
Performance Co-Pilot™
Programmer’s Guide

Document Number 007-3434-002

Performance Co-Pilot™ Programmer’s Guide
Document Number 007-3434-002

CONTRIBUTORS

Engineering and written contributions by David Chatterton, Mark Goodwin,
Ken McDonell, Ania Milewska, Nathan Scott, and Tim Shimmin

Edited by Bill Tuthill
Production by Allen Clardy

© 1996-1998, Silicon Graphics, Inc.— All Rights Reserved
This document contains proprietary and confidential information of Silicon
Graphics, Inc. The contents of this document may not be disclosed to third parties,
copied, or duplicated in any form, in whole or in part, without the prior written
permission of Silicon Graphics, Inc.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure of the technical data contained in this document by
the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS 52.227-7013
and/or in similar or successor clauses in the FAR, or in the DOD or NASA FAR
Supplement. Unpublished rights reserved under the Copyright Laws of the United
States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd.,
Mountain View, CA 94043-1389.

OpenGL, Silicon Graphics and the Silicon Graphics logo are registered trademarks,
and IRIX, Performance Co-Pilot, and XFS are trademarks of Silicon Graphics, Inc.
MIPS is a registered trademark of MIPS Technologies, Inc.

Cisco is a registered trademark of Cisco Systems, Inc.
UNIX is a registered trademark in the United States and many other countries,
licensed exclusively through X/Open Company Ltd.
X Window System is a trademark of the Massachusetts Institute of Technology.

iii

Contents

List of Figures ix

List of Tables xi

About This Guide xiii
Intended Audience xiii
What This Guide Contains xiii
Resources for Further Information xiv
Conventions Used in This Guide xiv

1. Programming Performance Co-Pilot 1
Introduction 1
Performance Co-Pilot Architecture 2

Distributed Collection 3
Namespace 5

Distributed PMNS 5
Retrospective Sources of Performance Metrics 6

PMDA Development 6
Building a PMDA 7

The In-Process (DSO) Method 7
The Daemon Process Method 8
The Shell Process Method 8

Client Development and PMAPI 8

2. Writing a PMDA 9
Implementing a PMDA 9

Procedure Checklist 10

iv

Contents

PMDA Architecture 10
Overview 11
DSO PMDA 11

Example—Install Simple PMDA as a DSO 12
Daemon PMDA 13

Example—Install Simple PMDA as a Daemon 14
Caching PMDA 14

Domains, Metrics, and Instances 15
Overview 15
Domains 16
Metrics 17

Data Structures 17
Example—A Single Metric, the Trivial PMDA 19
Semantics 19
Example—The effect of semantics on a metric 20

Instances 20
N Dimensional Data 20
Data Structures 21
Example—Several Metrics and an Instance Domain, the Simple PMDA 22

Extracting the Information 24
Latency and Threads of Control 24
Namespace 25

Example—pmns File for the Simple PMDA 25
PMDA Help Text 26

Example—Help Text for the Simple PMDA 26
Management of Evolution Within a PMDA 27

Contents

v

DSO Interface 29
Overview 29

Example—trivial_fetchCallBack in the Trivial PMDA 30
Example—simple_fetchCallBack in the Simple PMDA 30
Example—simple_store in the Simple PMDA 33

PMDA Structures 35
pmdaInterface 35
pmdaExt 36

Initializing a PMDA 37
Overview 37
Common Initialization 37

Example—trivial_init in the Trivial PMDA 38
Example—simple_init in the Simple PMDA 38

Daemon Initialization 39
Example—main in the Simple PMDA 39

Testing and Debugging a PMDA 40
Overview 40
Debugging Information 41

Example—Log Stores Into simple.numfetch in the Simple PMDA 41
dbpmda Debug Utility 42
Performance Instrumentation and Tracing 42

Integration of PMDA 43
Installing a PMDA 43

Example—PMDA Install Scripts 46
Upgrading a PMNS to Include Metrics From a New PMDA 47
Removing a PMDA 47

Example—PMDA Remove Scripts 47
Configuring PCP Tools 47

3. PMAPI—The Performance Metrics API 49
Naming and Identifying Performance Metrics 50
Performance Metric Instances 51
Current PMAPI Context 52
Performance Metric Descriptions 53

vi

Contents

Performance Metrics Values 56
General Issues of PMAPI Programming Style and Interaction 58

Variable Length Argument and Results Lists 58
PMAPI Error Handling 59

Contents

vii

PMAPI Procedural Interface 59
PMAPI Name Space Services 60

pmGetChildren 60
pmGetChildrenStatus 60
pmGetPMNSLocation 61
pmLoadNameSpace 61
pmLookupName 61
pmNameID 62
pmTraversePMNS 62
pmTrimNameSpace 62
pmUnloadNameSpace 63

PMAPI Metric Description Services 63
pmLookupDesc 63
pmLookupText 63
pmLookupInDomText 64

PMAPI Instance Domain Services 64
pmGetInDom 64
pmLookupInDom 65
pmNameInDom 65

PMAPI Context Services 65
pmNewContext 67
pmDestroyContext 67
pmDupContext 68
pmUseContext 68
pmWhichContext 68
pmAddProfile 68
pmDelProfile 69
pmSetMode 69
pmReconnectContext 71

PMAPI Metrics Services 72
pmFetch 72
pmFreeResult 73
pmStore 74

PMAPI Archive-Specific Services 74
pmGetArchiveLabel 74
pmGetArchiveEnd 75
pmGetInDomArchive 75
pmLookupInDomArchive 76
pmNameInDomArchive 76
pmFetchArchive 76

Time Control Services 77
PMAPI Ancillary Support Services 77

pmErrStr 77
pmExtractValue 78
pmConvScale 79
pmUnitsStr 80
pmIDStr 80
pmInDomStr 80
pmTypeStr 81
pmAtomStr 81
pmPrintValue 81
pmSortInstances 82

PMAPI Programming Issues and Examples 83
Symbolic Association Between a Metric’s Name and Value 83
Initializing New Metrics 84
Iterative Processing of Values 85
Accommodating Program Evolution 85
Handling PMAPI Errors 86
Compiling and Linking PMAPI Applications 87

A. Acronyms 89

Index 91

ix

List of Figures

Figure 1-1 PCP Global Process Architecture 3
Figure 1-2 Process Structure for Distributed Operation 4
Figure 1-3 Architecture for Retrospective Analysis 6
Figure 3-1 A Structured Result for Performance Metrics From pmFetch 56

xi

List of Tables

Table 2-1 Variables to Control Behavior of Generic pmdaproc.sh Procedures 44
Table 3-1 Context Components of PMAPI Functions 65
Table 3-2 PMAPI Type Conversion 79
Table A-1 Performance Co-Pilot Acronyms and Their Meanings 89

xiii

About This Guide

This guide describes how to program Performance Co-Pilot™ (PCP), a software package
of advanced performance management applications for the Silicon Graphics® family of
graphical workstations and servers. Performance Co-Pilot provides a systems-level suite
of tools that cooperate to deliver distributed, integrated performance monitoring and
performance management services spanning the hardware platform, the operating
system, service layers, users’ applications, and distributed application architectures.

Intended Audience

This document describes the programming interfaces to Performance Co-Pilot. It is
intended for performance analysts or system administrators who want to extend or
customize performance monitoring tools available with PCP, and also for developers
who need to integrate their applications into the PCP framework. This book is written for
those who are competent with the C programming language, the UNIX operating
system, and the target domain from which the desired performance metrics are to be
extracted. Familiarity with the Performance Co-Pilot tool suite is assumed—refer to the
companion volume Performance Co-Pilot User’s and Administrator’s Guide.

What This Guide Contains

Here is an overview of the material in this book:

• Chapter 1, “Programming Performance Co-Pilot,” contains a thumbnail sketch of
how to program the various PCP components.

• Chapter 2, “Writing a PMDA,” describes how to write Performance Metrics Domain
Agents for the Performance Co-Pilot.

• Chapter 3, “PMAPI—The Performance Metrics API,” describes the interface that
allows you to design custom performance monitoring tools.

• Appendix A, “Acronyms,”contains an explanation of terms and acronyms.

xiv

About This Guide

Resources for Further Information

The companion book titled Performance Co-Pilot User’s and Administrator’s Guide describes
many of the concepts required to understand PCP. The following reference pages
provide useful information for PMDA development: PCPIntro(1), pmcd(1), PMAPI(3),
PMDA(3), and pmdatrace(3).

Several examples of PMDA source are provided with PCP, including the trivial PMDA,
the simple PMDA, and the example txmon PMDA. As their names suggest, they do not
provide any useful metrics; rather, they serve as examples of how to implement a PMDA.
Complete source code for these PMDAs is located in directories under /usr/pcp/pmdas,
some of which are symbolic links to /var/pcp/pmdas. Source code for sample applications
that use the PCP trace library (libpcp_trace) may be found in /var/pcp/demos/trace.

Several include files are relevant:

• /usr/include/pcp/pmapi.h and /usr/include/pcp/pmda.h

• /usr/include/pcp/impl.h (required only for complex or low-level PMDAs)

• /usr/include/pcp/trace.h

The Web site http://www.sgi.com/Products/hardware/challenge/CoPilot is worth
visiting for updates about the product. A PCP tutorial in HTML format is distributed
with the PCP product and may be found in the pcp.man.tutorial subsystem.

Conventions Used in This Guide

The table below lists typographic conventions used in this guide.

Purpose Example

Function or subroutine names Unlike a DSO PMDA, a daemon PMDA has a main routine.

Names of shell commands The pmcd daemon requests and collects performance data.

Titles of manuals See the Performance Co-Pilot User’s and Administrator’s Guide.

Filenames and pathnames Demo programs are in /var/pcp/demos and /var/pcp/pmdas.

What you type (variables in italic) cc -g sourcefile.c -lpcp_pmda -lpcp -lgen

Exact quotes of computer output Error: unknown PMID

Reference page (man page) name See pmcd(1)

1

Chapter 1

1.Programming Performance Co-Pilot

Introduction

Performance Co-Pilot (PCP) provides a systems-level suite of tools that cooperate to
deliver distributed, integrated performance management services. PCP is designed for
the in-depth analysis and sophisticated control that are needed to understand and
manage the hardest performance problems in our most complex systems.

Performance Co-Pilot provides unparalleled power to quickly isolate and understand
performance behavior, resource utilization, activity levels and performance bottlenecks.

Performance data may be collected and exported from multiple sources, most notably
the hardware platform, the IRIX kernel, layered services, and end-user applications.

There are several ways to extend the PCP by programming certain of its components:

• By writing a Performance Metrics Domain Agent (PMDA) to collect performance
metrics from an uncharted performance domain.

• By creating new analysis or visualization tools using documented routines from the
Performance Metrics Application Programming Interface (PMAPI).

• Adding performance instrumentation to an application using the “trace” facilities
of the PCP trace library (libpcp_trace) and the trace PMDA.

These topics are covered in chapters two, three, and four of this manual.

In addition, the topic of customizing a PCP installation is covered in the “Customizing
and Extending the PCP Services” chapter of the companion Performance Co-Pilot User’s
and Administrator’s Guide.

2

Chapter 1: Programming Performance Co-Pilot

Performance Co-Pilot Architecture

This section gives a brief overview of PCP architecture. For an explanation of terms and
acronyms, refer to Appendix A, “Acronyms.”

Performance Co-Pilot consists of several monitoring and collecting tools. Monitoring
tools such as pmchart and pmview visualize metrics but have minimal interaction with
target systems; see pmchart(1) and pmview(1). Collection tools (called PMDAs) extract
performance values from target systems but do not provide graphical user interfaces.

Systems supporting PCP services are broadly classified into two categories:

• Collector: hosts that have the Performance Metrics Collection Daemon (PMCD) and
one or more PMDAs running to collect and export performance metrics.

• Monitor: hosts that import performance metrics from one or more collector hosts to
be consumed by tools to monitor, manage, or record the performance of the
collector hosts.

Each PCP enabled host can operate as a collector, or a monitor, or both.

There are separate node-locked licenses for collector and monitor functions.

Figure 1-1 shows the architecture of PCP. The monitoring tools consume and process
performance data using a public interface, the Performance Metrics Application
Programming Interface (PMAPI).

Below the PMAPI level is the pmcd process, which acts in a coordinating role, accepting
requests from clients, routing requests to one or more PMDAs, aggregating responses
from the PMDAs, and responding to the requesting client.

Each performance metric domain (such as IRIX or some DBMS) has a well-defined
namespace for referring to the specific performance metrics it knows how to collect.

Performance Co-Pilot Architecture

3

Figure 1-1 PCP Global Process Architecture

Distributed Collection

The performance metrics collection architecture is distributed, in the sense that any
monitoring tool may be executing remotely. However, a PMDA is expected to be running
on the system for which it is collecting performance measurements; there are some
notable PMDAs such as Cisco and Array that are exceptions, and collect performance
data from remote systems.

pmcd

PMDA PMDA PMDA

Performance

Metric

Domains
IRIX

DBMS Layered

Monitoring

Tool PMAPI

Monitoring

Tool PMAPI

PMDA

End-User

Service

XYZ

Application

ABC

4

Chapter 1: Programming Performance Co-Pilot

As shown in Figure 1-2, monitoring tools communicate only with pmcd. The PMDAs are
controlled by pmcd and respond to requests from the monitoring tools that are forwarded
by pmcd to the relevant PMDAs on the collection host.

Figure 1-2 Process Structure for Distributed Operation

The host running the monitoring tools does not require any collection tools, including
pmcd, since all requests for metrics are sent to the pmcd process on the collector host.

The connections between monitoring tools and pmcd processes are managed in libpcp,
below the PMAPI level; see PMAPI(3). Connections between PMDAs and pmcd are
managed by the PMDA routines; see PMDA(3). There can be multiple monitor clients
and multiple PMDAs on the one host, but there may be only one pmcd process.

pmcd

PMDA PMDA PMDA PMDA

pmcd

PMDA

Local HostRemote Host

Monitor Monitor Monitor

Performance Co-Pilot Architecture

5

Namespace

Each PMDA provides a domain of metrics, whether they be for IRIX, a database manager,
a layered service, or an application module. These metrics are referred to by name inside
the user interface, and with a numeric Performance Metric Identifier (PMID) within the
underlying PMAPI.

The PMID consists of three fields: the domain, the cluster, and the item number of the
metric. The domain is a unique number assigned to each PMDA. For example, two
metrics with the same domain number must be from the same PMDA. The cluster and
item numbers allow metrics to be easily organized into groups within the PMDA, and
provide a hierarchical taxonomy to guarantee uniqueness within each PMDA.

The Performance Metrics Name Space (PMNS) describes the exported performance
metrics, in particular the mapping from PMID to external name, and vice-versa.

Distributed PMNS

In PCP 1.x releases, the PMNS was required to be local to the application that referred to
PCP metrics by name. As of release 2.0, PMNS operations by default are directed to the
host or archive that is the source of the desired performance metrics.

In Figure 1-2, both pmcd processes would respond to PMNS queries from monitoring
tools by referring to their local PMNS. If different PMDAs were installed on the two
hosts, then the PMNS used by each pmcd would be different, to reflect variations in
available metrics on the two hosts.

Distributed PMNS services necessitated changes to PCP protocols between client
applications and pmcd, and to the internal format of PCP archive files. Release 2.0 is
compatible with earlier releases, so new PCP components operate correctly with either
new or old PCP components. For example, when a PCP 2.0 monitoring tool connects to
PCP 1.x pmcd, or attempts to process a PCP archive created by PCP 1.x pmlogger, the
monitoring tool reverts to using the local PMNS.

The -n namespace option may be used with all PCP monitoring tools to force use of the
local PMNS in preference to the PMNS at the source of the metrics.

6

Chapter 1: Programming Performance Co-Pilot

Retrospective Sources of Performance Metrics

The distributed collection architecture described in the previous section is used when
PMAPI clients are requesting performance metrics from a real-time or live source.

The PMAPI also supports delivery of performance metrics from a historical source in the
form of a PCP archive log. Archive logs are created using the pmlogger utility, and are
“replayed” in an architecture as shown in Figure 1-3.

Figure 1-3 Architecture for Retrospective Analysis

PMDA Development

A collection of Performance Metrics Domain Agents (PMDAs) are provided with PCP to
extract performance metrics. Each PMDA encapsulates domain-specific knowledge and
methods about performance metrics that implement the uniform access protocols and
functional semantics of the PCP. There is one PMDA for the operating system, another
for process specific statistics, one each for common DBMS products, and so on. Thus, the
range of performance metrics can be easily extended by implementing and integrating
new PMDAs. Chapter 2 is a step-by-step guide to writing your own PMDA.

Monitor

PCP Archive Log PCP Archive Log

PMAPI

PMDA Development

7

Once you are familiar with the PCP and PMDA frameworks, you can quickly implement
a new PMDA with only a few data structures and functions. This book contains detailed
discussions of PMDA architecture and the integration of PMDAs into the PCP
framework. This includes integration with pmcd. However, details of extracting
performance metrics from the underlying instrumentation vary from one domain to
another, so are not covered in this book.

A PMDA is responsible for a set of performance metrics, in the sense that it must respond
to requests from pmcd for information about performance metrics, instance domains, and
instantiated values. The pmcd process generates requests on behalf of monitoring tools
that make requests using PMAPI routines.

You can incorporate new performance metrics into the PCP framework by creating a
PMDA, then re-configuring pmcd to communicate with the new PMDA.

Building a PMDA

A PMDA interacts with pmcd across one of several well-defined interfaces and protocol
mechanisms. These implementation options are described in the Performance Co-Pilot
User’s and Administrator’s Guide.

It is strongly recommended that code for a new PMDA should be based on the source of
one of the demonstration PMDAs below the /var/pcp/pmdas directory.

The In-Process (DSO) Method

This method of building a PMDA uses a Dynamic Shared Object (DSO) that is attached
by pmcd, using dlopen, at initialization time. This is the highest performance option
(there is no context switching and no IPC between the pmcd and the PMDA), but is
operationally intractable in some situations. For example, difficulties arise where special
access permissions are required to read the instrumentation behind the performance
metrics, or where the performance metrics are provided by an existing process with a
different protocol interface. The DSO PMDA effectively executes as part of pmcd, so care
is required when crafting a PMDA in this manner.

Also, multiple object code formats for the DSO may be required because pmcd must
execute with the same object code format as the running IRIX kernel. This would be o32
for low-end platforms (IRIX 6.3 and earlier), o32 for low-end platforms (IRIX 6.5 and
later), and n64 for high-end platforms.

8

Chapter 1: Programming Performance Co-Pilot

The Daemon Process Method

Functionally, this method may be thought of as a DSO implementation with a standard
main routine conversion wrapper so communication with pmcd uses message passing
rather than direct procedure calls. (See the file /var/pcp/pmdas/trivial/trivial.c.)

The daemon PMDA is actually the most common, because it allows multiple threads of
control, permits linking with existing dynamic libraries, and provides more resilient
error encapsulation than the DSO method.

The Shell Process Method

This method offers the least performance, but may be well-suited for rapid prototyping
of performance metrics, or for diagnostic metrics that are not going into production.

Implementation of the ASCII protocols is rather lengthy. The suggested approach is to
take the /var/pcp/pmdas/news/news.agent PMDA as an illustrative example, and adapt it
for the particular metrics of interest.

Note: The ASCII protocols have not been extensively used, so their support may be
discontinued in a future PCP release. Newer versions of the PMDA libraries have
dramatically reduced the code development effort required for a new PMDA (either the
DSO or daemon approach), thereby reducing the need for ASCII protocols.

Client Development and PMAPI

Application developers are encouraged to create new PCP client applications to monitor,
display, and analyze performance data in a manner suited to their particular site,
application suite, or information processing environment.

PCP client applications are programmed using the Performance Metrics API (PMAPI),
documented in Chapter 3. The PMAPI provides performance tool developers with
access to all of the distributed services of the Performance Metrics Collection System
(PMCS), and is the interface used by the standard PCP utilities.

Source for a sample PMAPI client may be found in the directory /var/pcp/demos/pmclient.

9

Chapter 2

2.Writing a PMDA

This chapter constitutes a programmer’s guide to writing a Performance Metrics Domain
Agent (PMDA) for Performance Co-Pilot (PCP).

The presentation assumes the developer is using the standard PCP libpcp_pmda library,
as documented in the PMDA(3) and associated reference pages.

Implementing a PMDA

The job of a PMDA is to gather performance data and report them to the Performance
Metrics Collection Daemon (PMCD) in response to requests from PCP monitoring tools
routed to the PMDA via PMCD.

An important requirement for any PMDA is that it have low latency response to requests
from PMCD. Either the PMDA must use a quick access method and a single thread of
control, or it must have asynchronous refresh and two threads of control: one for
communicating with PMCD, the other for updating the performance data.

The PMDA is typically acting as a gateway between the target domain (that is, the
performance instrumentation in an application program or service) and the PCP
framework. The PMDA may extract the information using one of a number of possible
export options that include a shared memory segment or mmap(2) file; a sequential log
file (where the PMDA parses the tail of the log file to extract the information); a snapshot
file (the PMDA re-reads the file as required); or application-specific communication
services (IPC). The choice of export methodology is typically determined by the source
of the instrumentation (the target domain) rather than by the PMDA.

10

Chapter 2: Writing a PMDA

Procedure Checklist

Here are the suggested steps for designing and implementing a PMDA:

1. Determine how to extract the metrics from the target domain.

2. Select an appropriate architecture for the PMDA (daemon or DSO, IPC, sproc(2)).

3. Define the metrics and instances that the PMDA will support.

4. Implement the functionality to extract the metric values.

5. Assign Performance Metric Identifiers (PMIDs) for the metrics, along with names
for the metrics in the Performance Metrics Name Space (PMNS).

6. Specify the help file and control data structures for metrics and instances that are
required by the standard PMDA implementation library routines.

7. Write code to supply the metrics and associated information to PMCD.

8. Implement any PMDA-specific callbacks, and PMDA initialization functions.

9. Exercise and test the PMDA with the purpose-built PMDA debugger; see
dbpmda(1).

10. Install and connect the PMDA to a running pmcd process; see pmcd(1).

11. Configure or develop tools to use the new metrics. For examples of visualization
tools, see pmchart(1), pmgadgets(1) and pmview(1). For examples of alarm tools,
see pmie(1) and pmrules(1).

Where appropriate, define pmlogger(1) configurations suitable for creating PCP
archives containing the new metrics.

PMDA Architecture

This section discusses the two methods of connecting a PMDA to a PMCD process: as a
separate process using some inter-process communication (IPC) protocol, or as a
dynamically attached library (that is, a Dynamic Shared Object or DSO; see the DSO(5)
reference page for more details).

PMDA Architecture

11

Overview

All PMDAs are launched and controlled by the pmcd process on the local host. Requests
from the monitoring tools are received by pmcd and forwarded to the PMDAs.
Responses, when required, are returned through pmcd to the clients. The requests fall into
a small number of categories and the PMDA must handle each request type. For a DSO
PMDA each request type corresponds to a method in the agent. For a daemon PMDA
each request translates to a message or protocol data unit (PDU) that may be sent to a
PMDA from pmcd.

For daemon PMDA the following request PDUs must be supported:

• PDU_FETCH—request for metric values; see pmFetch(3).

• PDU_PROFILE—a list of instances required for the corresponding metrics in
subsequent fetches; see pmAddProfile(3).

• PDU_INSTANCE_REQ—request for a particular instance domain for instance
descriptions; see pmGetInDom(3).

• PDU_DESC_REQ—request for metadata describing metrics; see pmLookupDesc(3).

• PDU_TEXT_REQ—request for metric help text; see pmLookupText(3).

• PDU_RESULT—values to store into metrics; see pmStore(3).

Each PMDA is associated with a unique domain number that is encoded in the domain
field of metric and instance identifiers, and pmcd uses the domain number to determine
which PMDA can handle the components of any given client request.

DSO PMDA

Each PMDA is required to implement a function that handles each of the request types.
By implementing these functions as library routines, a PMDA can be implemented as a
dynamically shared object (DSO) and attached by PMCD at run time with the dlopen
call; see dlopen(3). This eliminates the need for an IPC layer (typically a UNIX pipe)
between each PMDA and pmcd, because each request becomes a function call rather than
a message exchange. The required library routines are detailed in the section “DSO
Interface” on page 29.

12

Chapter 2: Writing a PMDA

A PMDA that interacts with pmcd in this fashion must abide by a formal initialization
protocol so that pmcd can discover the location of the library routines that are
subsequently called with function pointers. When a DSO PMDA is installed, the pmcd
configuration file /etc/pmcd.conf is updated to reflect the domain and name of the PMDA,
the location of the shared object, and the name of the initialization routine. The
initialization sequence is discussed in the section “Initializing a PMDA” on page 37.

Example—Install Simple PMDA as a DSO

As superuser, install the simple PMDA as a DSO and observe the changes in the PMCD
configuration file. The output may differ slightly depending on the other PMDAs you
may have installed.

cd /var/pcp/pmdas/simple
cat /etc/pmcd.conf
Name Id IPC IPC Params File/Cmd
irix 1 dso irix_init libirixpmda.so
pmcd 2 dso pmcd_init pmda_pmcd.so
proc 3 dso proc_init pmda_proc.so
./Install
You will need to choose an appropriate configuration for installation
of the “simple” Performance Metrics Domain Agent (PMDA).

collector collect performance statistics on this system
 monitor allow this system to monitor local and/or remote systems
 both collector and monitor configuration for this system

Please enter c(ollector) or m(onitor) or b(oth) [b] both

Updating the Performance Metrics Name Space (PMNS) ...
Installing pmchart view(s) ...
Install simple as a daemon or dso agent? [daemon] dso
...
Check simple metrics have appeared ... 4 metrics and 6 values
cat /etc/pmcd.conf
Name Id IPC IPC Params File/Cmd
irix 1 dso irix_init libirixpmda.so
pmcd 2 dso pmcd_init pmda_pmcd.so
proc 3 dso proc_init pmda_proc.so
simple 253 dso simple_init pmda_simple.so

As can be seen from the contents of /etc/pmcd.conf, the DSO version of the simple PMDA
is in a library named pmda_simple.so and has an initialization routine called simple_init.
The domain of the simple PMDA is 253, as shown in the column headed Id.

PMDA Architecture

13

Daemon PMDA

A DSO PMDA provides the most efficient communication between the PMDA and
PMCD. However, this approach has some disadvantages resulting from the DSO PMDA
being the same process as pmcd, namely:

• An error or bug that causes a DSO PMDA to exit also causes pmcd to exit.

• There is only one thread of control in pmcd, so a computationally expensive PMDA,
or worse, a PMDA that blocks for I/O, adversely affects the performance of pmcd.

• As the DSO PMDA is opened with dlopen, the PMDA cannot link with any
dynamic libraries other than libc, libpcp, and libpcp_pmda.

• The pmcd daemon runs as root, so any DSO PMDAs also run as root.

Consequently, many PMDAs are implemented as a daemon process.

The libpcp_pmda library is designed to allow simple implementation of a PMDA that
runs as a separate process. The library routines provide a message passing layer acting
as a generic wrapper that accepts PDUs, makes library calls using the standard DSO
PMDA interface, and sends PDUs. Therefore, it is possible to implement a PMDA as a
DSO and then install it as either a daemon or a DSO, depending on the presence or
absence of the generic wrapper.

The pmcd process launches a daemon PMDA with fork and execv, so a pipe can be easily
connected to the PMDA using standard input and output. The pmcd process may also
connect to a daemon PMDA using TCP/IP or UNIX domain sockets; see inet(7) or
unix(7).

14

Chapter 2: Writing a PMDA

Example—Install Simple PMDA as a Daemon

As superuser, install the simple PMDA as a daemon process. As with the previous
example, the output may differ due to other PMDAs already installed.

cd /var/pcp/pmdas/simple
./Install
...
Install simple as a daemon or dso agent? [daemon] daemon
PMCD should communicate with the daemon via pipe or socket? [pipe] pipe
...

cat /etc/pmcd.conf
Name Id IPC IPC Params File/Cmd
irix 1 dso irix_init libirixpmda.so
pmcd 2 dso pmcd_init pmda_pmcd.so
proc 3 dso proc_init pmda_proc.so
simple 253 pipe binary /var/pcp/pmdas/simple/pmdasimple -d 253

The specification for the simple PMDA now states the connection type of pipe to PMCD
and the executable image for the PMDA is /var/pcp/pmdas/simple/pmdasimple, using
domain number 253.

Caching PMDA

When either the cost or latency associated with collecting performance metrics is high,
the PMDA implementer may choose to trade off the currency of the performance data to
reduce the PMDA resource demands or the fetch latency time.

One scheme for doing this is called a caching PMDA, which periodically instantiates
values for the performance metrics and responds to each request from pmcd with the
most recently instantiated (or cached) values, as opposed to instantiating current values
on demand when the PMCD asks for them.

The Cisco PMDA is an example of a caching PMDA; see the contents of the
/var/pcp/pmdas/cisco directory and the pmdacisco(1) reference page.

Domains, Metrics, and Instances

15

Domains, Metrics, and Instances

This section defines metrics and instances, discusses how they should be designed for a
particular target domain, and shows how to implement support for them.

The examples in this section are drawn from the “trivial” and “simple” PMDAs that are
distributed in source format with PCP. Refer to the directories /var/pcp/pmdas/trivial and
/var/pcp/pmdas/simple, respectively.

Overview

Domains are autonomous performance areas, such as the operating system or a layered
service or a particular application. Metrics are raw performance data for a domain, and
typically quantify activity levels, resource utilization or quality of service. Instances are
sets of related metrics, as for multiple processors, or multiple service classes, or multiple
transaction types.

PCP employs the following simple and uniform data model to accommodate the
demands of performance metrics drawn from multiple domains:

• Each metric has an identifier that is unique across all metrics for all PMDAs on a
particular host.

• Externally, metrics are assigned names for user convenience—typically there is a 1:1
relationship between a metric name and a metric identifier.

• The PMDA implementation determines if a particular metric has a singular value or
a set of (zero or more) values. For instance, the metric hinv.ndisk counts the
number of disks and has only one value on a host, whereas the metric
irix.disk.dev.total counts disk I/O operations and has one value for each disk
on the host.

• If a metric has a set of values, then members of the set are differentiated by instances.
The set of instances associated with a metric is an instance domain. For example, the
set of metrics irix.disk.dev.total is defined over an instance domain that has
one member per disk spindle.

16

Chapter 2: Writing a PMDA

The selection of metrics and instances is an important design decision for a PMDA
implementer. The metrics and instances for a target domain should have the following
qualities:

• obvious to a user

• consistent across the domain

• accurately representative of the operational and functional aspects of the domain

For each metric, you should also consider these questions:

• How useful is this value?

• What units give a good sense of scale?

• What name gives a good description of the metric’s meaning?

• Can this metric be combined with another to convey the same useful information?

As with all programming tasks, expect to refine the choice of metrics and instances
several times during the development of the PMDA.

Domains

Each PMDA must be uniquely identified by PMCD so that requests from clients can be
efficiently routed to the appropriate PMDA. The unique identifier, the PMDA’s domain,
is encoded within the metrics and instance domain identifiers so that they are associated
with the correct PMDA, and so that they are unique, regardless of the number of PMDAs
that are connected to the pmcd process.

The default domain number for each PMDA is defined in /var/pcp/pmns/stdpmid. This file
is a simple table of PMDA names and their corresponding domain number. However, a
PMDA does not have to use this domain number—this file is only a guide to help avoid
domain number clashes when PMDAs are installed and activated.

The domain number a PMDA uses is passed to the PMDA by pmcd when the PMDA is
launched. Therefore, any data structures that require the PMDA’s domain number must
be set up when the PMDA is initialized, rather than declared statically. The protocol for
PMDA initialization provides a standard way for a PMDA to implement this run-time
initialization.

Domains, Metrics, and Instances

17

Tip: Although uniqueness of the domain number in the /etc/pmcd.conf control file used
by pmcd(1) is all that is required for successful starting of pmcd and the associated
PMDAs, the developer of a new PMDA is encouraged to add the default domain number
for each new PMDA to the file /var/pcp/pmns/stdpmid; this file acts as a repository for
documenting the known default domain numbers.

Metrics

A PMDA provides support for a collection of metrics. In addition to the obvious
performance metrics, and the measures of time, activity and resource utilization, the
metrics should also describe how the target domain has been configured, as this can
greatly affect the correct interpretation of the observed performance. For example,
metrics that describe network transfer rates should also describe the number and type of
network interfaces connected to the host.

The metrics should also describe how the PMDA has been configured. For example, if the
PMDA was periodically probing a system to measure quality of service, there should be
metrics for the delay between probes, the number of probes attempted, plus probe
success and failure counters. It may also be appropriate to allow values to be stored (see
the pmstore(1) reference page) into the delay metric, so that the delay used by the PMDA
can be altered dynamically.

Data Structures

Each metric must be described in a pmDesc structure; see pmLookupDesc(3):

typedef struct {
 pmID pmid; /* unique identifier */
 int type; /* base data type */
 pmInDom indom; /* instance domain */
 int sem; /* semantics of value */
 pmUnits units; /* dimension and units */
} pmDesc;

This structure contains fields for

• a unique identifier (Performance Metric Identifier or PMID) that differentiates this
metric from other metrics across the union of all PMDAs

• a data type indicator saying whether the format is an integer (32 or 64 bit, signed or
unsigned); float; double; string; or arbitrary aggregate of binary data

18

Chapter 2: Writing a PMDA

• an instance domain identifier that links this metric to an instance domain

• an encoding of the value’s semantics (counter, instantaneous, or discrete)

• a description of the value’s units based on dimension and scale in the three
orthogonal dimensions of space, time, and count (or events)

Symbolic constants of the form PM_TYPE_*, PM_SEM_*, PM_SPACE_*, PM_TIME_*,
and PM_COUNT_*, defined in /usr/include/pcp/pmapi.h, may be used to initialize the
elements of a pmDesc. The type pmID is an unsigned integer that can be safely cast to a
_pmID_int structure, which contains fields defining the metric’s (PMDA’s) domain,
cluster, and item number:

typedef struct {
 int pad:2;
 unsigned int domain:8;
 unsigned int cluster:12;
 unsigned int item:10;
} _pmID_int;

The pad field should be ignored. The domain number should be set at run time when the
PMDA is initialized. The PMDA_PMID macro defined in /usr/include/pcp/pmapi.h can be
used to set the cluster and item fields at compile time, as these should always be known
and fixed for a particular metric.

Note: The three components of the PMID should correspond exactly to the three-part
definition of the PMID for the corresponding metric in the PMNS described in
“Namespace” on page 25.

A table of pmdaMetric structures should be defined within the PMDA, with one structure
per metric. This structure contains a pmDesc structure and a handle that allows
PMDA-specific structures to be associated with each metric:

typedef struct {
 void *m_user; /* for users external use */
 pmDesc m_desc; /* metric description */
} pmdaMetric;

For example, m_user could be a pointer to a global variable containing the metric value,
or a pointer to a function that may be called to instantiate the metric’s value.

Domains, Metrics, and Instances

19

Example—A Single Metric, the Trivial PMDA

The trivial PMDA has only a singular metric (that is, no instance domains):

static pmdaMetric metrictab[] = {
/* time */
 { (void *)0,
 { PMDA_PMID(0,1), PM_TYPE_U32, PM_INDOM_NULL, PM_SEM_INSTANT,
 {0, 1, 0, 0, PM_TIME_SEC, 0} }, }
};

This single metric (trivial.time)

• has a PMID with a cluster of 0 and an item of 1

• is an unsigned 32-bit integer (PM_TYPE_U32)

• has a singular value and hence no instance domain (PM_INDOM_NULL)

• is an instantaneous semantic value (PM_SEM_INSTANT)

• has the dimension “time” and the units “seconds”

Semantics

The metric’s semantics describe how PCP tools should interpret the metric’s value. The
possible semantic types are

• a counter (PM_SEM_COUNTER)

• an instantaneous value (PM_SEM_INSTANT)

• a discrete value (PM_SEM_DISCRETE)

A counter should be a value that monotonically increases (or monotonically decreases,
which is less likely) with respect to time, so that the rate of change should be used in
preference to the actual value. Rate conversion is not appropriate for metrics with
instantaneous values, as the value is a snapshot and there is no basis for assuming any
values that might have been observed between snapshots. Discrete is similar to
instantaneous; however, once observed it is presumed the value will persist for an
extended period, for example, system configuration, static tuning parameters and most
metrics with non-numeric values.

20

Chapter 2: Writing a PMDA

Example—The effect of semantics on a metric

For a given time interval covering six consecutive timestamps, each spanning two units
of time, the following metric values are exported from a PMDA (“N/A” implies no value
is available):

Timestamps: 1 3 5 7 9 11
Value: 10 30 60 80 90 N/A

The default display of the values would be as follows:

Timestamps: 1 3 5 7 9 11
Semantics:
Counter N/A 10 15 10 5 N/A
Instantaneous 10 30 60 80 90 N/A
Discrete 10 30 60 80 90 90

Instances

Singular metrics have only one value and no associated instance domain. Some metrics
contain a set of values that share a common set of semantics for a specific instance, such
as one value per processor, or one value per disk spindle, and so on.

Note: The PMDA implementation is solely responsible for choosing the instance
identifiers that differentiate instances within the instance domain. The PMDA is also
responsible for ensuring the uniqueness of instance identifiers in any instance domain.

N Dimensional Data

Where the performance data can be represented as scalar values (singular metrics) or
one-dimensional arrays or lists (metrics with an instance domain), the PCP framework is
more than adequate. In the case of metrics with an instance domain, each array or list
element is associated with an instance from the instance domain.

To represent two or more dimensional arrays, the coordinates must be one of the
following:

• mapped onto one dimensional coordinates

• enumerated into the Performance Metrics Name Space (PMNS); for details, see
“Naming and Identifying Performance Metrics” on page 50

Domains, Metrics, and Instances

21

For example, this 2 x 3 array of values called M can be represented as instances 1,..., 6 for
a metric M, or as instances 1, 2, 3 for metric M1 and instances 1, 2, 3 for metric M2.

 M[1] M[2] M[3]
 M[4] M[5] M[6]

or

 M1[1] M1[2] M1[3]
 M2[1] M2[2] M2[3]

The PMDA implementer must decide and consistently export this encoding from the
N-dimensional instrumentation to the 1-dimensional data model of the PCP.

In certain special cases (for example, such as for a histogram), it may be appropriate to
export an array of values as raw binary data (the type encoding in the descriptor is
PM_TYPE_AGGREGATE). However, this requires the development of special PMAPI
client tools, because the standard PCP tools have no knowledge of the structure and
interpretation of the binary data.

Data Structures

If the PMDA is required to support instance domains, then for each instance domain the
unique internal instance identifier and external instance identifier should be defined
using a pmdaInstid structure:

typedef struct {
 int i_inst; /* internal instance identifier */
 char *i_name; /* external instance identifier */
} pmdaInstid;

The instance identifier i_inst must be a unique integer within a particular instance
domain.

The complete instance domain description is specified in a pmdaIndom structure:

typedef struct {
 pmInDom it_indom; /* indom, filled in */
 int it_numinst; /* number of instances */
 pmdaInstid *it_set; /* instance identifiers */
} pmdaIndom;

22

Chapter 2: Writing a PMDA

The it_indom element contains a pmInDom that must be unique across every PMDA. The
other fields of the pmdaIndom structure are the number of instances in the instance
domain and a pointer to an array of instance descriptions. The pmInDom can be safely
cast to _pmInDom_int, which specifies the PMDA’s domain and the instance number
within the PMDA:

typedef struct {
 int pad:2;
 unsigned int domain:8; /* the administrative PMD */
 unsigned int serial:22; /* unique within PMD */
} _pmInDom_int;

As with metrics, the PMDA’s domain number is not necessarily known until run time, so
the domain field must be set up when the PMDA is initialized.

An instance domain may also be associated with more than one metric; see pmdaInit(3).

Example—Several Metrics and an Instance Domain, the Simple PMDA

The simple PMDA has four metrics and one instance domain of three instances.

/*
 * list of instances
 */

static pmdaInstid color[] = {
 { 0, “red” }, { 1, “green” }, { 2, “blue” }
};

static pmdaInstid *timenow = NULL;
static unsigned int timesize = 0;

/*
 * list of instance domains
 */

static pmdaIndom indomtab[] = {
#define COLOR_INDOM 0
 { COLOR_INDOM, 3, color },
#define NOW_INDOM 1
 { NOW_INDOM, 0, NULL },
};

/*
 * all metrics supported in this PMDA - one table entry for each
 */

Domains, Metrics, and Instances

23

static pmdaMetric metrictab[] = {
/* numfetch */
 { NULL,
 { PMDA_PMID(0,0), PM_TYPE_U32, PM_INDOM_NULL, PM_SEM_INSTANT,
 { 0,0,0,0,0,0} }, },
/* color */
 { NULL,
 { PMDA_PMID(0,1), PM_TYPE_32, COLOR_INDOM, PM_SEM_INSTANT,
 { 0,0,0,0,0,0} }, },
/* time.user */
 { NULL,
 { PMDA_PMID(1,2), PM_TYPE_DOUBLE, PM_INDOM_NULL, PM_SEM_COUNTER,
 { 0, 1, 0, 0, PM_TIME_SEC, 0 } }, },
/* time.sys */
 { NULL,
 { PMDA_PMID(1,3), PM_TYPE_DOUBLE, PM_INDOM_NULL, PM_SEM_COUNTER,
 { 0, 1, 0, 0, PM_TIME_SEC, 0 } }, },
/* now */
 { NULL,
 { PMDA_PMID(2,4), PM_TYPE_U32, NOW_INDOM, PM_SEM_INSTANT,
 { 0,0,0,0,0,0 } }, },
};

The metric simple.color is associated, via COLOR_INDOM, with the first instance domain
listed in indomtab. PMDA initialization assigns the correct domain portion of the instance
domain identifier in indomtab[0].it_indom and metrictab[1].m_desc.indom. This instance
domain has three instances: red, green, and blue.

The metric simple.now is associated, via NOW_INDOM, with the second instance domain
listed in indomtab. PMDA initialization assigns the correct domain portion of the instance
domain identifier in indomtab[1].it_indom and metrictab[4].m_desc.indom. This instance
domain is dynamic and initially has no instances.

All other metrics are singular, as specified by PM_INDOM_NULL.

In some cases an instance domain may vary dynamically after PMDA initialization (for
example, simple.now), and this requires some refinement of the default routines and data
structures of the libpcp_pmda library. Briefly, this involves providing new routines that act
as wrappers for pmdaInstance and pmdaFetch while understanding the dynamics of the
instance domain, and then overriding the instance and fetch methods in the _pmPMDA
structure during PMDA initialization.

24

Chapter 2: Writing a PMDA

For the simple PMDA, the wrapper routines are simple_fetch and simple_instance, and
defaults are over-ridden by the following assignments in the simple_init function:

dp->version.two.fetch = simple_fetch;
dp->version.two.instance = simple_instance;

Extracting the Information

A suggested approach to writing a PMDA is to write a standalone program to extract the
values from the target domain and then incorporate this program into the PMDA
framework. This approach avoids concurrent debugging of two distinct problems: the
extraction of the data and communication with PMCD.

These are some possible ways of exporting the data from the target domain:

• Accumulate the performance data in a public shared memory segment.

• Write the performance data to the end of a log file.

• Periodically rewrite a file with the most recent values for the performance data.

• Implement a protocol that allows a third party to connect to the target application,
send a request, and receive new performance data.

• If the data is in the IRIX kernel, provide a system call (preferred) or global data (for
a /dev/kmem reader) to export the performance data.

Most of these approaches require some further data processing by the PMDA.

Latency and Threads of Control

The PCP protocols expect PMDAs to return the current values for performance metrics
when requested, and with short delay (low latency). For some target domains, access to
the underlying instrumentation may be costly or involve unpredictable delays (for
example, if the real performance data is stored on some remote host or network device).
In these cases it may be necessary to separate probing for new performance data from
servicing PMCD requests.

An architecture that has been used successfully for several PMDAs is to create one or
more sproc child processes to obtain information while the main process communicates
with pmcd; see sproc(2). At the simplest deployment of this arrangement, the two
processes may execute without synchronization.

Domains, Metrics, and Instances

25

By contrast, a complex deployment would be one in which the refreshing of the metric
values must be atomic, and this may require double buffering of the data structures. It
also requires coordination between parent and child processes.

Tip: Since PMAPI is not thread-safe, only one PMDA process or thread of control should
call any PMAPI routines, and this would typically be the thread servicing requests from
the pmcd.

One caveat about this style of caching PMDA—it is generally better if the PMDA
converts counts to rates based upon consecutive periodic sampling from the underlying
instrumentation. By exporting pre-computed rate metrics with “instantaneous”
semantics, the PMDA prevents the PCP monitor tools from computing their own rates
upon consecutive pmcd fetches (which are likely to return identical values from a caching
PMDA).

Namespace

The pmns file defines the namespace of the PMDA. It is a simple text file that is used
during installation to expand the namespace of the PMCD process. The format of this file
is described by pmns(4).

Client processes will not be able to access the PMDA’s metrics if the pmns file is not
defined and installed with the pmnsadd command; see pmnsadd(1). The installed list of
metric names and their corresponding PMIDs can be found in /var/pcp/pmns/root.

Example—pmns File for the Simple PMDA

The simple PMDA has five metrics: three metrics immediately under the simple node,
and two metrics under another non-terminal node called simple.time:

simple {
 numfetch SIMPLE:0:0
 color SIMPLE:0:1
 time
 now SIMPLE:2:4
}

simple.time {
 user SIMPLE:1:2
 sys SIMPLE:1:3
}

26

Chapter 2: Writing a PMDA

Metrics that have different clusters do not have to be specified in different subtrees of the
PMNS. For example, an alternative PMNS for the simple PMDA could be as follows:

simple {
 numfetch SIMPLE:0:0
 color SIMPLE:0:1
 usertime SIMPLE:1:2
 systime SIMPLE:1:3
}

The macro SIMPLE is replaced by the domain number listed in /var/pcp/pmns/stdpmid for
the corresponding PMDA during installation (for the simple PMDA, this would
normally be the value 253).

PMDA Help Text

For each metric defined within a PMDA, the PMDA developer is strongly encouraged to
provide both terse and extended help text to describe the metric, and perhaps provide
hints about the expected value ranges.

The help text is used to describe each metric in the visualization tools and pminfo with
the -T option. The help text is specified in a specially formatted file, normally called help.
This file is converted to the expected run-time format using the newhelp command; see
newhelp(1). Converted help text files are usually placed in the PMDA’s directory below
/var/pcp/pmdas as part of the PMDA installation procedure.

Example—Help Text for the Simple PMDA

The one instance domain and four metrics have a short and a verbose description. Each
entry begins with a line that starts with the character “@” and is followed by either the
metric name (simple.numfetch) or a symbolic reference to the instance domain number
(SIMPLE.1), followed by the short description. The verbose description is on the
following lines, terminated by the next line starting with “@” or end of file:

@ SIMPLE.1 Instance domain “colour” for simple PMDA
Universally 3 instances, “red” (0), “green” (1) and “blue” (3).

@ SIMPLE.2 Dynamic instance domain “time” for simple PMDA
An instance domain is computed on-the-fly for exporting current time
information. Refer to the help text for simple.now for more details.

@ simple.numfetch Number of pmFetch operations.
The cumulative number of pmFetch operations directed to “simple” PMDA.

Domains, Metrics, and Instances

27

This counter may be modified with pmstore(1).

@ simple.color Metrics which increment with each fetch
This metric has 3 instances, designated “red”, “green” and “blue”.

The value of the metric is monotonic increasing in the range 0 to
255, then back to 0. The different instances have different starting
values, namely 0 (red), 100 (green) and 200 (blue).

The metric values my be altered using pmstore(1).

@ simple.time.user Time agent has spent executing user code
The time in seconds that the CPU has spent executing agent user code.

@ simple.time.sys Time agent has spent executing system code
The time in seconds that the CPU has spent executing agent system code.

@ simple.now Time of day with a configurable instance domain
The value reflects the current time of day through a dynamically
reconfigurable instance domain. On each metric value fetch request,
the agent checks to see whether the configuration file in
/var/pcp/pmdas/simple/simple.conf has been modified - if it has then
the file is re-parsed and the instance domain for this metric is again
constructed according to its contents.

This configuration file contains a single line of comma-separated time
tokens from this set:
 “sec” (seconds after the minute),
 “min” (minutes after the hour),
 “hour” (hour since midnight).

An example configuration file could be: sec,min,hour
and in this case the simple.now metric would export values for the
three instances “sec”, “min” and “hour” corresponding respectively to
the components seconds, minutes and hours of the current time of day.

The instance domain reflects each token present in the file, and the
values reflect the time at which the PMDA processes the fetch.

Management of Evolution Within a PMDA

Evolution of a PMDA, or more particularly the underlying instrumentation to which it
provides access, over time naturally results in the appearance of new metrics and the
disappearance of old metrics. This creates potential problems for PMAPI clients and PCP
tools that may be required to interact with both new and former versions of the PMDA.

28

Chapter 2: Writing a PMDA

The following guidelines are intended to help reduce the complexity of implementing a
PMDA in the face of evolutionary change, while maintaining predictability and semantic
coherence for tools using the PMAPI, and for end users of those tools.

• Try to support as full a range of metrics as possible in every version of the PMDA.
In this context, “support” means responding sensibly to requests, even if the
underlying instrumentation is not available.

• If a metric is not supported in a given version of the underlying instrumentation,
the PMDA should respond to pmLookupDesc requests with a pmDesc structure
whose type field has the special value PM_TYPE_NOSUPPORT. Values of fields
other than pmid and type are immaterial, but this example is typically benign:

pmDesc dummy = {
 PMDA_PMID(3,0), /* pmid, fill this in */
 PM_TYPE_NOSUPPORT, /* this is the important part */
 PM_INDOM_NULL, /* singular,causes no problems */
 0, /* no semantics */
 { 0, 0, 0, 0, 0, 0 } /* no units */
};

• If a metric lacks support in a particular version of the underlying instrumentation,
the PMDA should respond to pmFetch requests with a pmResult in which no values
are returned for the unsupported metric. This is marginally friendlier than the other
semantically acceptable option of returning an “illegal PMID” error, or
PM_ERR_PMID.

• Help text should be updated with annotations to describe different versions of the
underlying product, or product configuration options, for which a specific metric is
available. This is so pmLookupText can always respond correctly.

• The pmStore operation should fail with return status of -EACCES if a user or
application tries to amend the value of an unsupported metric.

• The value extraction, conversion, and printing routines (pmExtractValue,
pmConvScale, pmAtomStr, pmTypeStr, and pmPrintValue) will return the error
PM_ERR_CONV, or an appropriate diagnostic string, if an attempt is made to
operate on a value for which the type is PM_TYPE_NOSUPPORT. If performance
tools take note of the type field in the pmDesc structure, they should not manipulate
values for unsupported metrics. Even if tools ignore the type in the metric’s
description, following these development guidelines ensures that no misleading
value is ever returned, so there is no reason to call the extraction, conversion, and
printing routines.

DSO Interface

29

DSO Interface

This section describes an interface for the request handling callbacks in a PMDA. This
interface is used by PMCD for communicating with DSO PMDAs, and can also be used
by daemon PMDAs with pmdaMain.

Overview

Both daemon and DSO PMDAs must handle multiple request types from pmcd. A
daemon PMDA communicates with pmcd using the PDU protocol, while a DSO PMDA
defines callbacks for each request type. In order to avoid duplicating this PDU processing
(in the case of a PMDA that can be installed either as a daemon or as a DSO), and to allow
a consistent framework, pmdaMain can be used by a daemon PMDA as a wrapper to
handle the communication protocol using the same callbacks as a DSO PMDA.

To further simplify matters, default callbacks are declared in /usr/include/pcp/pmda.h:

• pmdaFetch(3)

• pmdaProfile(3)

• pmdaInstance(3)

• pmdaDesc(3)

• pmdaText(3)

• pmdaStore(3)

Each callback takes a pmdaExt structure as its last argument. This structure contains all
the information that is required by the default callbacks in most cases. The one exception
is pmdaFetch, which needs an additional callback to instantiate the current value for
each supported combination of a performance metric and an instance.

Therefore, for most PMDAs all the communication with pmcd is automatically handled
by routines in libpcp.so and libpcp_pmda.so.

30

Chapter 2: Writing a PMDA

Example—trivial_fetchCallBack in the Trivial PMDA

The trivial PMDA uses all of the default callbacks. The additional callback for pmdaFetch
is defined as trivial_fetchCallBack:

static int
trivial_fetchCallBack(pmdaMetric *mdesc, unsigned int inst, pmAtomValue *atom)
{
 __pmID_int *idp = (__pmID_int *)&(mdesc->m_desc.pmid);

 if (idp->cluster != 0 || idp->item != 0)
 return PM_ERR_PMID;
 else if (inst != PM_IN_NULL)
 return PM_ERR_INST;

 atom->l = time(NULL);
 return 0;
}

This function checks that the PMID and instance are valid, and then places the metric
value for the current time into the pmAtomValue structure. The callback is set up by a call
to pmdaSetFetchCallBack in trivial_init.

Example—simple_fetchCallBack in the Simple PMDA

The simple PMDA callback for pmdaFetch is more complicated because it must support
more metrics, some metrics are instantiated with each fetch, and one instance domain is
dynamic. The default pmdaFetch callback is replaced by simple_fetch in simple_init,
which increments the number of fetches and updates the instance domain for
INDOM_NOW before calling pmdaFetch:

static int
simple_fetch(int numpmid, pmID pmidlist[], pmResult **resp, pmdaExt *pmda)
{
 numfetch++;
 simple_timenow_check();
 simple_timenow_refresh();
 return pmdaFetch(numpmid, pmidlist, resp, pmda);
}

DSO Interface

31

The callback for pmdaFetch is defined as simple_fetchCallBack. The PMID is extracted
from the pmdaMetric structure, and if valid, the appropriate field in the pmAtomValue
structure is set. Metric simple.numfetch has no instance domain and is easily handled first:

static int
simple_fetchCallBack(pmdaMetric *mdesc, unsigned int inst, pmAtomValue *atom)
{
 int i;
 static int oldfetch = 0;
 static struct tms tms;
 __pmID_int *idp = (__pmID_int *)&(mdesc->m_desc.pmid);

 if (inst != PM_IN_NULL &&
 !(idp->cluster == 0 && idp->item == 1) &&
 !(idp->cluster == 2 && idp->item == 4))
 return PM_ERR_INST;

 if (idp->cluster == 0) {
 if (idp->item == 0) { /* simple.numfetch */
 atom->l = numfetch;
 }

For the metric simple.color the inst parameter is used to specify which instance is required:

 else if (idp->item == 1) { /* simple.color */
 switch (inst) {
 case 0: /* red */
 red = (red + 1) % 256;
 atom->l = red;
 break;
 case 1: /* green */
 green = (green + 1) % 256;
 atom->l = green;
 break;
 case 2: /* blue */
 blue = (blue + 1) % 256;
 atom->l = blue;
 break;
 default:
 return PM_ERR_INST;
 }
 }
 else
 return PM_ERR_PMID;

32

Chapter 2: Writing a PMDA

The simple.time metric is in a second cluster, and has a simple optimization to reduce the
overhead of calling times twice—see times(2)—on the same fetch and return consistent
values from a single call to times when both metrics simple.time.user and simple.time.sys
are requested in a single pmFetch. The previous fetch count is used to determine if the
tms structure should be updated:

 else if (idp->cluster == 1) { /* simple.time */
 if (oldfetch < numfetch) {
 times(&tms);
 oldfetch = numfetch;
 }
 if (idp->item == 2) /* simple.time.user */
 atom->d = (tms.tms_utime / (double)CLK_TCK);
 else if (idp->item == 3) /* simple.time.sys */
 atom->d = (tms.tms_stime / (double)CLK_TCK);
 else
 return PM_ERR_PMID;
 }

Finally the simple.now metric is in a third cluster and uses inst again to select a specific
instance from the INDOM_NOW instance domain:

 else if (idp->cluster == 2) {
 if (idp->item == 4) { /* simple.now */
 if (inst < timesize) {
 /* this loop will always match one of the named */
 /* time constants from the timeslices structure */
 for (i = 0; i < num_timeslices; i++) {
 if (strcmp(timenow[inst].i_name,
 timeslices[i].tm_name) == 0) {
 atom->l = timeslices[i].tm_field;
 break;
 }
 }
 }
 else
 return PM_ERR_INST;
 }
 else
 return PM_ERR_PMID;
 }

DSO Interface

33

Example—simple_store in the Simple PMDA

The simple PMDA permits some of the metrics it supports to be modified by pmStore;
see pmstore(1). The pmdaStore callback (which returns -EACCESS to indicate no metrics
can be altered) is replaced by simple_store in simple_init. This replacement function
must take the same arguments so that it can be assigned to the function pointer in the
pmdaInterface structure.

The function traverses the pmResult and checks the cluster and unit of each PMID to
ensure that it corresponds to a metric that can be changed. Checks are made on the values
to ensure they are within range before being assigned to variables in the PMDA that hold
the current values for exported metrics:

static int
simple_store(pmResult *result, pmdaExt *pmda)
{
 int i, j, val, sts = 0;
 pmAtomValue av;
 pmValueSet *vsp = NULL;
 __pmID_int *pmidp = NULL;

 for (i = 0; i < result->numpmid; i++) {
 vsp = result->vset[i];
 pmidp = (__pmID_int *)&vsp->pmid;

 if (pmidp->cluster == 0) { /* storable metrics are cluster0 */
 switch (pmidp->item) {
 case 0: /* simple.numfetch */
 val = vsp->vlist[0].value.lval;
 if (val < 0) {
 sts = PM_ERR_SIGN;
 val = 0;
 }
 numfetch = val;
 break;

 case 1: /* simple.color */
 for (j = 0; j < vsp->numval && sts == 0; j++) {
 val = vsp->vlist[j].value.lval;
 if (val < 0) {
 sts = PM_ERR_SIGN;
 val = 0;
 } if (val > 255) {
 sts = PM_ERR_CONV;
 val = 255;
 }

34

Chapter 2: Writing a PMDA

The simple.color metric has an instance domain that must be searched because any or all
instances may be specified. Any instances that are not supported in this instance domain
should cause an error value of PM_ERR_INST to be returned:

 switch (vsp->vlist[j].inst) {
 case 0: /* red */
 red = val;
 break;
 case 1: /* green */
 green = val;
 break;
 case 2: /* blue */
 blue = val;
 break;
 default:
 sts = PM_ERR_INST;
 }

Any other PMIDs cluster 0 that are not supported by the simple PMDA should result in
an error value of PM_ERR_PMID:

 default:
 sts = PM_ERR_PMID;
 break;
 }
 }

Any metrics that cannot be altered should generate an error value of -EACCES, and
metrics not supported by the PMDA should result in an error value of PM_ERR_PMID:

 else if ((pmidp->cluster == 1 &&
 (pmidp->item == 2 || pmidp->item == 3)) ||
 (pmidp->cluster == 2 && pmidp->item == 4)) {
 sts = -EACCES;
 break;
 }
 else {
 sts = PM_ERR_PMID;
 break;
 }
 }
 return sts;
}

The structure pmdaExt argument is not used by the simple_store function above.

DSO Interface

35

PMDA Structures

PMDA structures used with the pcp_pmda library are defined in /usr/include/pcp/pmda.h.

pmdaInterface

The callbacks must be specified in a pmdaInterface structure:

typedef struct {
 int domain; /* set/return performance metrics domain id here */
 struct {
 unsigned int pmda_interface : 8; /* PMDA DSO version */
 unsigned int pmapi_version : 8; /* PMAPI version */
 unsigned int flags : 16; /* usage TBD */
 } comm; /* set/return communication and version info */
 int status; /* return initialization status here */

 union {

/* Interface Version 1 (PCP 1.0 & PCP 1.1) */

 struct {
 int (*profile)(__pmProfile *);
 int (*fetch)(int, pmID *, pmResult **);
 int (*desc)(pmID, pmDesc *);
 int (*instance)(pmInDom, int, char *, __pmInResult **);
 int (*text)(int, int, char **);
 int (*control)(pmResult *, int, int, int);
 int (*store)(pmResult *);
 } one;

/* Interface Version 2 (PCP 2.0) */

 struct {
 pmdaExt *ext;
 int (*profile)(__pmProfile *, pmdaExt *);
 int (*fetch)(int, pmID *, pmResult **, pmdaExt *);
 int (*desc)(pmID, pmDesc *, pmdaExt *);
 int (*instance)(pmInDom, int, char *, __pmInResult **,
 pmdaExt *);
 int (*text)(int, int, char **, pmdaExt *);
 int (*store)(pmResult *, pmdaExt *);
 } two;

 } version;

36

Chapter 2: Writing a PMDA

This structure is passed by PMCD to a DSO PMDA as an argument to the initialization
function. This structure supports two versions—the second version adds support for the
pmdaExt structure. Protocol version one is for backwards compatibility only, and should
not be used in any new PMDA.

pmdaExt

Additional PMDA information must be specified in a pmdaExt structure:

typedef struct {
 unsigned int e_flags; /* usage TBD */
 void *e_ext; /* usage TBD */

 char *e_sockname; /* socket name to pmcd */
 char *e_name; /* name of this pmda */
 char *e_logfile; /* path to log file */
 char *e_helptext; /* path to help text */
 int e_status; /* =0 is OK */
 int e_infd; /* input file descriptor from pmcd */
 int e_outfd; /* output file descriptor to pmcd */
 int e_port; /* port to pmcd */
 int e_singular; /* =0 for singular values */
 int e_ordinal; /* >=0 for non-singular values */
 int e_direct; /* =1 if pmid map to meta table */
 int e_domain; /* metrics domain */
 int e_nmetrics; /* number of metrics */
 int e_nindoms; /* number of instance domains */
 int e_help; /* help text comes via this handle */
 __pmProfile *e_prof; /* last received profile */
 pmdaIoType e_io; /* connection type to pmcd */
 pmdaIndom *e_indoms; /* instance domain table */
 pmdaIndom *e_idp; /* instance domain expansion */
 pmdaMetric *e_metrics; /* metric description table */

 pmdaResultCallBack e_resultCallBack; /* to clean up pmResult after fetch */
 pmdaFetchCallBack e_fetchCallBack; /* to assign metric values in fetch */
 pmdaCheckCallBack e_checkCallBack; /* callback on receipt of a PDU */
 pmdaDoneCallBack e_doneCallBack; /* callback after PDU is processed */
} pmdaExt;

The pmdaExt structure contains filenames, pointers to tables, and some variables shared
by several routines in the pcp_pmda library. All fields of the pmdaInterface and pmdaExt
structures can be correctly set by PMDA initialization routines; see pmdaDaemon(3),
pmdaDSO(3), pmdaGetOpt(3), pmdaInit(3), and pmdaConnect(3) for a full description
of how various fields in these structures may be set or used by pcp_pmda library routines.

Initializing a PMDA

37

Initializing a PMDA

Several functions are provided to simplify the initialization of a PMDA. These functions,
if used, must be called in a strict order so that the PMDA can operate correctly.

Overview

The initialization process for a PMDA involves opening help text files, assigning callback
function pointers, adjusting the metric and instance identifiers to the correct domains,
and much more. The initialization of a daemon PMDA also differs significantly from a
DSO PMDA, since the pmdaInterface structure is initialized by main or the PMCD
process, respectively.

Common Initialization

As described in the section “DSO PMDA” on page 11, an initialization function is
provided by a DSO PMDA and called by PMCD. Using the standard PMDA wrappers,
the same routine can also be used as part of the daemon PMDA initialization. This
PMDA initialization function is responsible for

• assigning callback functions to the function pointer interface of pmdaInterface

• assigning pointers to the metric and instance tables from pmdaExt

• opening the help text files

• assigning the domain number to the instance domains

• correlating metrics with their instance domains

If the PMDA uses the common data structures defined for the pcp_pmda library, most of
these requirements can be handled by the default pmdaInit routine; see pmdaInit(3).

Because the initialization routine is the only initialization opportunity for a DSO PMDA,
the common initialization function should also perform any DSO-specific functions that
are required. A default implementation of this functionality is provided by the
pmdaDSO routine; see pmdaDSO(3).

38

Chapter 2: Writing a PMDA

Example—trivial_init in the Trivial PMDA

The trivial PMDA has no instances and a single callback for the pmdaFetch routine called
trivial_fetchCallBack; see pmdaFetch(3):

void trivial_init(pmdaInterface *dp)
{
 pmdaSetFetchCallBack(dp, trivial_fetchCallBack);

 pmdaInit(dp, NULL, 0,
 metrictab, sizeof(metrictab)/sizeof(metrictab[0]));
}

The trivial PMDA is always installed as a daemon PMDA.

Example—simple_init in the Simple PMDA

The simple PMDA uses its own callbacks to handle PDU_FETCH and PDU_RESULT
request PDUs (for pmFetch and pmStore operations respectively), as well as providing
pmdaFetch with the callback simple_fetchCallBack.

The simple PMDA uses its own callbacks to handle PDU_FETCH and PDU_RESULT
request PDUs (for pmFetch and pmStore operations respectively), as well as providing
pmdaFetch with the callback simple_fetchCallBack:

static int isDSO = 1; /* =0 I am a daemon */

void simple_init(pmdaInterface *dp)
{
 if (isDSO)
 pmdaDSO(dp, PMDA_INTERFACE_2, “simple DSO”,
 “/var/pcp/pmdas/simple/help”);
 if (dp->status != 0)
 return;
 dp->version.two.fetch = simple_fetch;
 dp->version.two.store = simple_store;
 dp->version.two.instance = simple_instance;
 pmdaSetFetchCallBack(dp, simple_fetchCallBack);
 pmdaInit(dp, indomtab, sizeof(indomtab)/sizeof(indomtab[0]),
 metrictab, sizeof(metrictab)/sizeof(metrictab[0]));
}

The simple PMDA may be installed either as a daemon PMDA or a DSO PMDA. The
static variable isDSO indicates whether the PMDA is running as a DSO or as a daemon.
A daemon PMDA should change the value of this variable to 0 in main.

Initializing a PMDA

39

Daemon Initialization

In addition to the initialization routine that can be shared by a DSO and a daemon
PMDA, a daemon PMDA must also

• create the pmdaInterface structure that is passed to the initialization function

• parse any command-line arguments

• open a log file (a DSO PMDA uses pmcd’s log file)

• set up the IPC connection between the PMDA and the PMCD process

• handle incoming PDUs

All these requirements can be handled by default initialization routines in the pcp_pmda
library; see pmdaDaemon(3), pmdaGetOpt(3), pmdaOpenLog(3), pmdaConnect(3), and
pmdaMain(3).

Example—main in the Simple PMDA

The simple PMDA requires no additional command-line arguments other than those
handled by pmdaGetOpt; see pmdaGetOpt(3):

int
main(int argc, char **argv)
{
 int err = 0;
 int c = 0;
 pmdaInterface dispatch;
 char *p;

 /* trim cmd name of leading directory components */
 pmProgname = argv[0];
 for (p = pmProgname; *p; p++) {
 if (*p == ‘/’)
 pmProgname = p+1;
 }

 isDSO = 0;

 pmdaDaemon(&dispatch, PMDA_INTERFACE_2, pmProgname, SIMPLE,
 “simple.log”, “/var/pcp/pmdas/simple/help”);
 if ((c = pmdaGetOpt(argc, argv, “D:d:i:l:pu:?”, &dispatch, &err)) != EOF)
 err++;

 if (err)
 usage();

40

Chapter 2: Writing a PMDA

 pmdaOpenLog(&dispatch);
 simple_init(&dispatch);
 simple_timenow_check();
 pmdaConnect(&dispatch);
 pmdaMain(&dispatch);

 exit(0);
 /*NOTREACHED*/
}

Testing and Debugging a PMDA

Ensuring the correct operation of a PMDA can be difficult, because the responsibility of
providing metrics to the requesting PMCD process and simultaneously retrieving values
from the target domain requires nearly real-time communication with two modules
beyond the PMDA’s control. Some tools are available to assist in this important task.

Overview

Thoroughly testing a PMDA with pmcd is difficult, although testing a daemon PMDA is
marginally simpler than testing a DSO PMDA. If a DSO PMDA exits, pmcd also exits
because they share a single address space and control thread. If the PMDA dumps core,
dbx and related tools (see dbx(1)) cannot reasonably explore the generated core image,
which includes the pmcd image and any other active DSO PMDAs.

The difficulty in using pmcd to test a daemon PMDA results from pmcd requiring timely
replies from the PMDA in response to request PDUs. Although a “timeout” period can
be set in /etc/config/pmcd.options, attaching dbx to the PMDA process (or any other long
delay) might cause an already running pmcd to close its connection with the PMDA. If
timeouts are disabled, pmcd could wait forever to connect with the PMDA.

If you suspect a PMDA has been terminated due to a time out failure, check the pmcd log
file, usually /var/adm/pcplog/pmcd.log.

A more robust way of testing a pmcd is to use the dbpmda tool, which is similar to pmcd
except that dbpmda provides complete control over the PDUs that are sent to the PMDA,
and there are no time limits—it is essentially an interactive debugger for exercising a
PMDA. See dbpmda(3) for details.

Testing and Debugging a PMDA

41

In addition, careful use of PCP debugging flags can produce useful information
concerning a PMDA’s behavior; see PMAPI(3) and pmdbg(1) for a discussion of the PCP
debugging and tracing framework.

Debugging Information

You can activate debugging flags in PMCD and most other PCP tools with the -D
command-line option. Supported flags can be listed with the pmdbg command; see
pmdbg(1). Setting the debug flag for pmcd in /etc/config/pmcd.options might generate too
much information to be useful, especially if there are other clients and PMDAs connected
to the pmcd process.

The pmcd debugging flag can also be changed dynamically by storing a new value into
the metric pmcd.control.debug:

pmstore pmcd.control.debug 5

Most of the pcp_pmda library routines log additional information if the
DBG_TRACE_LIBPMDA flag is set within the PMDA; see PMDA(3). The command-line
argument -D is trapped by pmdaGetOpt to set the global debugging control variable
pmDebug. Adding tests within the PMDA for the trace flags DBG_TRACE_APPL0,
DBG_TRACE_APPL1, and DBG_TRACE_APPL2 permits different levels of information to be
logged to the PMDA’s log file.

All diagnostic, debugging, and tracing output from a PMDA should be written to
standard error. By convention, all debugging information is enclosed by preprocessor
#ifdef DEBUG statements so that they can be compiled out of the program at a later
stage, if required.

Example—Log Stores Into simple.numfetch in the Simple PMDA

By adding this segment of code to simple_store, whenever pmstore (see pmstore(1))
attempts to change simple.numfetch and pmDebug has the DBG_TRACE_APPL0 flag set, a log
message is sent to the current log file:

 case 0: /* simple.numfetch */
 val = vsp->vlist[0].value.lval;
 if (val < 0) {
 sts = PM_ERR_SIGN;
 val = 0;
 }

42

Chapter 2: Writing a PMDA

#ifdef DEBUG
 if (pmDebug & DBG_TRACE_APPL0) {
 fprintf(stderr,
 "simple: %d stored into numfetch", val);
 }
#endif
 numfetch = val;
 break;

dbpmda Debug Utility

The dbpmda utility provides a simple interface to the PDU communication protocol. It
allows daemon and DSO PMDAs to be tested with most request types, while the PMDA
process may be monitored with dbx, par and other diagnostic tools. The reference page
dbpmda(1) contains a sample session with the simple PMDA.

Performance Instrumentation and Tracing

The pcp_trace library provides function calls for identifying sections of a program as
transactions or events for examination by the trace PMDA, a user command called
pmdatrace. The pcp_trace library is described in pmdatrace(3).

The monitoring of transactions using PCP infrastructure begins with a pmtracebegin
call. Time is recorded from there to the corresponding pmtraceend call (with matching
tag identifier). A transaction in progress can be cancelled by calling pmtraceabort.

A second form of program instrumentation is available with the pmtracepoint function.
This is a simpler form of monitoring that exports only the number of times a particular
point in a program is passed. The pmtraceobs function has similar semantics, but allows
an arbitrary numeric value to be passed to the trace PMDA.

The pmdatrace command is a PMDA that exports transaction performance metrics from
application processes using the pcp_trace library; see pmdatrace(1) for details.

For a complete introduction to performance tracing, refer to the Web-based PCP Tutorial,
which contains the trace.html file covering this topic.

Integration of PMDA

43

Integration of PMDA

Several steps are required to install (or remove) a PMDA from a production PMCD
environment without affecting the operation of other PMDAs or related visualization
and logging tools.

The PMDA typically would have its own directory below /var/pcp/pmdas into which
several files would be installed. In the description in “Installing a PMDA” on page 43, the
PMDA of interest is assumed to be known by the name newbie, hence the PMDA
directory would be /var/pcp/pmdas/newbie.

Note: Any installation or removal of a PMDA involves updating files and directories
that are typically well protected. Hence the procedures described in this section must be
executed as superuser.

Installing a PMDA

A PMDA is fully installed when these tasks are completed:

• Help text has been installed in a place where the PMDA can find it, usually in the
PMDA directory /var/pcp/pmdas/newbie.

• The namespace has been updated in the directory /var/pcp/pmns.

• The PMDA binary has been installed, usually in the directory /var/pcp/lib for a DSO
PMDA, or in the PMDA directory /var/pcp/pmdas/newbie for a daemon PMDA.

• The /etc/pmcd.conf file has been updated.

• The pmcd process has been restarted or notified (with a SIGHUP signal) that the new
PMDA exists.

These tasks can be accomplished by a Makefile and an Install script as described below.

The Makefile should include an install target to compile and link the PMDA (as a DSO,
or a daemon or both) in the PMDA directory, and in the case of a DSO PMDA, install the
shared library in /var/pcp/lib. The clobber target should remove any files created as a
by-product of the install target.

You may wish to use /var/pcp/pmdas/simple/Makefile as a template for constructing a new
PMDA Makefile; changing the assignment of IAM from simple to newbie would account
for most of the required changes.

44

Chapter 2: Writing a PMDA

Since the object format of a DSO PMDA must match the object format of pmcd, which in
turn must match the object format of the booted IRIX kernel, there might be multiple
DSO targets in the Makefile. For example, see targets mips_o32.pmda_$(IAM).so,
mips_n32.pmda_$(IAM).so, and mips_64.pmda_$(IAM).so for the simple PMDA.

The Install script should make use of the generic procedures defined in the script
/usr/pcp/lib/pmdaproc.sh, and may be as straightforward as the one used for the trivial
PMDA, namely:

Get the common procedures and variable assignments
#
. /usr/pcp/lib/pmdaproc.sh

The name of the PMDA
#
iam=trivial

Do it
#
_setup
_install

exit 0

The following variables may be assigned values to modify the behavior of the _setup
and _install procedures from /usr/pcp/lib/pmdaproc.sh.

Table 2-1 Variables to Control Behavior of Generic pmdaproc.sh Procedures

Variable Use Default

iam Name of the PMDA; assignment to this variable is
mandatory.

Example: iam=newbie

dso_opt Can this PMDA be installed as a DSO? false

daemon_opt Can this PMDA be installed as a daemon? true

pipe_opt If installed as a daemon PMDA, is the default IPC via
pipes?

true

socket_opt If installed as a daemon PMDA, is the default IPC via an
Internet socket?

false

socket_inet_def If installed as a daemon PMDA, and the IPC method
uses an Internet socket, the default port number.

Integration of PMDA

45

In addition, the variables do_pmda and do_check will be set to reflect the intention to
install the PMDA (as opposed to install just the PMNS) and to check the availability of
the metrics once the PMDA is installed. By default each variable is true; however, the
command-line options -N and -Q to Install may be used to set the variables to false, as
follows: do_pmda (-N) and do_check (-N or -Q).

The variables may also have their assignments changed by the user’s response to the
common prompt:

You will need to choose an appropriate configuration for installation
of the ... Performance Metrics Domain Agent (PMDA).

 collector collect performance statistics on this system
 monitor allow this system to monitor local and/or remote systems
 both collector and monitor configuration for this system

ipc_prot IPC style for PDU exchanges involving a daemon
PMDA; binary or text.

binary

check_delay Delay in seconds between installing PMDA and
checking if metrics are available.

3

args Additional command-line arguments passed to a
daemon PMDA.

pmns_source The name of the PMNS file (by default relative to the
PMDA directory).

pmns

pmns_name First-level name for this PMDA’s metrics in the PMNS. $iam

help_source The name of the help file (by default relative to the
PMDA directory).

help

pmda_name The name of the executable for a daemon PMDA. pmda$iam

dso_name The name of the shared library for a DSO PMDA. pmda$iam.so

dso_entry The name of the initialization function for a DSO PMDA. $iam_init

domain The numerical PMDA domain number (from domain.h).

SYMDOM The symbolic name of the PMDA domain number (from
domain.h).

Table 2-1 (continued) Variables to Control Behavior of Generic pmdaproc.sh Procedures

Variable Use Default

46

Chapter 2: Writing a PMDA

Obviously, for anything but the most trivial PMDA, after calling the _setup procedure,
the Install script should also prompt for any PMDA-specific parameters, which are
typically accumulated in the args variable and used by the _install procedure.

The detailed operation of the _install procedure involves the following tasks:

• Using default assignments, and interaction where ambiguity exists, determine the
PMDA type (DSO or daemon) and the IPC parameters, if any.

• Copy the $pmns_source file, replacing symbolic references to SYMDOM by the desired
numeric domain number from domain.

• Merge the PMDA’s namespace into the PCP namespace at the non-leaf node
identified by $pmns_name.

• If any pmchart views can be found (files with names ending in “.pmchart”), copy
these to the standard directory (/var/pcp/config/pmchart) with the “.pmchart” suffix
removed.

• Create new help files from $help_source after replacing symbolic references to
SYMDOM by the desired numeric domain number from domain.

• Terminate the old daemon PMDA, if any.

• Use the Makefile to build the appropriate executables.

• Add the PMDA specification to pmcd’s configuration file (/etc/pmcd.conf).

• Notify pmcd. To minimize the impact on the services pmcd provides, sending a
SIGHUP to pmcd forces it to reread the configuration file and start, restart, or
remove any PMDAs that have changed since the file was last read.

• Check that the metrics from the new PMDA are available.

There are some PMDA changes that may trick PMCD into thinking nothing has changed,
and not restarting the PMDA. Most notable are changes to the PMDA executable. In these
cases, you may need to explicitly remove the PMDA (see below), or more drastically,
restart pmcd as follows:

/etc/init.d/pcp start

Example—PMDA Install Scripts

The files /var/pcp/pmdas/*/Install provide a wealth of examples that may be used to
construct a new PMDA Install script.

Integration of PMDA

47

Upgrading a PMNS to Include Metrics From a New PMDA

When invoked with a -N command-line option, the PMDA Install script may be used to
update the PMNS without installing the PMDA. This is typically used on a monitoring
system to populate the local PMNS with the names of the performance metrics from a
PMDA installed on a remote host running the older PCP 1.x protocols. The -N option also
installs pmchart views useful on a monitoring system.

Removing a PMDA

The simplest way to stop a PMDA from running, apart from killing the process, is to
remove the entry from /etc/pmcd.conf and signal PMCD to re-read its configuration file.
To completely remove a PMDA requires the reverse process of the installation, including
an update of the Performance Metrics Name Space (PMNS).

This typically involves a Remove script in the PMDA directory that uses the same
common procedures as the Install script described above.

Example—PMDA Remove Scripts

The files /var/pcp/pmdas/*/Remove provide a wealth of examples that may be used to
construct a new PMDA Remove script.

Configuring PCP Tools

Most PCP tools have their own configuration file format for specifying which metrics to
view or to log. By providing “canned” configuration files that monitor key metrics of the
new PMDA, users can quickly see the performance of the target system, as characterized
by key metrics in the new PMDA.

Any configuration files that are created should be kept with the PMDA and installed into
the appropriate directories when the PMDA is installed.

The pmchart command comes with several views for the default PMDAs located at
/var/pcp/config/pmchart; see pmchart(1). These views can be used as a basis for defining
views relevant to the new PMDA.

48

Chapter 2: Writing a PMDA

Likewise, there are several shell scripts that employ pmview (see pmview(1)) for
3-dimensional visualizations, including dkvis and mpvis; see dkvis(1) and mpvis(1). Only
small sections of these scripts require modification to visualize a different set of metrics.
Similar scripted front ends could be created to customize pmgadgets icon control panels
for a new PMDA; refer to pmgirix(1).

As with all PCP customization, some of the most valuable tools can be created by
defining views, scenes, and control-panel layouts that combine related performance
metrics from multiple PMDAs or multiple hosts.

Templates for parameterized alarm configurations can be specified using the pmrules
command; see pmrules(1), and pmie(1). Rules involving metrics from the new PMDA
may be created directly.

Daily logs can be specified in pmlogger configuration files, or with the cron.pmdaily
mechanism; see pmlogger(1) and cron.pmdaily(1). The services of cron.pmsnap may be
used to incorporate the new performance metrics into charts that may be periodically
regenerated and published via a World Wide Web server.

49

Chapter 3

3.PMAPI—The Performance Metrics API

This chapter describes the Performance Metrics Application Programming Interface
(PMAPI) provided with Performance Co-Pilot (PCP).

The PMAPI is a set of functions and data structure definitions that allow client
applications to access performance data from one or more Performance Metric Collection
Daemons (PMCDs) or from PCP archive logs. The PCP utilities are all written using the
PMAPI.

The most common use of PCP includes running performance monitoring utilities on a
workstation (the monitoring system) while performance data is retrieved from one or
more remote collector systems by a number of PCP processes. These processes execute
on both the monitoring system and the collector systems. The collector systems are
typically servers, and are the targets for the performance investigations.

In the development of the PMAPI the most important question has been, “How easily
and quickly will this API enable the user to build new performance tools, or exploit
existing tools for newly available performance metrics?” The PMAPI and the standard
tools that use the PMAPI have enjoyed a symbiotic evolution throughout the
development of Performance Co-Pilot.

It will be convenient to differentiate between code that uses the PMAPI and code that
implements the services of the PMAPI. The former will be termed “above the PMAPI”
and the latter “below the PMAPI.”

50

Chapter 3: PMAPI—The Performance Metrics API

Naming and Identifying Performance Metrics

Across all of the supported performance metric domains, there are a large number of
performance metrics. Each metric has its own description, format, and semantics.
Performance Co-Pilot presents a uniform interface to these metrics above the PMAPI,
independent of the source of the underlying metric data. For example, the performance
metric hinv.physmem has a single 32-bit unsigned integer value, representing the
number of megabytes of physical memory in the system, while the performance metric
irix.disk.dev.total has one 32-bit unsigned integer value per disk spindle,
representing the cumulative count of I/O operations involving each associated disk
spindle. These concepts are described in greater detail in “Domains, Metrics, and
Instances” on page 15.

For brevity and efficiency, internally PCP avoids using ASCII names for performance
metrics, and instead uses an identification scheme that unambiguously associates a
single integer with each known performance metric. This integer is known as a
Performance Metric Identifier, or PMID. For routines using the PMAPI, a PMID is
defined and manipulated with the typedef pmID.

Below the PMAPI, the integer value of the PMID has an internal structure that reflects
the details of the PMCD and PMDA architecture, as described in “Metrics” on page 17.

Above the PMAPI, a Performance Metrics Name Space (PMNS) is used to provide a
hierarchic classification of external metric names, and a one-to-one mapping of external
names to internal PMIDs. A more detailed description of the PMNS can be found in the
Performance Co-Pilot User’s and Administrator’s Guide.

Applications that use the PMAPI may have independent versions of a PMNS,
constructed from an initialization file when the application starts. Not all PMIDs need be
represented in the PMNS of every application. For example, an application that monitors
disk traffic could use a name space that references only the PMIDs for I/O statistics.
Other applications require a stable PMNS that can be assumed to be the same on all
systems. The distributed implementation includes a default PMNS for just this purpose.

The vast majority of PCP users and applications using the PMAPI will choose to use the
default PMNS.

As of PCP release 2.0 the default PMNS comes from the performance metrics source,
either a PMCD process or a PCP archive. This PMNS always reflects the available metrics
from the performance metrics source, so most applications never use the local version of
a PMNS.

Performance Metric Instances

51

Performance Metric Instances

When performance metric values are returned across the PMAPI to a requesting
application, there may be more than one value for a particular metric; for example,
independent counts for each CPU, or each process, or each disk, or each system call type,
and so on. This multiplicity of values is not enumerated in the name space, but rather
when performance metrics are delivered across the PMAPI.

The notion of “metric instances” is really a number of related concepts, as follows:

• A particular performance metric may have a set of associated values or instances.

• The instances are differentiated by an instance identifier.

• An instance identifier has an internal encoding (an integer value) and an external
encoding (a corresponding external name or label).

• The set of all possible instance identifiers associated with a performance metric on a
particular host constitutes an “instance domain”.

• Several performance metrics may share the same instance domain.

For example, consider the following;

$ pminfo -f irix.filesys.free

irix.filesys.free
 inst [1 or “/dev/root”] value 1803
 inst [2 or “/dev/usr”] value 22140
 inst [3 or “/dev/dsk/dks0d2s0”] value 157938

The metric irix.filesys.free has three values, currently 1803, 22140, and 157938.
These values are respectively associated with the instances identified by the internal
identifiers 1, 2 and 3, and the external identifiers /dev/root, /dev/usr and /dev/dsk/dks0d2s0.
These instances form an instance domain that is shared by the performance metrics
irix.filesys.capacity, irix.filesys.used, irix.filesys.free,
irix.filesys.mountdir, and so on.

Each performance metric is associated with an instance domain, while each instance
domain may be associated with many performance metrics. Each instance domain is
identified by a unique value, as defined by the following typedef declaration:

typedef unsigned long pmInDom;

52

Chapter 3: PMAPI—The Performance Metrics API

The special instance domain PM_INDOM_NULL is reserved to indicate that the metric
has a single value (a singular instance domain). For example, the performance metric
irix.mem.freemem always has exactly one value. Note that this is semantically different
to a performance metric like irix.kernel.percpu.syscall that has a non-singular
instance domain, but may have only one value available; for example, on a system with
a single processor.

In the results returned above the PMAPI, each individual instance, within an instance
domain, is identified by an internal integer instance identifier. The special instance
identifier PM_IN_NULL is reserved for the single value in a singular instance domain.
Performance metric values are delivered across the PMAPI as a set of instance identifier
and value pairs.

The instance domain of a metric may change with time. For example, a machine may be
shut down, have several disks added, and be rebooted. All performance metrics
associated with the instance domain of disk devices would contain additional values
after the reboot. The difficult issue of transient performance metrics means that repeated
requests for the same PMID may return different numbers of values, or some changes in
the particular instance identifiers returned. This means applications need to be aware
that metric instantiation is guaranteed to be valid only at the time of collection.

Note: Some instance domains are more dynamic than others. For example, consider the
instance domains behind the performance metrics proc.memory.physical.dat (one
instance per process), irix.swap.free (one instance per swap partition) and
irix.kernel.percpu.cpu.intr (one instance per CPU).

Current PMAPI Context

When performance metrics are retrieved across the PMAPI, they are delivered in the
context of a particular source of metrics, a point in time, and a profile of desired instances.
This means that the application making the request has already negotiated across the
PMAPI to establish the context in which the request should be executed.

A metric’s source may be the current performance data from a particular host (a “live”
or real-time source), or an archive log of performance data collected by pmlogger at some
remote host or earlier time (a retrospective or archive source). The metric’s source is
specified when the PMAPI context is created by calling the pmNewContext function.

Performance Metric Descriptions

53

The collection time for a performance metric is always the current time of day for a
real-time source, or current position for an archive source. For archives, the collection
time may be set to an arbitrary time within the bounds of the archive log by calling the
pmSetMode function.

The last component of a PMAPI context is an instance profile that may be used to control
which particular instances from an instance domain should be retrieved. When a new
PMAPI context is created, the initial state expresses an interest in all possible instances,
to be collected at the current time. The instance profile can be manipulated using the
functions pmAddProfile and pmDelProfile.

Performance Metric Descriptions

For each defined performance metric, there is associated metadata encoded in a
Performance Metric Description (pmDesc structure) that describes the format and
semantics of the performance metric. The pmDesc structure provides all of the
information required to interpret and manipulate a performance metric through the
PMAPI. It has the following declaration:

/* Performance Metric Descriptor */
typedef struct {

pmID pmid; /* unique identifier */
int type; /* base data type (see below) */
pmInDom indom; /* instance domain */
int sem; /* semantics of value (see below) */
pmUnits units; /* dimension and units (see below) */

} pmDesc;

The type field in the pmDesc structure describes various encodings of a metric’s value. Its
value will be one of the following constants:

/* pmDesc.type - data type of metric values */
#define PM_TYPE_NOSUPPORT -1 /* not in this version */
#define PM_TYPE_32 0 /* 32-bit signed integer */
#define PM_TYPE_U32 1 /* 32-bit unsigned integer */
#define PM_TYPE_64 2 /* 64-bit signed integer */
#define PM_TYPE_U64 3 /* 64-bit unsigned integer */
#define PM_TYPE_FLOAT 4 /* 32-bit floating point */
#define PM_TYPE_DOUBLE 5 /* 64-bit floating point */
#define PM_TYPE_STRING 6 /* array of char */
#define PM_TYPE_AGGREGATE 7 /* arbitrary binary data */

54

Chapter 3: PMAPI—The Performance Metrics API

By convention PM_TYPE_STRING is interpreted as a classic C-style null byte terminated
string.

If the value of a performance metric is of type PM_TYPE_AGGREGATE (or indeed
PM_TYPE_STRING), the interpretation of that value is unknown to most PCP
components. In these cases, the application using the value and the Performance Metrics
Domain Agent (PMDA) providing the value must have some common understanding
about how the value is structured and interpreted.

PM_TYPE_NOSUPPORT indicates that the PCP collection framework knows about the
metric, but the corresponding service or application is either not configured or is at a
revision level that does not provide support for this performance metric.

The semantics of the performance metric is described by the sem field of a pmDesc
structure and uses the following constants:

/* pmDesc.sem - semantics of metric values */
#define PM_SEM_COUNTER 1 /* cumulative count, monotonic increasing */
#define PM_SEM_INSTANT 3 /* instant. value continuous domain */
#define PM_SEM_DISCRETE 4 /* instant. value discrete domain */

Each value for a performance metric is assumed to be drawn from a set of values that can
be described in terms of their dimensionality and scale by a compact encoding, as
follows:

• The dimensionality is defined by a power, or index, in each of three orthogonal
dimensions: Space, Time, and Count (dimensionless). For example, I/O throughput
is Space1.Time-1, while the running total of system calls is Count1, memory
allocation is Space1, and average service time per event is Time1.Count-1.

• In each dimension, a number of common scale values are defined that may be used
to better encode ranges that might otherwise exhaust the precision of a 32-bit value.
So, for example, a metric with dimension Space1.Time-1 may have values encoded
using the scale megabytes per second.

Performance Metric Descriptions

55

This information is encoded in the pmUnits data structure, which is embedded in the
pmDesc structure:

/*
 * Encoding for the units (dimensions and
 * scale) for Performance Metric Values
 *
 * For example, a pmUnits struct of
 * { 1, -1, 0, PM_SPACE_MBYTE, PM_TIME_SEC, 0 }
 * represents Mbytes/sec, while
 * { 0, 1, -1, 0, PM_TIME_HOUR, 6 }
 * represents hours/million-events
 */
typedef struct {

int dimSpace:4; /* space dimension */
int dimTime:4; /* time dimension */
int dimCount:4; /* event dimension */
int scaleSpace:4; /* one of PM_SPACE_* below */
int scaleTime:4; /* one of PM_TIME_* below */
int scaleCount:4; /* one of PM_COUNT_* below */

} pmUnits; /* dimensional units and scale of value */
/* pmUnits.scaleSpace */
#define PM_SPACE_BYTE 0 /* bytes */
#define PM_SPACE_KBYTE 1 /* Kilobytes (1024) */
#define PM_SPACE_MBYTE 2 /* Megabytes (1024^2) */
#define PM_SPACE_GBYTE 3 /* Gigabytes (1024^3) */
#define PM_SPACE_TBYTE 4 /* Terabytes (1024^4) */

/* pmUnits.scaleTime */
#define PM_TIME_NSEC 0 /* nanoseconds */
#define PM_TIME_USEC 1 /* microseconds */
#define PM_TIME_MSEC 2 /* milliseconds */
#define PM_TIME_SEC 3 /* seconds */
#define PM_TIME_MIN 4 /* minutes */
#define PM_TIME_HOUR 5 /* hours */

/*
 * pmUnits.scaleCount (e.g. count events, syscalls,
 * interrupts, etc.) -- these are simply powers of 10,
 * and not enumerated here.
 * e.g. 6 for 10^6, or -3 for 10^-3
 */
#define PM_COUNT_ONE 0 /* 1 */

56

Chapter 3: PMAPI—The Performance Metrics API

Performance Metrics Values

An application may fetch (or store) values for a set of performance metrics, each with a
set of associated instances, using a single pmFetch (or pmStore) function call. To
accommodate this, values are delivered across the PMAPI in the form of a tree data
structure, rooted at a pmResult structure. This encoding is illustrated in Figure 3-1, and
uses the following component data structures:

typedef struct {
 int inst; /* instance identifier */
 union {
 pmValueBlock *pval; /* pointer to value-block */
 int lval; /* integer value insitu */
 } value;
} pmValue;

Figure 3-1 A Structured Result for Performance Metrics From pmFetch

numval

pmValueBlock

pmValueSet

timestamp

pmResult

numpmid

pmValueSet[]

pmid

valfmt

pmValue[]

numval

inst

pmValueSet

pmid

valfmt

pmValue[]

inst

inst

inst

inst value

value

value

value

Performance Metrics Values

57

The internal instance identifier is stored in the inst element. If a value for a particular
metric-instance pair is a 32-bit integer (signed or unsigned), then it will be stored in the
lval element. If not, the value will be in a pmValueBlock located via pval:

typedef struct {
 unsigned int vtype : 8; /* value type */
 unsigned int vlen : 24; /* bytes for vtype/vlen + vbuf */
 char vbuf[1]; /* the value */
} pmValueBlock;

The length of the pmValueBlock (including the vtype and vlen fields) is stored in vlen.
Despite the prototype declaration of vbuf, this array really accommodates vlen minus
sizeof(vlen) bytes. The vtype field encodes the type of the value in the vbuf[] array, and is
one of the PM_TYPE_* macros defined in /usr/include/pmapi.h.

typedef struct {
 pmID pmid; /* metric identifier */
 int numval; /* number of values */
 int valfmt; /* value style, insitu or ptr */
 pmValue vlist[1]; /* set of instances/values */
} pmValueSet;

A pmValueSet contains all of the values to be returned from pmFetch for a single
performance metric identified by the pmid field. If positive, the numval field identifies the
number of value-instance pairs in the vlist array (despite the prototype declaration of
size 1). If numval is zero, there are no values available for the associated performance
metric and vlist[0] is undefined. A negative value for numval indicates an error condition
(see pmErrStr(3)) and vlist[0] is undefined. The valfmt field has the value
PM_VAL_INSITU to indicate that the values for the performance metrics should be
located directly via the lval member of the value union embedded in the elements of vlist,
otherwise metric values are located indirectly via the pval member of the elements of
vlist.

/* Result returned by pmFetch() */
typedef struct {
 struct timeval timestamp; /* stamped by collector */
 int numpmid; /* number of PMIDs */
 pmValueSet *vset[1]; /* set of value sets */
} pmResult

The pmResult structure contains a timestamp and an array of numpmid pointers to
pmValueSets. There is one pmValueSet pointer per PMID, with a one-to-one
correspondence to the set of requested PMIDs passed to pmFetch.

58

Chapter 3: PMAPI—The Performance Metrics API

Along with the metric values, the PMAPI returns a timestamp with each pmResult that
serves to identify when the performance metric values were collected. The time is in the
format returned by gettimeofday and is typically very close to the time when the metrics
are exported across the PMAPI.

Note: There is a question of exactly “when” individual metrics may have been collected,
especially given their origin in potentially different performance metric domains, and
variability in metric updating frequency by individual PMDAs. PCP uses a pragmatic
approach, in which the PMAPI implementation returns all metrics with values accurate
as of the timestamp, to the maximum degree possible, and pmcd demands that all
PMDAs deliver values within a small realtime window. The resulting inaccuracy is
small, and the additional burden of accurate individual timestamping for each returned
metric value is neither warranted nor practical (from an implementation viewpoint).

The PMAPI provides functions to extract, rescale, and print values from the above
structures; refer to “PMAPI Ancillary Support Services” on page 77.

General Issues of PMAPI Programming Style and Interaction

The following sections specify the programming style used in the PMAPI:

• “Variable Length Argument and Results Lists”

• “PMAPI Error Handling”

Variable Length Argument and Results Lists

All arguments and results involving a “list of something” are encoded as an array with
an associated argument or function value to identify the number of elements in the array.
This encoding scheme avoids both the varargs approach and sentinel-terminated lists.
Where the size of a result is known at the time of a call, it is the caller’s responsibility to
allocate (and possibly free) the storage, and the called function assumes that the resulting
argument is of an appropriate size.

Where a result is of variable size and that size cannot be known in advance (for example,
pmGetChildren, pmGetInDom, pmNameInDom, pmNameID, pmLookupText and
pmFetch), the underlying implementation uses dynamic allocation through malloc in
the called routine, with the caller responsible for subsequently calling free to release the
storage when no longer required. In the case of the result from pmFetch, there is a routine

PMAPI Procedural Interface

59

(pmFreeResult) to release the storage, due to the complexity of the data structure and the
need to make multiple calls to free in the correct sequence. As a general rule, if the called
routine returns an error status, then no allocation is done, the pointer to the variable sized
result is undefined, and free or pmFreeResult should not be called.

PMAPI Error Handling

Where error conditions may arise, the functions that compose the PMAPI conform to a
single, simple error notification scheme, as follows:

• The function returns an int. Values greater than or equal to zero indicate no error,
and perhaps some positive status: for example, the number of items processed.

• Values less than zero indicate an error, as determined by a global table of error
conditions and messages.

A PMAPI library routine along the lines of strerror is provided to translate error
conditions into error messages; see pmErrStr. The error condition is returned as the
function value from a previous PMAPI call; there is no global error indicator (unlike
errno). This is an attempt to anticipate and accommodate a programming environment
that does not hinder the implementation of multi-threaded performance tools.

The available error codes may be displayed with the following command:

pmerr -l

PMAPI Procedural Interface

The following sections describe all of the PMAPI routines that provide access to the PCP
infrastructure on behalf of a client application:

• “PMAPI Name Space Services”

• “PMAPI Metric Description Services”

• “PMAPI Instance Domain Services”

• “PMAPI Context Services”

• “PMAPI Metrics Services”

• “PMAPI Archive-Specific Services”

60

Chapter 3: PMAPI—The Performance Metrics API

PMAPI Name Space Services

pmGetChildren

int pmGetChildren(const char *name, char ***offspring)

Given a full pathname to a node in the current PMNS, as identified by name, return
through offspring a list of the relative names of all the immediate descendents of name in
the current PMNS. As a special case, if name is an empty string, (that is, "" but not NULL
or (char *)0), the immediate descendents of the root node in the PMNS are returned.

Normally, pmGetChildren returns the number of descendent names discovered, or a
value less than zero for an error. The value zero indicates that the name is valid, and
associated with a leaf node in the PMNS.

The resulting list of pointers (offspring) and the values (relative metric names) that the
pointers reference are allocated by pmGetChildren with a single call to malloc, and it is
the responsibility of the caller to issue a free(offspring) system call to release the space
when it is no longer required. When the result of pmGetChildren is less than one,
offspring is undefined (no space is allocated, and so calling free is counterproductive).

pmGetChildrenStatus

int
pmGetChildrenStatus(const char *name, char ***offspring, int **status)

The pmGetChildrenStatus function is an extension of pmGetChildren that optionally
returns status information about each of the descendent names.

Given a fully qualified pathname to a node in the current PMNS, as identified by name,
pmGetChildrenStatus returns by means of offspring a list of the relative names of all of
the immediate descendent nodes of name in the current PMNS. If name is the empty string
(””), it returns the immediate descendents of the root node in the PMNS.

If status is not NULL, then pmGetChildrenStatus also returns the status of each child by
means of status. This refers to either a leaf node (with value PMNS_LEAF_STATUS) or a
non-leaf node (with value PMNS_NONLEAF_STATUS).

Normally, pmGetChildrenStatus returns the number of descendent names discovered,
or else a value less than zero to indicate an error. The value zero indicates that name is a
valid metric name, being associated with a leaf node in the PMNS.

PMAPI Procedural Interface

61

The resulting list of pointers (offspring) and the values (relative metric names) that the
pointers reference are allocated by pmGetChildrenStatus with a single call to malloc,
and it is the responsibility of the caller to free(offspring) to release the space when it is no
longer required. The same holds true for the status array.

pmGetPMNSLocation

int pmGetPMNSLocation(void)

If an application needs to know where the origin of a PMNS, pmGetPMNSLocation
returns whether it is an archive (PMNS_ARCHIVE), a local PMNS file (PMNS_LOCAL),
or a remote pmcd (PMNS_REMOTE). This information may be useful in determining an
appropriate error message depending on PMNS location.

pmLoadNameSpace

int pmLoadNameSpace(const char *filename)

Before requesting any services involving a local Performance Metrics Name Space
(PMNS), the application must load the PMNS using pmLoadNameSpace.

The filename argument designates the PMNS of interest. For applications that do not
require a tailored name space, the special value PM_NS_DEFAULT may be used for
filename, to force a default local PMNS to be established. Externally a PMNS may be
stored in either an ASCII or binary format. The utility pmnscomp is used to create the
binary format from the ASCII format.

Note: The distributed PMNS services in PCP 2.0 avoid the need for a local PMNS in most
cases, so applications typically would not use pmLoadNameSpace. If applications do not
call pmLoadNameSpace, the default PMNS is the one at the source of the performance
metrics.

pmLookupName

int pmLookupName(int numpmid, char *namelist[], pmID pmidlist[])

Given a list in namelist containing numpmid full pathnames for performance metrics from
the current PMNS, pmLookupName returns the list of associated PMIDs through the
pmidlist parameter. Invalid metrics names are translated to the “error” PMID value of
PM_ID_NULL.

62

Chapter 3: PMAPI—The Performance Metrics API

The result from pmLookupName is the number of names translated in the absence of
errors, or an error indication. Note that argument definition and the error protocol
guarantee a one-to-one relationship between the elements of namelist and pmidlist; both
lists contain exactly numpmid elements.

pmNameID

int pmNameID(pmID pmid, char **name)

Given a performance metric ID in pmid, pmNameID determines the corresponding
metric name, if any, in the current PMNS, and returns this through name.

In the absence of errors, pmNameID returns zero. The name argument is a null byte
terminated string, allocated by pmNameID using malloc. It is the caller’s responsibility
to call free to release the space when it is no longer required.

pmTraversePMNS

int pmTraversePMNS(const char *name, void (*dometric)(char *))

The routine pmTraversePMNS may be used to perform a depth-first traversal of the
PMNS. The traversal starts at the node identified by name—if name is an empty string, the
traversal starts at the root of the PMNS. Usually name would be the pathname of a
non-leaf node in the PMNS.

For each leaf node (actual performance metrics) found in the traversal, the user-supplied
routine dometric is called with the full pathname of that metric in the PMNS as the single
argument; this argument is a null byte-terminated string, and is constructed from a
buffer that is managed internally to pmTraversePMNS. Consequently the value is valid
only during the call to dometric—if the pathname needs to be retained, it should be
copied using strdup before returning from dometric; see strdup(3C).

pmTrimNameSpace

int pmTrimNameSpace(void)

If the current PMAPI context corresponds to a version 1 PCP archive log of performance
metrics (as collected by pmlogger in PCP 1.x releases), and pmLoadNameSpace has been
called to load a local PMNS, then this PMNS is trimmed to exclude metrics for which no
description can be found in the archive. The PMNS is further trimmed to remove empty
subtrees that contain no performance metrics.

PMAPI Procedural Interface

63

Since the PCP archives usually contain some subset of all metrics named in a local PMNS,
pmTrimNameSpace effectively trims the application’s PMNS to contain only the names
of the metrics in the archive. Before any trimming, the PMNS is restored to the state as of
the completion of the last pmLoadNameSpace operation, so the effects of consecutive
calls to pmTrimNameSpace with archive contexts are not cumulative.

If the current PMAPI context corresponds to a host, rather than an archive, the PMNS
reverts to all names loaded into the PMNS at completion of the last pmLoadNameSpace
operation. For example, any trimming is undone.

The PMNS services in PCP 2.0 avoid the need for a local PMNS in most cases (and by
default use only the PMNS of the metrics in a PCP archive) so applications would
typically not call pmTrimNameSpace.

pmUnloadNameSpace

int pmUnloadNameSpace(void)

If a local PMNS was loaded with pmLoadNameSpace, calling pmUnloadNameSpace
frees up the memory associated with the PMNS and force all subsequent namespace
routines to use the distributed PMNS. If pmUnloadNameSpace is called before calling
pmLoadNameSpace, it has no effect.

PMAPI Metric Description Services

pmLookupDesc

int pmLookupDesc(pmID pmid, pmDesc *desc)

Given a Performance Metrics Identifier as pmid, pmLookupDesc returns the associated
pmDesc structure through the parameter desc from the current PMAPI context. For more
information about pmDesc, see “Performance Metric Descriptions” on page 53.

pmLookupText

int pmLookupText(pmID pmid, int level, char **buffer)

Provided the source of metrics from the current PMAPI context is a host, retrieve
descriptive text about the performance metric identified by pmid. The argument level
should be PM_TEXT_ONELINE for a one-line summary, or PM_TEXT_HELP for a more
verbose description, suited to a help dialog.

64

Chapter 3: PMAPI—The Performance Metrics API

The space pointed to by buffer is allocated in pmLookupText with malloc, and it is the
responsibility of the caller to free the space when it is no longer required; see malloc(3C)
and free(3C).

The help text files used to implement pmLookupText are created using newhelp and
accessed by the appropriate PMDA in response to requests forwarded to the PMDA by
pmcd. Further details may be found in “PMDA Help Text” on page 26.

pmLookupInDomText

int pmLookupInDomText(pmInDom indom, int level, char **buffer)

Provided the source of metrics from the current PMAPI context is a host, retrieve
descriptive text about the performance metrics instance domain identified by indom.

The argument level should be PM_TEXT_ONELINE for a one-line summary, or
PM_TEXT_HELP for a more verbose description suited to a help dialog. The space
pointed to by buffer is allocated in pmLookupInDomText with malloc, and it is the
responsibility of the caller to free unneeded space; see malloc(3C) and free(3C).

The help text files used to implement pmLookupInDomText are created using newhelp
and accessed by the appropriate PMDA response to requests forwarded to the PMDA by
pmcd. Further details may be found in “PMDA Help Text” on page 26.

PMAPI Instance Domain Services

pmGetInDom

int pmGetInDom(pmInDom indom, int **instlist, char ***namelist)

In the current PMAPI context, locate the description of the instance domain indom, and
return through instlist the internal instance identifiers for all instances, and through
namelist the full external identifiers for all instances. The number of instances found is
returned as the function value (or less than zero to indicate an error).

The resulting lists of instance identifiers (instlist and namelist), and the names that the
elements of namelist point to, are allocated by pmGetInDom with two calls to malloc,
and it is the responsibility of the caller to use free(instlist) and free(namelist) to release the
space when it is no longer required. When the result of pmGetInDom is less than one,
both instlist and namelist are undefined (no space is allocated, and so calling free is a bad
idea); see malloc(3C) and free(3C).

PMAPI Procedural Interface

65

pmLookupInDom

int pmLookupInDom(pmInDom indom, char *name)

For the instance domain indom, in the current PMAPI context, locate the instance with the
external identification given by name, and return the internal instance identifier.

pmNameInDom

int pmNameInDom(pmInDom indom, int inst, char **name)

For the instance domain indom, in the current PMAPI context, locate the instance with the
internal instance identifier given by inst, and return the full external identification
through name. The space for the value of name is allocated in pmNameInDom with
malloc, and it is the responsibility of the caller to free the space when it is no longer
required; see malloc(3C) and free(3C).

PMAPI Context Services

The following table shows which of the three components of a PMAPI context (metrics
source, instance profile, and collection time) are relevant for various PMAPI functions.
Those PMAPI functions not shown in this table either manipulate the PMAPI context
directly, or are executed independently of the current PMAPI context.

Table 3-1 Context Components of PMAPI Functions

Function Name Metrics Source Instance Profile Collection Time Notes

pmAddProfile yes yes

pmDelProfile yes yes

pmDupContext yes yes yes

pmFetch yes yes yes

pmFetchArchive yes yes (1)

pmGetArchiveEnd yes (1)

pmGetArchiveLabel yes (1)

pmGetChildren yes (5)

pmGetChildrenStatus yes (5)

pmGetPMNSLocation yes

pmGetInDom yes yes (2)

66

Chapter 3: PMAPI—The Performance Metrics API

Notes:

1. Operation supported only for PMAPI contexts where the source of metrics is an
archive.

2. A specific instance domain is included in the arguments to these routines, and the
result is independent of the instance profile for any PMAPI context.

3. The metadata that describes a performance metric is sensitive to the source of the
metrics, but independent of any instance profile and of the collection time.

4. Operation supported only for PMAPI contexts where the source of metrics is a host.
The text associated with a metric is assumed to be invariant with time and is
definitely insensitive to the current members of the instance domain. In all cases this
information is unavailable from an archive context (it is not included in the archive
logs), and is directly available from a PMDA via pmcd in the other cases.

5. PMNS service routines using a local PMNS do not depend on the PMAPI context,
whereas PCP 2.0 distributed PMNS services are dependent on the source of metrics.

pmGetInDomArchive yes (1)

pmLookupDesc yes (3)

pmLookupInDom yes yes (2)

pmLookupInDomArchive yes (1,2)

pmLookupInDomText yes (4)

pmLookupName yes (5)

pmLookupText yes (4)

pmNameID yes (5)

pmNameInDom yes yes (2)

pmNameInDomArchive yes (1,2)

pmSetMode yes yes

pmStore yes (6)

pmTraversePMNS yes (5)

pmTrimNameSpace yes

Table 3-1 (continued) Context Components of PMAPI Functions

Function Name Metrics Source Instance Profile Collection Time Notes

PMAPI Procedural Interface

67

6. This operation is supported only for contexts where the source of the metrics is a
host. Further, the instance identifiers are included in the argument to the routine,
and the effects upon the current values of the metrics are immediate (retrospective
changes are not allowed). Consequently, from the current PMAPI context, neither
the instance profile nor the collection time influence the result of this routine.

pmNewContext

int pmNewContext(int type, char *name)

The pmNewContext function may be used to establish a new PMAPI context. The source
of metrics is identified by name, and may be a host name (type is PM_CONTEXT_HOST)
or the basename of an archive log (type is PM_CONTEXT_ARCHIVE).

In the case where type is PM_CONTEXT_LOCAL, name is ignored, and the context uses
a standalone connection to the PMDA methods used by pmcd. When this type of context
is in effect, the range of accessible performance metrics is constrained to those from the
operating system, and optionally the proc and sample PMDAs.

The initial instance profile is set up to select all instances in all instance domains, and the
initial collection time is the “current” time at the time of each request for a host, or the
time at the start of the log for an archive. In the case of archives, the initial collection time
results in the earliest set of metrics being returned from the archive at the first pmFetch.

Once established, the association between a PMAPI context and a source of metrics is
fixed for the life of the context; however, routines are provided to independently
manipulate both the instance profile and the collection time components of a context.

The function returns a “handle” that may be used in subsequent calls to pmUseContext.

This new PMAPI context stays in effect for all subsequent context sensitive calls across
the PMAPI until another call to pmNewContext is made, or the context is explicitly
changed with a call to pmDupContext or pmUseContext.

pmDestroyContext

int pmDestroyContext(int handle)

The PMAPI context identified by handle is destroyed. Typically this implies terminating
a connection to PMCD or closing an archive file, and orderly clean-up. The PMAPI
context must have been previously created using pmNewContext or pmDupContext.

68

Chapter 3: PMAPI—The Performance Metrics API

On success, pmDestroyContext returns zero. If handle was the current PMAPI context,
then the current context becomes undefined. This means the application must explicitly
re-establish a valid PMAPI context with pmUseContext, or create a new context with
pmNewContext or pmDupContext, before the next PMAPI operation requiring a
PMAPI context.

pmDupContext

int pmDupContext(void)

Replicate the current PMAPI context (source, instance profile, and collection time). This
routine returns a “handle” for the new context, which may be used with subsequent calls
to pmUseContext. The newly replicated PMAPI context becomes the current context.

pmUseContext

int pmUseContext(int handle)

Calling pmUseContext causes the current PMAPI context to be set to the context
identified by handle. The value of handle must be one returned from an earlier call to
pmNewContext or pmDupContext.

Below the PMAPI, all contexts used by an application are saved in their most recently
modified state, so pmUseContext restores the context to the state it was in the last time
the context was used, not the state of the context when it was established.

pmWhichContext

int pmWhichContext(void)

Returns the “handle” for the current PMAPI context (source, instance profile, and
collection time).

pmAddProfile

int pmAddProfile(pmInDom indom, int numinst, int instlist[])

Add new instance specifications to the instance profile of the current PMAPI context. In
the simplest variant, the list of instances identified by the instlist argument for the indom
instance domain are added to the instance profile. The list of instance identifiers contains
numinst values.

PMAPI Procedural Interface

69

If indom equals PM_INDOM_NULL, or numinst is zero, then all instance domains are
selected. If instlist is NULL, then all instances are selected. To enable all available
instances in all domains, use this syntax:

pmAddProfile(PM_INDOM_NULL, 0, NULL).

pmDelProfile

int pmDelProfile(pmInDom indom, int numinst, int instlist[])

Delete instance specifications from the instance profile of the current PMAPI context. In
the simplest variant, the list of instances identified by the instlist argument for the indom
instance domain is removed from the instance profile. The list of instance identifiers
contains numinst values.

If indom equals PM_INDOM_NULL, then all instance domains are selected for deletion.
If instlist is NULL, then all instances in the selected domains are removed from the
profile. To disable all available instances in all domains, use this syntax:

pmDelProfile(PM_INDOM_NULL, 0, NULL)

pmSetMode

int pmSetMode(int mode, const struct timeval *when, int delta)

This routine defines the collection time and mode for accessing performance metrics and
metadata in the current PMAPI context. This mode affects the semantics of subsequent
calls to the following PMAPI routines: pmFetch, pmFetchArchive, pmLookupDesc,
pmGetInDom, pmLookupInDom and pmNameInDom.

The pmSetMode routine requires the current PMAPI context to be of type
PM_CONTEXT_ARCHIVE.

The when parameter defines a time origin, and all requests for metadata (metrics
descriptions and instance identifiers from the instance domains) are processed to reflect
the state of the metadata as of the time origin. For example, use the last state of this
information at, or before, the time origin.

If the mode is PM_MODE_INTERP then, in the case of pmFetch, the underlying code uses
an interpolation scheme to compute the values of the metrics from the values recorded
for times in the proximity of the time origin.

70

Chapter 3: PMAPI—The Performance Metrics API

If the mode is PM_MODE_FORW, then, in the case of pmFetch, the collection of recorded
metric values is scanned forward, until values for at least one of the requested metrics is
located after the time origin. Then all requested metrics stored in the PCP archive at that
time are returned with a corresponding timestamp. This is the default mode when an
archive context is first established with pmNewContext.

If the mode is PM_MODE_BACK, then the situation is the same as for PM_MODE_FORW,
except a pmFetch is serviced by scanning the collection of recorded metrics backward for
metrics before the time origin.

After each successful pmFetch, the time origin is reset to the timestamp returned through
the pmResult. The pmSetMode parameter delta defines an additional number of
milliseconds that should be used to adjust the time origin (forward or backward) after
the new time origin from the pmResult has been determined. This is useful when moving
through archives with a fixed sampling rate.

Using these mode options, an application can implement replay, playback, fast forward,
or reverse for performance metric values held in a PCP archive log by alternating calls to
pmSetMode and pmFetch.

For example, the following code fragment may be used to dump only those values stored
in correct temporal sequence, for the specified performance metric my.metric.name:

int sts;
pmID pmid;
char *name = “my.metric.name”;

 sts = pmNewContext(PM_CONTEXT_ARCHIVE, “myarchive”);

 sts = pmLookupName(1, &name, &pmid);

 for (; ;) {
 sts = pmFetch(1, &pmid, &result);
 if (sts < 0)
 break;

 /* dump value(s) from result->vset[0]->vlist[] */

 pmFreeResult(result);
 }

PMAPI Procedural Interface

71

Alternatively, the following code fragment may be used to replay interpolated metrics
from an archive in reverse chronological order, at ten-second intervals (of recorded time):

int sts;
pmID pmid;
char *name = “my.metric.name”;
struct timeval endtime;

 sts = pmNewContext(PM_CONTEXT_ARCHIVE, “myarchive”);

 sts = pmLookupName(1, &name, &pmid);

 sts = pmGetArchiveEnd(&endtime);
 sts = pmSetMode(PM_MODE_INTERP, &endtime, -10000);

 while (pmFetch(1, &pmid, &result) != PM_ERR_EOL) {

 /*
 * process interpolated metric values as of result->timestamp
 */

 pmFreeResult(result);
 }

pmReconnectContext

int pmReconnectContext(int handle)

As a result of network, host, or PMCD (Performance Metrics Coordinating Daemon)
failure, an application’s connection to PMCD may be established and then lost.

The routine pmReconnectContext allows an application to request that the PMAPI
context identified by handle be re-established, provided the associated PMCD is
accessible.

Note: handle may or may not be the current context.

To avoid flooding the system with reconnect requests, pmReconnectContext attempts a
reconnection only after a suitable delay from the previous attempt. This imposed
restriction on the reconnect re-try time interval uses a default exponential back-off so that
the initial delay is 5 seconds after the first unsuccessful attempt, then 10 seconds, then 20
seconds, then 40 seconds, and then 80 seconds thereafter. The intervals between
reconnection attempts may be modified using the environment variable
PMCD_RECONNECT_TIMEOUT and the time to wait before an attempted connection
is deemed to have failed is controlled by the environment variable
PMCD_CONNECT_TIMEOUT; see PCPIntro(1).

72

Chapter 3: PMAPI—The Performance Metrics API

If the reconnection succeeds, pmReconnectContext returns handle. Note that even in the
case of a successful reconnection, pmReconnectContext does not change the current
PMAPI context.

PMAPI Metrics Services

pmFetch

int pmFetch(int numpmid, pmID pmidlist[], pmResult **result)

The most common PMAPI operation is likely to be calls to pmFetch, specifying a list of
PMIDs (for example, as constructed by pmLookupName) through pmidlist and numpmid.
The call to pmFetch is executed in the context of a source of metrics, instance profile, and
collection time, previously established by calls to the routines described in “PMAPI
Context Services” on page 65.

The principal result from pmFetch is returned as a tree structured result, described in the
section “Performance Metrics Values” on page 56.

If one value (for example, associated with a particular instance) for a requested metric is
unavailable at the requested time, then there is no associated pmValue structure in the
result. If there are no available values for a metric, then numval is zero and the associated
pmValue[] instance is empty; valfmt is undefined in these circumstances, but pmid is
correctly set to the PMID of the metric with no values.

If the source of the performance metrics is able to provide a reason why no values are
available for a particular metric, this reason is encoded as a standard error code in the
corresponding numval; see pmerr(1) and pmErrStr(3). Since all error codes are negative,
values for a requested metric are unavailable if numval is less than or equal to zero.

The argument definition and the result specifications have been constructed to ensure
that for each PMID in the requested pmidlist there is exactly one pmValueSet in the result,
and that the PMIDs appear in exactly the same sequence in both pmidlist and result. This
makes the number and order of entries in result completely deterministic, and greatly
simplifies the application programming logic after the call to pmFetch.

The result structure returned by pmFetch is dynamically allocated using one or more
calls to malloc and specialized allocation strategies, and should be released when no
longer required by calling pmFreeResult. Under no circumstances should free be called
directly to release this space.

PMAPI Procedural Interface

73

As common error conditions are encoded in the result data structure, only serious events
(such as loss of connection to PMCD, malloc failure, and so on.) would cause an error
value to be returned by pmFetch. Otherwise the value returned by the pmFetch function
is zero.

The following code fragment dumps the values (assumed to be stored in the lval element
of the pmValue structure) of selected performance metrics once every 10 seconds:

int numpmid, i, j, sts;
pmID pmidlist[10];
pmResult *result;
time_t now;

/* set up PMAPI context, numpmid and pmidlist[] ... */
while ((sts = pmFetch(&result)) >= 0) {
 now = (time_t)result->timestamp.tv_sec;
 printf("\n@ %s", ctime(&now));
 for (i = 0; i < result->numpmid; i++) {
 printf("PMID: %s", pmIDStr(result->vset[i]->pmid));
 for (j = 0; j < result->vset[i]->numval; j++) {
 printf(" 0x%x", result->vset[i]->vlist[j].value.lval);
 putchar(’\n’);
 }
 }
 pmFreeResult(result);
 sleep(10);
}

Note: If a response is not received back from PMCD within 10 seconds, the pmFetch will
time out and return PM_ERR_TIMEOUT. This is most likely to occur when the PMAPI
client and PMCD are communicating over a slow network connection, but may also
occur when one of the hosts is extremely busy. The time out period may be modified
using the environment variable PMCD_REQUEST_TIMEOUT; see PCPIntro(1).

pmFreeResult

void pmFreeResult(pmResult *result)

Release the storage previously allocated for a result by pmFetch.

74

Chapter 3: PMAPI—The Performance Metrics API

pmStore

int pmStore(const pmResult *request)

In some special cases it may be helpful to modify the current values of performance
metrics in one or more underlying domains, for example to reset a counter to zero, or to
modify a “metric,” which is a control variable within a Performance Metric Domain.

The routine pmStore is a lightweight inverse of pmFetch. The caller must build the
pmResult data structure (which could have been returned from an earlier pmFetch call)
and then call pmStore. It is an error to pass a request to pmStore in which the numval field
within any of the pmValueSet structure has a value less than one.

The current PMAPI context must be one with a host as the source of metrics, and the
current value of the nominated metrics is changed. For example, pmStore cannot be used
to make retrospective changes to information in a PCP archive log!

PMAPI Archive-Specific Services

pmGetArchiveLabel

int pmGetArchiveLabel(int handle, pmLogLabel *lp)

Provided the current PMAPI context is associated with a PCP archive log, the
pmGetArchiveLabel function may be used to fetch the label record from the archive.
The structure returned through lp is as follows:

/*
 * Label Record at the start of every log file - as exported above the PMAPI ...
 */
#define PM_LOG_MAXHOSTLEN 64
#define PM_LOG_MAGIC 0x50052600
#define PM_LOG_VERS01 0x1
#define PM_LOG_VERS02 0x2
#define PM_LOG_VOL_TI -2 /* temporal index */
#define PM_LOG_VOL_META -1 /* meta data */
typedef struct {
 int ll_magic; /* PM_LOG_MAGIC | log format version no. */
 pid_t ll_pid; /* PID of logger */
 struct timeval ll_start; /* start of this log */
 char ll_hostname[PM_LOG_MAXHOSTLEN]; /* name of collection host */
 char ll_tz[40]; /* $TZ at collection host */
} pmLogLabel;

PMAPI Procedural Interface

75

pmGetArchiveEnd

int pmGetArchiveEnd(struct timeval *tvp)

Provided the current PMAPI context is associated with a PCP archive log,
pmGetArchiveEnd finds the logical end of file (after the last complete record in the
archive), and returns the last recorded timestamp with tvp. This timestamp may be
passed to pmSetMode to reliably position the context at the last valid log record, for
example, in preparation for subsequent reading in reverse chronological order.

For archive logs that are not concurrently being written, the physical end of file and the
logical end of file are co-incident. However, if an archive log is being written by pmlogger
at the same time that an application is trying to read the archive, the logical end of file
may be before the physical end of file due to write buffering that is not aligned with the
logical record boundaries.

pmGetInDomArchive

int pmGetInDomArchive(pmInDom indom, int **instlist, char ***namelist)

Provided the current PMAPI context is associated with a PCP archive log,
pmGetInDomArchive scans the metadata to generate the union of all instances for the
instance domain indom that can be found in the archive log, and returns through instlist
the internal instance identifiers, and through namelist the full external identifiers.

This routine is a specialized version of the more general PMAPI routine pmGetInDom.

The function returns the number of instances found (a value less than zero indicates an
error).

The resulting lists of instance identifiers (instlist and namelist), and the names that the
elements of namelist point to, are allocated by pmGetInDomArchive with two calls to
malloc, and it is the responsibility of the caller to use free(instlist) and free(namelist) to
release the space when it is no longer required; see malloc(3C) and free(3C).

When the result of pmGetInDomArchive is less than one, both instlist and namelist are
undefined (no space is allocated, so calling free is a singularly bad idea).

76

Chapter 3: PMAPI—The Performance Metrics API

pmLookupInDomArchive

int pmLookupInDomArchive(pmInDom indom, const char *name)

Provided the current PMAPI context is associated with a PCP archive log,
pmLookupInDomArchive scans the metadata for the instance domain indom, locates the
first instance with the external identification given by name, and returns the internal
instance identifier.

This routine is a specialized version of the more general PMAPI routine pmLookupInDom.

The pmLookupInDomArchive routine returns a positive instance identifier on success.

pmNameInDomArchive

int pmNameInDomArchive(pmInDom indom, int inst, char **name)

Provided the current PMAPI context is associated with a PCP archive log,
pmNameInDomArchive scans the metadata for the instance domain indom, locates the
first instance with the internal instance identifier given by inst, and returns the full
external instance identification through name.

This routine is a specialized version of the more general PMAPI routine
pmNameInDom.

The space for the value of name is allocated in pmNameInDomArchive with malloc, and
it is the responsibility of the caller to free the space when it is no longer required; see
malloc(3C) and free(3C).

pmFetchArchive

int pmFetchArchive(pmResult **result)

This is a variant of pmFetch that may be used only when the current PMAPI context is
associated with a PCP archive log. The result is instantiated with all of the metrics (and
instances) from the next archive record; consequently there is no notion of a list of desired
metrics, and the instance profile is ignored.

It is expected that pmFetchArchive would be used to create utilities that scan archive
logs (for example, pmdumplog), and the more common access to the archives would be
through the pmFetch interface.

PMAPI Ancillary Support Services

77

Time Control Services

The PMAPI provides a common framework for client applications to control time and to
synchronize time with other applications. The user interface component of this service is
fully described in the companion Performance Co-Pilot User’s and Administrator’s Guide.
See also pmtime(1).

This service is most useful when processing PCP archive logs, to control parameters such
as the current archive position, update interval, replay rate, and timezone, but it can also
be used in live mode to control a subset of these parameters.

Applications such as pmchart, pmview, oview, and pmval use the time control services to
connect to an instance of the time control server process, pmtime, which provides a
uniform graphical user interface to the time control services.

A full description of the PMAPI time control functions along with code examples can be
found in the reference page pmtime(3).

PMAPI Ancillary Support Services

The routines described in this section provide services that are complementary to, but not
necessarily a part of, the distributed manipulation of performance metrics delivered by
the PCP components.

pmErrStr

char *pmErrStr(int code)

This routine translates an error code into a text string, suitable for generating a diagnostic
message. By convention within PCP, all error codes are negative. The small values are
assumed to be negated versions of the UNIX error codes as defined in <errno.h>, and the
strings returned are according to strerror. The large, negative error codes are PMAPI
error conditions, and pmErrStr returns an appropriate PMAPI error string, as
determined by code.

The string value is held in a single static buffer, so the returned value is valid only until
the next call to pmErrStr.

78

Chapter 3: PMAPI—The Performance Metrics API

pmExtractValue

int pmExtractValue(int valfmt, const pmValue *ival, int itype,
 pmAtomValue *oval, int otype)

The pmValue structure is embedded within the pmResult structure, which is used to return
one or more performance metrics; see the description of pmFetch.

All performance metric values may be encoded in a pmAtomValue union, defined as
follows:

/* Generic Union for Value-Type conversions */
typedef union {
 _int32_t l; /* 32-bit signed */
 _uint32_t ul; /* 32-bit unsigned */
 _int64_t ll; /* 64-bit signed */
 _uint64_t ull; /* 64-bit unsigned */
 float f; /* 32-bit floating point */
 double d; /* 64-bit floating point */
 char *cp; /* char ptr */
 void *vp; /* void ptr */
} pmAtomValue;

The routine pmExtractValue provides a convenient mechanism for extracting values
from the pmValue part of a pmResult structure, optionally converting the data type, and
making the result available to the application programmer.

The itype argument defines the data type of the input value held in ival according to the
storage format defined by valfmt (see pmFetch). The otype argument defines the data type
of the result to be placed in oval. The value for itype is typically extracted from a pmDesc
structure, following a call to pmLookupDesc for a particular performance metric.

Table 3-2 defines the various possibilities for the type conversion. The input type (itype)
is shown vertically, and the output type (otype) horizontally. The following rules apply:

• Y means the conversion is always acceptable.

• N means conversion can never be performed (function returns PM_ERR_CONV).

• P means the conversion may lose accuracy (but no error status is returned).

• T means the result may be subject to high-order truncation (if this occurs the
function returns PM_ERR_TRUNC).

• S means the conversion may be impossible due to the sign of the input value (if this
occurs the function returns PM_ERR_SIGN).

PMAPI Ancillary Support Services

79

If an error occurs, oval is set to zero (or NULL). Note that some of the conversions
involving the types PM_TYPE_STRING and PM_TYPE_AGGREGATE are indeed
possible, but are marked N; the rationale is that pmExtractValue should not attempt to
duplicate functionality already available in the C library through sscanf and sprintf.

In the cases where multiple conversion errors could occur, the first encountered error is
returned, and the order of checking is not defined.

If the output conversion is to one of the pointer types, such as otype PM_TYPE_STRING
or PM_TYPE_AGGREGATE, then the value buffer is allocated by pmExtractValue using
malloc, and it is the caller’s responsibility to free the space when it is no longer required;
see malloc(3C) and free(3C).

Although this function appears rather complex, it has been constructed to assist the
development of performance tools that convert values, whose type is known only
through the type field in a pmDesc structure, into a canonical type for local processing.

pmConvScale

int
pmConvScale(int type, const pmAtomValue *ival, const pmUnits *iunit,
 pmAtomValue *oval, pmUnits *ounit)

Given a performance metric value pointed to by ival, multiply it by a scale factor and
return the value in oval. The scaling takes place from the units defined by iunit into the
units defined by ounit. Both input and output units must have the same dimensionality.

Table 3-2 PMAPI Type Conversion

TYPE 32 U32 64 U64 FLOAT DBLE STRIN
G

AGGR

32 Y S Y S P P N N

U32 T Y Y Y P P N N

64 T T,S Y S P P N N

u64 T T T Y P P N N

FLOAT P, T P, T, S P, T P, T, S Y Y N N

DBLE P, T P, T, S P, T P, T, S P Y N N

STRING N N N N N N Y N

AGGR N N N N N N N Y

80

Chapter 3: PMAPI—The Performance Metrics API

The performance metric type for both input and output values is determined by type, the
value for which is typically extracted from a pmDesc structure, following a call to
pmLookupDesc for a particular performance metric.

pmConvScale is most useful when values returned through pmFetch (and possibly
extracted using pmExtractValue) need to be normalized into some canonical scale and
units for the purposes of computation.

pmUnitsStr

const char *pmUnitsStr(const pmUnits *pu)

As an aid to labeling graphs and tables, or for error messages, pmUnitsStr takes a
dimension and scale specification as per pu, and returns the corresponding text string.

pu is typically from a pmDesc structure, for example, as returned by pmLookupDesc.

For example, if *pu were {1, -2, 0, PM_SPACE_MBYTE, PM_TIME_MSEC, 0}, then the
result string would be “Mbyte/sec^2.”

The string value is held in a single static buffer, so concurrent calls to pmUnitsStr may
not produce the desired results.

pmIDStr

const char *pmIDStr(pmID pmid)

For use in error and diagnostic messages, return a “human readable” version of the
specified PMID, with each of the internal domain, cluster, and item subfields appearing as
decimal numbers, separated by periods.

The string value is held in a single static buffer, so concurrent calls to pmIDStr may not
produce the desired results.

pmInDomStr

const char *pmInDomStr(pmInDom indom)

For use in error and diagnostic messages, return a “human readable” version of the
specified instance domain identifier, with each of the internal domain and serial subfields
appearing as decimal numbers, separated by periods.

PMAPI Ancillary Support Services

81

The string value is held in a single static buffer, so concurrent calls to pmInDomStr may
not produce the desired results.

pmTypeStr

const char *pmTypeStr(int type)

Given a performance metric type, produce a terse ASCII equivalent, appropriate for use
in error and diagnostic messages.

Examples are “32” (for PM_TYPE_32), “U64” (for PM_TYPE_U64), “AGGREGATE” (for
PM_TYPE_AGGREGATE), and so on.

The string value is held in a single static buffer, so concurrent calls to pmTypeStr may
not produce the desired results.

pmAtomStr

const char *pmAtomStr(const pmAtomValue *avp, int type)

Given the pmAtomValue identified by avp, and a performance metric type, generate the
corresponding metric value as a string, suitable for diagnostic or report output.

The string value is held in a single static buffer, so concurrent calls to pmAtomStr may
not produce the desired results.

pmPrintValue

void pmPrintValue(FILE *f, int valfmt, int type, const pmValue *val,
 int minwidth)

The value of a single performance metric (as identified by val) is printed on the standard
I/O stream identified by f. The value of the performance metric is interpreted according
to the format of val as defined by valfmt (from a pmValueSet within a pmResult) and the
generic description of the metric’s type from a pmDesc structure, passed in through type.

If the converted value is less than minwidth characters wide, it will have leading spaces
to pad the output to a width of minwidth characters.

82

Chapter 3: PMAPI—The Performance Metrics API

The following example illustrates using pmPrintValue to print the values from a
pmResult structure returned via pmFetch:

int numpmid, i, j, sts;
pmID pmidlist[10];
pmDesc desc[10];
pmResult *result;

/* set up PMAPI context, numpmid and pmidlist[] ... */

/* get metric descriptors */
for (i = 0; i < numpmid; i++) {
 if ((sts = pmLookupDesc(pmidlist[i], &desc[i])) < 0) {
 printf("pmLookupDesc(pmid=%s): %s\n",
 pmIDStr(pmidlist[i]), pmErrStr(sts));
 exit(1);
 }
}

if ((sts = pmFetch(numpmid, pmidlist, &result)) >= 0) {
 /* once per metric */
 for (i = 0; i < result->numpmid; i++) {
 printf("PMID: %s", pmIDStr(result->vset[i]->pmid));
 /* once per instance for this metric */
 for (j = 0; j < result->vset[i]->numval; j++) {
 printf(" [%d]", result->vset[i]->vlist[j].inst);
 pmPrintValue(stdout, result->vset[i]->valfmt,
 desc[i].type,
 &result->vset[i]->vlist[j],
 8);
 }
 putchar(’\n’);
 }
 pmFreeResult(result);
}
else
 printf("pmFetch: %s\n", pmErrStr(sts));

pmSortInstances

void pmSortInstances(pmResult *result)

The routine pmSortInstances may be used to guarantee that for each performance metric
in the result from pmFetch, the instances are in ascending internal instance identifier
sequence. This is useful when trying to compute rates from two consecutive pmFetch
results, where the underlying instance domain or metric availability is not static.

PMAPI Programming Issues and Examples

83

PMAPI Programming Issues and Examples

The following issues and examples are provided to enable you to create better custom
performance monitoring tools.

The source code for a sample client (pmclient) using the PMAPI is shipped as part of the
pcp.sw.demo subsystem of the Performance Co-Pilot product. See the pmclient(1)
reference page, and the source code, located in /var/pcp/demos/pmclient.

Symbolic Association Between a Metric’s Name and Value

A common problem in building specific performance tools is how to maintain the
association between a performance metric’s name, its access (instantiation) method, and
the application program variable that contains the metric’s value. Generally this results
in code that is easily broken by bug fixes or changes in the underlying data structures.
The PMAPI provides a uniform method for instantiating and accessing the values
independent of the underlying implementation, although it does not solve the
name-variable association problem. However, it does provide a framework within which
a manageable solution may be developed.

Fundamentally, the goal is to be able to name a metric and reference the metric’s value in
a manner that is independent of the order of operations on other metrics; for example, to
associate the macro BINGO with the name “irix.sys.statistic.bingo”, and then be able to
use BINGO to get at the value of the corresponding metric.

The one-to-one association between the ordinal position of the metric names is input to
pmLookupName and the PMIDs returned by this routine, and the one-to-one
association between the PMIDs input to pmFetch and the values returned by this routine
provide the basis for an automated solution.

The tool pmgenmap takes the specification of a list of metric names and symbolic tags, in
the order they should be passed to pmLookupName and pmFetch. For example:

one line comment
mystuff {
 irix.sys.statistic.bingo BINGO
 oracle.latchstats.lru.miss MISSED
}

84

Chapter 3: PMAPI—The Performance Metrics API

The above pmgenmap(1) input produces the following C code, suitable for including with
the #include statement:

/*
 * Performance Metrics Name Space Map
 * Built by pmgenmap from the file
 * /usr/people/kenmcd/swa/ptg/src/kstat.pcp/x
 * on Thu Feb 24 20:37:53 EST 1994
 *
 * Do not edit this file!
 */
/* one line comment */
char *mystuff[] = {
#define BINGO 0
 "irix.sys.statistic.bingo",
#define MISSED 1
 "oracle.latchstats.lru.miss",
};

Initializing New Metrics

Using the code generated by pmgenmap, we are now able to easily initialize the
application’s metric specifications as follows:

#define MAX_MID 3
int trip = 0;
int numpmid = sizeof(mystuff)/sizeof(mystuff[0]);
double duration;
pmResult *resp;
pmResult *prev;
pmID pmidlist[MAX_MID];

pmLookupName(numpmid, mystuff, pmidlist);

At this stage, pmidlist contains the PMID for the two metrics of interest.

PMAPI Programming Issues and Examples

85

Iterative Processing of Values

Assuming the tool is required to report values every five seconds, use code similar to the
following:

while (1) {
 pmFetch(numpmid, pmidlist, &resp);
 if (trip) {
 /* see pmclient.c for tv_sub() declaration */
 duration = tv_sub(&resp->timestamp, &prev->timestamp);
 /*
 * irix.sys.boring.bozo is an instantaneous value,
 * so report the most recent value
 * oracle.latchstats.lru.miss is a free running counter,
 * so report the rate over the last two samples
 */
 printf("%6d %5.2f\n", resp->vset[BOZO]->vlist[0].value.lval,
 (resp->vset[MISSED]->vlist[0].value.lval -
 prev->vset[MISSED]->vlist[0].value.lval) / duration);
 }
 if (trip >= 1)
 pmFreeResult(prev);
 else
 trip++;
 prev = resp;
 sleep(5);
}

Accommodating Program Evolution

The flexibility provided by the PMAPI and the pmgenmap utility is demonstrated by this
example. Consider the requirement for reporting a third metric “irix.sys.boring.new” (an
instantaneous value) in the middle of the two already reported. Add this line to the
middle of the specification file:

irix.sys.boring.new NEW

Then regenerate the #include file, and amend the printf statement as follows:

printf("%6d %6d %5.2f\n",
 resp->vlist[BOZO]->vlist[0].value.lval,
 resp->vlist[NEW]->vlist[0].value.lval,
 (resp->vlist[MISSED]->vlist[0].value.lval -
 prev->vlist[MISSED]->vlist[0].value.lval) / duration);

86

Chapter 3: PMAPI—The Performance Metrics API

Handling PMAPI Errors

The following simple but complete PMAPI application demonstrates the recommended
style for handling PMAPI error conditions:

#include <stdio.h>
#include <pcp/pmapi.h>

int
main(int argc, char* argv[])
{
 int sts = 0;
 char *host = "localhost";
 char *metric = "irix.mem.freemem";
 pmID pmid;
 pmDesc desc;
 pmResult *result;

 sts = pmNewContext(PM_CONTEXT_HOST, host);
 if (sts < 0) {
 fprintf(stderr, "Error connecting to pmcd on %s: %s\n",
 host, pmErrStr(sts));
 exit(1);
 }
 sts = pmLookupName(1, &metric, &pmid);
 if (sts < 0) {
 fprintf(stderr, "Error looking up %s: %s\n", metric,
 pmErrStr(sts));
 exit(1);
 }
 sts = pmLookupDesc(pmid, &desc);
 if (sts < 0) {
 fprintf(stderr, "Error getting descriptor for %s:%s: %s\n",
 host, metric, pmErrStr(sts));
 exit(1);
 }
 sts = pmFetch(1, &pmid, &result);
 if (sts < 0) {
 fprintf(stderr, "Error fetching %s:%s: %s\n", host, metric,
 pmErrStr(sts));
 exit(1);
 }
 sts = result->vset[0]->numval;
 if (sts < 0) {
 fprintf(stderr, "Error fetching %s:%s: %s\n", host, metric,
 pmErrStr(sts));

PMAPI Programming Issues and Examples

87

 exit(1);
 }
 fprintf(stdout, "%s:%s = ", host, metric);
 if (sts == 0)
 puts("(no value)");
 else {
 pmValueSet *vsp = result->vset[0];

 pmPrintValue(stdout, vsp->valfmt, desc.type,
 &vsp->vlist[0], 5);
 printf(" %s\n", pmUnitsStr(&desc.units));
 }
 return 0;
}

Compiling and Linking PMAPI Applications

Typical PMAPI applications require the following line to include the function prototype
and data structure definitions used by the PMAPI. Some applications may also require
these header files: <pcp/impl.h>, <pcp/util.h> and <pcp/pmda.h>.

#include <pcp/pmapi.h>

The run-time environment of the PMAPI is mostly found in libpcp.so, so to link a generic
PMAPI application requires something akin to the following command:

cc mycode.c -lpcp

89

Appendix A

A.Acronyms

This chapter provides a glossary of the acronyms used in the Performance Co-Pilot
documentation, help cards, reference pages, and user interface.

Table A-1 Performance Co-Pilot Acronyms and Their Meanings

Acronym Meaning

DBMS Database Management System

DSO Dynamic Shared Object

IP Internet Protocol

I/O Input/Output

IPC Inter-process Communication

PCP Performance Co-Pilot

PDU Protocol Data Unit

PMAPI Performance Metrics Application Programming Interface

PMCD Performance Metrics Collection Daemon

PMDA Performance Metrics Domain Agent

PMID Performance Metric Identifier

PMNS Performance Metrics Name Space

TCP/IP Transmission Control Protocol/Internet Protocol

91

Symbols

_pmID_int structure, 18
_pmInDom_int structure, 22

A

Application Programming Interface, 49
architecture of PCP, 2
archive log, 6, 49, 52, 66, 74, 75, 77
array, 3, 20, 22, 57, 58
audience type, xiii

C

caching PMDA, 14, 25
Cisco, 3, 14
client development for PCP, 8
cluster, 5
collection host, 4
collection time, 53, 67, 68
collection tools, 2
collector, 2
COLOR_INDOM, 23
configuring PCP tools, 47
content overview, xiii
counter semantics, 20

D

daemon PMDA, 8, 13
daemon PMDA initialization, 39
daemon process, 8
debugging and testing, 40
debugging flags in pmcd, 41
delays in gathering performance data, 24
developing a PMDA, 6
disadvantages of DSO PMDA, 13
discrete semantics, 20
distributed collection, 3
distributed operation, 4
distributed performance metrics collection, 3
distributed PMNS, 5
dlopen, 7, 11, 13
domain, 5
domain number, 16
domains, defined, 15
dometric function, 62
DSO, 7, 10, 11, 89
DSO PMDA, 7, 11, 29
DSO PMDA initialization, 37
dynamically attached library, 10
Dynamic Shared Object, 7

Index

92

Index

E

evolution of a PMDA, 27
execv, 13
exporting data from a PMDA, 9, 24

F

filename, 61
fork, 13

G

Glossary of Acronyms, 89
glossary of acronyms, 89

H

handle context, 71
help text for PMDA, 26

I

indom instance domain, 64, 68, 75
instance identifier, 51, 67
instance profile, 68
instances, defined, 15
instances and instance domains, 20, 51
instantaneous semantics, 20
instlist argument, 64, 68, 75
integrating a PMDA, 43
intended audience, xiii
internal instance identifier, 57
Internet resources, xiv

inter-process communication, 9, 10
IP, 89
IPC, 7
item number, 5

L

latency and threads of control, 24
leaf node, 62

M

Makefile, 43
metric instances, 51
metrics, defined, 15
monitor, 2
monitoring tools, 2
multidimensional arrays, 20

N

name, 62, 65
namelist, 64, 75
namespace (PMNS), 5
newhelp command, 26
NOW_INDOM, 23

O

offspring, 60
overview of contents, xiii

93

Index

P

PCP, 89
architecture, 2
client development, 8
definition, xiii

PDMA
checklist, 10
installing, 43

PDU, 11, 89
PDU_DESC_REQ, 11
PDU_FETCH, 11, 38
PDU_INSTANCE_REQ, 11
PDU_PROFILE, 11
PDU_RESULT, 11, 38
PDU_TEXT_REQ, 11
performance metric

dimensionality, 54
dimensionality and scale, 54
scale, 54

Performance Metric Identifier (PMID), 5
Performance Metrics API (PMAPI), 1
performance metrics collection daemon (pmcd), 2, 9
Performance Metrics Collection System, 8
Performance Metrics Domain Agent (PMDA), 1
pipe, 11, 13, 14
PM_CONTEXT_ARCHIVE, 67
PM_CONTEXT_HOST, 67
PM_ERR_CONV error code, 28, 78
PM_ERR_INST error code, 34
PM_ERR_PMID error code, 28, 34
PM_ERR_SIGN error code, 78
PM_ERR_TIMEOUT error code, 73
PM_ERR_TRUNC error code, 78
PM_IN_NULL, 52
PM_INDOM_NULL, 19, 23, 52, 69
PM_SEM_COUNTER semantic type, 19

PM_SEM_DISCRETE semantic type, 19
PM_SEM_INSTANT semantic type, 19
PM_TEXT_HELP, 63, 64
PM_TEXT_ONELINE, 63, 64
PM_TYPE_AGGREGATE, 54
PM_TYPE_NOSUPPORT, 28, 54
PM_TYPE_STRING, 54, 79
PM_TYPE_U32, 19
PM_VAL_INSITU, 57
pmAddProfile routine, 65, 68
PMAPI, 49, 89

Ancillary Support Services, 77
Application Compiling and Linking, 87
Archive Services, 74
argument lists, 58
Context Services, 65
current context, 52
Description Services, 63
error handling, 59, 86
Identifying metrics, 50
Initializing New Metrics, 84
Instance Domain Services, 64
Iterative Processing of Values, 85
metric descriptions, 53
metric instances, 51
Metrics Services, 72
metric values, 56
naming metrics, 50
procedural interface, 59
Program Evolution, 85
programming style, 58
results list, 58

PMAPI Programming Issues, 83
pmAtomStr routine, 28, 81
pmAtomValue structure, 31
pmcd, 2, 4, 7, 17, 89
PMCD_RECONNECT_TIMEOUT variable, 71
PMCD_REQUEST_TIMOUT variable, 73

94

Index

pmConvScale routine, 28, 79
PMDA, 89
PMDA_PMID macro, 18
PMDA architecture, 10
PMDA development, 6

initialization of a PMDA, 37
installing a PMDA, 43
Install script, 43, 47
pmdaDesc callback, 29
pmdaExt structure, 29, 36
pmdaFetch callback, 29
pmdaIndom structure, 21
pmdaInit routine, 37
pmdaInstance callback, 29
pmdaInstid structure, 21
pmdaInterface structure, 35, 37
pmdaMetric structure, 18
pmdaProfile callback, 29
pmdaStore callback, 29, 33
pmdaText callback, 29

PMDA help text, 26
pmDelProfile routine, 65, 69
pmDesc structure, 17, 28, 53, 55
pmDestroyContext routine, 67
pmDupContext routine, 65, 68
pmErrStr routine, 77
pmExtractValue routine, 28, 78, 80
pmFetchArchive routine, 65, 69, 76
pmFetch routine, 28, 56, 57, 58, 65, 67, 69, 72, 73, 76,

82, 83
pmFreeResult routine, 59, 72, 73
pmGetArchiveEnd routine, 65, 75
pmGetArchiveLabel routine, 65, 74
pmGetChildren routine, 58, 60, 65
pmGetChildrenStatus routine, 65
pmGetInDomArchive routine, 66, 75
pmGetInDom routine, 58, 64, 65, 69, 75

pmGetPMNSLocation routine, 61, 65
PMID, 89
pmIDStr routine, 80
pmInDomStr routine, 80
pmLoadNameSpace routine, 61
pmLookupDesc routine, 28, 63, 66, 69, 78, 80
pmLookupInDomArchive routine, 66, 76
pmLookupInDom routine, 65, 66, 69
pmLookupInDomText routine, 64, 66
pmLookupName routine, 61, 66, 83
pmLookupText routine, 28, 58, 63, 66
pmNameID routine, 58, 62, 66
pmNameInDomArchive routine, 66, 76
pmNameInDom routine, 58, 65, 66, 69
pmNewContext routine, 67
PMNS, 89

distributed, 5
pmnsadd command, 25
pmns file defines namespace, 25
pmPrintValue routine, 28, 81
pmReconnectContext routine, 71
pmSetMode routine, 66, 69, 75
pmSortInstances routine, 82
pmStore routine, 28, 56, 66, 74
pmTraversePMNS routine, 62, 66
pmTrimNameSpace routine, 62, 66
pmTypeStr routine, 28, 81
pmUnitsStr routine, 80
pmUnloadNameSpace routine, 63
pmUseContext routine, 67, 68
pmWhichContext routine, 68
procedure for implementing PMDA, 10
Programming Interface, 49
Protocol Data Unit (PDU), 11

95

Index

R

removing a PMDA, 47
requirements for PMDA design, 9
restarting pmcd, 46

S

script to remove a PMDA, 47
selection of metrics and instances, 16
semantic types for a metric, 19
sequential log file, 9
shell process, 8
simple_init function, 12, 30, 38
simple_store function, 33, 34, 41
simple PMDA

2 branches, 4 metrics, 25
4 metrics, 3 instances, 22
as daemon, 14
as DSO, 12
callback for pmdaFetch, 30

snapshot file, 9
specific instance domain, 66
sproc control threads, 24
storage of metrics, 17

T

target domain, 9, 17, 24
TCP, 89
testing and debugging, 40
trivial_init function, 30, 38
trivial PMDA, 19
trivial PMDA with callbacks, 30
two or three dimensional arrays, 20
type field, 28, 53, 67, 78, 80, 81

typographic conventions, xiv

U

unavailable metrics support, 28

W

Web pages about PCP, xiv

Tell Us About This Manual

As a user of Silicon Graphics products, you can help us to better understand your needs
and to improve the quality of our documentation.

Any information that you provide will be useful. Here is a list of suggested topics:

• General impression of the document

• Omission of material that you expected to find

• Technical errors

• Relevance of the material to the job you had to do

• Quality of the printing and binding

Please send the title and part number of the document with your comments. The part
number for this document is 007-3434-002.

Thank you!

Three Ways to Reach Us

• To send your comments by electronic mail, use either of these addresses:

– On the Internet: techpubs@sgi.com

– For UUCP mail (through any backbone site): [your_site]!sgi!techpubs

• To fax your comments (or annotated copies of manual pages), use this
fax number: 650-932-0801

• To send your comments by traditional mail, use this address:

Technical Publications
Silicon Graphics, Inc.
2011 North Shoreline Boulevard, M/S 535
Mountain View, California 94043-1389

