
numgt
numge

multiOpSpec and
or

numberSpec numberSpecDouble numberSpecMore
numberSpecSingle numberSpecMore

Table B-1 (continued) AAPI and CAPI Language Syntax

Syntactic Element Valid Syntax Statements

66

Appendix B: Syntax Specification

numberSpecMore numberSpecDouble numberSpecMore
numberSpecSingle numberSpecMore
/* empty */

numberSpecOne number
FIRST

numberSpecDouble numberSpecOne .. number
numberSpecOne .. LAST

numberSpecSingle numberSpecOne
LAST

listOfObjRefs objectRef listOfObjRefs
/* empty */

objectRef objectName . string

Table B-1 (continued) AAPI and CAPI Language Syntax

Syntactic Element Valid Syntax Statements

AAPI Language Syntax

67

objectName AI
APPLICATION
BAY
CARTRIDGE
CARTRIDGEGROUP
CARTRIDGEGROUPAPPLICATION
CARTRIDGETYPE
CONNECTION
DCP
DCPCAPABILITY
DRIVE
DRIVEGROUP
DRIVEGROUPAPPLICATION
LCP
LIBRARY
MOUNTLOGICAL
MOUNTPHYSICAL
PARTITION
REQUEST
SESSION_TABLE
SIDE
SLOT
SLOTCONFIG
SLOTTYPE
SYSTEM
VOLUME

reportMode name
namevalue
value
unique
name unique
unique name
namevalue unique
unique namevalue
value unique
unique value

listOfTexts text [listOfStrings] listOfTexts
/* empty */

Table B-1 (continued) AAPI and CAPI Language Syntax

Syntactic Element Valid Syntax Statements

68

Appendix B: Syntax Specification

CAPI Language Differences

The following AAPI commands are not available at the CAPI program interface level:

• move relocates a cartridge from one slot in a library to another.

• inject allows the operator to insert a cartridge into a library.

• eject pushes a cartridge out of a library into the operator’s hand.

• allocate associates volume names with a cartridge group.

• deallocate disassociates volume names with a cartridge group.

• forget deletes volumes from the list known to the MLM server.

• create establishes an object in the persistent store.

• delete removes an object from the persistent store.

listOfStrings string listOfStrings
/* empty */

number A set of digits [-][0-9]+ that resolves to a 32-bit
signed integer.

string A string of characters ≤ 65536 bytes long,
surrounded by quotes.

Table B-1 (continued) AAPI and CAPI Language Syntax

Syntactic Element Valid Syntax Statements

69

Glossary

AAPI and AAPI/R

Administrative application programming interface and administrative API response,
languages for communicating between OpenVault administrative applications and the
media library manager (MLM) server.

barcode

A machine-readable representation of a physical cartridge label (PCL).

barcode reader

A laser-optical reader that scans a barcode and then uses logic to translate from a scanned
barcode to a human-readable representation, such as volume serial number.

bay

A physical grouping of slots in a common unit of housing where cartridges are stored.
Usually a bay contains storage locations for cartridges, optional drives, and one or more
transfer agents to move cartridges around.

cartridge

A cartridge is the unit of physical operation and management within a library. A
cartridge contains one or more pieces of media, and has a certain form factor. The most
common forms of cartridge are for magnetic tape and laser- or magneto-optical disk.

CAPI and CAPI/R

Client application programming interface and client API response, languages for
communicating between OpenVault client applications and the media library manager
(MLM) server.

drive

A magnetic or optical device for accessing media inside a cartridge mounted in a slot.

MLM server

The mediator between OpenVault applications and library or drive control programs.

70

Glossary

partition

A region on the recording surface of a piece of media that has a physical beginning and
ending that can be accessed by a drive. Typically, each piece of media has a single
partition, which spans the entire recordable surface of the media. However, there are
drives that support partitioning of this recordable surface, such as DDS2 and D2 tape,
such that a single piece of media may contain multiple partitions.

PCL (physical cartridge label)

Some form of identification on the outside of the cartridge, as opposed to being stored on
media inside the cartridge. A PCL may contain a machine-readable label (barcode), but
it must also contain a human-readable text portion.

port

A door or opening where cartridges may be inserted into or removed from the library.

removable media library

A robotic device (usually) with storage slots and drives for accessing multiple cartridges.

side

For tape cartridges containing one piece of recording media, with all recording surfaces
accessible when loaded in a drive, the cartridge contains one side. For a multi-sided
cartridge, access to a side requires that the cartridge be mounted in a drive with a
particular orientation (for side A of optical disk, the cartridge must be positioned for
mount with side A up).

slot

A storage location for a cartridge, with a form factor that determines which kinds of
cartridges it can hold.

slotmap

A persistent table associated with a single library. For each cartridge contained by that
library, this table maps the physical cartridge label (PCL) to a slot within the library.

71

B

Bay object, 17
BitFormat attribute, 55
bit format tokens, 51
BlockSize attribute, 55

C

Capacity attribute, 54
CAPI, 49
CAPI (client API), 4, 6
CAPI language syntax, 59

AAPI differences, 68
Cartridge Group Application object, 18
Cartridge Group object, 18
cartridge naming conventions, 5
Cartridge object, 18
CartridgeTypeName attribute, 55
Cartridge Type object, 19
cartridge type tokens, 50
character set for AAPI and CAPI, 27
Client Connection object, 19
command element ordering, 28
command-line interface to OpenVault, 10
command phases, 12
commands and their error messages, 58
command sequencing for CAPI and AAPI, 16

A

AAPI (administrative API), 4, 6
AAPI language syntax, 59

CAPI differences, 68
ack command phase, 12
ADI (abstract drive interface), 4, 9
ADI lexical functions

ADI_acknowledge(), 48
ADI_free(), 48, 49
ADI_receive(), 48

ADIR lexical functions
ADIR_alloc_*(), 49
ADIR_initiate_session(), 48, 49

administrative interface, 10
ALI (abstract library interface), 4, 7
allocate—AAPI command, 35
“and” match keyword, 43
Application Instance object, 17
Application object, 17
architecture of OpenVault, 3
attach—AAPI and CAPI command, 29
attribute—AAPI and CAPI command, 33
attributes of OpenVault objects, 17
audience type, xiii
authentication requests to MLM, 12

Index

72

Index

communication paths and methods, 5
communication protocols, 11
content overview, xiii
create—AAPI command, 36

D

database manipulation commands, 27
data command phase, 12
DCP (drive control program), 4
deallocate—AAPI command, 35
defined tokens list, 50
delete—AAPI command, 37
detach——AAPI and CAPI command, 29
device control commands, 27
drive capability tokens, 53
Drive Control Program Capability object, 19
Drive Control Program Capability String object, 20
Drive Control Program object, 19
Drive Group Application object, 21
Drive Group object, 20
Drive object, 20

E

eject—AAPI command, 32
error messages by command, 57
examples of AAPI commands, 44

F

field name in object type, 38
forget—AAPI command, 36
function oriented commands, 26

functions
CAPI lexical library, 48

G

goodbye—AAPI and CAPI command, 29

H

hello—AAPI and CAPI command, 28

I

inject—AAPI command, 32
intended audience, xiii
IPC layer, 14

source code for DCP, 47
isAttr match keyword, 42

L

language syntax for AAPI and CAPI, 59
LCP (library control program), 4
Library Control Program object, 21
Library object, 21
library routines

CAPI lexical functions, 48
LoadTime attribute, 55
Logical Mount object, 22

M

match operator, 39
media bit format tokens, 51

73

Index

media cartridge type tokens, 50
middleware, OpenVault as, 2
MLM (media library manager), 4
mount—AAPI and CAPI command, 29
move—AAPI command, 31

N

noAttr match keyword, 42
NominalLoad attribute, 55
number operator, 40
numXX match keyword, 43

O

objects and their attributes, 17
object type and field name, 38
operation model for CAPI and AAPI, 16
operator evaluation order, 37
ordering of command elements, 28
order operator, 39
“or” match keyword, 43
over-the-wire layer, protocols, 14
overview of contents, xiii
overview of OpenVault, 1

P

parser and generator layer, 14
source code for DCP, 48

partition name tokens, 54
Partition object, 22
persistent storage, 4, 15
Physical Mount object, 22

Q

quoting conventions, 28

R

ReadBandwidth attribute, 54
regex match keyword, 43
reject—AAPI and CAPI command, 31
relationships between objects, 26
rename—AAPI and CAPI command, 34
report and reportMode operators, 41
Request object, 23
response error, 44
response success, 44

S

security model for OpenVault, 26
semantic layer, protocols, 14
semantics of syntax elements, 37
session management commands, 27
Session object, 23
show—AAPI and CAPI command, 33
Side object, 24
Slot Configuration object, 24
Slot object, 24
SlotTypeName attribute, 55
Slot Type object, 24
strXX match keyword, 43
syntax of AAPI and CAPI commands, 59
System Attributes object, 25

74

Index

T

TCP/IP layer, protocols, 14, 15
tertiary storage applications, 1
text operator, 42
typographic conventions, xiv

U

umsh command, user mount shell, 10
unmount—AAPI and CAPI command, 30
usefulness of OpenVault, 2

V

version negotiation language, 11
volname operator, 38
Volume object, 25

W

WriteBandwidth attribute, 54

Tell Us About This Manual

As a user of Silicon Graphics products, you can help us to better understand your needs
and to improve the quality of our documentation.

Any information that you provide will be useful. Here is a list of suggested topics:

• General impression of the document

• Omission of material that you expected to find

• Technical errors

• Relevance of the material to the job you had to do

• Quality of the printing and binding

Please send the title and part number of the document with your comments. The part
number for this document is 007-3216-002.

Thank you!

Three Ways to Reach Us

• To send your comments by electronic mail, use either of these addresses:

– On the Internet: techpubs@sgi.com

– For UUCP mail (through any backbone site): [your_site]!sgi!techpubs

• To fax your comments (or annotated copies of manual pages), use this
fax number: 650-932-0801

• To send your comments by traditional mail, use this address:

Technical Publications
Silicon Graphics, Inc.
2011 North Shoreline Boulevard, M/S 535
Mountain View, California 94043-1389

