
MIPSpro 7 Fortran 90 Commands
and Directives Reference Manual

SR–3907 3.0.2

Document Number 007–3696–002

Copyright © 1997, 1998 Silicon Graphics, Inc. and Cray Research, Inc. All Rights Reserved. This manual or parts thereof may not
be reproduced in any form unless permitted by contract or by written permission of Silicon Graphics, Inc. or Cray Research, Inc.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure of the technical data contained in this document by the Government is subject to restrictions as set
forth in subdivision (c) (1) (ii) of the Rights in Technical Data and Computer Software clause at DFARS 52.227-7013 and/or in
similar or successor clauses in the FAR, or in the DOD or NASA FAR Supplement. Unpublished rights reserved under the
Copyright Laws of the United States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd., Mountain View,
CA 94043-1389.

Autotasking, CF77, CRAY, Cray Ada, CraySoft, CRAY Y-MP, CRAY-1, CRInform, CRI/TurboKiva, HSX, LibSci, MPP Apprentice,
SSD, SUPERCLUSTER, UNICOS, and X-MP EA are federally registered trademarks and Because no workstation is an island, CCI,
CCMT, CF90, CFT, CFT2, CFT77, ConCurrent Maintenance Tools, COS, Cray Animation Theater, CRAY APP, CRAY C90,
CRAY C90D, Cray C++ Compiling System, CrayDoc, CRAY EL, CRAY J90, CRAY J90se, CrayLink, Cray NQS,
Cray/REELlibrarian, CRAY S-MP, CRAY SSD-T90, CRAY T90, CRAY T3D, CRAY T3E, CrayTutor, CRAY X-MP, CRAY XMS,
CRAY-2, CSIM, CVT, Delivering the power . . ., DGauss, Docview, EMDS, GigaRing, HEXAR, IOS,
ND Series Network Disk Array, Network Queuing Environment, Network Queuing Tools, OLNET, RQS, SEGLDR, SMARTE,
SUPERLINK, System Maintenance and Remote Testing Environment, Trusted UNICOS, UNICOS MAX, and UNICOS/mk are
trademarks of Cray Research, Inc.

IRIX and Silicon Graphics are registered trademarks and the Silicon Graphics logo is a trademark of Silicon Graphics, Inc.
MIPSpro is a trademark of MIPS Technologies, Inc. UNIX is a registered trademark in the United States and other countries,
licensed exclusively through X/Open Company Limited. X/Open is a registered trademark, and the X device is a trademark, of
X/Open Company Ltd.

The UNICOS operating system is derived from UNIX® System V. The UNICOS operating system is also based in part on the
Fourth Berkeley Software Distribution (BSD) under license from The Regents of the University of California.

Record of Revision

Version Description

3.0 August 1997
Original Printing. This printing supports the MIPSpro 7 Fortran 90 compiler, release
7.2, running on IRIX systems.

3.0.2 March 1998
This revision supports the MIPSpro 7 Fortran 90 compiler, release 7.2.1, running on
IRIX systems. It includes miscellaneous corrections and additions to the 3.0 revision.

SR–3907 3.0.2 i

Contents

Page

Preface xix

Related MIPSpro 7 Fortran 90 Publications xix

MIPSpro 7 Fortran 90 Messages . xx

MIPSpro 7 Fortran 90 Man Pages xx

Related Fortran Publications . xx

Related Publications . xxi

Ordering Publications . xxi

Conventions . xxii

Reader Comments . xxii

Introduction [1] 1

The f90(1) Command . 2

The MIPSpro 7 Fortran 90 Programming Environment 3

Invoking MIPSpro 7 Fortran 90 [2] 7

-64, -n32 . 8

-alignn . 10

-ansi . 11

-autouse module_name[, module_name] 11

-avoid_gp_overflow . 11

-C, -check_bounds . 11

-c . 12

-chunk=integer . 12

-cif . 12

-coln . 12

-cord . 13

SR–3907 3.0.2 iii

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

Page

-cpp . 13

-cray_mp . 13

-Dvar[=def][,var[=def]]... 14

-DEBUG:... 14

-dn . 14

-default64 . 14

-E . 15

-extend_source . 15

-fixedform . 15

-freeform . 15

-ftpp . 16

-gdebug_lvl . 16

-help . 16

-Idir . 17

-INLINE:… . 17

-IPA[:…] . 17

-in . 18

-ignore_suffix . 18

-KPIC . 18

-keep . 18

-Ldirectory . 18

-llibrary . 19

-LIST:... 20

-LIST:=setting . 20

-LIST:all_options=setting 20

-LIST:notes=setting . 21

-LIST:options=setting . 21

-LIST:symbols=setting . 21

-listing . 21

iv SR–3907 3.0.2

Contents

Page

-LNO:… . 21

General Options . 22

-LNO:auto_dist=setting (Origin Series Only) 22

-LNO:gather_scatter=n 22

-LNO:ignore_pragmas=setting 23

-LNO:oinvar=setting . 23

-LNO:opt=n . 23

-LNO:outer=setting . 23

-LNO:vintr=setting . 24

Transformation Options . 24

-LNO:blocking=setting . 24

-LNO:blocking_size=n1[,n2] 24

-LNO:fission=n . 24

-LNO:fusion=n . 25

-LNO:fusion_peeling_limit=n 26

-LNO:interchange=setting 27

-LNO:ou=n, ou_max=n, and ou_prod_max=n 27

-LNO:ou_deep=setting . 28

-LNO:ou_further=n . 29

Cache Memory Management Options 29

-LNO:assoc1=n, assoc2=n, assoc3=n, assoc4=n 29

-LNO:cmp1=n, cmp2=n, cmp3=n, cmp4=n and dmp1=n, dmp2=n, dmp3=n, dmp4=n . . 30

-LNO:cs1=n, cs2=n, cs3=n, cs4=n 30

-LNO:is_mem1=setting, is_mem2=setting, is_mem3=setting, is_mem4=setting 30

-LNO:ls1=n, ls2=n, ls3=n, ls4=n 30

Translation Lookaside Buffer (TLB) Options 30

-LNO:ps1=n, ps2=n, ps3=n, ps4=n 31

-LNO:tlb1=n, tlb2=n, tlb3=n, tlb4=n 31

SR–3907 3.0.2 v

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

Page

-LNO:tlbcmp1=n, tlbcmp2=n, tlbcmp3=n, tlbcmp4=n and tlbdmp1=n, tlbdmp2=n,
tlbdmp3=n, tlbdmp4=n . 31

Prefetch Options . 31

-LNO:pfk=setting . 31

-LNO:prefetch=n . 31

-LNO:prefetch_ahead=n 32

-LNO:prefetch_manual=setting 32

-macro_expand . 32

-MDupdate[file] . 32

-mipsn . 33

-mp . 33

-MP:… . 35

-MP:check_reshape=setting 35

-MP:clone=setting . 35

-MP:dsm=setting (Origin series Systems Only) 35

-MP:old_mp=setting . 36

-MP:open_mp=setting . 37

-mp_schedtype=mode . 38

-nocpp . 39

-noextend_source . 39

-nostdinc . 39

-Olevel . 39

-OPT:… . 40

-OPT:alias=name . 40

-OPT:cis=setting . 41

-OPT:cray_ivdep=setting . 41

-OPT:div_split=setting . 41

-OPT:fast_bit_intrinsics=setting 41

-OPT:fast_complex=setting 42

vi SR–3907 3.0.2

Contents

Page

-OPT:fast_exp=setting . 42

-OPT:fast_nint=setting . 42

-OPT:fast_sqrt=setting . 42

-OPT:fast_trunc=setting . 43

-OPT:fold_reassociate=setting 43

-OPT:fold_unsafe_relops=setting 43

-OPT:fold_unsigned_relops=setting 43

-OPT:got_call_conversion=setting 43

-OPT:IEEE_arithmetic=n . 44

-OPT:IEEE_comparisons=setting 44

-OPT:IEEE_NaN_inf=setting 45

-OPT:inline_intrinsics=setting 45

-OPT:liberal_ivdep=setting 45

-OPT:Olimit=n . 45

-OPT:pad_common=setting . 45

-OPT:recip=setting . 46

-OPT:reorg_common=setting 46

-OPT:roundoff=n . 47

-OPT:rsqrt=setting . 47

-OPT:space=setting . 47

-OPT:swp=setting . 48

-OPT:unroll_analysis=setting 48

-OPT:unroll_size=n . 48

-OPT:unroll_times_max=n 48

-OPT:wrap_around_unsafe_opt=setting 49

-oout_file . 49

-P . 49

-pfa, -pfalist . 49

SR–3907 3.0.2 vii

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

Page

-rreal_spec . 50

-rprocessor . 50

-S . 51

-static . 51

-TARG:… . 52

-TARG:fp_precise=setting . 52

-TARG:madd=setting . 52

-TARG:platform=ipxx . 52

-TARG:processor=processor . 53

-TARG:r4krev22=setting . 53

CPU Targeting (Cross Compiling) Using the compiler.defaults File 53

-TENV:… . 54

-TENV:align_aggregate=bytes 54

-TENV:check_div=n . 54

-TENV:large_GOT=setting . 54

-TENV:small_GOT=setting . 55

-TENV:trapuv=setting . 55

-TENV:X=n . 55

-trapuv . 56

-Uvar . 56

-u . 56

-version . 57

-Wl,opt[,arg][,opt[,arg]]... 57

-w[arg] . 57

-woffnum . 57

-xdirlist . 58

-xgot . 58

-- . 59

file.suffix[90][file.suffix[90]…] . 59

viii SR–3907 3.0.2

Contents

Page

General Directives [3] 61

Using Directives . 61

Directives and Command Line Options 63

Directive Range . 63

Directive Continuation and Other Considerations 63

LNO Directives . 64

Request Loop Fission for Inner Loops: AGGRESSIVEINNERLOOPFISSION Directive . . . 65

Permit Cache Blocking: BLOCKABLE Directive 65

Declare Cache Blocking: BLOCKINGSIZE and NOBLOCKING Directives 65

Control Loop Fission for Outer Loops: FISSION, FISSIONABLE, and NOFISSION Directives 67

Control Loop Fusion for Outer Loops: FUSE, FUSEABLE, and NOFUSION Directives . . . 67

Control Loop Interchange: INTERCHANGE and NOINTERCHANGE Directives 69

Control Prefetching for a Program Unit: PREFETCH Directive 70

Control Prefetching in a Subprogram: PREFETCH_MANUAL Directive 70

Request Prefetching for an Array: PREFETCH_REF Directive 71

Disable Prefetching for a Specific Array: PREFETCH_REF_DISABLE Directive 72

Request Loop Unrolling: UNROLL Directive 73

Argument Aliasing Directives (ASSERT ARGUMENTALIASING and
ASSERT NOARGUMENTALIASING) 74

Symbol Storage Directives . 75

Control Symbol Alignment and Padding: ALIGN_SYMBOL and FILL_SYMBOL Directives . 75

Declare a Synchronization Point: FLUSH Directive 77

Specify Global Pointer Use: SECTION_GP and SECTION_NON_GP Directives 78

Inlining and IPA Directives (INLINE, NOINLINE, IPA, and NOIPA) 78

OpenMP Fortran API Multiprocessing Directives [4] 81

Using Directives . 82

Conditional Compilation . 84

Parallel Region Constructs (PARALLEL and END PARALLEL Directives) 85

SR–3907 3.0.2 ix

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

Page

Work-sharing Constructs . 87

Specify Parallel Execution: DO and END DO Directives 88

Mark Code for Specific Threads: SECTION, SECTIONS and END SECTIONS Directives . . 91

Request Single–thread Execution: SINGLE and END SINGLE Directives 92

Combined Parallel Work-sharing Constructs 93

Declare a Parallel Region: PARALLEL DO and END PARALLEL DO Directives 93

Declare Sections within a Parallel Region: PARALLEL SECTIONS and
END PARALLEL SECTIONS Directives 95

Synchronization Constructs . 97

Request Execution by the Master Thread: MASTER and END MASTER Directives 97

Request Execution by a Single Thread: CRITICAL and END CRITICAL Directives . . . 97

Synchronize All Threads in a Team: BARRIER Directive 99

Protect a Location from Multiple Updates: ATOMIC Directive 99

Read and Write Variables to Memory: FLUSH Directive 100

Request Sequential Ordering: ORDERED and END ORDERED Directives 102

Data Environment Constructs . 103

Declare Common Blocks Private to a Thread: THREADPRIVATE Directive 103

Data Scope Attribute Clauses . 104

PRIVATE Clause . 105

SHARED Clause . 106

DEFAULT Clause . 106

FIRSTPRIVATE Clause . 107

LASTPRIVATE Clause . 107

REDUCTION Clause . 108

COPYIN Clause . 111

Data Environment Rules . 111

Directive Binding . 113

Directive Nesting . 115

Analyzing Data Dependencies for Multiprocessing 118

x SR–3907 3.0.2

Contents

Page

Dependency Analysis Examples 119

Rewriting Data Dependencies . 122

Work Quantum . 127

Cache Effects and Optimization . 128

Performing a Matrix Multiply . 128

Optimization Costs . 129

Load Balancing . 131

Parallel Processing on Origin series Systems [5] 133

Performance Tuning on Origin series Systems 133

Improving Program Performance 134

Choosing a Tuning Method . 137

Directives for Performance Tuning 138

Determining the Data Distribution for an Array: !$SGI DISTRIBUTE,
!$SGI DISTRIBUTE_RESHAPE, and !$SGI REDISTRIBUTE 140

Specifying a Parallel Region: !$OMP PARALLEL DO 141

AFFINITY Clause . 142

NEST Clause . 144

Requesting Dynamic Distribution for an Array: !$SGI DYNAMIC 146

Designating Memory: !$SGI PAGE_PLACE 147

Using the Data Distribution Directives 148

Regular Data Distribution . 149

Data Distribution with Reshaping 150

Restrictions on Reshaped Arrays 150

Error Detection for Reshaped Arrays 151

Implementation of Reshaped Arrays 152

Regular versus Reshaped Data Distribution 154

Examples . 155

Distributing Columns of a Matrix 155

SR–3907 3.0.2 xi

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

Page

Using Data Distribution and Data Affinity Scheduling 156

Argument Passing . 157

Redistributed Arrays . 158

Irregular Distributions and Thread Affinity 160

CF90 Directives [6] 161

Using Directives . 161

Directive Continuation . 161

Directive Range and Placement 162

Interaction of Directives with the -x Command Line Option 162

Check Array Bounds: BOUNDS and NOBOUNDS 163

Specify Source Form: FREE and FIXED 164

Create Identification String: ID . 164

Disregard Dummy Argument Type, Kind, and Rank: IGNORE_TKR 166

Ignore Vector Dependencies: IVDEP 167

External Name Mapping Directive: NAME 170

Inhibit Loop Interchange: NOINTERCHANGE 170

Designate a Nest to Task: PREFERTASK 170

Tasking Directives: TASK and NOTASK 171

Unroll Loops: UNROLL and NOUNROLL 172

Source Preprocessing [7] 175

General Rules . 175

Directives . 177

#include Directive . 177

#define Directive . 178

#undef Directive . 179

(Null) Directive . 179

Conditional Directives . 180

xii SR–3907 3.0.2

Contents

Page

#if Directive . 180

#ifdef Directive . 181

#ifndef Directive . 182

#elif Directive . 182

#else Directive . 182

#endif Directive . 183

Predefined Macros . 183

Command Line Options . 184

Interlanguage Calling [8] 187

External and Public Names . 187

Fortran 90 Treatment of External and Public Names 188

Calling a Fortran 90 Subprogram from C 189

Calling a C Function from Fortran 90 189

Correspondence of Fortran 90 and C Data Types 190

Corresponding Scalar Types . 190

Corresponding Character Types 191

Unsupported Array Arguments 192

How Fortran 90 Passes Arguments 192

Calling Fortran 90 from C . 193

Calling a Fortran 90 Subroutine from C 193

Calling a Fortran 90 Function from C 195

Calling C from Fortran 90 . 197

Calls to C Functions . 197

Using Fortran 90 Common Blocks in C Code 199

Using Fortran 90 Arrays in C Code 200

Calls to C Using LOC and %VAL 200

Using %VAL . 201

Using LOC . 201

SR–3907 3.0.2 xiii

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

Page

Calling Assembly Language from Fortran 90 202

Appendix A Libraries 203

Miscellaneous Library Routines . 204

Library Functions . 206

Compatibility with sproc(2) . 212

Communicating between Threads 213

Appendix B Debugging and Profiling Multiprocessed Programs 215

Setting Up Your Environment . 215

Profiling a Parallel Fortran 90 Program 215

Debugging Parallel Fortran . 216

Other Debugging Tips for Multiprocessed Loops 217

Appendix C Differences 219

MIPSpro 7 Fortran 90 and CF90 Compiler Differences 219

Numerical Model Differences . 219

Fortran 90 Statement Differences 220

Function and Procedure Differences 220

Modules Differences . 220

I/O Library Differences . 221

Library Function and Procedure Differences 221

Math Library Differences . 221

MIPSpro FORTRAN 77 and MIPSpro 7 Fortran 90 Compiler Differences 222

Intrinsic Function and Subroutine Differences 222

DATA Statement Initialization Differences 222

I/O Record Length Differences 223

Special File Formats Differences 223

Appendix D Multiprocessing Directives (Outmoded) 225

xiv SR–3907 3.0.2

Contents

Page

Using Directives . 225

Directive Range . 225

Directive Continuation . 226

Loop-level Multiprocessing Directives 226

DOACROSS Directive . 227

AFFINITY Clause . 228

BLOCKED and CHUNK Clauses 229

IF Clause . 229

LASTLOCAL, LOCAL, PRIVATE and SHARED Clauses 230

MP_SCHEDTYPE Clause . 231

NEST Clause . 232

REDUCTION Clause . 232

CHUNK Directive . 233

MP_SCHEDTYPE Directive . 234

!$ Directive . 234

DOACROSS Directive Examples 235

Local Common Blocks . 237

PCF Directives . 238

BARRIER Directive . 239

CRITICAL SECTION and END CRITICAL SECTION Directives 240

PARALLEL and END PARALLEL Directives 240

PARALLEL DO Directive . 241

PDO and END PDO Directives . 242

PSECTION[S], SECTION, and END PSECTION[S] Directives 243

SINGLEPROCESS and END SINGLEPROCESS Directives 245

Restrictions on the PCF Directives 247

Appendix E Autotasking Directives (Outmoded) 249

Using Directives . 250

Directive Continuation . 250

Directive Range and Placement 250

SR–3907 3.0.2 xv

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

Page

Interaction of Directives with the -x Command Line Option 251

Concurrent Blocks: CASE and ENDCASE 251

Declare Lack of Side Effects: CNCALL 252

Mark Parallel Loop: DOALL . 252

Mark Parallel Loop: DOPARALLEL and ENDDO 255

Critical Region: GUARD and ENDGUARD 256

Specify Maximum Number of CPUs for a Parallel Region: NUMCPUS 257

Mark Parallel Region: PARALLEL and ENDPARALLEL 258

Declare an Array with No Repeated Values: PERMUTATION 258

Examples . 259

Read-only Variables . 259

Array Indexed by Loop Index . 260

Read-then-write Variables . 260

Write-then-read Variables and Arrays 260

Index 263

Figures
Figure 1. f90(1) command example 3

Figure 2. Origin series memory hierarchy 134

Figure 3. Cache behavior and solutions 136

Figure 4. Block distribution . 148

Figure 5. Cyclic distribution . 149

Figure 6. Implementation of the !$SGI DISTRIBUTE_RESHAPE A(BLOCK) distribution
directive . 152

Figure 7. Implementation of the !$SGI DISTRIBUTE_RESHAPE A(CYCLIC(1)) distribution
directive . 153

xvi SR–3907 3.0.2

Contents

Page

Figure 8. Implementation of the !$SGI DISTRIBUTE_RESHAPE A(CYCLIC(K)) directive (a
BLOCK-CYCLIC Distribution) . 154

Tables
Table 1. Initialization values . 110

Table 2. Corresponding Fortran 90 and C Data Types 190

Table 3. Summary of System Interface Library Routines 206

Table 4. Autotasking directive parameter values 254

Table 5. Autotasking directive work_distribution values 255

SR–3907 3.0.2 xvii

Preface

This manual describes the commands and directives for using the MIPSpro 7
Fortran 90 compiler, which is invoked through the f90(1) command. The f90(1)
command can also invoke a source preprocessor, a source lister, and the loader.

The MIPSpro 7 Fortran 90 compiler runs under the IRIX operating system,
version 6.2 and later, on Silicon Graphics and Cray Research computer systems.

The MIPSpro 7 Fortran 90 compiler was developed to support the Fortran
standards adopted by the American National Standards Institute (ANSI) and
the International Standards Organization (ISO). These standards, commonly
referred to as the Fortran 90 standard, are ANSI X3.198–1992 and ISO/IEC
1539:1991–1. Because the ANSI Fortran 90 standard is a superset of the
FORTRAN 77 standard, the MIPSpro 7 Fortran 90 compiler will compile code
written to the FORTRAN 77 standard.

Note: The Fortran 90 standard is a substantial revision to the FORTRAN 77
language standard. Because of the number and complexity of the features,
the standards organizations are continuing to interpret the Fortran 90
standard for Silicon Graphics, Cray Research, and for other vendors. To
maintain conformance to the Fortran 90 standard, Silicon Graphics and Cray
Research may need to change the behavior of certain MIPSpro 7 Fortran 90
features in future releases based upon the outcome of the outstanding
interpretations to the standard.

Related MIPSpro 7 Fortran 90 Publications

This manual is one of a set of manuals that describes the MIPSpro 7 Fortran 90
compiler. The other manuals in the set are as follows:

• Intrinsic Procedures Reference Manual, publication SR–2138

• Fortran Language Reference Manual, Volume 1, publication SR–3902 (Silicon
Graphics part number 007–3692–002)

• Fortran Language Reference Manual, Volume 2, publication SR–3903 (Silicon
Graphics part number 007–3693–002)

• Fortran Language Reference Manual, Volume 3, publication SR–3905 (Silicon
Graphics part number 007–3696–002)

SR–3907 3.0.2 xix

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

MIPSpro 7 Fortran 90 Messages

You can obtain explanations for MIPSpro 7 Fortran 90 compiler messages by
using the online explain(1) command.

MIPSpro 7 Fortran 90 Man Pages

In addition to printed and online prose documentation, several online man
pages describe aspects of the MIPSpro 7 Fortran 90 compiler. Man pages exist
for the library routines, the intrinsic procedures, and several programming
environment tools.

You can print copies of online man pages by using the pipe symbol with the
man(1), col(1), and lpr(1) commands. In the following example, these
commands are used to print a copy of the explain(1) man page:

% man explain | col -b | lpr

Each man page includes a general description of one or more commands,
routines, system calls, or other topics, and provides details of their usage
(command syntax, routine parameters, system call arguments, and so on). If
more than one topic appears on a page, the entry in the printed manual is
alphabetized under its primary name; online, secondary entry names are linked
to these primary names. For example, egrep is a secondary entry on the page
with a primary entry name of grep. To access grep online, you can type man
grep. To access egrep online, you can type either man grep or man egrep.
Both commands display the grep man page on your terminal.

Related Fortran Publications

The following commercially available reference books are among those that you
should consult for more information on the history of Fortran and the
Fortran 90 language itself:

• Adams, J., W. Brainerd, J. Martin, B. Smith, and J. Wagener. Fortran 90
Handbook — Complete ANSI/ISO Reference. New York, NY: Intertext
Publications/Multiscience Press, Inc., 1990.

• Metcalf, M. and J. Reid. Fortran 90 Explained. Oxford, UK: Oxford University
Press, 1990.

• American National Standards Institute. American National Standard
Programming Language Fortran, ANSI X3.198–1992. New York, 1992.

xx SR–3907 3.0.2

Preface

• International Standards Organization. ISO/IEC 1539:1991, Information
technology — Programming languages — Fortran. Geneva, 1991.

Related Publications

The following documents contain information that may be useful when using
the MIPSpro 7 Fortran 90 compiler:

• Application Programmer’s I/O Guide

• MIPSpro Assembly Language Programmer’s Guide

• MIPSpro Automatic Parallelizer Programmer’s Guide

• MIPSpro Compiling and Performance Tuning Guide

• MIPSpro Fortran 77 Programmer’s Guide

• MIPSpro 64-bit Porting and Transition Guide

• SpeedShop User’s Guide

Ordering Publications

Silicon Graphics maintains publications information at the following URL:

http://techpubs.sgi.com/library

The preceding website contains information that allows you to browse
documents online, order documents, and send feedback to Silicon Graphics.

The User Publications Catalog, publication CP–0099, describes the availability and
content of all Cray Research hardware and software documents that are
available to customers. Cray Research customers who subscribe to the Cray
Inform (CRInform) program can access this information on the CRInform
system.

Cray Research also has documents available online at the following URL:

http://www.cray.com/swpubs

To order a Cray Research or Silicon Graphics document, either call the
Distribution Center in Mendota Heights, Minnesota, at +1–612–683–5907, or
send a facsimile of your request to fax number +1–612–452–0141.

SR–3907 3.0.2 xxi

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

Cray Research employees may send their orders via electronic mail to
orderdsk (UNIX system users).

Customers outside of the United States and Canada should contact their local
service organization for ordering and documentation information.

Conventions

The following conventions are used throughout this document:

Convention Meaning

command This fixed-space font denotes literal items such as
commands, files, routines, path names, signals,
messages, and programming language structures.

variable Italic typeface denotes variable entries and words
or concepts being defined.

user input This bold, fixed-space font denotes literal items
that the user enters in interactive sessions.
Output is shown in nonbold, fixed-space font.

[] Brackets enclose optional portions of a command
or directive line.

... Ellipses indicate that a preceding element can be
repeated.

Reader Comments

If you have comments about the technical accuracy, content, or organization of
this document, please tell us. You can contact us in any of the following ways:

• Send us electronic mail at the following address:

publications@cray.com

• Contact your customer service representative and ask that an SPR or PV be
filed. If filing an SPR, use PUBLICATIONS for the group name, PUBS for the
command, and NO-LICENSE for the release name.

• Call our Software Publications Group in Eagan, Minnesota, through the
Customer Service Call Center, using either of the following numbers:

xxii SR–3907 3.0.2

Preface

1–800–950–2729 (toll free from the United States and Canada)

+1–612–683–5600

• Send a facsimile of your comments to the attention of “Software Publications
Group” in Eagan, Minnesota, at fax number +1–612–683–5599.

We value your comments and will respond to them promptly.

SR–3907 3.0.2 xxiii

Introduction [1]

This manual is organized into the following chapters:

• Chapter 1 introduces the content of the manual and provides a general
description of the compiler.

• Chapter 2, page 7, describes the f90(1) command, which you use to invoke
the compiler. This chapter includes information about using the f90(1)
command line options, CPU targeting, obtaining a listing, and other aspects
of compiling with the MIPSpro 7 Fortran 90 compiler.

• Chapter 3, page 61, introduces the compiler directives and describes the
general compiler directives that the MIPSpro 7 Fortran 90 compiler
recognizes.

• Chapter 4, page 81, describes the OpenMP Fortran API multiprocessing
directives.

• Chapter 5, page 133, describes parallel processing on Origin2000, Origin200,
or Cray Origin2000 systems using OpenMP directives and Silicon Graphics
extensions to the OpenMP directives.

• Chapter 6, page 161, describes Cray Research CF90 compiler directives that
are also supported by the MIPSpro 7 Fortran 90 compiler.

• Chapter 7, page 175, describes the source preprocessor.

• Chapter 8, page 187, describes the interlanguage calling conventions used
when calling a C/C++ function from a Fortran 90 procedure and a
Fortran 90 procedure from a C function.

• Appendix A, page 203, describes library routines available to you from
Fortran 90 programs.

• Appendix B, page 215, describes debugging Fortran 90 programs.

• Appendix C, page 219, describes differences between the CF90 compiler,
which runs on Cray Research’s UNICOS and UNICOS/mk systems, and the
MIPSpro 7 Fortran 90 compiler, which runs on IRIX systems. This chapter
also describes differences between the Silicon Graphics FORTRAN 77
compiler and the MIPSpro 7 Fortran 90 compiler.

• Appendix D, page 225, describes the Silicon Graphics multiprocessing
directives. These directives are still supported, but they are outmoded. It is

SR–3907 3.0.2 1

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

suggested that you develop new codes using the OpenMP Fortran API
directives described in Chapter 4, page 81.

• Appendix E, page 249, describes the Cray Research UNICOS Autotasking
directives. These directives are still supported, but they are outmoded. It is
suggested that you develop new codes using the OpenMP Fortran API
directives described in Chapter 4, page 81.

1.1 The f90(1) Command

In the following example, the f90(1) command is used to invoke the compiler.
The -listing option is specified to generate a source listing and a cross
reference. File pgm.f is the input file. After compilation, you can run this
program by entering the output file name as a command. In this example, the
default output file name, a.out, is used. Figure 1 illustrates this example:

% f90 -listing pgm.f

% ./a.out

2 SR–3907 3.0.2

Introduction [1]

f90

Command

MIPSpro 7
Fortran 90
compiler

pgm.f
Source
code

pgm.T
Lister

pgm.L

Listing

pgm.o

ld

IRIX

Input
data

a.out

Executable
program

Output
data

a11351

-listing generates a listing

Figure 1. f90(1) command example

You can use the options on the f90(1) command line to modify the default
actions; for example, you can disable the load step. For more information on
f90(1) command line options, see Chapter 2, page 7.

1.2 The MIPSpro 7 Fortran 90 Programming Environment

The MIPSpro 7 Fortran 90 compiler is one of many products that form the IRIX
programming environment. This environment allows you to develop, debug,
and run Fortran 90 codes on your computer system. It includes the following
products:

SR–3907 3.0.2 3

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

• A loader. By default, the IRIX loader, ld(1), is invoked and your program is
automatically loaded.

• A preprocessor. You can use the -ftpp or -cpp options on the f90(1)
command line to invoke a preprocessor.

• A lister. You can specify the -listing option on the f90(1) command line
to obtain a source listing and a cross reference. You can also invoke a
separate lister, ftnlist(1).

• The ftnlint(1) utility, which checks Fortran 90 programs for possible
errors.

• The compiler information file (CIF) tools, which include the cifconv(1)
command and the libraries. For more information on these, see the Compiler
Information File (CIF) Reference Manual, publication SR–2401. SR–2401 is a
Cray Research publication.

• The libraries, which include functions optimized for use on IRIX systems.
Information on the individual library routines can be found in the online
man pages for each routine. In addition to online man pages, the Application
Programmer’s Library Reference Manual, publication SR–2165, contains printed
copies of the library routine man pages and other library information.
SR–2165 is a Cray Research publication.

The intrinsic procedures are implemented within the math library (libm),
within libfortran, and within the compiler itself. The Intrinsic Procedures
Reference Manual, publication SR–2138, contains printed copies of the online
man pages for all the intrinsic procedures. SR–2138 is a Cray Research
publication.

• The performance tools contained in SpeedShop. For more information, see
the SpeedShop User’s Guide, a Silicon Graphics publication.

• The archiving tool. An archive library is a file that contains one or more
routines in object file format (file.o). When a program calls an object file
that is not explicitly included in the program, the loader, ld(1), looks for
that object file in an archive library. The loader then loads only that object
file, not the whole library, and loads it with the calling program.

The archiver creates and maintains archive libraries. It allows you to copy
new objects into the library, replace existing objects in the library, move
objects within the library, and copy individual objects from the library into
individual object files. For more information on the archive library, see the
ar(1) man page.

4 SR–3907 3.0.2

Introduction [1]

• Object file tools, which allow you to disassemble object files into machine
instructions, print information about archive files, and perform other tasks.
For more information on these tools, see the following man pages: dis(1),
elfdump(1), file(1), nm(1), size(1), and strip(1).

• ftnchop(1), ftnmgen(1), and ftnsplit(1). These commands invoke a
program unit problem isolator, a Fortran makefile utility, and a split utility,
respectively. For more information on these commands, see the man pages
for each.

• Online documentation utilities. The man(1) command allows you to retrieve
online man pages. Prose reference text, such as this manual, can be retrieved
through the WWW browser supported at your site. Contact your support
staff for specific information on retrieving information in this manner.

• Modules. The MIPSpro 7 Fortran 90 compiler can be installed with the
modules utility. This utility allows you to access different versions of the
compiler and runtime environment. For more information on using the
modules utility, see the modules(1) man page or enter the following
command:

% relnotes modules

• The message system. This system lets you obtain more comprehensive
explanations of messages generated by the compiler and tools in the
MIPSpro 7 Fortran 90 compiling environment. When a message condition
occurs, both a message number and a verbal summary of the problem is
generated. If you need more information on the error condition described in
the summary, you can enter the explain(1) command to retrieve a more
detailed description.

SR–3907 3.0.2 5

Invoking MIPSpro 7 Fortran 90 [2]

This chapter describes the options for the f90(1) command. Section 2.55.6, page
53, describes CPU targeting.

The f90(1) command invokes the MIPSpro 7 Fortran 90 compiler. The
following syntax boxes show the f90(1) command syntax:

f90 [-64 | -n32][-mipsn] file.suffix[90] [file.suffix[90]]…

f90 [-64 | -n32] [-alignn] [-ansi]
[-autouse module_name[,module_name] ...] [-avoid_gp_overflow]
[-C] [-c] [-chunk=integer] [-cif] [-coln] [-cord] [-cpp]
[-cray_mp] [-Dvar[=def][,var[=def]]…] [-DEBUG:...] [-dn]
[-default64] [-E] [-extend_source] [-fixedform] [-freeform]
[-ftpp] [-g[debug_lvl]] [-help] [-I[dir]] [-INLINE:…] [-IPA[:…]]
[-in] [-ignore_suffix] [-KPIC] [-keep] [-Ldirectory] [-llibrary]
[-LIST:…] [-LNO:…] [-listing] [-macro_expand] [-MDupdate[file]]
[-mipsn] [-mp] [-MP:…] [-mp_schedtype=mode] [-nocpp]
[-noextend_source] [-nostdinc] [-Olevel] [-OPT:…] [-oout_file]
[-P] [-pfa[list]] [-rreal_spec] [-rprocessor] [-S] [-static]
[-TARG:…] [-TENV:…] [-trapuv] [-Uvar] [-u] [-version]
[-Wl,opt[,arg][,opt[,arg]]...] [-w[arg]] [-woffnum] [-xdirlist] [-xgot]
[--] file.suffix[90] [file.suffix[90]…]

In some cases, more than one option can have an effect on a single compiler
feature. The following list shows some of the compiler features and the options
that affect them:

• Listing control: -listing, -LIST:.

• Source preprocessing: -cpp, [-Dvar[=def][,var[=def]]…], -E, -F, -ftpp,
-macro_expand, -nocpp, -P, -Uvar.

• Setting the compilation environment: -n32, -64, -mipsn, -rprocessor,
-TARG:, -TENV:.

• Optimization: -LNO:, -OPT:, -Olevel.

SR–3907 3.0.2 7

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

Note: The MIPSpro Automatic Parallelization Option is invoked when you
specify the -pfa command line option. You must be licensed for the
MIPSpro Automatic Parallelization Option in order to be able to use this
command line option.

Various environment variable settings can affect your compilation. For more
information on the environment variables, see the pe_environ(5) man page.

Note: Some f90(1) command options, for example, -LNO:..., -LIST:...,
-MP:... , -OPT:..., -TARG:..., and -TENV:... accept several
suboptions and allow you to specify a setting for each suboption. To specify
multiple suboptions, either use colons to separate each suboption or specify
multiple options on the command line. For example, the following command
lines are equivalent:

f90 -LIST:notes=ON:options=OFF b.f

f90 -LIST:notes=ON -LIST:options=OFF b.f

Some arguments to suboptions of this type are specified with a setting that
will either enable or disable the feature. To enable a feature, specify the
suboption either alone or with =1, =ON, or =TRUE. To disable a feature,
specify the suboption with either =0, =OFF, or =FALSE. For example, the
following command lines are equivalent:

f90 -LNO:auto_dist:blocking=OFF:oinvar=FALSE a.f

f90 -LNO:auto_dist=1:blocking=0:oinvar=OFF a.f

For brevity, this manual shows only the ON or OFF settings to suboptions, but
the compiler also accepts 0, 1, TRUE, and FALSE as settings.

2.1 -64, -n32

Specifies the Application Binary Interface (ABI). Enter either -n32 or -64 to
specify an ABI. Specifying -n32 generates 32–bit objects. Specifying -64
generates 64–bit objects.

Note: Certain predefined system defaults can greatly affect your compilation.
These include system defaults for your ABI, Instruction Set Architecture
(ISA), and processor type. To determine the default ABI for your system,
look in file /etc/compiler.defaults. To determine your system’s
processor, use the hinv(1) command. The -64 and -n32 options can affect
the Instruction Set Architecture (ISA) used during compilation. For more
information on this interaction, see the -mipsn option.

8 SR–3907 3.0.2

Invoking MIPSpro 7 Fortran 90 [2]

When -n32 is specified, the total memory allocation for a program and
individual arrays cannot exceed 2 gigabytes (2 GB, or 2,048 MB). When -64 is
specified, the compiler supports arrays that are larger than 2 GB.

As the following example shows, the arrays can be local, global, or dynamically
created when compiling with the following command line:

f90 -64 -i8 -mips3 whale.f

MODULE DEFS

INTEGER, PARAMETER :: ARRAY_SIZE = 4294967304_8 ! Z’100000008’

INTEGER :: I(ARRAY_SIZE)

END MODULE

PROGRAM MAIN

USE DEFS

INTEGER, ALLOCATABLE :: J(:)

INTEGER :: STATUS

ALLOCATE(J(ARRAY_SIZE), STAT=STATUS)

IF (STATUS == 0) THEN

I(ARRAY_SIZE) = 7

J(ARRAY_SIZE) = 8
CALL SUB

END IF

END PROGRAM

SUBROUTINE SUB

USE DEFS

INTEGER :: K(ARRAY_SIZE)

K(ARRAY_SIZE) = 9;

END SUBROUTINE

Note: In the preceding example, you cannot specify an array with a size
greater than 32 bits in an input or an output list of a READ, WRITE, or PRINT
statement.

SR–3907 3.0.2 9

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

You must have enough swap space to support the working set size and you
must have your shell limit datasize, stack size, and vmemoryuse variables set
to values large enough to support the sizes of the arrays. For information on
these settings, see the sh(1) man page.

The following example compiles and runs the preceding code after setting the
stack size to a correct value:

$uname -a

IRIX64 cydrome 6.2 03131016 IP19

$f90 -64 -i8 -mips3 whale.f

$limit
cputime unlimited

filesize unlimited

datasize unlimited

stacksize 65536 kbytes

coredumpsize 0 kbytes
memoryuse 524288 kbytes

descriptors 300

vmemoryuse unlimited

threads 1024

$limit stacksize unlimited
$limit

cputime unlimited

filesize unlimited

datasize unlimited

stacksize 524288 kbytes

coredumpsize 0 kbytes
memoryuse 754544 kbytes

descriptors 300

vmemoryuse unlimited

threads 1024

2.2 -alignn

Aligns data objects on specified boundaries. The -alignn specifications are as
follows:

Option Action

-align32 Aligns objects 32 bits or larger on 32-bit
boundaries.

10 SR–3907 3.0.2

Invoking MIPSpro 7 Fortran 90 [2]

-align64 Aligns objects 64 or larger on 64-bit boundaries.
Default.

When an alignment is specified, objects smaller than the specification are
aligned on boundaries that correspond to their sizes. For example, when
align64 is specified, 32-bit and larger objects are aligned on 32-bit boundaries;
16-bit and larger objects are aligned on 16-bit boundaries; and 8-bit and larger
objects are aligned on 8-bit boundaries.

2.3 -ansi

Causes the compiler to generate messages when it encounters source code that
does not conform to the Fortran 90 standard.

2.4 -autouse module_name[, module_name] ...

Directs the compiler to behave as if a USE module_name statement were entered
in your Fortran source code for each module_name. The USE statements are
entered in every program unit and interface body in the source file being
compiled.

Note: Using this option can add to compile time.

2.5 -avoid_gp_overflow

Adjusts internal settings with the intent of avoiding global symbol table (GOT)
overflow. For more information on the GOT, see the -xgot option, the
gp_overflow(5) man page, and the What should I do about a GOT overflow?
question in the FAQ section of the dso(5) man page.

Note: This option is no longer needed for compilation. It has been
deprecated and will be removed in a future release.

2.6 -C, -check_bounds

Performs run-time array subscript range checking. This functionality can also
be obtained by specifying -check_bounds. Subscripts that are out of range
cause fatal run–time errors.

SR–3907 3.0.2 11

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

By default, if -C is specified and the bounds check fails, the program aborts. If
you set the F90_BOUNDS_CHECK_ABORT environment variable to Y, however,
the program continues to compile even if it fails the bounds test.

2.7 -c

Disables the load step and writes the binary object file to file.o.

For example, the following command line produces file more.o:

% f90 -c more.f

2.8 -chunk=integer

When compiling a multitasked program, this option specifies the number of
loop iterations per chunk. For scheduling purposes, the iterations of a loop are
broken up into pieces. This option must be specified in conjunction with the
-mp option.

Enter a nonzero, unsigned, positive integer for integer. There is no default value
for integer.

2.9 -cif

Generates a compiler information file (CIF) for use by the programming tools.
For more information on CIF, see the Compiler Information File (CIF) Reference
Manual, publication SR–2401.

2.10 -coln

Specifies the line width for fixed-format source lines. Enter 72, 80, or 120 for n.
By default, fixed-format lines are 72 characters wide. For more information on
specifying line length, see the -extend_source and -noextend_source
options.

12 SR–3907 3.0.2

Invoking MIPSpro 7 Fortran 90 [2]

2.11 -cord

Runs the procedure rearranger, cord(1), on the resulting file after loading. The
rearrangement is done to reduce virtual memory paging and/or instruction
cache misses.

For more information on procedure rearranging, see the cord(1), pixie(1), and
prof(1) man pages.

2.12 -cpp

Runs the cpp source preprocessor on all input source files, regardless of suffix,
before compiling. By default preprocessing is performed only on files that end
in a .F or .F90 suffix.

For more information on source preprocessing compiler options, see the
following options: [-Dvar[=def][,var[=def]]…], -E, -ftpp, -macro_expand,
-nocpp, -P, and -Uvar.

For information on source preprocessing and the macros available, see Chapter
7, page 175.

2.13 -cray_mp

Specifies that all Autotasking directives described in Appendix E, page 249,
should be recognized. These directives are also implemented in the Cray
Research CF90 compiler on UNICOS systems. The prefix for these directives is
!MIC.

Note: The Autotasking directives are outmoded. The preferred alternatives
are the OpenMP Fortran API directives described in Chapter 4, page 81.

You must specify this option if you want the following directives to be
recognized in your code: DOALL, DOPARALLEL, ENDDO, [END]GUARD,
[END]PARALLEL, [END]CASE, and NUMCPUS. For more information on these
directives, see Appendix E, page 249.

It is not necessary to specify this option in order for the following two
directives to be recognized: PERMUTATION and CNCALL. These two directives
are recognized even when -cray_mp is not specified.

This option can be specified on the command line along with -pfa, but it
cannot be specified along with -mp.

SR–3907 3.0.2 13

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

2.14 -Dvar[=def][,var[=def]]...

Defines variables used for source preprocessing as if they had been defined by a
#define directive. If no def is specified, 1 is used. For information on
undefining variables, see the -Uvar option.

For more information on source preprocessing compiler options, see the
following options: -cpp, -E, -ftpp, -macro_expand, -nocpp, -P, and -Uvar.

For information on source preprocessing and the macros available, see Chapter
7, page 175.

2.15 -DEBUG:...

Controls the compiler’s attempts to detect various errors (at compile time or run
time) and controls how the errors are reported. For more information on the
debugging options, see the DEBUG_group(5) man page.

2.16 -dn

Specifies the KIND specification used for objects declared DOUBLE COMPLEX
and DOUBLE PRECISION, as follows:

Option KIND value

-d8 Uses REAL(KIND=8) for objects declared as DOUBLE
PRECISION. Uses COMPLEX(KIND=8) for objects declared
DOUBLE COMPLEX. Default.

-d16 Uses REAL(KIND=16) for objects declared as DOUBLE
PRECISION. Uses COMPLEX(KIND=16) for objects declared
DOUBLE COMPLEX.

2.17 -default64

Sets the sizes of default integer, real, logical, and double precision objects to be
the same as if the program were executing on a Cray Research UNICOS system.
This option causes the following options to go into effect: -r8, -i8, -d16, and
-64.

If you are using specialized libraries, such as SCSL, NAG, and IMSL, , you
must ensure that the entry point names in your program are 64–bit entry points

14 SR–3907 3.0.2

Invoking MIPSpro 7 Fortran 90 [2]

rather than 32–bit entry points. Similarly, library calls that require 32-bit calling
arguments must not be called with default kind variables; they must be called
with explicitly declared REAL(4) variables or constants.

2.18 -E

Performs source preprocessing on all input Fortran source files, before
compiling, and writes the preprocessed output to stdout. If the input file is
suffixed with .F or .F90, source preprocessing is performed automatically.

This option overrides the -nocpp option. The output file contains line
directives. To generate an output file without line directives, see the -P option.

For more information on source preprocessing compiler options, see the
following options: -cpp, [-Dvar[=def][,var[=def]]…], -ftpp, -macro_expand,
-nocpp, -P, and -Uvar.

For information on source preprocessing and the macros available, see Chapter
7, page 175.

2.19 -extend_source

Specifies a 132-character line length for fixed-format source lines. By default,
fixed-format lines are 72 characters wide. For more information on controlling
line length, see the -coln option

2.20 -fixedform

Treats all input source files, regardless of suffix, as if they were written in fixed
source form. By default, only input files suffixed with .f or .F are assumed to
be written in fixed source form.

2.21 -freeform

Treats all input source files, regardless of suffix, as if they were written in free
source form. By default, only input files suffixed with .f90 or .F90 are
assumed to be written in free source form.

SR–3907 3.0.2 15

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

2.22 -ftpp

Runs the FTPP source preprocessor on input Fortran source files that are
suffixed with .f or .f90 before compiling. FTPP is a Fortran-aware version of
the C preprocessor, cpp.

If the file is suffixed with .F or .F90, the file is automatically preprocessed by
FTPP, and -ftpp does not need to be specified for preprocessing to occur.

If -ftpp and -P are specified, the preprocessed source code is placed in file.i,
and file.i does not contain # lines.

For more information on source preprocessing compiler options, see the
following options: -cpp, [-Dvar[=def][,var[=def]]…], -E, -macro_expand,
-nocpp, -P, and -Uvar.

For information on source preprocessing and the macros available, see Chapter
7, page 175.

2.23 -gdebug_lvl

Generates debugging information and establishes a debugging level. Enter one
of the following:

Option Support

-g0 No debugging information produced. Default.

-g2, -g Information for symbolic debugging is produced, and
optimization is disabled.

-g3 Information for symbolic debugging of fully optimized code is
produced. The debugging information produced may be
inaccurate. This option can be used in conjunction with the -O,
-O1, -O2, and -O3 options.

2.24 -help

Lists all available options. The compiler is not invoked.

To list all suboptions within an option group, specify -LIST:all_options=ON.
This shows, for example, all the suboptions to the -TENV:, -OPT:, and -LNO:
options. For more information on the LIST: option, see Section 2.34, page 20.

16 SR–3907 3.0.2

Invoking MIPSpro 7 Fortran 90 [2]

2.25 -Idir

Specifies a directory to be searched for the following types of files:

• Files named in INCLUDE lines in the Fortran source file that do not begin
with a slash (/) character

• Files named in #include source preprocessing directives that do not begin
with a slash (/) character

• Files specified on USE statements

Files are searched in the following order: first, in the directory that contains the
input file; second, in the directories specified by dir; and third, in the standard
directory, /usr/include.

2.26 -INLINE:…

Specifies actions for the standalone inliner. These options control the
application of subprogram inlining within one file when interprocedural
analysis (IPA) is not enabled.

If you have included inlining directives in your source code, the -INLINE
option must be specified in order for those directives to be recognized.

For more information on the individual options in this group, see ipa(5).

2.27 -IPA[:…]

Controls the application of interprocedural analysis (IPA) and optimization.
This includes inlining, common block array padding, constant propagation,
dead function elimination, alias analysis, and other features. Specify -IPA with
no arguments to invoke the interprocedural analysis phase with default options.

If you have included IPA directives in your source code, the -IPA option must
be specified in order for those directives to be recognized.

If you compile and load in distinct steps, you must use at least -IPA for the
compile step, and you must specify -IPA and the individual options in the
group for the load step. For more information on the individual options in this
group, see the ipa(5) man page.

SR–3907 3.0.2 17

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

2.28 -in

Specifies the length of default integer constants, default integer variables, and
logical quantities. Specify one of the following:

Option Action

-i4 Specifies 32-bit (4-byte) objects. Default.

-i8 Specifies 64-bit (8-byte) objects. Also see the -default64 option.

2.29 -ignore_suffix

Compiles all files as if they were Fortran source files. By default, the f90(1)
command determines the type of processing necessary for an input file based in
its suffix. Files that end in .c, for example, are compiled by cc(1). When
-ignore_suffix is specified, the compiler processes all files named as if they
were Fortran source files, regardless of suffix.

2.30 -KPIC

Generates position-independent code (PIC), which is necessary for programs
loaded with dynamic shared libraries. Enabled by default.

2.31 -keep

Writes all intermediate compilation files. file.s contains the generated assembly
language code. file.i contains the preprocessed source code.

These files are retained after compilation is finished.

2.32 -Ldirectory

Changes the library search algorithm for the loader. For directory, specify the
path to a directory that should be searched before using the default system
libraries. You can specify multiple -L options on the command line. The library
search algorithm searches these directories in left to right order.

18 SR–3907 3.0.2

Invoking MIPSpro 7 Fortran 90 [2]

2.33 -llibrary

Searches the library named liblibrary.a or liblibrary.so. Libraries are
searched in the order given on the command line.

If you are using another compiler, for example the C compiler, to load
Fortran 90 object files, you need to explicitly specify to the C compiler that the
Fortran libraries be loaded.

The following table shows the Fortran libraries that the f90(1) command loads
by default.

-l option Link library Content

-lfortran /usr/lib*/libfortran.so Intrinsic procedure,
I/O,
multiprocessing,
IRIX interface, and
indexed sequential
access method
library for shared
loading and
compiling.

-lm /usr/lib*/libm.so Mathematics library.

Example 1. In the following example, the cc(1) command loads Fortran 90
object files. The -l option loads the Fortran library files:

cc -o myprog main.o rest.o -lfortran -lm

See the ld(1) man page for information on specifying the -l option.

Example 2. You may need to specify libraries when you use IRIX system
packages that are not part of a particular language. Most of the man pages for
these packages list the required libraries. For example, the getwd(3C)
subroutine requires the BSD compatibility library libbsd.a. Specify this
library as follows:

% f90 main.o more.o rest.o -lbsd

Example 3. To load the Silicon Graphics/Cray Scientific Library (SCSL), specify
one of the following command lines:

% f90 -lscs sci.f

SR–3907 3.0.2 19

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

or

% f90 -lscs_mp mpsci.f

The -lscs_mp option used in the preceding command line loads the
multiprocessed version of SCSL, which is supported on Origin series systems.

Example 4. To specify a library created with the archiver, type in the path name
of the library as follows:

% f90 main.o more.o rest.o libfft.a

Note: The loader searches libraries in the order you specify. Therefore, if you
have a library named libfft.a that uses data or procedures from
-lfourier, you must specify libfft.a first.

2.34 -LIST:...

Writes an assembler listing file to file.l. If the -S option is also in effect, the
content of this listing is also written to the assembly language file (file.s).

Note: For information on how to obtain a source listing and cross reference,
see the -listing option.

The following sections describe the individual -LIST: options.

Note: If -LIST: is not specified, all the suboptions described in the
following sections are set to OFF.

2.34.1 -LIST:=setting

Writes or suppresses the listing file. Enter ON or OFF for setting.

If one or more -LIST options are enabled, the listing file is written. By default,
the listing file contains a list of compiler options in effect during compilation.

2.34.2 -LIST:all_options=setting

Writes or suppresses the list of all supported options in the listing file. Enter ON
or OFF for setting. The default is OFF.

20 SR–3907 3.0.2

Invoking MIPSpro 7 Fortran 90 [2]

2.34.3 -LIST:notes=setting

Writes or suppresses notes regarding various optimization phases in the
assembly listing file (file.s). Must be specified in conjunction with -S. Enter ON
or OFF for setting. The default is ON.

2.34.4 -LIST:options=setting

Writes or suppresses a listing of the compiler options in effect during
compilation in the listing file. Enter ON or OFF for setting. The default is OFF.

2.34.5 -LIST:symbols=setting

Writes or suppresses a listing of the internal compiler symbol tables used in the
compilation in the listing file. Enter ON or OFF for setting. The default is OFF.

2.35 -listing

Writes a source code listing and a cross reference listing to file.L.

2.36 -LNO:…

Specifies options and transformations performed on loop nests by the Loop
Nest Optimizer. The -LNO options are enabled only if -O3 is also specified on
the f90(1) command line.

The arguments to -LNO are divided into the following groups:

• General options

• Transformation options

• Cache memory management options

• Translation Lookaside Buffer (TLB) options

• Prefetch options

For information on the LNO options that are in effect during a compilation,
specify -LIST:all_options=ON.

The following sections describe the individual LNO options.

SR–3907 3.0.2 21

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

2.36.1 General Options

The following sections describe the general options.

2.36.1.1 -LNO:auto_dist=setting (Origin Series Only)

Distributes local arrays and arrays in common blocks that are accessed in
parallel. Enter ON or OFF for setting. The default is OFF.

When -LNO:auto_dist=ON, the compiler distributes local and COMMON arrays
that are accessed in parallel based on access patterns inside the routines that
contain definitions of arrays (as opposed to array declarations). Access patterns
of arrays used as dummy arguments are ignored. This optimization works with
either automatic parallelism or parallelism expressed through directives. This
optimization is always safe, does not affect the layout of arrays in virtual space.
and does not incur addressing overhead.

Example:

PROGRAM FRED

REAL A(1000,100)

COMMON A

!$OMP PARALLEL DO PRIVATE (I,J)

DO I=1,N
DO J=1,N

A(J,I) = 0.0

END DO

END DO

END

In the preceding code fragment, every processor accesses a block of iterations of
parallel loop I. This implies that every processor will zero a block of columns
of array A. When this option is enabled, the compiler distributes the array using
the !$SGI DISTRIBUTE A(*,BLOCK) directive so that each processor accesses
data local to its own memory. The compiler might not pick the best
distribution. In particular, if arrays are accessed differently in different
subroutines, the distribution is that which suites the majority. This option is
useful for programs that are not written with data distribution in mind. For
more information on the DISTRIBUTE directive, see Section 5.2.1, page 140.

2.36.1.2 -LNO:gather_scatter=n

Performs gather-scatter optimizations. Enter 0, 1, or 2 for n. The default is 1.

22 SR–3907 3.0.2

Invoking MIPSpro 7 Fortran 90 [2]

gather_scatter=0 disables all gather-scatter optimization.
gather_scatter=1 performs gather-scatter optimizations on non-nested IF
statements. gather_scatter=2 performs multilevel gather-scatter
optimizations.

The following code fragment shows gatter-scatter optimization:

DO J = 1,N

A(INDEX(J)) = B(J) ! scatter

C(J) = D(INDEX(J)) ! gather

END DO

2.36.1.3 -LNO:ignore_pragmas=setting

Specifies that the command line options override directives in the source file.
Specify either ON or OFF for setting. The default is ignore_pragmas=OFF.

By default, directives within a file override command line options.

2.36.1.4 -LNO:oinvar=setting

Controls outer loop hoisting. Hoisting is the process by which invariant
statements or expressions are taken out of a loop. The compiler looks for
expressions that vary in the inner loop but are invariant in an outer loop. The
compiler precomputes all the invariant expressions and stores them in a
temporary array. All references to the expression in the inner loop are replaced
by loads from the array. Enter ON or OFF for setting. The default is oinvar=ON.

2.36.1.5 -LNO:opt=n

Controls the LNO optimization level. Enter either 0 or 1 for n. The default is 1.

opt=0 disables nearly all loop nest optimization. opt=1 performs full LNO
transformations.

2.36.1.6 -LNO:outer=setting

Enables or disables outer loop fusion. Enter ON or OFF for setting. The default is
outer=ON.

For more information on controling loop fusion, see the -LNO:fusion option.

SR–3907 3.0.2 23

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

2.36.1.7 -LNO:vintr=setting

Specifies that vectorizable versions of the math intrinsic functions should be
used. Vector versions of routines return multiple results per call, reducing the
number of calls made in a loop and, thus, the call over head. Enter ON or OFF
for setting. The default is vintr=ON.

For information on the math intrinsic functions, see the math(3M) man page.

2.36.2 Transformation Options

The loop transformation options described in the following sections allow you
to control cache blocking, loop fission, loop fusion, loop unrolling, and loop
interchange.

2.36.2.1 -LNO:blocking=setting

Specifies whether cache blocking is performed.

Specify blocking=OFF to disable cache blocking. Cache blocking is performed
to improve reuse of data in cache. Enter ON or OFF for setting. The default is
blocking=ON.

For more information on blocking, see the MIPSpro Compiling and Performance
Tuning Guide.

2.36.2.2 -LNO:blocking_size=n1[,n2]

Specifies a code blocking size that the compiler must use when performing any
blocking. Specify a value for n2 when using a 2-level cache. For n1 or n2, enter
an integer number that represents the number of iterations.

2.36.2.3 -LNO:fission=n

Controls loop fission. Enter 0, 1, or 2 for n. The default is 1.

Loop fission is an optimization process by which a loop is divided into smaller,
independent loops. This can improve register use for large inner loops. It also
enables other optimizations, such as loop interchange and blocking, to execute
more efficiently. Consider the following loop:

DO I ...

DO J1 ...

...

24 SR–3907 3.0.2

Invoking MIPSpro 7 Fortran 90 [2]

ENDDO

DO J2 ...
...

ENDDO

ENDDO

With loop fission, the preceding loop is transformed into the following two
loops:

DO I1 ...

DO J1 ...

...
ENDDO

ENDDO

DO I2 ...

DO J2 ...

...
ENDDO

ENDDO

fission=0 disables loop fission. fission=1 performs normal fission as
necessary. fission=2 specifies that fission be tried before fusion.

If -LNO:fission=n and -LNO:fusion=n are both set to 1 or to 2, fusion is
performed.

2.36.2.4 -LNO:fusion=n

Controls loop fusion. Loop fusion is an optimization process by which two small
loops are transformed into one larger loop. Loop fusion can lower the number
of memory references and improve cache behavior. It also enables other
optimizations, such as loop interchange and cache blocking, to execute more
efficiently. Enter 0, 1, or 2 for n. The default is 1. The loops to be fused need
not have identical iteration counts, but the iteration counts should be
approximately the same.

Consider the following loop:

DO I = 1,N
DO J = 1,N

A(I,J) = B(I,J) + B(I,J-1) + B(I,J+1)

END DO

END DO

DO I = 1,N
DO J = 1,N

SR–3907 3.0.2 25

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

B(I,J) = A(I,J) + A(I,J-1) + A(I,J+1)

END DO
END DO

With loop fusion, the preceding loops are transformed into the following loop:

DO I=1,N

A(I,1) = B(I,0) + B(I,1) + B(I,2)

DO J = 2,N

A(I,J) = B(I,J) + B(I,J-1) + B(I,J+1)

B(I,J-1) = A(I,J-2) + A(I,J-1) + A(I,J)

END DO
B(I,N) = A(I,N-1) + A(I,N) + A(I,N+1)

END DO

fusion=0 disables loop fusion. fusion=1 performs standard outer loop
fusion. fusion=2 specifies that outer loops should be fused, even if it means
partial fusion. The compiler attempts fusion before fission. The compiler
performs partial fusion if not all levels can be fused in the multiple-level fusion.

If -LNO:fission=n and -LNO:fusion=n are both set to 1 or to 2, fusion is
performed. For information on controling outer loop fusion, see the
-LNO:outer option.

The fusion= options affect the singly nested loops produced by the compiler.

2.36.2.5 -LNO:fusion_peeling_limit=n

Sets the limit for the number of iterations allowed to be peeled, where n ≥ 0. By
default, fusion_peeling_limit=5.

Loops that are candidates for loop fusion must have identical iteration counts.
Loop peeling is an optimization that the compiler may need to perform on loops
prior to loop fusion. For example, consider the following loops:

DO I = 1,N ! loop 1

. . .

END DO

DO I = 1,N-1 ! loop 2

. . .
END DO

In the preceding example, the iteration counts of loop 1 and loop 2 differ.
The compiler removes (peels) one iteration from loop 1; fuses loop 1 and

26 SR–3907 3.0.2

Invoking MIPSpro 7 Fortran 90 [2]

loop 2; and executes the peeled iteration from loop 1 separately from the
resulting fused loop. In this example, one iteration was peeled. The default
maximum number of iterations that can be peeled is five iterations. This option
allows you to specify a different maximum number of iterations that the
compiler can peel.

2.36.2.6 -LNO:interchange=setting

Specifies whether loop interchange optimizations are performed.

Loop nests such as the following benefit from loop interchange optimizations:

DO I ...

DO J ...
DO K ...

A(J,K) = A(J, K) + B(I,K)

END DO

END DO

END DO

In the preceding loop, each iteration of loop K requires two loads and one store.
Also, if the loop bounds are large, every memory reference results in a cache
miss.

With -LNO:interchange=ON, the loop is transformed into the following loop:

DO K ...

DO J ...

DO I ...

A(J,K) = A(J,K) + B(I,K)

END DO
END DO

END DO

In the new loop, note that A(J,K) is a loop invariant entity; only one load is
needed per iteration. The new loop is also more efficient with regard to cache
management.

Specifying -LNO:interchange=OFF disables loop interchange optimizations.
Enter ON or OFF for setting. The default is interchange=ON.

2.36.2.7 -LNO:ou=n, ou_max=n, and ou_prod_max=n

Specifies aspects of loop unrolling. When a loop is unrolled, the compiler makes
copies of the loop body and executes them in sequence. The compiler performs

SR–3907 3.0.2 27

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

some loop unrolling by default, but this option let you override default system
assumptions.

Specifying ou=n indicates that all outer loops for which unrolling is legal
should be unrolled n times; the result is that the compiler creates n copies of the
loop. Specify an integer for n. The compiler unrolls loops by this amount (if
specified) or not at all.

Specifying ou_max=n indicates that the compiler can unroll as many as n copies
per loop, but no more.

Specifying ou_prod_max=n indicates that the product of unrolling of the
various outer loops in a given loop nest is not to exceed n. The default is 16.

Example. The following loop is compiled with -LNO:ou=2:

DO I = 1,N

DO J = 1,N
A(J,I) = A(J,I) + B(J)

END DO

END DO

After unrolling, the loop is as follows:

DO I = 1,N-1,2

DO J = 1,N

A(J,I) = A(J,I) + B(J)

A(J,I+1) = A(J,I+1) + B(J)
END DO

END DO

DO I = I,N ! This nest computes remaining iterations.

DO J = 1,N ! This is the wind down loop.

A(J,I) = A(J,I) + B(J)
END DO

END DO

The advantage of unrolling, in the example, is that there is no need to load
B(J) N times but instead N/2 times.

2.36.2.8 -LNO:ou_deep=setting

Specifies that for loops with a nesting depth of 3 or more, the compiler should
outer unroll the wind-down loops that result from outer unrolling loops further
out. This results in a large executable file, but it generates much faster code

28 SR–3907 3.0.2

Invoking MIPSpro 7 Fortran 90 [2]

whenever wind-down loop execution costs are important. The default is
ou_deep=ON.

2.36.2.9 -LNO:ou_further=n

Specifies whether the compiler performs outer loop unrolling on wind-down
loops. When unrolling a loop with n iterations u times, the compiler must
generate a wind–down loop to handle cases in which n is not a multiple of u.
The wind-down loop handles the extra iterations at the end. The wind-down loop
will have at most u-1 iterations. When the unrolling factor, u, is large, it may be
beneficial to unroll the wind-down loop itself. When this option is set to n, the
compiler unrolls a wind-down loop only if the original loop was unrolled by at
least a factor of n. Specify an integer for n.

You can disable additional wind-down unrolling by specifying
-LNO:ou_further=999999. Unrolling is enabled as much as is sensible by
specifying -LNO:ou_further=3.

2.36.3 Cache Memory Management Options

LNO does several transformations, such as blocking and loop interchange, to
improve the cache behavior of programs. When performing these
transformations, LNO assumes that the target platform has certain cache
characteristics. The following sections describe suboptions that allow you to
change the default cache characteristics, thereby giving finer control over the
optimizations that LNO performs.

The cache memory management options allow you to tune up to four aspects of
the memory hierarchy on your system. For example, these four levels could
include level 1 cache, level 2 cache, the TLB, and main memory.

The numbering in these arguments starts with the cache level closest to the
processor and works outward.

2.36.3.1 -LNO:assoc1=n, assoc2=n, assoc3=n, assoc4=n

Specifies cache set associativity. For example, main memory is a fully
associative cache for disk. Set n to any sufficiently large number, such as 128.
Specifying n=0 indicates that there is no cache at that level.

SR–3907 3.0.2 29

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

2.36.3.2 -LNO:cmp1=n, cmp2=n, cmp3=n, cmp4=n and dmp1=n, dmp2=n, dmp3=n, dmp4=n

Specifies, in processor cycles, the time for a clean or dirty miss to the next outer
level of the memory hierarchy. This number is approximate because it depends
upon a clean or dirty line, read or write miss, and so on. Specifying n=0
indicates that there is no cache at that level.

2.36.3.3 -LNO:cs1=n, cs2=n, cs3=n, cs4=n

Specifies the cache size. The value n can be 0, or it can be a positive integer
followed by one of the following letters: k, K, m, or M. This specifies the cache
size in kilobytes or megabytes. Specifying n=0 indicates that there is no cache at
that level. The default cache size depends on your system. You can specify
-LIST:all_options=ON to see the default cache sizes used during
compilation.

2.36.3.4 -LNO:is_mem1=setting, is_mem2=setting, is_mem3=setting, is_mem4=setting

Specifies that certain memory hierarchies should be modeled as memory, not
cache. Enter ON or OFF for setting. The default is OFF for each option.

If an is_memk=setting setting is specified, the corresponding assocn=n
specification is ignored. Blocking can be attempted for this memory hierarchy
level, and blocking appropriate for memory, rather than cache, is applied. No
prefetching is performed, and any prefetching options are ignored. Any
cmpn=n and dmpn=n options on the command line are ignored.

2.36.3.5 -LNO:ls1=n, ls2=n, ls3=n, ls4=n

Specifies the line size, in bytes. This is the number of bytes, specified in the
form of an integer number, n, that are moved from the memory hierarchy level
further out to this level on a miss. Specifying n=0 indicates that there is no
cache at that level.

2.36.4 Translation Lookaside Buffer (TLB) Options

The following options control the TLB. The TLB is a cache for the page table.
Blocking for the TLB can improve cache performance. The following sections
describe options that control how the loop nest optimizer models the TLB when
performing transformations. The TLB hardware is assumed to be fully
associative.

30 SR–3907 3.0.2

Invoking MIPSpro 7 Fortran 90 [2]

2.36.4.1 -LNO:ps1=n, ps2=n, ps3=n, ps4=n

Specifies the number of bytes in a page, where n is an integer in the range 4000
≤ n ≤ 256000. The default n depends on your system hardware.

2.36.4.2 -LNO:tlb1=n, tlb2=n, tlb3=n, tlb4=n

Specifies the number of entries in the TLB for this cache level, where n is an
integer in the range 40 ≤ n ≤ 100. The default n depends on your system
hardware.

2.36.4.3 -LNO:tlbcmp1=n, tlbcmp2=n, tlbcmp3=n, tlbcmp4=n and tlbdmp1=n, tlbdmp2=n,
tlbdmp3=n, tlbdmp4=n

Specifies the number of processor cycles it takes to service a clean or dirty TLB
miss, where n is an integer in the range 40 ≤ n ≤ 200. The default n depends on
your system hardware.

2.36.5 Prefetch Options

The following options control use of the prefetch operation. When an LNO
prefetch option is enabled, the compiler examines the source code for memory
references that can cause cache misses. It then inserts prefetches into the
generated code so that the prefetches are performed ahead of the corresponding
memory references.

The -mips4 and -r10000 options must be in effect in order for the LNO
prefetch options to be recognized.

2.36.5.1 -LNO:pfk=setting

Selectively disables and enables prefetching for cache level k, where 1 ≤ k ≤ 4.
Enter ON or OFF for setting.

When -r10000 is in effect, pf1=ON and pf2=ON by default. At any other -rn
setting, OFF is in effect for all cache levels.

2.36.5.2 -LNO:prefetch=n

Specifies levels of prefetching.

prefetch=0 disables all prefetching. This is the default when -r4000,
-r5000, or -r8000 is in effect.

SR–3907 3.0.2 31

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

prefetch=1 enables conservative prefetching. This is the default when
-r10000 is in effect.

prefetch=2 enables aggressive prefetching.

2.36.5.3 -LNO:prefetch_ahead=n

Prefetches the specified number of cache lines ahead of the reference. The
default is 2.

2.36.5.4 -LNO:prefetch_manual=setting

Specifies whether manual prefetches (through directives) should be respected or
ignored. Enter ON or OFF for setting.

prefetch_manual=OFF ignores manual prefetches. This is the default when
-r4000, -r5000, or -r8000 is in effect.

prefetch_manual=ON respects manual prefetches. This is the default when
-r10000 is in effect.

2.37 -macro_expand

Enables macro expansion in preprocessed Fortran source files throughout each
file.

When -macro_expand is specified, macro expansion occurs throughout the
source file. When -macro_expand is not specified, macro expansion is limited
to preprocessor (#) directives in files processed by ftpp.

For more information on source preprocessing compiler options, see the
following options: -cpp, [-Dvar[=def][,var[=def]]…], -E, -ftpp, -nocpp, -P,
and -Uvar.

For information on source preprocessing and the macros available, see Chapter
7, page 175.

2.38 -MDupdate[file]

Updates makefile dependencies in file. The file can be included by smake(1)
and pmake(1) to get dependencies. Files named on INCLUDE statements and
modules named on USE statements are updated.

32 SR–3907 3.0.2

Invoking MIPSpro 7 Fortran 90 [2]

When file is not specified, the lines updated are those that begin with the name
of the output file, followed by a colon, and end with a distinctive make(1)
comment.

When file is specified, file is updated during compilation to contain header,
library, and run-time make(1) dependencies for the output file.

For example, assume that file foo.f90 contains the following two lines:

INCLUDE "bar.h"

USE mod

The updated file will contain a line similar to the following:

foo.o : bar.h MOD.mod

2.39 -mipsn

Specifies the Instruction Set Architecture (ISA). Enter -mips3 to specify the
MIPS III instruction set. Enter -mips4 to specify the MIPS IV instruction set.
For information on the default setting for your system, see file
/etc/compiler.defaults.

The -mipsn option interacts with the -64 and -n32 options.

2.40 -mp

Generates multiprocessing code for the files being compiled. This option causes
the compiler to honor all multiprocessing directives.

If you have specified more than one type of multiprocessing directive for an
individual loop, you need to disable one or more sets of directives by using the
-MP option in conjunction with the -mp option. Only one set of multiprocessing
directives can be recognized for a specific loop. Specifying -mp sets all the -MP
options to ON. To disable one or more sets of directives, specify one or more
-MP options in conjunction with -mp.

The following list describes the sets of multiprocessing directives and indicates
the command line options needed to selectively disable one or more sets of
directives:

• The OpenMP Fortran API multiprocessing directives described in Chapter 4,
page 81, and the Silicon Graphics directives that are extensions to OpenMP
described in Chapter 5, page 133. These directives begin with the !$OMP and

SR–3907 3.0.2 33

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

!$SGI prefixes. To disable these directives, but allow other multiprocessing
directive to be recognized, specify -mp and -MP:open_mp=OFF.

• The Silicon Graphics multiprocessing directives described in Appendix D,
page 225. These directives begin with the !$ and !$PAR prefix. These
directives are outmoded. To disable these directives, but allow other
directives to be recognized, specify -mp and -MP:old_mp=OFF.

• The Origin series distributed shared memory directives described in Chapter
5, page 133, that begin with a !$ prefix. These directives are outmoded.
These directives are outmoded. To disable these directives, but allow other
multiprocessing directives to be recognized, specify -mp and -MP:dsm=OFF.

At load time, you can specify both object files produced with the -mp option and
object files produced without it. If any or all of the files are compiled with -mp,
the executable must be loaded with -mp so that the correct libraries are used.

Example 1: Multiprocessor executable. The following command line compiles
and loads the Fortran program foo.f:

% f90 -mp foo.f

Example 2: Multiprocessor and optimizer. In the following example, the
Fortran routines in the file snark.f are compiled with multiprocessing code
generation enabled. The optimizer is also used.

% f90 -c -mp -O2 snark.f

A standard snark.o binary is produced, which must be loaded.

% f90 -mp -o boojum snark.o bellman.o

In this example, the -mp option signals the loader to use the Fortran
multiprocessing library. The bellman.o file did not have to be compiled with
the -mp option.

After loading, the resulting executable can be run like any executable file.
Creating multiple execution threads, running and synchronizing threads, and
task termination are all handled automatically.

When an executable file is loaded with -mp, the Fortran initialization routines
determine how many parallel threads of execution to create. This determination
occurs each time the task starts; the number of threads is not compiled into the
code. The default is to use either 8 or the number of processors that are on the
machine, whichever is less. You can override the default by setting the
OMP_NUM_THREADS environment variable to a value that is less than or equal
to the number of physical processors. If it is set, Fortran tasks use the specified

34 SR–3907 3.0.2

Invoking MIPSpro 7 Fortran 90 [2]

number of execution threads. For more information on the OMP_NUM_THREADS
environment variable, see pe_environ(5).

2.41 -MP:…

Specifies individual multiprocessing options that provide fine control over
certain optimizations.

Specifying -mp enables all the -MP:… options. To specify any of the -MP:
options, -mp must also be specified.

The following sections describe the -MP: options.

2.41.1 -MP:check_reshape=setting

Enables or disables run time consistency checks across procedure boundaries
when passing reshaped arrays (or portions thereof) as actual arguments. Enter
ON or OFF for setting. The default is check_reshape=OFF.

2.41.2 -MP:clone=setting

Enables or disables autocloning. Enter ON or OFF for setting. The compiler
automatically duplicates procedures that are called with reshaped arrays as
actual arguments for the incoming distribution. If you have explicitly specified
the distribution on all relevant dummy arguments, you can disable autocloning.
The consistency checking of the distribution between actual and dummy
arguments is not affected by this option and is always enabled. The default is
clone=ON.

For more information on regular and reshaped distribution, see Chapter 5, page
133.

2.41.3 -MP:dsm=setting (Origin series Systems Only)

Enables or disables recognition of the Origin series distributed shared memory
directives described in Chapter 5, page 133. These directives begin with a !$
prefix and are outmoded.

Enter ON or OFF for setting. When the -mp option is also in effect, the default is
dsm=ON. When the -mp option is not in effect, the default is dsm=OFF.

SR–3907 3.0.2 35

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

Note: The Origin series distributed shared memory directives that begin with
the !$ prefix are outmoded. Silicon Graphics and Cray Research encourage
you to write new codes using the Silicon Graphics directives that are
extensions to OpenMP Fortran API. The OpenMP extension directives begin
with the !$SGI prefix and are otherwise identical to the Origin series
distributed shared memory directives.

The effects of this option when used in conjunction with -mp are as follows:

Options specified Directives recognized

-MP:dsm=ON and -mp OpenMP multiprocessing directives described in
Chapter 4, page 81, and the Silicon Graphics
extension directives to OpenMP described in
Chapter 5, page 133.

Multiprocessing directives described in Appendix
D, page 225.

Origin series distributed shared memory
multiprocessing directives described in Chapter 5,
page 133, that begin with the !$ prefix.

-MP:dsm=OFF and -mp OpenMP multiprocessing directives described in
Chapter 4, page 81, and the Silicon Graphics
extension directives to OpenMP described in
Chapter 5, page 133.

Multiprocessing directives described in Appendix
D, page 225.

When the -mp option is specified on the f90(1) command line, the compiler
silently generates bookkeeping information in the rii_files directory. This
information is used to implement data distribution directives, as well as
perform consistency checks of these directives across multiple source files. To
disable the processing of the data distribution directives and not generate the
rii_files, compile the program with the -MP:dsm=off option.

2.41.4 -MP:old_mp=setting

Enables or disables recognition of the Silicon Graphics multiprocessing
directives described in Appendix D, page 225, and the Origin series distributed
shared memory directives described in Chapter 5, page 133, that begin with a
!$ prefix. These directives are the loop-level multiprocessing directives

36 SR–3907 3.0.2

Invoking MIPSpro 7 Fortran 90 [2]

(including those for Origin series systems) and the PCF directives. These
directives begin with a !$ or !$PAR prefix.

Enter ON or OFF for setting. The default is ON.

Note: The Silicon Graphics multiprocessing directives are outmoded. Their
preferred alternatives are the OpenMP Fortran API directives described in
Chapter 4, page 81.

The effects of this option when used in conjunction with -mp are as follows:

Options specified Directives recognized

-MP:old_mp=ON and
-mp

OpenMP multiprocessing directives described in
Chapter 4, page 81, and the Silicon Graphics
extension directives to OpenMP described in
Chapter 5, page 133.

Multiprocessing directives described in Appendix
D, page 225

Origin series distributed shared memory
multiprocessing directives described in Chapter 5,
page 133, that begin with the !$ prefix.

-MP:old_mp=OFF and
-mp

OpenMP multiprocessing directives described in
Chapter 4, page 81, and the Silicon Graphics
extension directives to OpenMP described in
Chapter 5, page 133.

2.41.5 -MP:open_mp=setting

Enables or disables recognition of the OpenMP Fortran API multiprocessing
directives described in Chapter 4, page 81, and the Silicon Graphics extensions
to OpenMP described in Chapter 5, page 133. These directives begin with a
!$OMP or a !$SGI prefix. Enter ON or OFF for setting. The default is ON.

The effects of this option when used in conjunction with -mp are as follows:

Options specified Directives recognized

-MP:open_mp=ON and
-mp

OpenMP multiprocessing directives described in
Chapter 4, page 81, and the Silicon Graphics
extension directives to OpenMP described in
Chapter 5, page 133.

SR–3907 3.0.2 37

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

Multiprocessing directives described in Appendix
D, page 225.

Origin series distributed shared memory
multiprocessing directives described in Chapter 5,
page 133, that begin with a !$ prefix.

-MP:open_mp=OFF
and -mp

Multiprocessing directives described in Appendix
D, page 225.

Origin series distributed shared memory
multiprocessing directives described in Chapter 5,
page 133, that begin with a !$ prefix.

2.42 -mp_schedtype=mode

Specifies a default mode for scheduling work among the participating tasks in
loops. This option must be specified in conjunction with -mp.

Specifying this option has the same effect as putting a !$MP_SCHEDTYPE=mode
directive at the beginning of the file. Enter one of the following for mode:

mode Action

DYNAMIC Breaks the iterations into pieces, the size of which
is specified by the -chunk=integer option. As
each process executes a piece, it enters a critical
section and obtains the next available piece. For
more information, see the -chunk=integer option.

GSS Schedules pieces according to the sizes of the
pieces awaiting execution.

INTERLEAVE Breaks the iterations into pieces, the size of which
is specified by the -chunk=integer option.
Execution of the pieces is interleaved among the
processes. For more information, see the
-chunk=integer option.

RUNTIME Schedules pieces according to information
contained in the MP_SCHEDTYPE environment
variables.

SIMPLE Divides the iterations among processes by
dividing them into contiguous pieces and
assigning one piece to each process. Default.

38 SR–3907 3.0.2

Invoking MIPSpro 7 Fortran 90 [2]

For more information on environment variables, these modes, and their effects,
see the pe_environ(5) man page.

2.43 -nocpp

Disables the source preprocessor.

For more information on source preprocessing compiler options, see the
following options: -cpp, [-Dvar[=def][,var[=def]]…], -E, -ftpp,
-macro_expand, -P, and -Uvar.

For information on source preprocessing and the macros available, see Chapter
7, page 175.

2.44 -noextend_source

Restricts Fortran source code lines to columns 1 through 72. See the -coln and
-extend_source options for more information on controlling line length.

2.45 -nostdinc

Directs the system to skip the standard directory, /usr/include, when
searching for #include files and files named on Fortran 90 INCLUDE
statements.

2.46 -Olevel

Specifies the basic optimization level, as follows:

Option Action

-O0 No optimization. Default.

-O1 Local optimization.

-O2, -O Extensive optimization. Optimizations performed
at this level are almost always beneficial. The
execution time is shortened, but compile time
may be lengthened.

SR–3907 3.0.2 39

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

-O3 Aggressive optimization. Optimizations
performed at this level may generate results that
differ from those obtained when -O2 is specified.

-Ofast[=ipxx] Use optimizations selected to maximize
performance for the target platform ipxx
processor type. To determine a platform ipxx
designation, use the hinv(1) command.

The optimizations performed may differ from
release to release and among the supported
platforms. The optimizations always enable the
full instruction set of the target platform (for
example, -mips4 for an R10000). Although the
optimizations are generally safe, they may affect
floating-point accuracy due to operator
reassociation. Typical optimizations selected
include those performed at -O3. See the
-TARG:platform=ipxx option for more
information on the ipxx argument. The default is
an R10000 POWER CHALLENGE, IP25.

2.47 -OPT:…

Controls miscellaneous optimizations. These options override defaults based on
the main optimization level.

For information on inlining, see the -INLINE:… option. For information on
loop nest optimization, see the -LNO:… option. For information on
interprocedural optimization, see the -IPA:… option.

The following sections describe the various general optimization options.

2.47.1 -OPT:alias=name

Specifies the pointer aliasing model to be used. By specifying one of the
following for name, the compiler is able to make assumptions throughout the
compilation:

name Assumption

parm or no_parm parm asserts that Fortran parameters do not alias
to any other variable. Default.

40 SR–3907 3.0.2

Invoking MIPSpro 7 Fortran 90 [2]

no_parm asserts that Fortran parameters can
alias to any other variable.

cray_pointer or
no_cray_pointer

cray_pointer asserts that a pointee’s storage is
never overlaid on another variable’s storage. The
pointee is stored in memory before a call to an
external procedure and is read out of memory as
its next reference. It is also stored before a
RETURN or END statement of a subprogram.

no_cray_pointer asserts that a pointee’s
storage can overlay on another variable’s storage.
Default.

2.47.2 -OPT:cis=setting

Converts SIN/COS pairs with the same argument to a single call that calculates
both values at once. Enter ON or OFF for setting. The default is cis=ON.

2.47.3 -OPT:cray_ivdep=setting

Specifies that the compiler should use UNICOS semantics when a !DIR$
IVDEP directive is encountered. The compiler ignores all loop iteration
dependencies. Enter ON or OFF for setting. The default is cray_ivdep=OFF,
which directs the compiler to use IRIX semantics when a !DIR$ IVDEP
directive is encountered.

For more information on the !DIR$ IVDEP directive, see Section 6.6, page 167.

2.47.4 -OPT:div_split=setting

Enables or disables the calculation of x/y as x � (1.0/y). Enter ON or OFF for
setting. The default is div_split=OFF.

This is enabled by the -OPT:IEEE_arithmetic=3 option. Also see the
-OPT:recip option. This option should be used with caution because it
produces less accurate results.

2.47.5 -OPT:fast_bit_intrinsics=setting

fast_bit_intrinsics=ON turns off the check for the bit count being within
range for Fortran bit intrinsics (for example, BTEST and ISHFT). Enter ON or
OFF for setting. The default is fast_bit_intrinsics=OFF.

SR–3907 3.0.2 41

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

2.47.6 -OPT:fast_complex=setting

fast_complex=ON enables fast calculations for values declared as type
complex. When set to ON, complex absolute value (norm) and complex division
calculations use fast algorithms that can cause overflow for an operand (divisor,
in the case of division) that has an absolute value that is larger than the square
root of the largest representable floating-point number (or underflow for a
value that is smaller than the square root of the smallest representable floating
point number).

Enter ON or OFF for setting. The default is fast_complex=OFF.
fast_complex=ON is enabled if -OPT:roundoff=3 is in effect.

2.47.7 -OPT:fast_exp=setting

fast_exp=ON optimizes exponentiation by replacing the run-time call for
exponentiation by multiplication and/or square root operations for certain
compile-time constant exponents (integers and halves). This can produce results
that are rounded differently than the run-time routine. fast_exp=ON is in
effect unless -OPT:roundoff=1 is in effect.

Enter ON or OFF for setting. The default is fast_exp=ON.

2.47.8 -OPT:fast_nint=setting

fast_nint=ON uses hardware features to implement NINT and ANINT (both
single- and double-precision versions). Enter ON or OFF for setting. The default
is fast_nint=OFF, but fast_nint=ON is enabled by default if
-OPT:roundoff=3 is in effect. fast_nint=ON is also enabled when
fast_trunc=ON is in effect.

When fast_nint=ON is in effect, rounding is performed according to the IEEE
standard rather than the Fortran 90 standard. For example, the Fortran 90
standard requires that NINT(1.5)=2 and NINT(2.5)=3. The IEEE standard,
however, rounds both of these to 2.

2.47.9 -OPT:fast_sqrt=setting

fast_sqrt=ON calculates square roots using the identity
sqrt(x)=x*rsqrt(x), where rsqrt is the reciprocal square root operation.
Enter ON or OFF for setting. The default is OFF.

42 SR–3907 3.0.2

Invoking MIPSpro 7 Fortran 90 [2]

The -mips4 and -r8000 options must be in effect in order for
-OPT:fast_sqrt to be recognized.

Warning: This option results in sqrt(0.0) producing a NaN result. Use it
only when zero sqrt operands are not valid.

2.47.10 -OPT:fast_trunc=setting

fast_trunc=ON inlines the NINT, ANINT, AINT, and AMOD Fortran intrinsics,
both single- and double-precision versions. Enter ON or OFF for setting. The
default is fast_trunc=OFF. fast_trunc=ON is enabled automatically if
-OPT:roundoff=1 (or greater) is in effect.

Although fully compliant with the Fortran 90 standard, fast_trunc=ON
reduces the valid argument range somewhat.

If fast_trunc=ON is in effect, fast_nint=ON is also enabled.

2.47.11 -OPT:fold_reassociate=setting

fold_reassociate=ON allows optimizations involving reassociation of
floating-point quantities. Enter ON or OFF for setting. The default is
fold_reassociate=OFF. fold_reassociate=ON is enabled automatically
when -O3 is in effect or when -OPT:roundoff=2 or greater is in effect.

2.47.12 -OPT:fold_unsafe_relops=setting

fold_unsafe_relops=ON folds relational operators in the presence of
possible integer overflow. Enter ON or OFF for setting. The default is
fold_unsafe_relops=ON.

2.47.13 -OPT:fold_unsigned_relops=setting

fold_unsigned_relops=ON folds unsigned relational operators in the
presence of possible integer overflow. Enter ON or OFF for setting. The default is
fold_unsigned_relops=OFF.

2.47.14 -OPT:got_call_conversion=setting

got_call_conversion=ON loads function addresses to be moved out of
loops. The load is set up with the proper relocation so that the address is
resolved at program start-up time. Enter ON or OFF for setting.

SR–3907 3.0.2 43

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

got_call_conversion=OFF is the default when -O2 or lower is in effect.
got_call_conversion=ON when -O3 is in effect.

Note: This option should be disabled when compiling shared objects that
contain function addresses that may be preempted by rld(1). For more
information, see dso(5).

2.47.15 -OPT:IEEE_arithmetic=n

This option to -OPT: specifies the level of conformance to ANSI/IEEE
754-1985, the IEEE Standard for Binary Floating-point Arithmetic, which
describes a standard for NaN and inf operands, arithmetic roundoff, and
overflow. Enter one of the following for n:

n Description

1 Inhibits optimizations that produce less accurate results than
required by ANSI/IEEE 754-1985. This is the default.

2 Allows compiler optimizations that can produce less accurate
inexact results (but accurate exact results) on the target hardware.
That is, expressions that would have produced a NaN or an inf
may produce different answers, but otherwise answers are the
same as those obtained when IEEE_arithmetic=1 is in effect.

Examples: 0*X may be changed to 0, and X/X may be changed to
1 even though this is inaccurate when X is +inf, -inf, or NaN.

3 Performs arbitrary, mathematically valid transformations, even if
they can produce inaccurate results for operations specified in
ANSI/IEEE 754-1985. These transformations can cause overflow
or underflow for a valid operand range. An example is the
conversion of x/y to x*recip(y) for MIPS IV targets. Also see
-OPT:roundoff=n.

2.47.16 -OPT:IEEE_comparisons=setting

Forces all comparisons to yield results that conform to ANSI/IEEE 754-1985, the
IEEE Standard for Binary Floating-point Arithmetic, which describes a standard
for NaN and inf operands. Specify ON or OFF for setting. The default is
IEEE_comparisons=OFF.

IEEE_comparisons=OFF produces non-IEEE results for comparisons. For
example, x=x is treated as TRUE without executing a test.

44 SR–3907 3.0.2

Invoking MIPSpro 7 Fortran 90 [2]

Note: This option has been deprecated and will be removed in a future
release. The preferred alternative is -OPT:IEEE_NaN_inf=setting.

2.47.17 -OPT:IEEE_NaN_inf=setting

Forces all operations that might have NaN or inf operands to yield results that
conform to ANSI/IEEE 754-1985, the IEEE Standard for Binary Floating-point
Arithmetic, which specifies the standard for NaN and inf operands. Specify ON
or OFF for setting. The default is IEEE_NaN_inf=OFF.

IEEE_NaN_inf=OFF produces non-IEEE results for various operations. For
example, x=x is treated as TRUE without executing a test and x/x is simplified
to 1 without dividing. Turning this option on can suppress many such common
optimizations and hurt performance.

2.47.18 -OPT:inline_intrinsics=setting

inline_intrinsics=OFF turns all Fortran intrinsics that have a library
function into a call to that function. Enter ON or OFF for setting. The default is
inline_intrinsics=ON.

2.47.19 -OPT:liberal_ivdep=setting

Instruct the compiler to ignore all dependencies when an IVDEP directive is
encountered. Enter ON or OFF for setting. The default is liberal_ivdep=OFF.

For more information on the IVDEP directive, see Section 6.6, page 167.

2.47.20 -OPT:Olimit=n

Specifies that any routine bigger than n should not be optimized. If -O2 or
greater is in effect and a routine is so big that the compile speed may be slow,
the compiler generates a message indicating the Olimit value that is needed to
optimize. You can recompile with that value of n or you can recompile with
-OPT:Olimit=0 and avoid having any Olimit cutoff.

2.47.21 -OPT:pad_common=setting

pad_common=ON reorganizes common blocks to improve the cache behavior of
accesses to members of the common block. This may involve adding padding

SR–3907 3.0.2 45

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

between members and/or breaking a common block into a collection of
common blocks. Enter ON or OFF for setting. The default is pad_common=OFF.

This option should not be used unless the common block definitions (including
EQUIVALENCE) are consistent among all sources comprising a program. In
addition, pad_common=ON should not be specified if common blocks are
initialized with DATA statements. If specified, pad_common=ON must be used
for all source files in the program.

pad_common=ON is supported for Fortran only. It should not be used if a
common block is referenced from C code.

2.47.22 -OPT:recip=setting

The -OPT:recip=setting option causes your program’s executable code to
conform more closely to the IEEE floating-point standard than the default mode.
When specified, many identity optimizations are disabled, executable code is
slower, and a scaled complex divide mechanism is enabled that increases the
range of complex values that can be handled without producing an underflow.

The -OPT:recip=setting option causes the compiler to optimize expressions
such as X.NE.X to false and X/X to 1, where X is a floating-point value. With
-OPT:recip=setting in effect, these and other similar arithmetic identity
optimizations are not performed.

recip=ON specifies that faster, but potentially less accurate, reciprocal
operations should be performed. Enter ON or OFF for setting. The default is
recip=OFF. -r8000 must be in effect in order for -OPT:recip=ON to have an
effect. If -O3 or -OPT:IEEE_arithmetic=2 or above are in effect, recip=ON
is enabled automatically.

2.47.23 -OPT:reorg_common=setting

reorg_common=ON reorganizes common blocks to improve the cache behavior
of accesses to members of the common block. The reorganization is performed
only if the compiler detects that it is safe to do so. Enter ON or OFF for setting.

This option produces consistent results for programs that conform to the
Fortran 90 standard; for example, programs that do not overindex arrays in
common blocks. The optimizations performed are safe even if common blocks
are declared differently in different subroutines or if elements in the common
block are equivalenced.

46 SR–3907 3.0.2

Invoking MIPSpro 7 Fortran 90 [2]

reorg_common=ON is enabled by default when -O3 is in effect and when all
files that reference the common block are compiled at -O3.
reorg_common=OFF is set when the file that contains the common block is
compiled at -O2 (or below).

2.47.24 -OPT:roundoff=n

Specifies the level of acceptable departure from source language floating-point
round-off, and overflow semantics. Enter 0, 1, 2, or 3 for n. Program
performance is best at roundoff=3.

roundoff=0 is the default when optimization levels -O0, -O1, and -O2 are in
effect. This inhibits optimizations that might affect the floating-point behavior.

roundoff=1 allows simple transformations that might cause limited round-off
or overflow differences. Compounding such transformations could have more
extensive effects.

roundoff=2 is the default level when -O3 is in effect. This level allows more
extensive transformations, such as the reordering of reduction loops.

roundoff=3 enables any mathematically valid transformation.

To obtain best performance in conjunction with software pipelining, specify
roundoff=2 or roundoff=3. This is because reassociation is required for
many transformations to break recurrences in loops. Also see the descriptions
for -OPT:IEEE_arithmetic, -OPT:fast_complex, -OPT:fast_trunc,
and -OPT:fast_nint.

2.47.25 -OPT:rsqrt=setting

rsqrt=ON specifies that faster, but potentially less accurate, reciprocal square
root operations may be performed. Enter ON or OFF for setting. The default is
rsqrt=OFF.

If -OPT:IEEE_arithmetic=2 or above or -O3 are in effect, rsqrt=ON is
enabled.

2.47.26 -OPT:space=setting

space=ON specifies that code space is to be given priority in tradeoffs with
execution time in optimization choices. For instance, this forces all exits from a
function to go through a single exit block. Enter ON or OFF for setting. The
default is space=OFF.

SR–3907 3.0.2 47

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

2.47.27 -OPT:swp=setting

swp=ON enables software pipelining. Software pipelining is a compiler code
generation technique in which operations from various loop iterations are
overlapped in order to exploit instruction-level parallelism, increase the
instruction issue rate, and better hide memory and instruction latency. As an
optimization technique, software pipelining is similar to bottom loading, but it
includes additional, and more efficient, scheduling optimizations.

Enter ON or OFF for setting. swp=ON is enabled when -O3 is in effect. The
default is swp=OFF.

2.47.28 -OPT:unroll_analysis=setting

unroll_analysis=ON analyzes resource usage and recurrences in bodies of
innermost loops that do not qualify for being fully unrolled. Such loops are
unrolled only to the extent for which there is a potential benefit in doing so. A
loop could be unrolled, for example, to decrease the shortest possible schedule
length per iteration. Enter ON or OFF for setting. The default is
unroll_analysis=ON.

unroll_analysis=OFF can have the negative effect of unrolling loops less
than the upper limit dictated by the -OPT:unroll_times_max and
-OPT:unroll_size specifications.

2.47.29 -OPT:unroll_size=n

Specifies the maximum size (in instructions) of an unrolled loop. Enter an
integer for n. The default is unroll_size=320.

This option indirectly determines which loops can be fully unrolled. See also
-OPT:unroll_times_max.

2.47.30 -OPT:unroll_times_max=n

Specifies the maximum number of times a loop will be unrolled if it is not
going to be fully unrolled. Enter an integer for n.

The default value of n depends on the target processor. The default is 8 when
-r8000 or -r10000 are in effect. The default is 4 otherwise. Also see the
-OPT:unroll_size option.

48 SR–3907 3.0.2

Invoking MIPSpro 7 Fortran 90 [2]

2.47.31 -OPT:wrap_around_unsafe_opt=setting

Allows you to prevent the compiler from performing potentially unsafe
optimizations involving induction variable replacement and linear function
replacement. These optimizations are performed by default when -O2 or -O3
are specified. Enter ON or OFF for setting.

Setting wrap_around_unsafe_opt=OFF disables both the induction variable
replacement and linear function test replacement optimizations. These
optimizations are safe when loop induction variables do not overflow or wrap
around in memory. These optimizations are unsafe when incorrect code is
generated due to multiple induction variables in loops having combined initial
values that overflow or wrap around in memory. Using this option can degrade
performance. It is provided as a diagnostic tool.

2.48 -oout_file

Writes the executable file to out_file rather than to a.out. By default, the
executable output file is written to a.out.

For example, the following command line loads object module myprog.o and
produces an executable object named myprog:

% f90 -o myprog myprog.o

2.49 -P

Performs source preprocessing on file.f[90] or file.F[90] and puts the results
in file.i. The file.i that is generated does not contain # lines.

For more information on source preprocessing compiler options, see the
following options: -cpp, [-Dvar[=def][,var[=def]]…], -E, -ftpp,
-macro_expand, -nocpp, and -Uvar.

For information on source preprocessing and the macros available, see Chapter
7, page 175.

2.50 -pfa, -pfalist

The -pfa option automatically converts sequential code into parallel code by
inserting parallel directives where it it safe and beneficial to do so. Specifying

SR–3907 3.0.2 49

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

this option also sets the -mp option, which enables recognition of the parallel
directives inserted into your code.

Note: This option is ignored unless you are licensed for the MIPSpro
Automatic Parallelization Option. For more information on this product
contact your sales representative.

When the -pfalist option is specified, the compiler produces file.l, which is
a listing file. The listing file indicates the loops that were executed in parallel
and explains why others were not executed in parallel.

For more information on parallel processing, see the auto_p(5) man page, or
the MIPSpro Automatic Parallelizer Programmer’s Guide, a Silicon Graphics
publication.

2.51 -rreal_spec

Specifies the default kind specification for real values.

The -r option accepts 4 and 8 as arguments, as follows:

Option Kind value

-r4 Uses REAL(KIND=4) and COMPLEX(KIND=4) for real and
complex variables, respectively. Default.

-r8 Uses REAL(KIND=8) and COMPLEX(KIND=8) for real and
complex variables, respectively. You can specify -r8 when
porting programs from Cray Research UNICOS systems.

2.52 -rprocessor

Specifies the code scheduler. The -r option accepts 4000, 5000, 8000, and
10000 as arguments, as follows:

Option Action

-r4000 Schedules code for the R4000 processor.

-r5000 Schedules code for the R5000 processor.

50 SR–3907 3.0.2

Invoking MIPSpro 7 Fortran 90 [2]

-r8000 Schedules code for the R8000 processor.

-r10000 Schedules code for the R10000 processor.

This option adds one of the following to the head of the library search path,
where processor is as you specified:

• -L/usr/lib32/mips3/processor

• -L/usr/lib32/mips4/processor

• -L/usr/lib64/mips3/processor

• -L/usr/lib64/mips4/processor

The actual library search path that is added depends on the ABI that is
specified or implied. For information on specifying an ABI, see the -64 and
-n32 options described in Section 2.1, page 8.

2.53 -S

Generates an assembly file, file.s, rather than an object file (file.o).

2.54 -static

Statically allocates all local variables. Statically allocated local variables are
initialized to zero and exist for the life of the program. This option can be
useful when porting programs from older systems in which all variables are
statically allocated.

When compiling with the -static option, global data is allocated as part of
the compiled object (file.o) file. The total size of any file.o cannot exceed 2 GB,
but the total size of a program loaded from multiple .o files can exceed 2 GB.
An individual common block cannot exceed 2 GB, but you can declare multiple
common blocks each having that size.

For more information on compiling with large files, see the -64 and -n32
options described in Section 2.1, page 8.

If a parallel loop in a multiprocessed program calls an external routine, that
external routine cannot be compiled with the -static option. You can mix
static and multiprocessed object files in the same executable, but a static routine
cannot be called from within a parallel region.

SR–3907 3.0.2 51

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

2.55 -TARG:…

Cross compiling is compiling a program on one system and executing it on
another. To cross compile, you can either use the -TARG: command line
options to control the target architecture and machine for which code is
generated or you can set the COMPILER_DEFAULTS_PATH environment
variable to specify the file that contains the default processor information
needed to generate executable code for the target system.

The following sections describe cross compiling using both the -TARG: options
and the COMPILER_DEFAULTS_PATH environment variable.

2.55.1 -TARG:fp_precise=setting

Forces the target processor into precise floating-point mode at execution time.
Using this option to compile any component source files of a program invokes
this feature in the resulting program. Enter ON or OFF for setting. The default is
OFF.

This option is only meaningful when -r8000 is in effect. It can cause significant
performance degradation for programs with heavy floating-point usage. For
more information on floating-point mode, see the fpmode(1) man page.

2.55.2 -TARG:madd=setting

Enables or prevents transformations from using multiply and add instructions.
Enter ON or OFF for setting. The default is ON. This option is ignored unless
-mips4 is in effect.

These instructions perform a multiply/add with a single round off. They are
more accurate than the usual discrete operations, and they may cause results
not to match baselines from other targets. Use this option to determine whether
observed differences are due to multiply/add instructions.

2.55.3 -TARG:platform=ipxx

Specifies the target platform for compilation, choosing various internal
parameters (such as cache sizes) appropriately. Supported values are as follows:
ip19, ip20, ip21, ip22_4k, ip22_5k, ip24, ip25, ip26, ip27, ip28, ip30,
ip32_5k, and ip32_10k. The appropriate selection for your platform can be
determined by entering the following command:

hinv -c processor

52 SR–3907 3.0.2

Invoking MIPSpro 7 Fortran 90 [2]

The first line of output identifies the proper IP number. If a processor suffix (for
example, _4k) is required, the next line identifies the processor (for example,
R4000).

2.55.4 -TARG:processor=processor

Selects the processor for which to schedule code. The chosen processor must
support the instruction set architecture (ISA) that is specified (or implied by the
ABI). Enter one of the following for processor: r4000, r5000, r8000, or
r10000.

2.55.5 -TARG:r4krev22=setting

Generates code to work around bugs in the R4000 rev 2.2 chip. This currently
means simulating 64-bit variable shifts in the software. Enter ON or OFF for
setting. The default is OFF.

2.55.6 CPU Targeting (Cross Compiling) Using the compiler.defaults File

The MIPSpro 7 Fortran 90 compiler retrieves default information for the
Application Binary Interface (ABI), instruction set architecture (ISA), and
processor type, optimization, and IEEE arithmetic computations from
/etc/compiler.defaults.

To compile for a different system, set the COMPILER_DEFAULTS_PATH
environment variable to a path or to a colon-separated list of paths designating
where the compiler is to look for the compiler.defaults file. For more
information on this environment variable, see the pe_environ(5) man page.

The target compiler.defaults file must contain a -DEFAULT: option
specifier that specifies the default information in the following format:

-DEFAULT:[abi=n32|64] [:isa=mips3|mips4] [:proc=r4000|r5000|r8000|r10000]

[:opt=0|1|2|3] [:arith=1|2|3]

Note that command line settings override any settings in the system-supplied
compiler.defaults file or in the compiler.defaults file that you create.

SR–3907 3.0.2 53

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

2.56 -TENV:…

Specifies the target environment option group. The target environment is the
system upon which the executable code will be run. These options control the
target environment assumed and/or produced by the compiler.

The following sections describe the -TENV:… options.

2.56.1 -TENV:align_aggregate=bytes

Controls alignment of allocated aggregates (that is, arrays and derived types).
The value specified for bytes specifies that any aggregate object at least that
large is to be given at least that alignment. By default, or if bytes is not
specified, aggregates are aligned to the integer register size, which, for example,
is 8 bytes for 64-bit programs and 4 bytes for 32-bit programs.

If align_aggregate=0 is specified, the minimum alignment consistent with
the ABI is used. Otherwise, the value specified must be 1, 2, 4, 8, or 16.

2.56.2 -TENV:check_div=n

Inserts checks for divide by zero operations and overflow conditions on integer
divide operations. Enter 0, 1, 2, or 3 for n. The default is check_div=1.

check_div=0 inhibits checking. check_div=1 checks for division by zero.
check_div=2 checks for overflow. check_div=3 checks for both division by
zero and overflow.

2.56.3 -TENV:large_GOT=setting

Generates code to accommodate a larger Global Offset Table (GOT) than is
standard. Enter ON or OFF for setting. The default is large_GOT=OFF.
Specifying -xgot has the same effect as specifying -TENV:large_GOT.

The standard GOT is 64 KB. For more information on controlling the GOT, see
the -TENV:small_GOT option.

You can set this option to ON if you get a GOT overflow message.

For information on a larger, nondefault GOT, see the -xgot option, Section
2.65, page 58.

54 SR–3907 3.0.2

Invoking MIPSpro 7 Fortran 90 [2]

Note: If you specify both -TENV:large_GOT=ON and
-TENV:small_GOT=ON on your command line, a message is issued and the
-TENV:small_GOT=ON directive is recognized.

2.56.4 -TENV:small_GOT=setting

Assumes that the GOT for shared code is smaller than 64 KB, that is, assume
small offsets for references to it. Enter ON or OFF for setting. The default is
small_GOT=ON.

For more information on controlling the GOT, see the -TENV:large_GOT
option.

For information on a larger, nondefault, GOT, see the -xgot option, Section
2.65, page 58.

2.56.5 -TENV:trapuv=setting

Forces all uninitialized stack, automatic, and dynamically allocated variables to
be initialized with 0xFFFA5A5A. If this value is used as a floating-point
variable, it is treated as a floating-point NaN and causes a floating-point trap. If
it is used as a pointer, an address or segmentation violation may occur. Enter
ON or OFF for setting. The default is OFF.

Note: This option is deprecated. It will be removed in a future release. The
preferred alternative is to specify -DEBUG:trap_uninitialized=ON. For
more information on the -DEBUG: options, see the DEBUG_group(5) man
page.

2.56.6 -TENV:X=n

Specifies the level of enabled exceptions that will be assumed for purposes of
performing speculative code motion. The default is X=2 when -O3 is in effect.
The default is X=1 when other -O optimization levels are in effect. Enter 0, 1, 2,
3, or 4 for n. The default is X=1.

Generally, an instruction is not speculated (moved above a branch by the
optimizer) unless any exceptions it might cause are disabled by this option.
X=0 inhibits speculative code motion.

X=1 specifies that safe speculative code motion be performed and disables all
underflow and inexact exceptions according to ANSI/IEEE 754-1985, the IEEE
Standard for Binary Floating-point Arithmetic.

SR–3907 3.0.2 55

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

X=2 disables all exceptions described in ANSI/IEEE 754-1985, the IEEE
Standard for Binary Floating-point Arithmetic, except divide by zero.

X=3 disables all exceptions described in ANSI/IEEE 754-1985, the IEEE
Standard for Binary Floating-point Arithmetic, including divide by zero.

X=4 disables or ignores memory exceptions.

At levels higher than the X=1 default level, various hardware exceptions, which
are normally useful for debugging, or which are trapped and repaired by the
hardware, may be disabled or ignored. This can hide obscure bugs. The
program should not explicitly manipulate the IEEE floating-point trap-enable
flags in the hardware if this option is used.

2.57 -trapuv

Initializes all uninitialized stack, automatic, and dynamically allocated variables
to 0xFFFA5A5A. If this value is used as a floating-point variable, it is treated as
a floating-point NaN and it causes a floating-point trap. If it is used as a
pointer, an address or segmentation violation may occur.

Note: This option is deprecated. It will be removed in a future release. The
preferred alternative is to specify -DEBUG:trap_uninitialized=ON. For
more information on the -DEBUG: options, see the DEBUG_group(5) man
page.

2.58 -Uvar

Undefines a variable for the source preprocessor. See the
[-Dvar[=def][,var[=def]]…] option for information on defining variables.

For more information on source preprocessing compiler options, see the
following options: -cpp, [-Dvar[=def][,var[=def]]…], -E, -ftpp,
-macro_expand, -nocpp, and -P.

For information on source preprocessing and the macros available, see Chapter
7, page 175.

2.59 -u

Makes the default type of a variable undefined, rather than using default
Fortran 90 rules.

56 SR–3907 3.0.2

Invoking MIPSpro 7 Fortran 90 [2]

2.60 -version

Writes compiler release version information to stdout. No input file needs to
be specified when this option is used.

2.61 -Wl,opt[,arg][,opt[,arg]]...

Specifies options to be passed directly to the loader. For opt, specify any of the
options that the loader, ld(1), accepts. For arg, specify an argument, if
necessary, to opt. For information on possible values for opt and arg, see the
ld(1) man page.

Example. The following command line passes the loader options -B static
and -nostdlib to ld(1):

f90 -Wl,-B,static,-nostdlib herfile.f

2.62 -w[arg]

Specifies messages. This option can take one of the following forms:

Option Action

-w Suppresses warning messages.

-w2 Shows warning messages. Default.

2.63 -woffnum

Specifies message numbers to suppress. Examples:

• Specifying -woff2026 suppresses message number 2026.

• Specifying -woff2026-2352 suppresses messages 2026 through 2352.

• Specifying -woff2026-2352,2400-2500 suppresses messages 2026
through 2353 and messages 2400 through 2500.

In the message level indicator, the message numbers appear after the dash in
the message itself. For example, in the following message, the message number
is 197:

f90-197 mfef90: ERROR MAIN__, File = end.f, Line = 1, Column = 23
Unexpected syntax: "subroutine-name" was expected but found "EOS".

SR–3907 3.0.2 57

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

You cannot suppress messages issued at the ERROR level.

2.64 -xdirlist

Disables specified directives or specified classes of directives. If specifying a
multiword directive, either enclose the directive name in quotation marks or
remove the spaces between the words in the directive’s name.

For dirlist, enter one of the following:

dirlist Directives disabled

all or mipspro

All directives

dir

Directives with a !DIR or CDIR prefix.

mic

Directives with a !MIC or CMIC prefix.

directive

One or more directives. If specifying more than one, separate
them with commas, as follows:
-x ORDERED,"ASSERT NOARGUMENTALIASING".

2.65 -xgot

Uses a larger, nondefault Global Symbol Table (GOT). Specify this option if you
receive a GOT overflow message. If this option is specified, the resulting
executable is somewhat larger and slower. Specifying -xgot has the same
effect as specifying -TENV:large_GOT.

For more information about the GOT, see the -avoid_gp_overflow option,
the gp_overflow(5) man page, and the What should I do about a GOT overflow?
question in the FAQ section of the dso(5) man page.

Note: This option is no longer needed for compilation. It has been
deprecated and will be removed in a future release.

58 SR–3907 3.0.2

Invoking MIPSpro 7 Fortran 90 [2]

2.66 --

Separates options and file names. This option, which consists of two dashes,
signifies the end of the options. After this symbol, you can specify the files to
be processed.

2.67 file.suffix[90][file.suffix[90]…]

File or files to be processed, where suffix is either an uppercase F or a lowercase
f for source files. Files ending in .i, .o, and .s are also accepted. The Fortran
source files are compiled, and an executable object file is produced.

The default name of the executable object file is a.out. For example, the
following command line produces a.out:

% f90 myprog.f

By default, several files are created during processing. The MIPSpro 7 Fortran
90 compiler can add a suffix to the file portion of the file name and write the
files it creates to your working directory.

The following is a file summary:

File Content

a.out Executable output file.

file.B Intermediate file written by the front end of the compiler. To
retain this file, specify the -keep option.

file.f or
file.F

Input Fortran source file in fixed source form. If file ends in .F,
the source preprocessor is invoked.

file.f90
or
file.F90

Input Fortran source file in free source form. If file ends in .F90,
the source preprocessor is invoked.

file.i File generated by the source preprocessor. To retain this file,
specify the -P option.

file.l Assembly listing file. To retain this, specify the -LIST option.

file.L Listing file containing a cross reference and a source listing. To
retain this file, specify -listing.

file.s Assembly language file. To retain this file, specify -S.

SR–3907 3.0.2 59

General Directives [3]

A directive is a line inserted into Fortran source code that specifies actions to be
performed by the compiler. Directive lines are not Fortran 90 statements.

Many MIPSpro 7 Fortran 90 compiler features are implemented as either
command line options or directives. The features implemented as command
line options are set at compile time and applied to all files in the compilation.
The features implemented through directives are set within your Fortran 90
source code, and they apply to portions of your source code.

This chapter introduces the MIPSpro 7 Fortran 90 directive set and describes the
general directives.

The sections in this chapter are as follows:

• Section 3.1, page 61, describes using directives.

• Section 3.2, page 64, describes the loop nest optimization (LNO) directives.

• Section 3.3, page 74, describes the argument aliasing directives.

• Section 3.4, page 75, describes the symbol storage directives.

• Section 3.5, page 78, describes the inlining and IPA directives.

3.1 Using Directives

All directives are of the following form:

prefix directive

SR–3907 3.0.2 61

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

prefix Each directive begins with a prefix. The prefix needed for each
directive is shown in the directive’s description. The following
directive prefixes are used by the MIPSpro 7 Fortran 90 compiler:

• !*$* and C*$*. These prefixes are used by the loop-nest
directives described in this chapter.

• !$OMP and C$OMP. These prefixes are used by the OpenMP
Fortran API multiprocessing directives described in Chapter 4,
page 81.

• !$SGI and C$SGI. These prefixes are used by multiprocessing
directives that are Silicon Graphics extensions to the OpenMP
Fortran API described in Chapter 5, page 133.

• !DIR$ and CDIR$. These prefixes are used by the
Autotasking directives described in Chapter 6, page 161.

• !$PAR and C$PAR. These prefixes are used by the PCF
multitasking directives described in Appendix D, page 225.

• !$ and C$. These prefixes are used by the outmoded
multitasking directives described in Appendix D, page 225,
and Chapter 5, page 133.

• !MIC$ and CMIC$. These prefixes are used by the
Autotasking directives described in Appendix E, page 249.

The prefix used also depends on which Fortran 90 source form
you are using, as follows:

• If you are using fixed source form, begin a directive line with
the characters Cprefix or !prefix. The ! or C character must
appear in column 1. Beginning the directive with a ! or C
character ensures that compilers other than the MIPSpro 7
Fortran 90 compiler will treat compiler directive lines as
comment lines.

• If you are using free source form, begin a directive line with
the characters !prefix, followed by a space, and then one or
more directives. The !prefix need not start in column 1, but it
must be the first text on a line.

Because both fixed source form and free source form accept
directives that start with the exclamation point (!), that is the
initial character used in all directive syntax descriptions in this
manual.

62 SR–3907 3.0.2

General Directives [3]

directive This is the specific directive’s syntax. The syntax usually consists
of the directive name. Some directives accept arguments. A
directive’s arguments, if any, are shown in the description for the
directive itself.

The following sections describe the general format for directives and explain
how directives are continued across source code lines.

Note: The multiprocessing directives supported in previous MIPSpro 7
Fortran 90 releases are outmoded, and so are the !PAR, CPAR, !$, and C$
directive prefixes. This technology is outmoded, but it is still supported for
older codes that require this functionality. Silicon Graphics and Cray
Research encourage you to modify your code using the OpenMP directives
described in Chapter 4, page 81.

3.1.1 Directives and Command Line Options

Some compiler features can be activated on the command line and through
compiler directives. The difference is that a command line setting applies to all
files in the compilation, but a directive applies to only a program unit or to
another specific part of a source file.

Generally, and by default, directives override command line options. There are
exceptions to this rule, however. The exceptions, if any, are noted in the
introductory text to each directive group.

3.1.2 Directive Range

The range of a particular directive depends on the directive itself, as follows:

• If a directive appears within a program unit, it applies only to that program
unit. Within a program unit, many directives apply only to the loops that
they immediately precede.

• If a directive appears outside a program unit (for example, prior to program
code in a file) it applies to the entire file.

The descriptions for the individual directives indicate the range of the directive.

3.1.3 Directive Continuation and Other Considerations

It is sometimes necessary to continue a directive across one or more source code
lines. The continuation character used and its placement within the directive
line depends on the type of directive you are using. The introductory text for

SR–3907 3.0.2 63

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

each directive group indicates the continuation character that is appropriate for
that group.

For all directives in this chapter, the prefix for a directive line that is a
continuation line is !*$*&.

Do not use source preprocessor (#) directives within multiline compiler
directives.

3.2 LNO Directives

The loop nest optimization (LNO) directives control loop nest optimizations. By
default, directives override command line options. To reverse this, and have
command line options override the LNO directives, specify
-LNO:ignore_pragmas. For information on the -LNO:ignore_pragmas
option, see Section 2.36.1.3, page 23.

To continue a directive, the continuation line must begin with !*$*&.

The following directives control loop nest optimizations:

• AGGRESSIVEINNERLOOPFISSION

• BLOCKABLE

• BLOCKINGSIZE, NOBLOCKING

• FISSION, FISSIONABLE, NOFISSION

• FUSE, FUSEABLE, NOFUSION

• INTERCHANGE, NOINTERCHANGE

• PREFETCH

• PREFETCH_MANUAL

• PREFETCH_REF

• PREFETCH_REF_DISABLE

• UNROLL

The following sections describe the LNO directives.

64 SR–3907 3.0.2

General Directives [3]

3.2.1 Request Loop Fission for Inner Loops: AGGRESSIVEINNERLOOPFISSION Directive

The AGGRESSIVEINNERLOOPFISSION directive specifies that the following
loop should be split into as many loops as possible. In a loop nest, this
directive must precede an inner loop.

The format of this directive is as follows:

!*$* AGGRESSIVEINNERLOOPFISSION

3.2.2 Permit Cache Blocking: BLOCKABLE Directive

The BLOCKABLE directive specifies that it is legal to cache block the subsequent
loops. For more information on controlling cache blocking, see the
-LNO:blocking option in Section 2.36.2.1, page 24, and the
-LNO:blocking_size option in Section 2.36.2.2, page 24.

The format of this directive is as follows:

!*$* BLOCKABLE (do_variable,do_variable [,do_variable]...)

do_variable Specify the do_variable names of two or more loops. The loops
identified by the do_variable names must be adjacent and nested
within each other, although they need not be perfectly nested.

This directive informs the compiler that these loops can be involved in a
blocking situation with each other, even if the compiler would consider such a
transformation illegal. The loops must also be interchangeable and unrollable.
This directive does not instruct the compiler on which of these transformations
to apply.

3.2.3 Declare Cache Blocking: BLOCKINGSIZE and NOBLOCKING Directives

The BLOCKINGSIZE and NOBLOCKING directives assert that the loop following
the directive either is (or is not) involved in a cache blocking for the primary or
secondary cache.

The formats of these directives are as follows:

!*$* BLOCKINGSIZE(n1[,n2])

!*$* NOBLOCKING

SR–3907 3.0.2 65

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

n1,n2 An integer number that indicates the block size. If the loop is
involved in a blocking, it will have a block size of n1 for the
primary cache and n2 for the secondary cache. The compiler
attempts to include this loop within such a block, but it cannot
guarantee this.

If n1 or n2 are 0, the loop is not blocked, but the entire loop is
inside the block.

Example:

SUBROUTINE AMAT(X,Y,Z,N,M,MM)

REAL(KIND=8) X(100,100), Y(100,100), Z(100,100)

DO K = 1, N
!*$* BLOCKING SIZE (20)

DO J = 1, M

!*$* BLOCKING SIZE (20)

DO I = 1, MM

Z(I,K) = Z(I,K) + X(I,J)*Y(J,K)
END DO

END DO

END DO

END

For the preceding code, the compiler makes 20 X 20 blocks when blocking, but
it could block the loop nest such that loop K is not included in the tile. If it did
not, add a BLOCKINGSIZE(0) directive just before loop K to specify that the
compiler should generate a loop such as the following:

SUBROUTINE AMAT(X,Y,Z,N,M,MM)

REAL(KIND=8) X(100,100), Y(100,100), Z(100,100)

DO JJ = 1, M, 20

DO II = 1, MM, 20

DO K = 1, N
DO J = JJ, MIN(M, JJ+19)

DO I = II, MIN(MM, II+19)

Z(I,K) = Z(I,K) + X(I,J)*Y(J,K)

END DO

END DO

END DO
END DO

END DO

END

66 SR–3907 3.0.2

General Directives [3]

Note that an INTERCHANGE directive can be applied to the same loop nest as a
BLOCKINGSIZE directive. The BLOCKINGSIZE directive applies to the loop it
directly precedes; it moves with that loop when an interchange is applied.

The NOBLOCKING directive prevents the compiler from involving the
subsequent loop in a cache blocking situation.

3.2.4 Control Loop Fission for Outer Loops: FISSION, FISSIONABLE, and NOFISSION Directives

The fission control directives specify whether the compiler should perform loop
fission on the loops that immediately follow these directives.

The formats of these directives are as follows:

!*$* FISSION[(level)]

!*$* FISSIONABLE

!*$* NOFISSION

level Specify an integer number that indicates the number of loop
levels that should undergo loop fission.

The FISSION directive specifies that loop fission should be attempted. The
compiler performs a validity test on the subsequent loops unless you have also
specified a FISSIONABLE directive. The NOFISSION directive specifies that the
following loop should not undergo fission, but its inner loops, if any, may
undergo fission.

These directives do not cause statements to be reordered.

3.2.5 Control Loop Fusion for Outer Loops: FUSE, FUSEABLE, and NOFUSION Directives

The fusion control directives specify whether the compiler should perform loop
fusion on the loops that immediately follow these directives.

The formats of these directives are as follows:

SR–3907 3.0.2 67

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

!*$* FUSE[(n,[level])]

!*$* FUSEABLE

!*$* NOFUSION

n Specify an integer number that indicates the number of
subsequent loops that should undergo loop fusion. The default is
2.

level Specify an integer that indicates how deeply the loops should be
fused.

The level of loop fusion is determined by the maximum perfectly
nested loop levels of the fused loops, although partial fusion is
allowed.

Loop iterations may be peeled as needed during loop fusion. The limit of this
peeling is 5, or the number specified by the -LNO:fusion_peeling_limit
command line option.

The FUSE directive specifies that loop fusion should be attempted. The
compiler performs a validity test on the subsequent loops unless you have also
specified a FUSEABLE directive. When the FUSEABLE directive is specified, the
fusion is done for loops with identical iteration counts. The NOFUSION directive
specifies that the following loop should not be fused with any other loop. For
more information on the -LNO:fusion_peeling_limit command line
option, see Section 2.36.2.5, page 26.

Example. Consider the following code:

DO I = 1,N

DO J = 1,N

...

END DO
END DO

DO I = 1,N

DO J = 1,N

...

END DO
END DO

Fusing the loops with a level of 1 results in the following loop nest:

68 SR–3907 3.0.2

General Directives [3]

DO I = 1,N

DO J = 1,N
...

END DO

DO J = 1,N

...

END DO

END DO

Fusing the loops with a level of 2 results in the following loop nest:

DO I = 1,N
DO J = 1,N

...

...

END DO

END DO

3.2.6 Control Loop Interchange: INTERCHANGE and NOINTERCHANGE Directives

The loop interchange control directives specify whether or not the order of the
following two or more loops should be interchanged. These directives apply to
the loops that they immediately precede.

The formats of these directives are as follows:

!*$* INTERCHANGE (do_variable1,do_variable2 [,do_variable3]...)

!*$* NOINTERCHANGE

do_variable Specifies two or more do_variable names. The do_variable names
can be specified in any order, and the compiler reorders the loops.
The loops must be perfectly nested. If the loops are not perfectly
nested, you may receive unexpected results.

The compiler reorders the loops such that the loop with do_variable1 is
outermost, then loop do_variable2, then loop do_variable3.

The NOINTERCHANGE directive inhibits loop interchange on the loop that
immediately follows the directive.

SR–3907 3.0.2 69

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

3.2.7 Control Prefetching for a Program Unit: PREFETCH Directive

The PREFETCH directive controls the MIPS IV prefetch instruction. Using this
directive can increase performance in program units that are likely to encounter
cache misses during execution. This directive applies only to the program unit
in which it appears.

When the directive is specified, the compiler estimates the memory references
that will be cache misses, inserts prefetches for the misses, and schedules the
prefetches ahead of their corresponding references. You can specify different
levels of prefetching aggressiveness for the primary and secondary cache.

The format of this directive is as follows:

!*$* PREFETCH (primary_cache [,secondary_cache])

primary_cache,
secondary_cache

For each of these, specify 0, 1, or 2. The number
specified indicates the level of prefetching
requested for the primary and secondary cache
levels, respectively.

A 0 disables all prefetching. 1 requests
conservative prefetching. 2 requests aggressive
prefetching. By default, primary_cache and
secondary_cache are both set to 1 when the
-r10000 command line option is in effect, and
they are set to 0 for all other processor settings.

This directive is recognized only if the -mips4 and -r10000 command line
options are in effect.

3.2.8 Control Prefetching in a Subprogram: PREFETCH_MANUAL Directive

The PREFETCH_MANUAL directive specifies whether the PREFETCH_REF and
the PREFETCH_REF_DISABLE directives, which perform manual prefetches,
should be respected or ignored within a subprogram. This directive applies
only to the program unit in which it appears.

The format of this directive is as follows:

!*$* PREFETCH_MANUAL (n)

70 SR–3907 3.0.2

General Directives [3]

n Specify either 0 or 1 for n. 0 indicates that the compiler should
ignore all prefetch directive. 1 indicates that all prefetch directives
should be recognized. By default, all prefetch directives are
recognized.

This directive is recognized only if the -mips4 and -r10000 command line
options are in effect. For more information on the -mips4 option, see Section
2.39, page 33. For more information on the -r10000 option, see Section 2.52,
page 50.

3.2.9 Request Prefetching for an Array: PREFETCH_REF Directive

The PREFETCH_REF directive requests prefetching for a specific memory
reference. This directive applies only to the loop nest that includes references to
array, and the directive must immediately precede the loop nest.

When this directive is specified, all references to array in the subsequent loop
nest are ignored by the automatic prefetcher (if enabled).

The format of this directive is as follows:

!*$* PREFETCH_REF=array [,stride=stride[,stride]] [,level=level[,level]]
[,kind=rw] [,size=size]

array For array, specify identification information for the array. For
example: A(I,J).

stride Specify prefetching for every stride iterations of the loop. The
default is 1.

level Specify the level in the memory hierarchy to prefetch, either 1 or
2. The default is 2. 1 specifies a prefetch from secondary cache to
primary cache. 2 specifies a prefetch from memory to primary
cache.

rw Specify rd or wr. rd indicates that the location is read. wr
indicates that the location is written. The default is wr.

size Specify the size, in KB, of array. Must be a constant.

If size is specified, the automatic prefetcher (if enabled) reduces
the effective cache size by that amount in its calculations. The

SR–3907 3.0.2 71

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

compiler tries to issue one prefetch per stride iterations, but this
cannot be guaranteed.

This directive generates a single prefetch instruction to a specified memory
reference. It searches for array references that match the supplied reference in
the current loop nest and takes the following actions:

• If the reference is found, the reference is scheduled relative to the prefetch
node, based on the miss latency for the specified level of the cache.

• If no such reference is found, the prefetch is generated at the start of the
loop body.

This directive is recognized only if the -mips4 and -r10000 command line
options are in effect. For more information on the -mips4 option, see Section
2.39, page 33. For more information on the -r10000 option, see Section 2.52,
page 50

3.2.10 Disable Prefetching for a Specific Array: PREFETCH_REF_DISABLE Directive

The PREFETCH_REF_DISABLE directive disables prefetching for all references to
an array. This directive applies to all array references within the program unit.

If the automatic prefetcher is enabled, it ignores the specified array. The size is
used for volume analysis.

The format of this directive is as follows:

!*$* PREFETCH_REF_DISABLE=array [, size=size]

array For array, specify identification information for the array. For
example: A(I,J).

size Specifies the size, in Kbytes, of array. Must be a constant.

This directive is recognized only if the -mips4 and -r10000 command line
options are in effect.

72 SR–3907 3.0.2

General Directives [3]

3.2.11 Request Loop Unrolling: UNROLL Directive

The UNROLL directive specifies loop unrolling. This directive applies to the loop
that immediately follows the directive.

Inner loop unrolling occurs automatically when -O2 or -O3 are in effect.
Non-inner loop unrolling (and jam) occurs when -O3 is in effect.

The format of this directive is as follows:

!*$* UNROLL (n)

n Specifies the number of copies of the loop body to be generated,
as follows:

• When this directive precedes an inner loop, the compiler
generates n – 1 copies of the loop body. This is standard loop
unrolling.

• When this directive precedes an outer loop, the compiler
performs an unroll and jam operation on the loop.

The value of n must be at least 2 in order for unrolling to occur.
If n = 1, no unrolling is performed.

Even with this directive specified, unrolling is not performed if the compiler
determines that unrolling would be unsafe. To specify that the compiler unroll
the loop regardless of its analysis, you must also specify a BLOCKABLE directive.
For information on the BLOCKABLE directive, see Section 3.2.2, page 65.

Example. Assume that -O3 is specified and that the outer loop of the following
nest will be unrolled by two:

!*$* UNROLL (2)

DO I = 1, 10
DO J = 1,100

A(J,I) = B(J,I) + 1

END DO

END DO

With outer loop unrolling, the compiler produces the following nest, in which
the two bodies of the inner loop are adjacent to each other:

DO I = 1, 10, 2

DO J = 1,100

SR–3907 3.0.2 73

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

A(J,I) = B(J,I) + 1

END DO
DO J = 1,100

A(J,I+1) = B(J,I+1) + 1

END DO

END DO

The compiler then jams, or fuses, the inner two loop bodies together, producing
the following nest:

DO I = 1, 10, 2

DO J = 1,100

A(J,I) = B(J,I) + 1
A(J,I+1) = B(J,I+1) + 1

END DO

END DO

3.3 Argument Aliasing Directives (ASSERT ARGUMENTALIASING and
ASSERT NOARGUMENTALIASING)

The ASSERT ARGUMENTALIASING and ASSERT NOARGUMENTALIASING
directives allow the compiler to make assumptions about procedure dummy
arguments when performing optimizations.

It is possible to call a procedure and specify the same variable or array element
in two or more positions of the actual argument list. Within the procedure, two
or more dummy argument names, which appear to refer to different memory
locations, actually refer to the same location. This practice violates the
Fortran 90 standard. You can use the ASSERT ARGUMENTALIASING directive to
force the compiler to be more conservative.

By default, ASSERT NOARGUMENTALIASING is in effect.

The formats for these directives are as follows:

!*$* ASSERT ARGUMENTALIASING

!*$* ASSERT NOARGUMENTALIASING

If these directives appear prior to Fortran 90 source code in a file, they are
applied to all program units in the file. If they appear in a program unit, they

74 SR–3907 3.0.2

General Directives [3]

are applied to that program unit only. If one of these directives is encountered,
it remains in effect until reset by the opposing directive.

3.4 Symbol Storage Directives

The following directives control symbol storage:

• ALIGN_SYMBOL

• FILL_SYMBOL

• FLUSH

• SECTION_GP

• SECTION_NON_GP

3.4.1 Control Symbol Alignment and Padding: ALIGN_SYMBOL and FILL_SYMBOL Directives

The ALIGN_SYMBOL and FILL_SYMBOL directives control the way symbols are
stored.

The ALIGN_SYMBOL directive aligns the start of symbol at a specified alignment
boundary.

The FILL_SYMBOL directive pads symbol with additional storage so that the
symbol is assured not to overlap with any other data item within the storage of
the specified size. The additional padding required is divided between each
end of the specified variable. For example, a FILL_SYMBOL(X,L1CACHELINE)
directive guarantees that X does not suffer from false sharing for the primary
cache line.

The formats for these directives are as follows:

!*$* ALIGN_SYMBOL (symbol [, storage])

!*$* FILL_SYMBOL (symbol [, storage])

symbol Specify the name of a symbol. symbol can be a common block
variable or a module name. symbol cannot be a component of a
derived type, an array element, a common block, or blank
common.

SR–3907 3.0.2 75

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

storage Specify the storage size. Specify one of the following values for
storage:

storage Action

L1CACHELINE Specifies the machine-specific
first-level cache line size, typically
32 bytes.

L2CACHELINE Specifies the machine-specific
secondary cache line size, typically
128 bytes.

PAGE Specifies a machine-specific page.
Typically 16 KB.

power-of-two An integer value that is a power of
2.

For common block variables, these directives are required at each declaration of
the common block. Because the directives modify the allocated storage and its
alignment for the named symbol, inconsistent directives can lead to undefined
results.

The ALIGN_SYMBOL directive has no effect on fixed-size local symbols, such as
simple scalars or arrays of known size (for example symbols declared as
REAL(N) or REAL(A(3))). The directive continues to be effective for automatic
arrays (stack-allocated arrays of dynamically determined size).

You cannot specify an ALIGN_SYMBOL directive and a FILL_SYMBOL directive
for the same symbol.

Example:

! X IS A COMMON BLOCK VARIABLE

COMMON X!

INTEGER(KIND=4) X

!*$* ALIGN_SYMBOL (X, 32)

! X WILL START AT A 32-BYTE BOUNDARY.
! WARNING: THE LAYOUT OF THE COMMON BLOCK WILL BE AFFECTED

!*$* ALIGN_SYMBOL (X, 2)

! ERROR: CANNOT REQUEST AN ALIGNMENT LOWER THAN THE NATURAL

! ALIGNMENT OF THE SYMBOL.

76 SR–3907 3.0.2

General Directives [3]

REAL(KIND=8) Y

! Y IS A COMMON BLOCK OR LOCAL VARIABLE
!*$* FILL_SYMBOL (Y, L2CACHELINE)

! ALLOCATE EXTRA STORAGE BOTH BEFORE AND AFTER Y SO THAT

! Y IS WITHIN AN L2CACHELINE (128 BYTES) ALL BY ITSELF.

! THIS CAN BE USEFUL TO AVOID FALSE-SHARING BETWEEN MULTIPLE
! PROCESSORS FOR THE CACHE LINE CONTAINING Y.

3.4.2 Declare a Synchronization Point: FLUSH Directive

The FLUSH directive identifies synchronization points at which thread-visible
variables are written back to memory. This directive must appear at the precise
point in the code at which the synchronization is required.

Note: This directive has the same effect as the FLUSH directive described in
the OpenMP Fortran API. For more information on the OpenMP FLUSH
directive, see Section 4.6.5, page 100.

Thread-visible variables include the following data items:

• Globally visible variables (common blocks and modules).

• Local variables that do not have the SAVE attribute but have had their
address taken and saved or have had their address passed to another
subprogram.

• Local variables that do not have the SAVE attribute that are declared shared
in a parallel region within the subprogram.

• Dummy arguments.

• All pointer dereferences.

SR–3907 3.0.2 77

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

This directive has the following format:

!*$* FLUSH [(var[, var] ...)]

var Variables to be flushed.

3.4.3 Specify Global Pointer Use: SECTION_GP and SECTION_NON_GP Directives

The MIPSpro 7 Fortran 90 compiler can reference global data by using the
global pointer and an offset value. Using the global pointer (gp) is more
efficient than constructing the address at each occurence, but because the offset
size is limited to 16 bits, only a limited set of elements can be referenced using
the global pointer.

The compiler places global data in gp-relative or non-gp-relative sections, but
you can use the SECTION_GP and SECTION_NON_GP directives to specify the
variables to go within the gp-relative section and the variables that need to be
addressed explicitly.

The formats for these directives are as follows:

!*$* SECTION_GP (symbol [, symbol] ...)

!*$* SECTION_NON_GP (symbol [, symbol] ...)

symbol Enter one or more symbols. Separate multiple symbols with
commas. Valid symbols are common block names, variables
specified on SAVE statements, and module names. If a module
name is specified, all storage in the module is affected. If a
common block name is specified, it must be of the following
form: /name/.

3.5 Inlining and IPA Directives (INLINE, NOINLINE, IPA, and NOIPA)

The following are the inlining and interprocedural analysis (IPA) directives:

• INLINE, NOINLINE

• IPA, NOIPA

78 SR–3907 3.0.2

General Directives [3]

Note: Neither inlining nor IPA are enabled by default. By default, the
directives in this section, if present in your source code, are ignored. To
enable the directives and turn on inlining and IPA, specify the -INLINE:
option or the -IPA: option on your f90(1) command line. For more
information on the command line interaction with these features, see Chapter
2, page 7, or see one of the following man pages: f90(1) or ipa(5).

Inlining is the process of replacing a procedure reference with a copy of the
procedure’s code. This eliminates procedure call overhead and exposes the
relationships between the procedure code, the return value, and the
surrounding code. The INLINE and NOINLINE directives allow you to specify
procedures that should be inlined.

Interprocedural analysis (IPA) is a MIPSpro compiler feature that includes
inlining, common block array padding, constant propagation, dead procedure
elimination, dead variable elimination, and global name optimizations. For
detailed information on the IPA feature, see the ipa(5) man page. The IPA and
NOIPA directives allow you to control IPA.

The formats of these directives are as follows:

!*$* INLINE location [(name [,name] ...)]

!*$* NOINLINE location [(name [,name] ...)]

!*$* IPA location [(name [,name] ...)]

!*$* NOIPA location [(name [,name] ...)]

location Specify one of the following for location:

location Action

HERE Specifies that routines named on the subsequent
source code line should be inlined or should
undergo IPA. Default.

ROUTINE Specifies that the named function should be inlined
or should undergo IPA everywhere it appears
within the current routine.

GLOBAL Specifies that the named function should be inlined
or should undergo IPA throughout the source file.

SR–3907 3.0.2 79

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

name For the inlining directives, each name specification represents one
or more routines to be inlined. If no routines are named, all
routines in the program are inlined.

For the IPA directives, each name specification represents one or
more routines to undergo IPA. If no routines are named, all
routines in the program undergo IPA.

Example. Consider the following code fragment:

DO I = 1,N

!*$* INLINE (BETA) HERE

CALL BETA(I,1)

ENDDO
CALL BETA(N,2)

Using the specifier ROUTINE rather than HERE in this example would inline
both calls to BETA. Note that -INLINE:=ON must be specified on the f90(1)
command line when this code is compiled in order for the inlining directive to
be recognized.

80 SR–3907 3.0.2

OpenMP Fortran API Multiprocessing
Directives [4]

This chapter describes the multiprocessing directives that the MIPSpro 7 Fortran
90 compiler supports. These directives are based on the OpenMP Fortran
application program interface (API) standard. Programs that use these
directives are portable and can be compiled by other compilers that support the
OpenMP standard.

To enable recognition of the OpenMP directives, specify -mp on the f90(1)
command line. The -MP:open_mp=ON option is on by default and must be in
effect during compilation.

Note: If individual loops in your program contain both OpenMP directives
and extensions (prefixed with !$OMP or !$SGI) and any of the outmoded
multiprocessing directives described in Appendix D, page 225, and Chapter
5, page 133, (prefixed with !$ or !$PAR), you must specify the set of
directives that the compiler should use. To direct the compiler to ignore the
OpenMP directives, compile with -MP:open_mp=OFF. To direct the compiler
to ignore the outmoded multiprocessing directives, compile with
-MP:old_mp=OFF. To direct the compiler to ignore the outmoded Origin
series distributed shared memory directives, specify -MP:dsm=OFF. For more
information on the -mp option, see Section 2.40, page 33. For more
information on the -MP: option, see Section 2.41.5, page 37.

In addition to directives, the OpenMP Fortran API describes several library
routines and environment variables. Information on the library routines can be
found on the omp_lock(3), omp_nested(3), and omp_threads(3) man pages.
Information on the environment variables can be found on the pe_environ(5)
man page.

The sections in this chapter are as follows:

• Section 4.1, page 82, describes using directives and the directive format.

• Section 4.2, page 84, describes conditional compilation.

• Section 4.3, page 85, describes the parallel region construct.

• Section 4.4, page 87, describes work-sharing constructs.

• Section 4.5, page 93, describes the combined parallel work-sharing constructs.

SR–3907 3.0.2 81

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

• Section 4.6, page 97, describes synchronization constructs.

• Section 4.7, page 103, describes the data environment, which includes
directives and clauses that affect the data environment.

• Section 4.8, page 113, describes directive binding.

• Section 4.9, page 115, describes directive nesting.

Note: The Silicon Graphics multiprocessing directives, including the Origin
series distributed shared memory directives, are outmoded. Their preferred
alternatives are the OpenMP Fortran API directives described in this chapter.

4.1 Using Directives

All multiprocessing directives are case-insensitive and are of the following form:

prefix directive [clause[[,] clause]...]

prefix Each directive begins with a prefix, and the prefixes you can use
depend on your source form, as follows:

• If you are using fixed source form, the following prefixes can
be used: !OMP, COMP, or *$OMP.

Prefixes must start in column one and appear as a single word
with no intervening white space. Fortran fixed form line
length, case sensitivity, white space, continuation, and column
rules apply to the directive line.

• If you are using free source form, the following prefix can be
used: !$OMP.

A prefix can appear in any column as long as it is preceded
only by white space. It must appear as a single word with no
intervening white space. Fortran free form line length, case
sensitivity, white space, and continuation rules apply to the
directive line.

directive The name of the directive.

82 SR–3907 3.0.2

OpenMP Fortran API Multiprocessing Directives [4]

clause One or more directive clauses. Clauses can appear in any order
after the directive name and can be repeated as needed, subject to
the restrictions listed in the description of each clause.

Directives cannot be embedded within continued statements, and statements
cannot be embedded within directives. Comments cannot appear on the same
line as a directive.

In fixed source form, initial directive lines must have a space or zero in column
six, and continuation directive lines must have a character other than a space or
a zero in column six.

In free source form, initial directive lines must have a space after the prefix.
Continued directive lines must have an ampersand as the last nonblank
character on the line. Continuation directive lines can have an ampersand after
the directive prefix with optional white space before and after the ampersand.

Example 1 (fixed source form). The following formats for specifying directives
are equivalent (the first line represents the position of the first 9 columns):

C23456789

!$OMP PARALLEL DO SHARED(A,B,C)

C$OMP PARALLEL DO

C$OMP+SHARED(A,B,C)

C$OMP PARALLELDOSHARED(A,B,C)

Example 2 (free source form). The following formats for specifying directives
are equivalent (the first line represents the position of the first 9 columns):

!23456789

!$OMP PARALLEL DO &
!$OMP SHARED(A,B,C)

!$OMP PARALLEL &

!$OMP&DO SHARED(A,B,C)

!$OMP PARALLEL DO SHARED(A,B,C)

Note: In order to simplify the presentation, the remainder of this chapter
uses the !$OMP prefix in all syntax descriptions and examples.

SR–3907 3.0.2 83

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

4.2 Conditional Compilation

Fortran statements can be compiled conditionally as long as they are preceded
by one of the following conditional compilation prefixes: !$, C$, or *$. The
prefix must be followed by a Fortran 90 statement on the same line. During
compilation, the prefix is replaced by two spaces, and the rest of the line is
treated as a normal Fortran statement.

Your program must be compiled with the -mp option in order for the compiler
to honor statements preceded by conditional compilation prefixes; without the
mp command line option, statements preceded by conditional compilation
prefixes are commented out. For more information on the -mp option, see
Section 2.40, page 33.

The !$ prefix is accepted when compiling either fixed source form files or free
source form files. The C$ and *$ prefixes are accepted only when compiling
fixed source form. The source form you are using also dictates the following:

• In fixed source form, the prefixes must start in column one and appear as a
single word with no intervening white space. Fortran fixed form line length,
case sensitivity, white space, continuation, and column rules apply to the
line. Initial lines must have a space or zero in column six, and continuation
lines must have a character other than a space or zero in column six.

Example. The following forms for specifying conditional compilation are
equivalent:

C23456789

!$ 10 IAM = OMP_GET_THREAD_NUM() +

!$ & INDEX

#ifdef _OPENMP

10 IAM = OMP_GET_THREAD_NUM() +

& INDEX

#endif

• In free source form, the !$ prefix can appear in any column as long as it is
preceded only by white space. It must appear as a single word with no
intervening white space. Fortran free source form line length, case sensitivity,
white space, and continuation rules apply to the line. Initial lines must have
a space after the prefix. Continued lines must have an ampersand as the last
nonblank character on the line. Continuation lines can have an ampersand
after the prefix, with optional white space before and after the ampersand.

84 SR–3907 3.0.2

OpenMP Fortran API Multiprocessing Directives [4]

In addition to the conditional compilation prefixes, a preprocessor macro,
_OPENMP, can be used for conditional compilation. For more information on
source preprocessing and conditional compilation, see Chapter 7, page 175.

Example. The following example illustrates the use of the conditional
compilation prefix. Assuming Fortran 90 fixed source form, the following
statement is invalid when using OpenMP constructs:

C234567890

!$ X(I) = X(I) + XLOCAL

With OpenMP compilation, the conditional compilation prefix !$ is treated as
two spaces. As a result, the statement infringes on the statement label field. To
be valid, the statement should begin after column six, like any other fixed
source form statement:

C234567890

!$ X(I) = X(I) + XLOCAL

In other words, conditionally compiled statements need to meet all applicable
language rules when the prefix is replaced with two spaces.

4.3 Parallel Region Constructs (PARALLEL and END PARALLEL Directives)

The PARALLEL and END PARALLEL directives define a parallel region. A parallel
region is a block of code that is to be executed by multiple threads in parallel.
This is the fundamental OpenMP parallel construct that starts parallel
execution. These directives have the following format:

!$OMP PARALLEL [clause[[,] clause]...]

block

!$OMP END PARALLEL

clause clause can be one or more of the following:

• PRIVATE(var[, var] ...)

• SHARED(var[, var] ...)

• DEFAULT(PRIVATE | SHARED | NONE)

• FIRSTPRIVATE(var[, var] ...)

SR–3907 3.0.2 85

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

• REDUCTION ({operator|intrinsic}:var[, var] ...)

• IF(scalar_logical_expression)

• COPYIN(var[, var] ...)

The IF directive is described in this section. For information on
the PRIVATE, SHARED, DEFAULT, FIRSTPRIVATE, REDUCTION,
and COPYIN clauses, see Section 4.7.2, page 104.

block block denotes a structured block of Fortran statements. You cannot
branch into or out of the block. The code contained within the
dynamic extent of the parallel region is executed on each thread.

The END PARALLEL directive denotes the end of the parallel region. There is
an implied barrier at this point. Only the master thread of the team continues
execution past the end of a parallel region.

When a thread encounters a parallel region, it creates a team of threads, and it
becomes the master of the team. The master thread is a member of the team
and it has a thread number of 0 within the team. The number of threads in the
team is controlled by environment variables and/or library calls.

The number of physical processors actually hosting the threads at any given
time depends on the number of CPUs available and the system load. Once
created, the number of threads in the team remains constant for the duration of
that parallel region, but it can be changed either explicitly by the user or
automatically by the run-time system from one parallel region to another. The
OMP_SET_DYNAMIC(3) library routine and the OMP_DYNAMIC environment
variable can be used to enable and disable the automatic adjustment of the
number of threads. For more information on environment variables that affect
OpenMP directives, see the pe_environ(5) man page.

OpenMP: The OpenMP Fortran API does not specify the number of physical
processors that can host the threads at any given time.

If a thread in a team executing a parallel region encounters another parallel
region, it creates a new team, and it becomes the master of that new team. By
default, nested parallel regions are serialized; that is, they are executed by a
team composed of one thread. This default behavior can be changed by using
either the OMP_SET_NESTED(3) library routine or the OMP_NESTED
environment variable. For more information on environment variables that
affect OpenMP directives, see the pe_environ(5) man page.

86 SR–3907 3.0.2

OpenMP Fortran API Multiprocessing Directives [4]

If an IF clause is present, the enclosed code region is executed in parallel only
if the scalar_logical_expression evaluates to .TRUE.. Otherwise, the parallel
region is serialized. The expression must be a scalar Fortran logical expression.

The following restrictions apply to parallel regions:

• The PARALLEL/END PARALLEL directive pair must appear in the same
routine in the executable section of the code.

• The code contained by these two directives must be a structured block. You
cannot branch into or out of a parallel region.

• Only a single IF clause can appear on the directive.

Example. The PARALLEL directive can be used for exploiting coarse-grained
parallelism. In the following example, each thread in the parallel region decides
what part of the global array X to work on based on the thread number:

!$OMP PARALLEL DEFAULT(PRIVATE) SHARED(X,NPOINTS)
IAM = OMP_GET_THREAD_NUM()

NP = OMP_GET_NUM_THREADS()

IPOINTS = NPOINTS/NP

CALL SUBDOMAIN(X,IAM,IPOINTS)

!$OMP END PARALLEL

4.4 Work-sharing Constructs

A work-sharing construct divides the execution of the enclosed code region
among the members of the team that encounter it. A work-sharing construct
must be enclosed within a parallel region in order for the directive to execute in
parallel. The work-sharing directives do not launch new threads, and there is
no implied barrier on entry to a work-sharing construct.

The following restrictions apply to the work-sharing directives:

• Work-sharing constructs and BARRIER directives must be encountered by all
threads in a team or by none at all.

• Work-sharing constructs and BARRIER directives must be encountered in the
same order by all threads in a team.

The following sections describe the work-sharing directives:

• Section 4.4.1, page 88, describes the DO and END DO directives.

SR–3907 3.0.2 87

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

• Section 4.4.2, page 91, describes the SECTIONS, SECTION, and
END SECTIONS directives.

• Section 4.4.3, page 92, describes the SINGLE and END SINGLE directives.

4.4.1 Specify Parallel Execution: DO and END DO Directives

The DO directive specifies that the iterations of the immediately following DO
loop must be divided among the threads in the parallel region. If there is no
enclosing parallel region, the DO loop is executed serially.

The loop that follows a DO directive cannot be a DO WHILE or a DO loop
without loop control.

The format of this directive is as follows:

!$OMP DO [clause[[,] clause]...]

do_loop

[!$OMP END DO [NOWAIT]]

clause clause can be one of the following:

• PRIVATE(var[, var] ...)

• FIRSTPRIVATE(var[, var] ...)

• LASTPRIVATE(var[, var] ...)

• REDUCTION({operator|intrinsic}:var[, var] ...)

• SCHEDULE(type[,chunk])

• ORDERED

The SCHEDULE and ORDERED clauses are described in this
section. The PRIVATE, FIRSTPRIVATE, LASTPRIVATE, and
REDUCTION clauses are described in Section 4.7.2, page 104.

do_loop A DO loop.

If ordered sections are contained in the dynamic extent of the DO directive, the
ORDERED clause must be present. The code enclosed within an ordered section
is executed in the order in which it would be executed in a sequential execution

88 SR–3907 3.0.2

OpenMP Fortran API Multiprocessing Directives [4]

of the loop. For more information on ordered sections, see the ORDERED
directive in Section 4.6.6, page 102.

The SCHEDULE clause specifies how iterations of the DO loop are divided
among the threads of the team. Within the SCHEDULE(type[,chunk]) clause
syntax, type can be one of the following:

type Effect

STATIC When SCHEDULE(STATIC,chunk) is specified, iterations are
divided into pieces of a size specified by chunk. The pieces are
statically assigned to threads in the team in a round-robin fashion
in the order of the thread number. chunk must be a scalar integer
expression.

When no chunk is specified, the iterations are divided among
threads in contiguous pieces, and one piece is assigned to each
thread. Default.

DYNAMIC When SCHEDULE(DYNAMIC,chunk) is specified, the iterations are
broken into pieces of a size specified by chunk. As each thread
finishes its iterations, it dynamically obtains the next set of
iterations.

When no chunk is specified, it defaults to 1.

GUIDED When SCHEDULE(GUIDED,chunk) is specified, each of the
iterations are handed out in pieces of exponentially decreasing
size. chunk specifies the minimum number of iterations to
dispatch each time, except when there are less than chunk number
of iterations, at which point the rest are dispatched.

When no chunk is specified, it defaults to 1.

RUNTIME When SCHEDULE(RUNTIME) is specified, the decision regarding
scheduling is deferred until run time and you cannot specify a
chunk.

The schedule type and chunk size can be chosen at run time by
setting the OMP_SCHEDULE environment variable. If this
environment variable is not set, the resulting schedule is STATIC.

SR–3907 3.0.2 89

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

For more information on the OMP_SCHEDULE environment
variable, see the pe_environ(5) man page.

OpenMP: The OpenMP Fortran API does not define a default scheduling
mechanism. You should not rely on a particular implementation of a
schedule type for correct execution because it is possible to have variations in
the implementations of the same schedule type across different compilers.

If an END DO directive is not specified, it is assumed at the end of the DO loop.
If NOWAIT is specified on the END DO directive, threads do not synchronize at
the end of the parallel loop. Threads that finish early proceed straight to the
instructions following the loop without waiting for the other members of the
team to finish the DO directive.

Example. If there are multiple independent loops within a parallel region, you
can use the NOWAIT clause to avoid the implied BARRIER at the end of the DO
directive, as follows:

!$OMP PARALLEL

!$OMP DO
DO I=2,N

B(I) = (A(I) + A(I-1)) / 2.0

ENDDO

!$OMP END DO NOWAIT

!$OMP DO
DO I=1,M

Y(I) = SQRT(Z(I))

ENDDO

!$OMP END DO NOWAIT

!$OMP END PARALLEL

Parallel DO loop control variables are block-level entities within the DO loop. If
the loop control variable also appears in the LASTPRIVATE variable list of the
parallel DO, it is copied out to a variable of the same name in the enclosing
PARALLEL region. The variable in the enclosing PARALLEL region must be
SHARED if it is specified on the LASTPRIVATE variable list of a DO directive.

The following restrictions apply to the DO directives:

• You cannot branch out of a DO loop associated with a DO directive.

• The values of the loop control parameters of the DO loop associated with a
DO directive must be the same for all the threads in the team.

• The DO loop iteration variable must be of type integer.

90 SR–3907 3.0.2

OpenMP Fortran API Multiprocessing Directives [4]

• If used, the END DO directive must appear immediately after the end of the
loop.

• Only a single SCHEDULE clause can appear on a DO directive.

• Only a single ORDERED clause can appear on a DO directive.

4.4.2 Mark Code for Specific Threads: SECTION, SECTIONS and END SECTIONS Directives

The SECTIONS directive specifies that the enclosed sections of code are to be
divided among threads in the team. It is a noniterative work-sharing construct.
Each section is executed once by a thread in the team.

The format of this directive is as follows:

!$OMP SECTIONS [clause[[,] clause]...]

[!$OMP SECTION]

block

[!$OMP SECTION

block]

. . .

!$OMP END SECTIONS [NOWAIT]

clause The clause can be one of the following:

• PRIVATE(var[, var] ...)

• FIRSTPRIVATE(var[, var] ...)

• LASTPRIVATE(var[, var] ...)

• REDUCTION({ operator|intrinsic}:var[, var] ...)

The PRIVATE, FIRSTPRIVATE, LASTPRIVATE, and REDUCTION
clauses are described in Section 4.7.2, page 104.

SR–3907 3.0.2 91

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

block Denotes a structured block of Fortran statements. You cannot
branch into or out of the block.

Each section must be preceded by a SECTION directive, though the SECTION
directive is optional for the first section. The SECTION directives must appear
within the lexical extent of the SECTIONS/END SECTIONS directive pair. The
last section ends at the END SECTIONS directive. Threads that complete
execution of their sections wait at a barrier at the END SECTIONS directive
unless a NOWAIT is specified.

The following restrictions apply to the SECTIONS directive:

• The code enclosed in a SECTIONS/END SECTIONS directive pair must be a
structured block. In addition, each constituent section must also be a
structured block. You cannot branch into or out of the constituent section
blocks.

• You cannot have a SECTION directive outside the lexical extent of the
SECTIONS/END SECTIONS directive pair.

4.4.3 Request Single–thread Execution: SINGLE and END SINGLE Directives

The SINGLE directive specifies that the enclosed code is to be executed by only
one thread in the team. Threads in the team that are not executing the SINGLE
directive wait at the END SINGLE directive unless NOWAIT is specified.

The format of this directive is as follows:

!$OMP SINGLE [clause[[,] clause]...]

block

!$OMP END SINGLE [NOWAIT]

clause The clause can be one of the following:

• PRIVATE(var[, var] ...)

• FIRSTPRIVATE(var[, var] ...)

The PRIVATE and FIRSTPRIVATE clauses are described in
Section 4.7.2, page 104.

92 SR–3907 3.0.2

OpenMP Fortran API Multiprocessing Directives [4]

block Denotes a structured block of Fortran statements. You cannot
branch into or out of the block.

Example. In the following code fragment, the first thread that encounters the
SINGLE directive executes subroutines OUTPUT and INPUT. You must not make
any assumptions as to which thread will execute the SINGLE section. All other
threads will skip the SINGLE section and stop at the barrier at the END SINGLE
construct. If other threads can proceed without waiting for the thread executing
the SINGLE section, a NOWAIT clause can be specified on the END SINGLE
directive.

!$OMP PARALLEL DEFAULT(SHARED)

CALL WORK(X)

!$OMP BARRIER

!$OMP SINGLE
CALL OUTPUT(X)

CALL INPUT(Y)

!$OMP END SINGLE

CALL WORK(Y)

!$OMP END PARALLEL

4.5 Combined Parallel Work-sharing Constructs

The combined parallel work-sharing constructs are shortcuts for specifying a
parallel region that contains only one work-sharing construct. The semantics of
these directives are identical to that of explicitly specifying a PARALLEL
directive followed by a single work-sharing construct.

The following sections describe the combined parallel work-sharing directives:

• Section 4.5.1, page 93, describes the PARALLEL DO and END PARALLEL DO
directives.

• Section 4.5.2, page 95, describes the PARALLEL SECTIONS and
END PARALLEL SECTIONS directives.

4.5.1 Declare a Parallel Region: PARALLEL DO and END PARALLEL DO Directives

The PARALLEL DO directive provides a shortcut form for specifying a parallel
region that contains a single DO directive.

The format of this directive is as follows:

SR–3907 3.0.2 93

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

!$OMP PARALLEL DO [clause[[,] clause]...]

do_loop

[!$OMP END PARALLEL DO]

clause clause can be one or more of the clauses accepted by the
PARALLEL directive or the DO directive. These clauses are as
follows:

• PRIVATE(var[, var] ...)

• FIRSTPRIVATE(var[, var] ...)

• LASTPRIVATE(var[, var] ...)

• REDUCTION({operator|intrinsic}:var[, var] ...)

• SCHEDULE(type[,chunk])

• ORDERED

• SHARED(var[, var] ...)

• DEFAULT(PRIVATE | SHARED | NONE)

• IF(scalar_logical_expression)

• COPYIN(var[, var] ...)

The SCHEDULE and ORDERED clauses are described in Section
4.4.1, page 88. The IF directive is described in Section 4.3, page
85. The SHARED, DEFAULT, COPYIN, PRIVATE, FIRSTPRIVATE,
LASTPRIVATE, and REDUCTION clauses are described in Section
4.7.2, page 104.

For information on the PARALLEL directive, see Section 4.3, page
85. For information on the DO directive, see Section 4.4.1, page 88.

do_loop A DO loop.

If the END PARALLEL DO directive is not specified, the PARALLEL DO is
assumed to end with the DO loop that immediately follows the PARALLEL DO
directive. If used, the END PARALLEL DO directive must appear immediately
after the end of the DO loop.

94 SR–3907 3.0.2

OpenMP Fortran API Multiprocessing Directives [4]

The semantics are identical to explicitly specifying a PARALLEL directive
immediately followed by a DO directive.

Example. The following example shows how to parallelize a simple loop:

!$OMP PARALLEL DO

DO I=1,N

B(I) = (A(I) + A(I-1)) / 2.0

ENDDO

!$OMP END PARALLEL DO

In the preceding code, the loop iteration variable is private by default, so it is not
necessary to declare it explicitly. The END PARALLEL DO directive is optional.

Note: Localized ALLOCATABLE or POINTER arrays are not supported on the
DO, PARALLEL, or PARALLEL DO directives.

4.5.2 Declare Sections within a Parallel Region: PARALLEL SECTIONS and END PARALLEL SECTIONS
Directives

The PARALLEL SECTIONS directive provides a shortcut form for specifying a
parallel region that contains a single SECTIONS directive. The semantics are
identical to explicitly specifying a PARALLEL directive immediately followed by
a SECTIONS directive.

The format of this directive is as follows:

!$OMP PARALLEL SECTIONS [clause[[,] clause]...]

[!$OMP SECTION]

block

[!$OMP SECTION

block]

. . .

!$OMP END PARALLEL SECTIONS

SR–3907 3.0.2 95

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

clause clause can be one or more of the clauses accepted by the
PARALLEL directive or the SECTIONS directive. These clauses are
as follows:

• PRIVATE(var[, var] ...)

• FIRSTPRIVATE(var[, var] ...)

• LASTPRIVATE(var[, var] ...)

• REDUCTION({ operator|intrinsic}:var[, var] ...)

• SHARED(var[, var] ...)

• DEFAULT(PRIVATE | SHARED | NONE)

• IF(scalar_logical_expression)

• COPYIN(var[, var] ...)

The IF directive is described in Section 4.3, page 85. The SHARED,
DEFAULT, FIRSTPRIVATE, REDUCTION, COPYIN, PRIVATE,
FIRSTPRIVATE, LASTPRIVATE, and REDUCTION clauses are
described in Section 4.7.2, page 104.

For more information on the PARALLEL directive, see Section 4.3,
page 85. For more information on the SECTIONS directive, see
Section 4.4.2, page 91.

block Denotes a structured block of Fortran statements. You cannot
branch into or out of the block.

The last section ends at the END PARALLEL SECTIONS directive.

Example. In the following code fragment, subroutines XAXIS, YAXIS, and
ZAXIS can be executed concurrently. The first SECTION directive is optional.
All the SECTION directives need to appear in the lexical extent of the
PARALLEL SECTIONS/END PARALLEL SECTIONS construct.

!$OMP PARALLEL SECTIONS

!$OMP SECTION
CALL XAXIS

!$OMP SECTION

CALL YAXIS

!$OMP SECTION

CALL ZAXIS
!$OMP END PARALLEL SECTIONS

96 SR–3907 3.0.2

OpenMP Fortran API Multiprocessing Directives [4]

4.6 Synchronization Constructs

The following sections describe the synchronization constructs:

• Section 4.6.1, page 97, describes the MASTER and END MASTER directives.

• Section 4.6.2, page 97, describes the CRITICAL and END CRITICAL
directives.

• Section 4.6.3, page 99, describes the BARRIER directive.

• Section 4.6.4, page 99, describes the ATOMIC directive.

• Section 4.6.5, page 100, describes the FLUSH directive.

• Section 4.6.6, page 102, describes the ORDERED and END ORDERED directives.

4.6.1 Request Execution by the Master Thread: MASTER and END MASTER Directives

The code enclosed within MASTER and END MASTER directives is executed by
the master thread.

These directives have the following format:

!$OMP MASTER

block

!$OMP END MASTER

block Denotes a structured block of Fortran statements. You cannot
branch into or out of the block

The other threads in the team skip the enclosed section of code and continue
execution. There is no implied barrier either on entry to or exit from the master
section.

4.6.2 Request Execution by a Single Thread: CRITICAL and END CRITICAL Directives

The CRITICAL and END CRITICAL directives restrict access to the enclosed
code to one thread at a time.

These directives have the following format:

SR–3907 3.0.2 97

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

!$OMP CRITICAL [(name)]

block

!$OMP END CRITICAL [(name)]

name Identifies the critical section.

If a name is specified on a CRITICAL directive, the same name
must also be specified on the END CRITICAL directive. If no
name appears on the CRITICAL directive, no name can appear on
the END CRITICAL directive.

block Denotes a structured block of Fortran statements. You cannot
branch into or out of the block.

A thread waits at the beginning of a critical section until no other thread in the
team is executing a critical section with the same name. All unnamed
CRITICAL directives map to the same name. Critical section names are global
entities of the program. If a name conflicts with any other entity, the behavior
of the program is undefined.

Example. The following code fragment includes several CRITICAL directives.
The example illustrates a queuing model in which a task is dequeued and
worked on. To guard against multiple threads dequeuing the same task, the
dequeuing operation must be in a critical section. Because there are two
independent queues in this example, each queue is protected by CRITICAL
directives with different names, XAXIS and YAXIS, respectively.

!$OMP PARALLEL DEFAULT(PRIVATE) SHARED(X,Y)

!$OMP CRITICAL(XAXIS)

CALL DEQUEUE(IX_NEXT, X)

!$OMP END CRITICAL(XAXIS)
CALL WORK(IX_NEXT, X)

!$OMP CRITICAL(YAXIS)

CALL DEQUEUE(IY_NEXT,Y)

!$OMP END CRITICAL(YAXIS)

CALL WORK(IY_NEXT, Y)

!$OMP END PARALLEL

98 SR–3907 3.0.2

OpenMP Fortran API Multiprocessing Directives [4]

4.6.3 Synchronize All Threads in a Team: BARRIER Directive

The BARRIER directive synchronizes all the threads in a team. When it
encounters a barrier, a thread waits until all other threads in that team have
reached the same point.

This directive has the following format:

!$OMP BARRIER

4.6.4 Protect a Location from Multiple Updates: ATOMIC Directive

The ATOMIC directive ensures that a specific memory location is updated
atomically, rather than exposing it to the possibility of multiple, simultaneous
writing threads.

This directive has the following format:

!$OMP ATOMIC

This directive applies only to the immediately following statement, which must
have one of the following forms:

x = x operator expr

x = expr operator x

x = intrinsic (x, expr)

x = intrinsic (expr, x)

In the preceding statements:

• x is a scalar variable of intrinsic type. All references to storage location x
must have the same type and type parameters.

• expr is a scalar expression that does not reference x.

• intrinsic is one of MAX, MIN, IAND, IOR, or IEOR.

• operator is one of +, *, -, /, .AND., .OR., .EQV., or .NEQV. .

SR–3907 3.0.2 99

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

Only the load and store of x are atomic; the evaluation of expr is not atomic. To
avoid race conditions, all updates of the location in parallel must be protected
with the ATOMIC directive, except those that are known to be free of race
conditions.

Example 1. The following code fragment uses the ATOMIC directive:

!$OMP ATOMIC

X(INDEX(I)) = Y(INDEX(I)) + B

Example 2. The following code fragment avoids race conditions by protecting
all simultaneous updates of the location, by multiple threads, with the ATOMIC
directive:

!$OMP PARALLEL DO DEFAULT(PRIVATE) SHARED(X,Y,INDEX,N)

DO I=1,N
CALL WORK(XLOCAL, YLOCAL)

!$OMP ATOMIC

X(INDEX(I)) = X(INDEX(I)) + XLOCAL

Y(I) = Y(I) + YLOCAL

ENDDO

Note that the ATOMIC directive applies only to the Fortran 90 statement that
immediately follows it. As a result, Y is not updated atomically in the
preceding code.

4.6.5 Read and Write Variables to Memory: FLUSH Directive

The FLUSH directive identifies synchronization points at which thread-visible
variables are written back to memory. This directive must appear at the precise
point in the code at which the synchronization is required.

Thread-visible variables include the following data items:

• Globally visible variables (common blocks and modules)

• Local variables that do not have the SAVE attribute but have had their
address taken and saved or have had their address passed to another
subprogram

• Local variables that do not have the SAVE attribute that are declared shared
in a parallel region within the subprogram

• Dummy arguments

• All pointer dereferences

100 SR–3907 3.0.2

OpenMP Fortran API Multiprocessing Directives [4]

This directive has the following format:

!$OMP FLUSH [(var[, var] ...)]

var Variables to be flushed.

An implicit FLUSH directive is assumed for the following directives:

• BARRIER

• CRITICAL and END CRITICAL

• END DO

• END PARALLEL

• END SECTIONS

• END SINGLE

• ORDERED and END ORDERED

The directive is not implied if a NOWAIT clause is present.

Example. The following example uses the FLUSH directive for point-to-point
synchronization between pairs of threads:

!$OMP PARALLEL DEFAULT(PRIVATE) SHARED(ISYNC)
IAM = OMP_GET_THREAD_NUM()

ISYNC(IAM) = 0

!$OMP BARRIER

CALL WORK()

!

!I AM DONE WITH MY WORK, SYNCHRONIZE WITH MY NEIGHBOR
!

ISYNC(IAM) = 1

!$OMP FLUSH(ISYNC)

!

!WAIT TILL NEIGHBOR IS DONE
!

DO WHILE (ISYNC(NEIGH) .EQ. 0)

!$OMP FLUSH(ISYNC)

END DO

!$OMP END PARALLEL

SR–3907 3.0.2 101

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

4.6.6 Request Sequential Ordering: ORDERED and END ORDERED Directives

The code enclosed within ORDERED and END ORDERED directives is executed in
the order in which it would be executed in a sequential execution of an
enclosing parallel loop.

These directives have the following format:

!$OMP ORDERED

block

!$OMP END ORDERED

block Denotes a structured block of Fortran statements. You cannot
branch into or out of the block.

An ORDERED directive can appear only in the dynamic extent of a DO or
PARALLEL DO directive. This DO directive must have the ORDERED clause
specified. For more information on the DO directive, see Section 4.4.1, page 88.
For information on directive binding, see Section 4.8, page 113.

Only one thread is allowed in an ordered section at a time. Threads are allowed
to enter in the order of the loop iterations. No thread can enter an ordered
section until it is guaranteed that all previous iterations have completed or will
never execute an ordered section. This sequentializes and orders code within
ordered sections while allowing code outside the section to run in parallel.
ORDERED sections that bind to different DO directives are independent of each
other.

The following restrictions apply to the ORDERED directive:

• An ORDERED directive cannot bind to a DO directive that does not have the
ORDERED clause specified.

• An iteration of a loop with a DO directive must not execute the same
ORDERED directive more than once, and it must not execute more than one
ORDERED directive.

Example. Ordered sections are useful for sequentially ordering the output from
work that is done in parallel. Assuming that a reentrant I/O library exists, the
following program prints out the indexes in sequential order:

!$OMP DO ORDERED SCHEDULE(DYNAMIC)

DO I=LB,UB,ST

102 SR–3907 3.0.2

OpenMP Fortran API Multiprocessing Directives [4]

CALL WORK(I)

END DO

SUBROUTINE WORK(K)

!$OMP ORDERED

WRITE(*,*) K

!$OMP END ORDERED

END

4.7 Data Environment Constructs

The following subsections present constructs for controlling the data
environment during the execution of parallel constructs. Section 4.7.1, page 103,
describes the THREADPRIVATE directive, which makes common blocks local to
a thread. Section 4.7.2, page 104, describes directive clauses that affect the data
environment.

4.7.1 Declare Common Blocks Private to a Thread: THREADPRIVATE Directive

The THREADPRIVATE directive makes named common blocks private to a
thread but global within the thread. In other words, each thread executing a
THREADPRIVATE directive receives its own private copy of the named common
blocks, which are then available to it in any routine within the scope of an
application.

This directive must appear in the declaration section of the routine after the
declaration of the listed common blocks. Each thread gets its own copy of the
common block, so data written to the common block by one thread is not
directly visible to other threads. During serial portions and MASTER sections of
the program, accesses are to the master thread’s copy of the common block.

On entry to the first parallel region, data in the THREADPRIVATE common
blocks should be assumed to be undefined unless a COPYIN clause is specified
on the PARALLEL directive. When a common block that is initialized using
DATA statements appears in a THREADPRIVATE directive, each thread’s copy is
initialized once prior to its first use. For subsequent parallel regions, the data in
the THREADPRIVATE common blocks are guaranteed to persist only if the
dynamic threads mechanism has been disabled and if the number of threads are
the same for all the parallel regions.

SR–3907 3.0.2 103

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

For more information on dynamic threads, see the OMP_SET_DYNAMIC(3)
library routine and the OMP_DYNAMIC environment variable on the
pe_environ(5) man page.

The format of this directive is as follows:

!$OMP THREADPRIVATE(/cb/[,/cb/]...)

cb The name of the common block to be made private to a thread.
Only named common blocks can be made thread private.

The following restrictions apply to the THREADPRIVATE directive:

• The THREADPRIVATE directive must appear after every declaration of a
thread private common block.

• You cannot use a THREADPRIVATE common block or its constituent
variables in any clause other than a COPYIN clause. As a result, they are not
permitted in a PRIVATE, FIRSTPRIVATE, LASTPRIVATE, SHARED, or
REDUCTION clause. They are not affected by the DEFAULT clause.

You can use the mp_shmem library routines for communicating between
threads. For information on these routines, see Section A.4, page 213.

4.7.2 Data Scope Attribute Clauses

Several directives accept clauses that allow a user to control the scope attributes
of variables for the duration of the construct. Not all of the clauses in this
section are allowed on all directives, but the clauses that are valid on a
particular directive are included with the description of the directive. Usually, if
no data scope clauses are specified for a directive, the default scope for
variables affected by the directive is SHARED. Exceptions to this are described in
Section 4.7.3, page 111.

The following sections describe the data scope attribute clauses:

• Section 4.7.2.1, page 105, describes the PRIVATE clause.

• Section 4.7.2.2, page 106, describes the SHARED clause.

• Section 4.7.2.3, page 106, describes the DEFAULT clause.

• Section 4.7.2.4, page 107, describes the FIRSTPRIVATE clause.

• Section 4.7.2.5, page 107, describes the LASTPRIVATE clause.

104 SR–3907 3.0.2

OpenMP Fortran API Multiprocessing Directives [4]

• Section 4.7.2.6, page 108, describes the REDUCTION clause.

• Section 4.7.2.7, page 111, describes the COPYIN clause.

4.7.2.1 PRIVATE Clause

The PRIVATE clause declares variables to be private to each thread in a team.

This clause has the following format:

PRIVATE(var[, var] ...)

var A named variable or named common block that is accessible in
the scoping unit. Subobjects cannot be specified. If a named
common block is specified, its name must appear between slashes.

The behavior of a variable declared in a PRIVATE clause is as follows:

• A new object of the same type is declared once for each thread in the team.
The new object is no longer storage associated with the storage location of
the original object.

• All references to the original object in the lexical extent of the directive
construct are replaced with references to the private object.

• Variables defined as PRIVATE are undefined for each thread on entering the
construct and the corresponding shared variable is undefined on exit from a
parallel construct.

• Contents, allocation state, and association status of variables defined as
PRIVATE are undefined when they are referenced outside the lexical extent
(but inside the dynamic extent) of the construct, unless they are passed as
actual arguments to called routines.

Example. The following example shows how to scope variables with the
PRIVATE clause:

INTEGER I,J

I = 1

J = 2

!$OMP PARALLEL PRIVATE(I) FIRSTPRIVATE(J)

I = 3
J = J+ 2

!$OMP END PARALLEL

PRINT *, I, J

SR–3907 3.0.2 105

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

In the preceding code, the values of I and J are undefined on exit from the
parallel region.

4.7.2.2 SHARED Clause

The SHARED clause makes variables shared among all the threads in a team. All
threads within a team access the same storage area for SHARED data.

This clause has the following format:

SHARED(var[, var] ...)

var A named variable or named common block that is accessible in
the scoping unit. Subobjects cannot be specified. If a named
common block is specified, its name must appear between slashes.

4.7.2.3 DEFAULT Clause

The DEFAULT clause allows the user to specify a PRIVATE, SHARED, or NONE
default scope attribute for all variables in the lexical extent of any parallel
region. Variables in THREADPRIVATE common blocks are not affected by this
clause.

This clause has the following format:

DEFAULT(PRIVATE | SHARED| NONE)

The PRIVATE, SHARED, and NONE specifications have the following effects:

• Specifying DEFAULT(PRIVATE) makes all named objects in the lexical
extent of the parallel region, including common block variables but
excluding THREADPRIVATE variables, private to a thread as if each variable
were listed explicitly in a PRIVATE clause.

• Specifying DEFAULT(SHARED) makes all named objects in the lexical extent
of the parallel region shared among the threads in a team, as if each variable
were listed explicitly in a SHARED clause. In the absence of an explicit
DEFAULT clause, the default behavior is the same as if DEFAULT(SHARED)
were specified.

• Specifying DEFAULT(NONE) declares that there is no implicit default as to
whether variables are PRIVATE or SHARED. In this case, the PRIVATE,

106 SR–3907 3.0.2

OpenMP Fortran API Multiprocessing Directives [4]

SHARED, FIRSTPRIVATE, LASTPRIVATE, or REDUCTION attribute of each
variable used in the lexical extent of the parallel region must be specified.

Only one DEFAULT clause can be specified on a PARALLEL directive.

Variables can be exempted from a defined default using the PRIVATE, SHARED,
FIRSTPRIVATE, LASTPRIVATE, and REDUCTION clauses. As a result, the
following example is valid:

!$OMP PARALLEL DO DEFAULT(PRIVATE), FIRSTPRIVATE(I),SHARED(X),

!$OMP& SHARED(R) LASTPRIVATE(I)

4.7.2.4 FIRSTPRIVATE Clause

The FIRSTPRIVATE clause provides a superset of the functionality provided by
the PRIVATE clause.

This clause has the following format:

FIRSTPRIVATE(var[, var] ...)

var A named variable or named common block that is accessible in
the scoping unit. Subobjects cannot be specified. If a named
common block is specified, its name must appear between slashes.

Variables specified are subject to PRIVATE clause semantics
described in Section 4.7.2.1, page 105. In addition, private copies
of the variables are initialized from the original object existing
before the construct.

4.7.2.5 LASTPRIVATE Clause

The LASTPRIVATE clause provides a superset of the functionality provided by
the PRIVATE clause.

When the LASTPRIVATE clause appears on a DO directive, the thread that
executes the sequentially last iteration updates the version of the object it had
before the construct. When the LASTPRIVATE clause appears in a SECTIONS
directive, the thread that executes the lexically last SECTION updates the
version of the object it had before the construct. Subobjects that are not
assigned a value by the last iteration of the DO or the lexically last SECTION of
the SECTIONS directive are undefined after the construct.

This clause has the following format:

SR–3907 3.0.2 107

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

LASTPRIVATE(var[, var] ...)

var A named variable or named common block that is accessible in
the scoping unit. Subobjects cannot be specified. If a named
common block is specified, its name must appear between slashes.

Each var is subject to the PRIVATE clause semantics described in
Section 4.7.2.1, page 105.

Example. Correct execution sometimes depends on the value that the last
iteration of a loop assigns to a variable. Such programs must list all such
variables as arguments to a LASTPRIVATE clause so that the values of the
variables are the same as when the loop is executed sequentially.

!$OMP PARALLEL

!$OMP DO LASTPRIVATE(I)

DO I=1,N
A(I) = B(I) + C(I)

ENDDO

!$OMP END PARALLEL

CALL REVERSE(I)

In the preceding code fragment, the value of I at the end of the parallel region
will equal N+1, as in the sequential case.

4.7.2.6 REDUCTION Clause

This clause performs a reduction on the variables specified, with the operator or
the intrinsic specified.

This clause has the following format:

REDUCTION({operator|intrinsic}:var[, var] ...)

operator Specify one of the following: +, *, -, .AND., .OR., .EQV., or
.NEQV.

intrinsic Specify one of the following: MAX, MIN, IAND, IOR, or IEOR.

var A named variable or named common block that is accessible in
the scoping unit. Subobjects cannot be specified. Each var must
be a named scalar variable of intrinsic type.

108 SR–3907 3.0.2

OpenMP Fortran API Multiprocessing Directives [4]

Variables that appear in a REDUCTION clause must be SHARED in
the enclosing context. A private copy of each var is created for
each thread as if the PRIVATE clause had been used. The private
copy is initialized according to the operator. For more
information, see Table 1, page 110.

If a named common block is specified, its name must appear
between slashes.

At the end of the REDUCTION, the shared variable is updated to reflect the
result of combining the original value of the (shared) reduction variable with
the final value of each of the private copies using the operator specified. The
reduction operators are all associative (except for subtraction), and the compiler
can freely reassociate the computation of the final value (the partial results of a
subtraction reduction are added to form the final value).

The value of the shared variable becomes undefined when the first thread
reaches the containing clause, and it remains so until the reduction computation
is complete. Normally, the computation is complete at the end of the
REDUCTION construct; however, if the REDUCTION clause is used on a construct
to which NOWAIT is also applied, the shared variable remains undefined until a
barrier synchronization has been performed to ensure that all the threads have
completed the REDUCTION clause.

The REDUCTION clause is intended to be used on a region or work-sharing
construct in which the reduction variable is used only in reduction statements
with one of the following forms:

x = x operator expr

x = expr operator x (except for subtraction)

x = intrinsic (x,expr)

x = intrinsic (expr, x)

Some reductions can be expressed in other forms. For instance, a MAX reduction
might be expressed as follows:

IF (x .LT. expr) x = expr

Alternatively, the reduction might be hidden inside a subroutine call. You must
ensure that the operator specified in the REDUCTION clause matches the
reduction operation.

SR–3907 3.0.2 109

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

The following table lists the operators and intrinsics that are valid and their
canonical initialization values. The actual initialization value will be consistent
with the data type of the reduction variable.

Table 1. Initialization values

Operator/Intrinsic Initialization

+ 0

* 1

- 0

.AND. .TRUE.

.OR. .FALSE.

.EQV. .TRUE.

.NEQV. .FALSE.

MAX Smallest representable number

MIN Largest representable number

IAND All bits on

IOR 0

IEOR 0

Any number of reduction clauses can be specified on the directive, but a
variable can appear only once in a REDUCTION clause for that directive.

Example 1. The following directive line shows use of the REDUCTION clause:

!$OMP DO REDUCTION(+: A, Y) REDUCTION(.OR.: AM)

Example 2. The following code fragment shows how to use the REDUCTION
clause:

!$OMP PARALLEL DO DEFAULT(PRIVATE) REDUCTION(+: A,B)
DO I=1,N

CALL WORK(ALOCAL,BLOCAL)

A = A + ALOCAL

B = B + BLOCAL

ENDDO
!$OMP END PARALLEL DO

110 SR–3907 3.0.2

OpenMP Fortran API Multiprocessing Directives [4]

4.7.2.7 COPYIN Clause

The COPYIN clause applies only to common blocks that are declared
THREADPRIVATE. A COPYIN clause on a parallel region specifies that the data
in the master thread of the team be copied to the thread private copies of the
common block at the beginning of the parallel region.

This clause has the following format:

COPYIN(var[, var] ...)

var A named variable or named common block that is accessible in
the scoping unit. Subobjects cannot be specified. If a named
common block is specified, its name must appear between slashes.

It is not necessary to specify a whole common block to be copied in.

Example. In the following example, the common blocks BLK1 and FIELDS are
specified as thread private, but only one of the variables in common block
FIELDS is specified to be copied in:

COMMON /BLK1/ SCRATCH

COMMON /FIELDS/ XFIELD, YFIELD, ZFIELD

!$OMP THREADPRIVATE(/BLK1/, /FIELDS/)

!$OMP PARALLEL DEFAULT(PRIVATE) COPYIN(/BLK1/,ZFIELD)

4.7.3 Data Environment Rules

The following rules and restrictions apply with respect to data scope:

1. Sequential DO loop control variables in the lexical extent of a PARALLEL
region that would otherwise be SHARED based on default rules are
automatically made private on the PARALLEL directive. Sequential DO loop
control variables with no enclosing PARALLEL region are not classified
automatically. You must guarantee that these indexes are private if the
containing procedures are called from a PARALLEL region.

All implied DO loop control variables are automatically made private at the
enclosing implied DO construct.

2. Variables that are made private in a parallel region cannot be made private
again on an enclosed work-sharing directive. As a result, variables that
appear in the PRIVATE, FIRSTPRIVATE, LASTPRIVATE, and REDUCTION

SR–3907 3.0.2 111

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

clauses on a work-sharing directive have shared scope in the enclosing
parallel region.

3. A variable that appears in a PRIVATE, FIRSTPRIVATE, LASTPRIVATE, or
REDUCTION clause must be definable.

4. Assumed-size and assumed-shape arrays cannot be specified as PRIVATE,
FIRSTPRIVATE, or LASTPRIVATE. Array dummy arguments that are
explicitly shaped (including variably dimensioned) can be declared in any
scoping clause.

5. Fortran pointers and allocatable arrays can be declared as PRIVATE or
SHARED but not as FIRSTPRIVATE or LASTPRIVATE.

Within a parallel region, the initial status of a private pointer is undefined.
Private pointers that become allocated during the execution of a parallel
region should be explicitly deallocated by the program prior to the end of
the parallel region to avoid memory leaks.

The association status of a SHARED pointer becomes undefined upon entry
to and on exit from the parallel construct if it is associated with a target or a
subobject of a target that is PRIVATE, FIRSTPRIVATE, LASTPRIVATE, or
REDUCTION inside the parallel construct. An allocatable array declared
PRIVATE has an allocation status of not currently allocated on entry to and
on exit from the construct.

6. PRIVATE or SHARED attributes can be declared for a Cray pointer but not
for the pointee. The scope attribute for the pointee is determined at the
point of pointer definition. You cannot declare a scope attribute for a
pointee. Cray pointers cannot be specified in FIRSTPRIVATE or
LASTPRIVATE clauses.

7. Scope clauses apply only to variables in the static extent of the directive on
which the clause appears, with the exception of variables passed as actual
arguments. Local variables in called routines that do not have the SAVE
attribute are PRIVATE. Common blocks and modules in called routines in
the dynamic extent of a parallel region always have an implicit SHARED
attribute, unless they are THREADPRIVATE common blocks.

8. When a named common block is declared as PRIVATE, FIRSTPRIVATE, or
LASTPRIVATE, none of its constituent elements may be declared in another
scope attribute. When individual members of a common block are
privatized, the storage of the specified variables is no longer associated
with the storage of the common block itself.

112 SR–3907 3.0.2

OpenMP Fortran API Multiprocessing Directives [4]

9. Variables that are not allowed in the PRIVATE and SHARED clauses are not
affected by DEFAULT(PRIVATE) or DEFAULT(SHARED) clauses,
respectively.

10. Clauses can be repeated as needed, but each variable can appear explicitly
in only one clause per directive, with the following exceptions:

• A variable can be specified as both FIRSTPRIVATE and LASTPRIVATE.

• Variables affected by the DEFAULT clause can be listed explicitly in a
clause to override the default specification.

4.8 Directive Binding

Some directives are bound to other directives. A binding specifies the way in
which one directive is related to another. For instance, a directive is bound to a
second directive if it can appear in the dynamic extent of that second directive.
The following rules apply with respect to the dynamic binding of directives:

• The DO, SECTIONS, SINGLE, MASTER, and BARRIER directives bind to the
dynamically enclosing PARALLEL directive, if one exists.

• The ORDERED directive binds to the dynamically enclosing DO directive.

• The ATOMIC directive enforces exclusive access with respect to ATOMIC
directives in all threads, not just the current team.

• The CRITICAL directive enforces exclusive access with respect to CRITICAL
directives in all threads, not just the current team.

• A directive can never bind to any directive outside the closest enclosing
PARALLEL.

Example 1. The directive binding rules call for a BARRIER directive to bind to
the closest enclosing PARALLEL directive.

In the following example, the call from MAIN to SUB2 is valid because the
BARRIER (in SUB3) binds to the PARALLEL region in SUB2. The call from MAIN
to SUB1 is valid because the BARRIER binds to the PARALLEL region in
subroutine SUB2.

PROGRAM MAIN

CALL SUB1(2)
CALL SUB2(2)

END

SR–3907 3.0.2 113

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

SUBROUTINE SUB1(N)

!$OMP PARALLEL PRIVATE(I) SHARED(N)
!$OMP DO

DO I = 1, N

CALL SUB2(I)

END DO

!$OMP END PARALLEL

END

SUBROUTINE SUB2(K)

!$OMP PARALLEL SHARED(K)

CALL SUB3(K)

!$OMP END PARALLEL
END

SUBROUTINE SUB3(N)

CALL WORK(N)

!$OMP BARRIER
CALL WORK(N)

END

Example 2. The following program shows inner and outer DO directives that
bind to different PARALLEL regions:

!$OMP PARALLEL DEFAULT(SHARED)

!$OMP DO

DO I = 1, N

!$OMP PARALLEL SHARED(I,N)

!$OMP DO
DO J = 1, N

CALL WORK(I,J)

END DO

!$OMP END PARALLEL

END DO

!$OMP END PARALLEL

A following variation of the preceding example also shows correct binding:

!$OMP PARALLEL DEFAULT(SHARED)

!$OMP DO

DO I = 1, N
CALL SOME_WORK(I,N)

END DO

!$OMP END PARALLEL

114 SR–3907 3.0.2

OpenMP Fortran API Multiprocessing Directives [4]

SUBROUTINE SOME_WORK(I,N)
!$OMP PARALLEL DEFAULT(SHARED)

!$OMP DO

DO J = 1, N

CALL WORK(I,J)

END DO

!$OMP END PARALLEL
RETURN

END

4.9 Directive Nesting

The following rules apply to the dynamic nesting of directives:

• A PARALLEL directive dynamically inside another PARALLEL directive
logically establishes a new team, which is composed of only the current
thread unless nested parallelism is enabled.

• DO, SECTIONS, and SINGLE directives that bind to the same PARALLEL
directive cannot be nested one inside the other.

• DO, SECTIONS, and SINGLE directives are not permitted in the dynamic
extent of CRITICAL and MASTER directives.

• BARRIER directives are not permitted in the dynamic extent of DO,
SECTIONS, SINGLE, MASTER, and CRITICAL directives.

• MASTER directives are not permitted in the dynamic extent of DO,
SECTIONS, and SINGLE directives.

• ORDERED sections are not allowed in the dynamic extent of CRITICAL
sections.

• Any directive set that is legal when executed dynamically inside a PARALLEL
region is also legal when executed outside a parallel region. When executed
dynamically outside a user-specified parallel region, the directive is executed
with respect to a team composed of only the master thread.

Example 1. The following example is incorrect because the inner and outer DO
directives are nested and bind to the same PARALLEL directive:

PROGRAM WRONG1

!$OMP PARALLEL DEFAULT(SHARED)
!$OMP DO

SR–3907 3.0.2 115

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

DO I = 1, N

!$OMP DO
DO J = 1, N

CALL WORK(I,J)

END DO

END DO

!$OMP END PARALLEL

END

The following dynamically nested version of the preceding code is also
incorrect:

PROGRAM WRONG2
!$OMP PARALLEL DEFAULT(SHARED)

!$OMP DO

DO I = 1, N

CALL SOME_WORK(I,N)

END DO

!$OMP END PARALLEL

SUBROUTINE SOME_WORK(I,N)

!$OMP DO

DO J = 1, N

CALL WORK(I,J)
END DO

RETURN

END

Example 2. The following example is incorrect because the DO and SINGLE
directives are nested, and they bind to the same PARALLEL region:

PROGRAM WRONG3

!$OMP PARALLEL DEFAULT(SHARED)

!$OMP DO

DO I = 1, N
!$OMP SINGLE

CALL WORK(I)

!$OMP END SINGLE

END DO

!$OMP END PARALLEL

END

Example 3. The following example is incorrect because a BARRIER directive
inside a SINGLE or a DO directive can result in deadlock:

116 SR–3907 3.0.2

OpenMP Fortran API Multiprocessing Directives [4]

PROGRAM WRONG3

!$OMP PARALLEL DEFAULT(SHARED)
!$OMP DO

DO I = 1, N

CALL WORK(I)

!$OMP BARRIER

CALL MORE_WORK(I)

END DO
!$OMP END PARALLEL

END

Example 4. The following example is incorrect because the BARRIER results in
deadlock due to the fact that only one thread at a time can enter the critical
section:

PROGRAM WRONG4

!$OMP PARALLEL DEFAULT(SHARED)

!$OMP CRITICAL

CALL WORK(N,1)
!$OMP BARRIER

CALL MORE_WORK(N,2)

!$OMP END CRITICAL

!$OMP END PARALLEL

END

Example 5. The following example is incorrect because the BARRIER results in
deadlock due to the fact that only one thread executes the SINGLE section:

PROGRAM WRONG5

!$OMP PARALLEL DEFAULT(SHARED)
CALL SETUP(N)

!$OMP SINGLE

CALL WORK(N,1)

!$OMP BARRIER

CALL MORE_WORK(N,2)
!$OMP END SINGLE

CALL FINISH(N)

!$OMP END PARALLEL

END

SR–3907 3.0.2 117

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

4.10 Analyzing Data Dependencies for Multiprocessing

The essential condition required to parallelize a loop correctly is that each
iteration of the loop must be independent of all other iterations. If a loop meets
this condition, then the order in which the iterations of the loop execute is not
important. They can be executed backward or at the same time, and the answer
is still the same. This property is captured by the notion of data independence.

For a loop to be data independent, no iterations of the loop can write a value
into a memory location that is read or written by any other iteration of that
loop. It is all right if the same iteration reads and/or writes a memory location
repeatedly as long as no others do; it is all right if many iterations read the
same location as long as none of them write to it.

In a Fortran program, memory locations are represented by variable names. So,
to determine if a particular loop can be run in parallel, examine the way
variables are used in the loop. Because data dependence occurs only when
memory locations are modified, pay particular attention to variables that appear
on the left-hand side of assignment statements. If a variable is neither modified
nor passed to a function or subroutine, there is no data dependence associated
with it.

The Fortran compiler supports four kinds of variable usage within a parallel
loop: SHARED, PRIVATE, LASTPRIVATE, and REDUCTION. If a variable is
declared as SHARED, all iterations of the loop use the same copy. If a variable is
declared as PRIVATE, each iteration is given its own uninitialized copy. A
variable is declared SHARED if it is only read (not written) within the loop or if
it is an array where each iteration of the loop uses a different element of the
array. A variable can be PRIVATE if its value does not depend on any other
iteration and if its value is used only within a single iteration. The PRIVATE
variable is essentially temporary; a new copy can be created in each loop
iteration without changing the final answer. As a special case, if only the last
value of a variable computed on the last iteration is used outside the loop (but
would otherwise qualify as a PRIVATE variable), the loop can be
multiprocessed by declaring the variable to be LASTPRIVATE.

It is often difficult to analyze loops for data dependence information. Each use
of each variable must be examined to determine if it fulfills the criteria for
PRIVATE, LASTPRIVATE, SHARED, or REDUCTION. If all of the uses conform,
the loop can be parallelized. If not, the loop cannot be parallelized as written,
but can possibly be rewritten into an equivalent parallel form.

An alternative to manually analyzing variable usage is to use the MIPSpro
Automatic Parallelization Option. This optional software package is a Fortran
preprocessor that analyzes loops for data dependence. If the MIPSpro

118 SR–3907 3.0.2

OpenMP Fortran API Multiprocessing Directives [4]

Automatic Parallelization Option software determines that a loop is
data-independent, it automatically inserts the required compiler directives. If it
cannot determine if the loop is independent, it produces a listing file detailing
where the problems lie.

4.10.1 Dependency Analysis Examples

This section contains examples that show dependency analysis.

Example 1. Simple independence. In this example, each iteration writes to a
different location in A, and none of the variables appearing on the right-hand
side are ever written to; they are only read from. This loop can be correctly run
in parallel. All the variables are SHARED except for I, which is either PRIVATE
or LASTPRIVATE, depending on whether the last value of I is used later in the
code.

DO I = 1,N

A(I) = X + B(I)*C(I)
END DO

Example 2. Data dependence. The following code fragment contains A(I) on
the left-hand side and A(I-1) on the right. This means that one iteration of the
loop writes to a location in A and the next iteration reads from that same
location. Because different iterations of the loop read and write the same
memory location, this loop cannot be run in parallel.

DO I = 2,N

A(I) = B(I) - A(I-1)

END DO

Example 3. Stride not 1. This example is similar to the previous example. The
difference is that the stride of the DO loop is now 2 rather than 1. A(I) now
references every other element of A, and A(I-1) references exactly those
elements of A that are not referenced by A(I). None of the data locations on
the right-hand side is ever the same as any of the data locations written to on
the left-hand side. The data are disjoint, so there is no dependence. The loop
can be run in parallel. Arrays A and B can be declared SHARED, while variable
I should be declared PRIVATE or LASTPRIVATE.

DO I = 2,N,2
A(I) = B(I) - A(I-1)

END DO

SR–3907 3.0.2 119

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

Example 4. Local variable. In the following loop, each iteration of the loop
reads and writes the variable X. However, no loop iteration ever needs the
value of X from any other iteration. X is used as a temporary variable; its value
does not survive from one iteration to the next.

This loop can be parallelized by declaring X to be a PRIVATE variable within
the loop. Note that B(I) is both read and written by the loop. This is not a
problem because each iteration has a different value for I, so each iteration uses
a different B(I). The same B(I) is allowed to be read and written as long as it
is done by the same iteration of the loop. The loop can be run in parallel.
Arrays A and B can be declared SHARED, while variable I should be declared
PRIVATE or LASTPRIVATE.

DO I = 1, N

X = A(I)*A(I) + B(I)
B(I) = X + B(I)*X

END DO

Example 5. Function call. The value of X in any iteration of the following loop
is independent of the value of X in any other iteration, so X can be made a
PRIVATE variable. The loop can be run in parallel. Arrays A, B, C, and D can be
declared SHARED, while variable I should be declared PRIVATE or
LASTPRIVATE.

DO I = 1, N

X = SQRT(A(I))

B(I) = X*C(I) + X*D(I)
END DO

This loop invokes an intrinsic function, SQRT. It is possible to use functions
and/or subroutines (intrinsic or user defined) within a parallel loop. However,
verify that the parallel invocations of the routine do not interfere with one
another. In particular, SQRT returns a value that depends only on its input
argument, does not modify global data, and does not use static storage (it has
no side effects).

The Fortran 90 intrinsic functions have no side effects. The intrinsic functions
can be used safely within a parallel loop. The intrinsic subroutines, however,
can have side effects. Most Fortran library functions cannot be included in a
parallel loop. In particular, rand is not safe for multiprocessing. For
user-written routines, it is your responsibility to ensure that the routines can be
correctly multiprocessed.

!
Caution: Do not use the -static option on the f90(1) command line when
compiling routines called within a parallel loop.

120 SR–3907 3.0.2

OpenMP Fortran API Multiprocessing Directives [4]

Example 6. Rewritable data dependence. Here, the value of INDX survives the
loop iteration and is carried into the next iteration. This loop cannot be
parallelized as it is written. Making INDX a PRIVATE variable does not work;
you need the value of INDX computed in the previous iteration. It is possible to
rewrite this loop to make it parallel. See Section 4.10.2, page 122, for an example.

INDX = 0

DO I = 1, N
INDX = INDX + I

A(I) = B(I) + C(INDX)

END DO

Example 7. Exit branch. The following loop contains an exit branch; that is,
under certain conditions the flow of control suddenly exits the loop. The
compiler cannot parallelize loops containing exit branches.

DO I = 1, N

IF (A(I) .LT. EPSILON) EXIT

A(I) = A(I) * B(I)
END DO

Example 8. Complicated independence. Initially, it appears that the following
loop cannot be run in parallel because it uses both W(I) and W(I-K).
However, because the value of I varies between K+1 and 2*K, then I-K goes
from 1 to K. This means that the W(I-K) term varies from W(1) to W(K), while
the W(I) term varies from W(K+1) to W(2*K). Therefore, W(I-K) in any
iteration of the loop is never the same memory location as W(I) in any other
iterations. Because there is no data overlap, there are no data dependencies.
This loop can be run in parallel. Elements W, B, and K can be declared SHARED,
but variable I should be declared PRIVATE or LASTPRIVATE.

DO I = K+1, 2*K

W(I) = W(I) + B(I,K) * W(I-K)

END DO

The preceding code illustrates a general rule: the more complex the expression
used to index an array, the harder it is to analyze. If the arrays in a loop are
indexed only by the loop index variable, the analysis is usually straightforward.

Example 9. Inconsequential data dependence. The data dependence in the
following loop is present because it is possible that at some point that I will be
the same as INDEX, so there will be a data location that is being read and
written by different iterations of the loop. In this special case, you can simply
ignore it. You know that when I and INDEX are equal, the value written into
A(I) is exactly the same as the value that is already there. The fact that some

SR–3907 3.0.2 121

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

iterations of the loop read the value before it is written and some after it is
written is not important because they all get the same value. Therefore, this
loop can be parallelized. Array A can be declared SHARED, but variable I
should be declared PRIVATE or LASTPRIVATE.

INDEX = SELECT(N)

DO I = 1, N

A(I) = A(INDEX)
END DO

Example 10. Local array. In the following code fragment, each iteration of the
loop uses the same locations in array D. However, closer inspection reveals that
array D is being used as a temporary. This can be multiprocessed by declaring D
to be PRIVATE. The Fortran compiler allows arrays (even multidimensional
arrays) to be PRIVATE variables, with the following restrictions: the size of the
array must be either a constant or an expression; the dimension bounds must
be specified; the PRIVATE array cannot have been declared using a variable or
the asterisk (*) syntax; and assumed-shape, deferred-shape, and pointer arrays
are not permitted.

DO I = 1, N

D(1) = A(I,1) - A(J,1)

D(2) = A(I,2) - A(J,2)

D(3) = A(I,3) - A(J,3)

TOTAL_DISTANCE(I,J) = SQRT(D(1)**2 + D(2)**2 + D(3)**2)
END DO

The preceding loop can be parallelized. Arrays TOTAL_DISTANCE and A can be
declared SHARED, and array D and variable I can be declared PRIVATE or
LASTPRIVATE.

4.10.2 Rewriting Data Dependencies

Many loops that have data dependencies can be rewritten so that some or all of
the loop can be run in parallel. You must first locate the statement(s) in the
loop that cannot be made parallel and try to find another way to express it that
does not depend on any other iteration of the loop. If this fails, try to pull the
statements out of the loop and into a separate loop, allowing the remainder of
the original loop to be run in parallel.

After you identify data dependencies, you can use various techniques to rewrite
the code to break the dependence. Sometimes the dependencies in a loop
cannot be broken, and you must either accept the serial execution rate or try to
find a new parallel method of solving the problem. The following examples

122 SR–3907 3.0.2

OpenMP Fortran API Multiprocessing Directives [4]

show how to deal with commonly occurring situations. These are by no means
exhaustive but cover many situations that happen in practice.

Example 1. Loop-carried value. The following code segment is the same as the
rewritable data dependence example in the previous section. INDX has its value
carried from iteration to iteration. However, you can compute the appropriate
value for INDX without making reference to any previous value.

INDX = 0

DO I = 1, N
INDX = INDX + I

A(I) = B(I) + C(INDX)

END DO

For example, consider the following code:

!$OMP PARALLEL DO PRIVATE (I, INDX)

DO I = 1, N
INDX = (I*(I+1))/2

A(I) = B(I) + C(INDX)

END DO

In this loop, the value of INDX is computed without using any values computed
on any other iteration. INDX can correctly be made a PRIVATE variable, and
the loop can now be multiprocessed.

Example 2. Indirect indexing. Consider the following code:

DO I = 1, N
IX = INDEXX(I)

IY = INDEXY(I)

XFORCE(I) = XFORCE(I) + NEWXFORCE(IX)

YFORCE(I) = YFORCE(I) + NEWYFORCE(IY)

IXX = IXOFFSET(IX)

IYY = IYOFFSET(IY)
TOTAL(IXX, IYY) = TOTAL(IXX, IYY) + EPSILON

END DO

It is the final statement that causes problems. The indexes IXX and IYY are
computed in a complex way and depend on the values from the IXOFFSET and
IYOFFSET arrays. It is not known if TOTAL(IXX,IYY) in one iteration of the
loop will always be different from TOTAL(IXX,IYY) in every other iteration of
the loop.

You can pull the statement out into its own separate loop by expanding IXX
and IYY into arrays to hold intermediate values, as follows:

SR–3907 3.0.2 123

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

!$OMP PARALLEL DO PRIVATE(IX, IY, I)

DO I = 1, N
IX = INDEXX(I)

IY = INDEXY(I)

XFORCE(I) = XFORCE(I) + NEWXFORCE(IX)

YFORCE(I) = YFORCE(I) + NEWYFORCE(IY)

IXX(I) = IXOFFSET(IX)

IYY(I) = IYOFFSET(IY)
END DO

DO I = 1, N

TOTAL(IXX(I),IYY(I)) = TOTAL(IXX(I), IYY(I)) + EPSILON

END DO

Here, IXX and IYY have been turned into arrays to hold all the values
computed by the first loop. The first loop (containing most of the work) can
now be run in parallel. Only the second loop must still be run serially. This is
true if IXOFFSET or IYOFFSET are permutation vectors.

If you were certain that the value for IXX was always different in every
iteration of the loop, then the original loop could be run in parallel. It could
also be run in parallel if IYY was always different. If IXX (or IYY) is always
different in every iteration, then TOTAL(IXX,IYY) is never the same location
in any iteration of the loop, and so there is no data conflict.

This sort of knowledge is program-specific and should always be used with
great care. It may be true for a particular data set, but to run the original code
in parallel as it stands, you need to be sure it will always be true for all possible
input data sets.

Example 3. Recurrence. The following example shows a recurrence, which exists
when a value computed in one iteration is immediately used by another
iteration. There is no good way of running this loop in parallel. If this type of
construct appears in a critical loop, try pulling the statement(s) out of the loop
as in the previous example. Sometimes another loop encloses the recurrence; in
that case, try to parallelize the outer loop.

DO I = 1,N

X(I) = X(I-1) + Y(I)

END DO

Example 4. Sum reduction. The following example shows an operation known
as a reduction. Reductions occur when an array of values is combined and
reduced into a single value.

124 SR–3907 3.0.2

OpenMP Fortran API Multiprocessing Directives [4]

SUM = 0.0

DO I = 1,N
SUM = SUM + A(I)

END DO

This example is a sum reduction because the combining operation is addition.
Here, the value of SUM is carried from one loop iteration to the next, so this
loop cannot be multiprocessed. However, because this loop simply sums the
elements of A(I), you can rewrite the loop to accumulate multiple,
independent subtotals and do much of the work in parallel, as follows:

NUM_THREADS = OMP_GET_NUM_THREADS()
!

! IPIECE_SIZE = N/NUM_THREADS ROUNDED UP

!

IPIECE_SIZE = (N + (NUM_THREADS-1)) / NUM_THREADS

DO K = 1, NUM_THREADS
PARTIAL_SUM(K) = 0.0

!

! THE FIRST THREAD DOES 1 THROUGH IPIECE_SIZE, THE

! SECOND DOES IPIECE_SIZE + 1 THROUGH 2*IPIECE_SIZE,

! ETC. IF N IS NOT EVENLY DIVISIBLE BY NUM_THREADS,
! THE LAST PIECE NEEDS TO TAKE THIS INTO ACCOUNT,

! HENCE THE "MIN" EXPRESSION.

!

DO I = K*IPIECE_SIZE - IPIECE_SIZE + 1, MIN(K*IPIECE_SIZE,N)

PARTIAL_SUM(K) = PARTIAL_SUM(K) + A(I)

END DO
END DO

!

! NOW ADD UP THE PARTIAL SUMS

SUM = 0.0

DO I = 1, NUM_THREADS
SUM = SUM + PARTIAL_SUM(I)

END DO

The outer loop K can be run in parallel. In this method, the array pieces for the
partial sums are contiguous, resulting in good cache utilization and
performance.

Because this is an important and common transformation, automatic support is
provided by the REDUCTION clause:

SR–3907 3.0.2 125

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

SUM = 0.0

!$OMP PARALLEL DO PRIVATE (I), REDUCTION (+:SUM)
DO 10 I = 1, N

SUM = SUM + A(I)

10 CONTINUE

The previous code has essentially the same meaning as the much longer and
more confusing code above. Adding an extra dimension to an array to permit
parallel computation and then combining the partial results is an important
technique for trying to break data dependencies. This technique is often useful.

Reduction transformations such as this do not produce the same results as the
original code. Because computer arithmetic has limited precision, when you
sum the values together in a different order, as was done here, the round-off
errors accumulate slightly differently. It is probable that the final answer will be
slightly different from the original loop. Both answers are equally correct. The
difference is usually irrelevant, but sometimes it can be significant. If the
difference is significant, neither answer is really trustworthy.

This example is a sum reduction because the operator is plus (+). The Fortran
compiler supports the following types of reduction operations:

• sum: p = p+a(i)

• product: p = p*a(i)

• min: m = MIN(m,a(i))

• max: m = MAX(m,a(i))

For example,

!$OMP PARALLEL DO PRIVATE (I), REDUCTION(+:BG_SUM),

!$OMP+REDUCTION(*:BG_PROD), REDUCTION(MIN:BG_MIN), REDUCTION(MAX:BG_MAX)

DO I = 1,N

BG_SUM = BG_SUM + A(I)

BG_PROD = BG_PROD * A(I)
BG_MIN = MIN(BG_MIN, A(I))

BG_MAX = MAX(BG_MAX, A(I))

END DO

The following is another example of a reduction transformation:

DO I = 1, N

TOTAL = 0.0

DO J = 1, M

126 SR–3907 3.0.2

OpenMP Fortran API Multiprocessing Directives [4]

TOTAL = TOTAL + A(J)

END DO
B(I) = C(I) * TOTAL

END DO

Initially, it might look as if the inner loop should be parallelized with a
REDUCTION clause. However, consider the outer I loop. Although TOTAL
cannot be made a PRIVATE variable in the inner loop, it fulfills the criteria for a
PRIVATE variable in the outer loop: the value of TOTAL in each iteration of the
outer loop does not depend on the value of TOTAL in any other iteration of the
outer loop. Thus, you do not have to rewrite the loop; you can parallelize this
reduction on the outer I loop, making TOTAL and J local variables.

4.11 Work Quantum

A certain amount of overhead is associated with multiprocessing a loop. If the
work occurring in the loop is small, the loop can actually run slower by
multiprocessing than by single processing. To avoid this, make the amount of
work inside the multiprocessed region as large as possible, as is shown in the
following examples.

Example 1. Loop interchange. Consider the following code:

DO K = 1, N

DO I = 1, N

DO J = 1, N

A(I,J) = A(I,J) + B(I,K) * C(K,J)

END DO
END DO

END DO

For the preceding code fragment, you can parallelize the J loop or the I loop.
You cannot parallelize the K loop because different iterations of the K loop read
and write the same values of A(I,J). Try to parallelize the outermost DO loop
if possible, because it encloses the most work. In this example, that is the I
loop. For this example, use the technique called loop interchange. Although the
parallelizable loops are not the outermost ones, you can reorder the loops to
make one of them outermost.

Thus, loop interchange would produce the following code fragment:

!$OMP PARALLEL DO PRIVATE(I, J, K)

DO I = 1, N
DO K = 1, N

SR–3907 3.0.2 127

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

DO J = 1, N

A(I,J) = A(I,J) + B(I,K) * C(K,J)
END DO

END DO

END DO

Now the parallelizable loop encloses more work and shows better performance.
In practice, relatively few loops can be reordered in this way. However, it does
occasionally happen that several loops in a nest of loops are candidates for
parallelization. In such a case, it is usually best to parallelize the outermost one.

Occasionally, the only loop available to be parallelized has a fairly small
amount of work. It may be worthwhile to force certain loops to run without
parallelism or to select between a parallel version and a serial version, on the
basis of the length of the loop.

Example 2. Conditional parallelism. The loop is worth parallelizing if N is
sufficiently large. To overcome the parallel loop overhead, N needs to be around
1000, depending on the specific hardware and the context of the program. The
optimized version would uses an IF clause on the PARALLEL DO directive:

!$OMP PARALLEL DO IF (J .GE. 1000), PRIVATE(I)

DO I = 1, N
A(I) = A(I) + X*B(I)

END DO

4.12 Cache Effects and Optimization

It is best to try to write loops that take the cache into account, with or without
parallelism. The technique for attaining the best cache performance is quite
simple: make the loop step through the array in the same way that the array is
laid out in memory. For Fortran, this means stepping through the array without
any gaps and with the leftmost subscript varying the fastest. This does not
depend on multiprocessing, nor is it required in order for multiprocessing to
work correctly. However, multiprocessing can affect how the cache is used.

4.12.1 Performing a Matrix Multiply

Consider the following code segment:

DO I = 1, N
DO K = 1, N

DO J = 1, N

128 SR–3907 3.0.2

OpenMP Fortran API Multiprocessing Directives [4]

A(I,J) = A(I,J) + B(I,K) * C(K,J)

END DO
END DO

END DO

To get the best cache performance, the I loop should be innermost. At the same
time, to get the best multiprocessing performance, the outermost loop should be
parallelized.

For this example, you can interchange the I and J loops, and get the best of
both optimizations:

!$OMP PARALLEL DO PRIVATE(I, J, K)

DO J = 1, N
DO K = 1, N

DO I = 1, N

A(I,J) = A(I,J) + B(I,K) * C(K,J)

END DO

END DO
END DO

4.12.2 Optimization Costs

Sometimes you must choose between the possible optimizations and their costs.
Look at the following code segment:

DO J = 1, N
DO I = 1, M

A(I) = A(I) + B(J)*C(I,J)

END DO

END DO

This loop can be parallelized on I but not on J. You could interchange the
loops to put I on the outside, thus getting a bigger work quantum.

!$OMP PARALLEL DO PRIVATE(I,J)

DO I = 1, M

DO J = 1, N

A(I) = A(I) + B(J)*C(I,J)
END DO

END DO

SR–3907 3.0.2 129

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

However, putting J on the inside means that you will step through the C array
in the wrong direction; the leftmost subscript should be the one that varies the
fastest. It is possible to parallelize the I loop where it stands:

DO J = 1, N

!$OMP PARALLEL DO PRIVATE(I)

DO I = 1, M

A(I) = A(I) + B(J)*C(I,J)
END DO

END DO

However, M needs to be large for the work quantum to show any improvement.
In this example, A(I) is used to do a sum reduction, and it is possible to use
reduction techniques to rewrite this in a parallel form. However, that involves
converting array A from a one-dimensional array to a two-dimensional array to
hold the partial sums; this is analogous to the way the scalar summation
variable was converted into an array of partial sums.

If A is large, however, the conversion can take too much memory. It can also
take extra time to initialize the expanded array and increase the memory
bandwidth requirements.

NUM = OMP_NUM_THREADS()

IPIECE = (N + (NUM-1)) / NUM

!$OMP PARALLEL DO PRIVATE(K,J,I)

DO K = 1, NUM

DO J = K*IPIECE - IPIECE + 1, MIN(N, K*IPIECE)
DO I = 1, M

PARTIAL_A(I,K) = PARTIAL_A(I,K) + B(J)*C(I,J)

END DO

END DO

END DO
!$OMP PARALLEL DO PRIVATE (I,K)

DO I = 1, M

DO K = 1, NUM

A(I) = A(I) + PARTIAL_A(I,K)

END DO
END DO

You must analyze the various possible optimizations to find the combination
that is right for the particular job.

130 SR–3907 3.0.2

OpenMP Fortran API Multiprocessing Directives [4]

4.12.3 Load Balancing

When the Fortran compiler divides a loop into pieces, by default it uses the
simple method of separating the iterations into contiguous blocks of equal size
for each process. It can happen that some iterations take significantly longer to
complete than other iterations. At the end of a parallel region, the program
waits for all processes to complete their tasks. If the work is not divided evenly,
time is wasted waiting for the slowest process to finish.

Consider the following code:

DO I = 1, N
DO J = 1, I

A(J, I) = A(J, I) + B(J)*C(I)

END DO

END DO

The previous code segment can be parallelized on the I loop. Because the inner
loop goes from 1 to I, the first block of iterations of the outer loop will end
long before the last block of iterations of the outer loop.

In this example, this is easy to see and predictable, so you can change the
program:

NUM_THREADS = OMP_NUM_THREADS()

!$OMP PARALLEL DO PRIVATE(I, J, K)
DO K = 1, NUM_THREADS

DO I = K, N, NUM_THREADS

DO J = 1, I

A(J, I) = A(J, I) + B(J)*C(I)

END DO
END DO

END DO

In this rewritten version, instead of breaking up the I loop into contiguous
blocks, break it into interleaved blocks. Thus, each execution thread receives
some small values of I and some large values of I, giving a better balance of
work between the threads. Interleaving usually, but not always, cures a load
balancing problem.

You can use the SCHEDULE clause to automatically perform this desirable
transformation, as in this example:

!$OMP PARALLEL DO PRIVATE(I,J), SCHEDULE(STATIC,1)

DO I = 1, N

SR–3907 3.0.2 131

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

DO J = 1, I

A (J,I) = A(J,I) + B(J)*C(J)
END DO

END DO

The previous code has the same meaning as the rewritten form above.

Interleaving can cause poor cache performance because the array is no longer
stepped through at stride 1. You can improve performance somewhat by using
a chunk size larger than 1. Usually 4 or 8 is a good value for int_expr. Each
small chunk will have stride 1 to improve cache performance, while the chunks
are interleaved to improve load balancing.

The way that iterations are assigned to processes is known as scheduling.
Interleaving is one possible schedule. Both interleaving and the simple
scheduling methods are examples of fixed schedules; the iterations are assigned
to processes by a single decision made when the loop is entered. For more
complex loops, it may be desirable to use DYNAMIC or GUIDED schedules.

Comparing the output from SpeedShop allows you to see how well the load is
being balanced so you can compare the different methods of dividing the load.
For more information on SpeedShop, see the ssrun(1) man page.

Even when the load is perfectly balanced, iterations may still take varying
amounts of time to finish because of random factors. One process may take a
page fault, another may be interrupted to let a different program run, and so on.
Because of these unpredictable events, the time spent waiting for all processes
to complete can be several hundred cycles, even with near perfect balance.

132 SR–3907 3.0.2

Parallel Processing on Origin series
Systems [5]

This chapter describes directives that may be useful to you when developing
programs for parallel processing on Origin series systems. The techniques
described in this chapter use directives from the OpenMP Fortran API standard
and directives that are Silicon Graphics extensions to the standard.

Note: The directives and clauses that are part of the OpenMP Fortran API
have the !$OMP prefix. The extension directives have the !$SGI prefix.

The multiprocessing features described in this chapter require support from the
MP run-time library. IRIX operating system versions 6.3 and later include this
library. If you need to access these features on a machine running a different
IRIX version, contact your sales representative.

For information on environment variables that can control run-time features,
see the pe_environ(5) man page.

5.1 Performance Tuning on Origin series Systems

Origin series systems provide cache-coherent, shared memory in the hardware.
Memory is physically distributed across processors. Processors can read data
only from the primary cache. If the required data is not present in the primary
cache, a cache miss is said to have occured. Therefore, references to locations in
the remote memory of another processor take substantially longer to complete
than references to locations in local memory. Cache misses adversely affect
program performance.

Figure 2 shows a simplified version of the Origin series memory hierarchy.

SR–3907 3.0.2 133

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

a11354

Processor

Cache

MemoryHub

Processor

Cache

Processor

Cache

MemoryHub

Processor

Cache

Interconnection network

Figure 2. Origin series memory hierarchy

5.1.1 Improving Program Performance

To obtain good performance in parallel programs it is important to schedule
computation and to distribute the data across the underlying processors and
memory modules, ensuring that most cache misses are satisfied from local
rather than from remote memory. The primary goal of programming support is
to enable user control over data placement and user control over computation
scheduling.

Cache behavior is the largest single factor affecting performance, and programs
with infrequent cache misses usually have little need for explicit data
placement. These programs write data to memory and reuse it as many times
as possible before overwriting it. You can use perfex(1) to find information on
your program’s cache misses.

In programs with many cache misses, if the misses correspond to true data
communication between processors, data placement is unlikely to help. In these
cases, it may be necessary to redesign your program to reduce interprocessor
communication. When redesigning your program to reduce interprocessor
communication, keep the following in mind:

• Make sure the data needed by a processor is at least local to the processor’s
memory.

• Make sure that each processor is working independently and not relying on
the changing data of other processors.

• Minimize cache misses.

134 SR–3907 3.0.2

Parallel Processing on Origin series Systems [5]

If the misses are to data that is referenced primarily by a single processor, then
data placement may be able to convert remote references to local references,
thereby reducing the latency of the miss. The possible methods for data
placement are automatic page migration or explicit data distribution, either regular
or reshaped, described in detail in Section 5.3.1, page 149, and Section 5.3.2,
page 150. The differences between these methods are shown in Figure 3, page
136. Some criteria for choosing between these methods are discussed in Section
5.1.2, page 137.

Automatic page migration requires no user intervention and is based on the
run-time cache miss behavior of the program. It can, therefore, adjust to
dynamic changes in the reference patterns. However, page migration is very
conservative, and the system may be slow to react to changes in the reference
patterns. It is also limited to performing page-level data allocation.

Note: On most systems, page migration is disabled by default. When
enabled, page migration can affect other codes running on the system. To
determine whether page migration is enabled, contact your system
administrator or examine the output from the sn -v command. For more
information on this command, see the sn(1) man page.

Regular data distribution (performing only page-level placement of the array) is
also limited to page-level allocation, but is useful when the page migration
heuristics are slow and the desired distribution is known to the programmer.

Finally, reshaped data distribution changes the layout of the array. This
overcomes the page-level allocation constraints, but it is useful only if a data
structure has the same (static) distribution for the duration of the program.
Given these differences, it may be necessary to use each of these methods for
different data structures in the same program.

SR–3907 3.0.2 135

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

a11355

Done
Yes

Good
cache

behavior?

No

Are
misses true

communication
?

Data placement
unlikely to help.

May need to
redesign algorithm.

Yes

Positive
effects

Negative
effects or

restrictions

Automatic Page Migration

Automatic, no
user-intervention

Can adjust to
dynamic changes

Deliberately slow
to react

Limited to
page-level
allocation

Deliberately slow
to react

Explicit Data Distribution (regular)

Useful if
placement
known
statically

Limited to
page-level
allocation

Explicit Data Distribution (reshaped)

Overcome
page-level
constraints

Useful for static
distributions only
Restrictions on
usage

Increased U
ser C

ontrol

•

•

•

•

•

• •

• •

•

No

Figure 3. Cache behavior and solutions

136 SR–3907 3.0.2

Parallel Processing on Origin series Systems [5]

5.1.2 Choosing a Tuning Method

For a given data structure in the program, you can choose between the
automatic page migration method or the data distribution method. Your choice
will be based on the following criteria:

• If the program repeatedly references the data structure and benefits from
reuse in the cache, data placement is not needed.

• If the program incurs a large number of cache misses on the data structure,
then you should identify the desired distribution in the array dimensions
(such as BLOCK or CYCLIC) based on the desired parallelism in the program.

The following example suggests a A(BLOCK, *) distribution:

!$OMP PARALLEL DO

DO I = 2, N

DO J = 2, N
A(I,J) = 3*I + 4*J + A(I, J-1)

END DO

END DO

However, the following example suggests a A(*, BLOCK) distribution:

DO I = 2, N

!$OMP PARALLEL DO

DO J = 2, N

A(I,J) = 3*I + 4*J + A(I-1, J)
END DO

END DO

After identifying the desired distribution, you can select either regular or
reshaped distribution based on the size of an individual processor’s portion of
the distributed array. Regular distribution is useful only if each processor’s
portion is substantially larger than the page size in the underlying system (16
KB on the Origin series systems). Otherwise, regular distribution is probably
not useful, and you should use the !$SGI DISTRIBUTE_RESHAPE directive,
which changes the layout of the array to overcome page-level constraints.

For example, consider the following code:

REAL(KIND=8) A(M, N)

!$SGI DISTRIBUTE A(BLOCK, *)

In the preceding example, the size of each processor’s portion is approximately
m/P elements (8 � (m/P) bytes), where P is the number of processors. If m is

SR–3907 3.0.2 137

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

1,000,000, each processor’s portion is likely to exceed a page and regular
distribution is sufficient. However, if m is 10,000, the
!$SGI DISTRIBUTE_RESHAPE directive is required to obtain the desired
distribution.

In contrast, consider the following distribution:

!$SGI DISTRIBUTE A(*, BLOCK)

In the preceding example, the size of each processor’s portion is approximately
(m � n)/P elements (8 � (m � n)/P bytes). Therefore, if n is 100, for example,
regular distribution may be sufficient even if m is only 10,000.

Distributing the outer dimensions of an array increases the size of an individual
processor’s portion (favoring regular distribution), but distributing the inner
dimensions is more likely to require reshaped distribution.

The IRIX operating system on Origin series systems follows a default first-touch
page-allocation policy. This means that each page is allocated from the local
memory of the processor that incurs a page-fault on that page. Therefore, in
programs where the array is initialized and is consequently first referenced in
parallel, even a regular distribution directive may not be necessary, because the
underlying pages are allocated from the desired memory location automatically
due to the first-touch policy.

OpenMP: The OpenMP Fortran API does not describe the BLOCK or CYCLIC
data distributions. These are Silicon Graphics extensions.

5.2 Directives for Performance Tuning

The MIPSpro 7 Fortran 90 compiler supports directives for performance tuning
on Origin series systems. These directives are extensions to the OpenMP
Fortran API. You must be licensed for the MIPSpro Automatic Parallelization
Option in order for these directives to be recognized. In addition, the -mp or
-pfa options must be in effect during compilation.

The directives supported are as follows:

• !$SGI DISTRIBUTE

• !$SGI DISTRIBUTE_RESHAPE

• !$OMP PARALLEL DO

• !$SGI DYNAMIC

138 SR–3907 3.0.2

Parallel Processing on Origin series Systems [5]

• !$SGI PAGE_PLACE

• !$SGI REDISTRIBUTE

Note: The functionality of the preceding directives is the same as that
provided in MIPSpro 7 Fortran 90 releases 7.2 and earlier. Only the prefix has
changed. Beginning with MIPSpro 7 Fortran 90 release 7.2.1, the !$ prefix is
outmoded.

The MIPSpro 7 Fortran 90 compiler supports several clauses to the preceding
directives that are extensions to the OpenMP Fortran API. These clauses can be
used with the preceding directives and with the standard directives described
by OpenMP. To preserve portability, the clauses must be preceded by a !$SGI+
prefix and must appear on a separate line, as follows:

directive

!$SGI+clause

. . .

directive Specify any OpenMP Fortran API directive or any Silicon
Graphics parallel processing directive. The OpenMP directives
are described in Chapter 4, page 81, and the Silicon Graphics
parallel processing directives are described in this chapter.

clause Specify any of clauses described in this chapter. There cannot be
any intervening spaces between the plus sign (+) and the name of
the clause.

The following code uses the Silicon Graphics NEST clause with the OpenMP
Fortran API DO directive:

!$OMP PARALLEL

!$OMP DO
!$SGI+NEST (I,J)

DO I = 1,10

DO J = 1,10

BLAH, BLAH

ENDDO
ENDDO

!$OMP ENDDO

SR–3907 3.0.2 139

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

!$OMP END PARALLEL

END

The !$OMP PARALLEL DO directive is described in Section 4.5.1, page 93. The
following sections describe the syntax of the Silicon Graphics directives and
clauses that are extensions to the OpenMP Fortran API.

5.2.1 Determining the Data Distribution for an Array: !$SGI DISTRIBUTE,
!$SGI DISTRIBUTE_RESHAPE, and !$SGI REDISTRIBUTE

The !$SGI DISTRIBUTE directive determines the data distribution for an
array. The !$SGI DISTRIBUTE directive dynamically redistributes an array.
The !$SGI REDISTRIBUTE_RESHAPE directive performs data distribution
with reshaping.

The formats of these directives are as follows:

!$SGI DISTRIBUTE array (dist1,dist2)
[ONTO (target1, target2 [, targetN] ...)]

!$SGI DISTRIBUTE_RESHAPE array (dist1,dist2)
[ONTO (target1, target2 [, targetN] ...)]

!$SGI REDISTRIBUTE array (dist1,dist2)
[ONTO (target1, target2 [, targetN] ...)]

array Specify the name of an array.

dist Specify the type of distribution for each dimension of the named
array. The number of dist arguments specified must be equal to
the number of array dimensions. dist can be one of the following:

• BLOCK. Indicates that BLOCK distribution should be used.

• CYCLIC [(expr)]. If expr is not specified, a chunk size of 1 is
assumed.

For performance reasons, use constants rather than expr when
the value of expr is known to be a compile-time constant.

• An asterisk (*). Indicates that the dimension is not distributed.

target Specify the target processor topology. This argument to the ONTO
clause specifies how to partition the processors across the

140 SR–3907 3.0.2

Parallel Processing on Origin series Systems [5]

distributed dimensions. There must be one target argument
specified for each BLOCK and CYCLIC distribution specified.

The Silicon Graphics data distribution directives and the !$OMP PARALLEL DO
directive have an optional ONTO clause. The ONTO clause allows you to specify
the processor topology when two (or more) dimensions of processors are
required.

The following example array is distributed in two dimensions, so you can use
the ONTO clause to specify how to partition the processors across the distributed
dimensions:

! ASSIGN PROCESSOR IN THE RATIO 1:2 TO THE TWO

! DIMENSIONS OF ARRAY A
REAL(KIND=8) A(100, 200)

!$SGI DISTRIBUTE A (BLOCK, BLOCK) ONTO (1, 2)

You can supply a !$SGI DISTRIBUTE directive on a dummy argument,
thereby specifying the distribution on the incoming actual argument. If
different calls to the subroutine have arguments with different distributions,
you can omit the !$SGI DISTRIBUTE directive on the dummy argument. Data
affinity loops in that subroutine are automatically implemented through a
run-time lookup of the distribution. This is allowed only for regular data
distribution. For reshaped array parameters, the distribution must be fully
specified on the formal parameter.

For more information on using the data distribution directives, see Section 5.3,
page 148.

OpenMP: The OpenMP Fortran API does not describe the BLOCK, *, or
CYCLIC distribution; or the ONTO clause.

5.2.2 Specifying a Parallel Region: !$OMP PARALLEL DO

The !$OMP PARALLEL DO directive is part of the OpenMP Fortran API. It
accepts the Silicon Graphics AFFINITY and NEST clauses as extensions,
however.

The following sections describe the AFFINITY and NEST clauses. For
information on the !$OMP PARALLEL DO directive, see Section 4.5.1, page 93.

SR–3907 3.0.2 141

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

5.2.2.1 AFFINITY Clause

Affinity scheduling controls the mapping of iterations of a parallel loop for
execution onto the underlying threads. The !$OMP PARALLEL DO directive
with the AFFINITY clause must immediately precede the loop to which it
applies, and it is in effect only for that loop.

An AFFINITY clause, if supplied, overrides an OpenMP SCHEDULE clause.

There are two type of affinity scheduling: data affinity and thread affinity.

An AFFINITY clause on an !$OMP PARALLEL DO directive has the following
format:

!$OMP PARALLEL DO

!$SGI+AFFINITY (int_expr, expr)

!$OMP PARALLEL DO

!$SGI+AFFINITY(do_variable) = DATA(array_element)

!$OMP PARALLEL DO

!$SGI+AFFINITY(do_variable) = THREAD(expr)

int_expr Specify an integer expression.

do_variable Specify the DO loop identifier.

array_element Enter an array element.

expr Specify a thread number. do_variable is executed on the thread
number specified, modulo the number of threads.

Because the threads may need to evaluate expr in each iteration of
the loop, the variables used in the expr (other than the do_variable)
must be declared SHARED and must not be modified during the
execution of the loop. Violating these rules can lead to incorrect
results. For information on declaring shared variables, see Section
4.7.2.2, page 106.

142 SR–3907 3.0.2

Parallel Processing on Origin series Systems [5]

If the expr does not depend on the DO variable, all iterations
execute on the same thread and do not benefit from parallel
execution.

When -O3 is in effect, loops that reference reshaped arrays default to data
affinity scheduling for the most frequently accessed reshaped array in the loop
(chosen by the compiler). To override this behavior, you can explicitly specify
the SCHEDULE clause on the !$SGI PARALLEL DO directive.

Data affinity for loops with nonunit stride can sometimes result in nonlinear
affinity expressions. In such situations the compiler issues a warning, ignores
the affinity clause, and defaults to STATIC scheduling.

Example 1. The following code shows an example of data affinity:

!$SGI DISTRIBUTE A(BLOCK)
!$OMP PARALLEL DO

!$SGI+AFFINITY(I) = DATA(A(A*I+B))

DO I = 1, N

A(A*I+B) = 0

END DO

The multiplier for A and the constant term B must both be literal constants,
with A greater than zero.

This example distributes the iterations of the parallel loop to match the data
distribution specified for array A, such that iteration I is executed on the
processor that owns element A(A*I+B) based on the distribution for A. The
iterations are scheduled based on the specified distribution, and are not affected
by the actual underlying data distribution, which may, for example, differ at
page boundaries.

Example 2. In case of a multidimensional array, affinity is provided for the
dimension that contains the loop index variable. The loop index variable cannot
appear in more than one dimension in an AFFINITY clause. In the following
example, the loop is scheduled based on the block distribution of the first
dimension:

SR–3907 3.0.2 143

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

!$SGI DISTRIBUTE A (BLOCK, CYCLIC(1))

!$OMP PARALLEL DO
!$SGI+AFFINITY(I) = DATA(A(I+3, J))

DO I = 1, N

DO J = 1, N

A(I+3, J) = A(I+3,J-1)

END DO

END DO

Example 3. The following directive executes iteration I on the thread number
given by the user-supplied expression (modulo the number of threads):

!$OMP PARALLEL DO

!$SGI+AFFINITY (I) = THREAD(expr)

OpenMP: The OpenMP Fortran API does not describe the AFFINITY clause.

5.2.2.2 NEST Clause

The NEST clause on the !$OMP PARALLEL DO directive allows you to exploit
nested concurrency in a limited manner. Although true nested parallelism is
not supported, you can exploit parallelism across iterations of a perfectly nested
loop nest.

The NEST clause to the !$OMP PARALLEL DO directive has the following
format:

!$OMP PARALLEL DO

!$SGI+NEST (do_variable , do_variable [, do_variable] ...)
[ONTO (target1, target2 [, targetn] ...)]

index Specify a do_variable name that identifies a subsequent loop. At
least two do_variable names must be specified. The loops
identified must be perfectly nested.

target Specify the target processor topology. The ONTO clause allows
you to specify the processor topology when two (or more)
dimensions of processors are required. This argument specifies

144 SR–3907 3.0.2

Parallel Processing on Origin series Systems [5]

how to partition the processors across the distributed dimensions.
target can be either an integer expression or an asterisk (*).

Example 1. In a nested !$OMP PARALLEL DO with two or more nested loops,
you can use the ONTO clause to specify the partitioning of processors across the
multiple parallel loops, as follows:

! USE 2 PROCESSORS IN THE OUTER LOOP,

! AND THE REMAINING IN THE INNER LOOP

!$OMP PARALLEL DO

!$SGI+NEST(I, J) ONTO(2, *)

DO I = 1, N
DO J = 1, M

A(J,I) = ...

END DO

END DO

Example 2. The following directive specifies that the entire set of iterations
across both loops can be executed concurrently:

!$OMP PARALLEL DO
!$SGI+NEST(I, J)

DO I = 1, N

DO J = 1, M

A(I,J) = 0

END DO

END DO

It is restricted, however, in that loops I and J must be perfectly nested. No
code is allowed between either the DO I ... and DO J ... statements or
between the END DO statements.

You can combine a nested !$OMP PARALLEL DO directive with an AFFINITY
clause or with a SCHEDULE clause specified as STATIC; STATIC scheduling is
the default except when accessing reshaped arrays. DYNAMIC, RUNTIME, and
GUIDED scheduling are not supported.

For more information on the AFFINITY clause, see Section 5.2.2.1, page 142.
For more information on the SCHEDULE clause see Section 4.4.1, page 88.

The following code uses an AFFINITY clause:

!$OMP PARALLEL DO
!$SGI+NEST(I, J) AFFINITY(I,J) = DATA(A(I,J))

DO I = 2, N-1

DO J = 2, M-1

SR–3907 3.0.2 145

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

A(I,J) = A(I,J) + I*J

END DO
END DO

OpenMP: The OpenMP Fortran API does not describe the NEST clause.

5.2.3 Requesting Dynamic Distribution for an Array: !$SGI DYNAMIC

The !$SGI DYNAMIC directive informs the compiler that a particular array can
be dynamically redistributed. This directive is required for arrays in procedures
that contain !$OMP PARALLEL DO loops with data affinity for arrays in the
loops.

By default, the compiler assumes that a distributed array is not dynamically
redistributed, and it directly schedules a parallel loop for the specified data
affinity. In contrast, a redistributed array can have multiple possible
distributions, and data affinity for a redistributed array must be implemented in
the run-time system based on the particular distribution.

However, the compiler does not know if an array is redistributed because the
array may be redistributed in another procedure or in another file. Therefore,
you must explicitly specify the !$SGI DYNAMIC declaration for redistributed
arrays. The !$SGI DYNAMIC directive implements data affinity for that array
at run time rather than at compile time. If you know an array has a specified
distribution throughout the duration of a procedure, you do not have to supply
the !$SGI DYNAMIC directive. The result is more efficient compile time affinity
scheduling. This directive is required only in those procedures that contain a
!$OMP PARALLEL DO loop with data affinity for that array. This tells the
compiler that the array can be dynamically redistributed. Data affinity for such
arrays is implemented through a run-time lookup.

The format of this directive is as follows:

!$SGI DYNAMIC (array)

array Specify the name of an array.

The run-time lookup incurs some extra overhead compared to a direct
compile-time implementation. Because the compiler assumes that a distributed
array is not redistributed at run time, the distribution is known at compile time,
and data affinity for the array can be implemented directly by the compiler. In
contrast, because a redistributed array can have multiple possible distributions

146 SR–3907 3.0.2

Parallel Processing on Origin series Systems [5]

at run time, data affinity for a redistributed array is implemented in the run-time
system based on the distribution at run time, incurring extra run-time overhead.

You can avoid this overhead when a procedure contains data affinity for a
redistributed array and the distribution of the array for the entire duration of
that procedure is known. In this situation, you can supply the
!$SGI DISTRIBUTE directive with the particular distribution and omit the
!$SGI DYNAMIC directive.

Because reshaped arrays cannot be dynamically redistributed, this is an issue
only for regular data distribution.

5.2.4 Designating Memory: !$SGI PAGE_PLACE

The !$SGI PAGE_PLACE directive allows you to explicitly place data structures
in the physical memory of a particular processor. This directive is useful when
dealing with irregular data structures such as pointers and sparse-matrix arrays.

The format of this directive is as follows:

!$SGI PAGE_PLACE (object, size, threadnum)

object Specify the name of the object.

size Specify the size of object, in bytes.

threadnum Specify the processor number upon which object
is to be placed.

This directive causes all the pages spanned by the virtual address range (address
to address+size) to be allocated from the local memory of processor number
threadnum. It is an executable statement; therefore, you can use it to place either
statically or dynamically allocated data. This directive is only a performance
hint; it does not allocate memory, and it has no effect on the virtual address
space of the program.

An example of this directive is as follows:

REAL(KIND=8) A(100)

!$SGI PAGE_PLACE (A, 800, 3)

SR–3907 3.0.2 147

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

5.3 Using the Data Distribution Directives

The data distribution directives, !$SGI DISTRIBUTE, !$SGI REDISTRIBUTE,
and !$SGI DISTRIBUTE_RESHAPE, allow you to specify distributions for
array data structures. For irregular data structures, the directives can explicitly
place data directly on a specific processor.

The !$SGI DISTRIBUTE, !$SGI DYNAMIC, and
!$SGI DISTRIBUTE_RESHAPE directives are declarations that must be
specified in the declaration part of the program, along with the array
declaration. The !$SGI REDISTRIBUTE directive is an executable statement
and can appear in any executable portion of the program.

You can specify a data distribution directive for any local, global, or common
block array. Each dimension of a multidimensional array can be independently
distributed. The possible distribution types for an array dimension are BLOCK,
CYCLIC[(expr)], and *, as follows:

• As shown in Figure 4, page 148, a BLOCK distribution is one that partitions
the elements of the dimension of size N into P blocks (one per processor),
with each block of size B = ceiling (N/P).

P0 P1 P2

a11356

Pp-1

B• • •B B B

Figure 4. Block distribution

• A CYCLIC distribution can include an expr to indicate the chunk size. A
chunk size that is either greater than 1 or is determined at run time is
sometimes also called BLOCK-CYCLIC.

• The * distribution indicates that the array is not distributed.

As shown in Figure 5, page 149, a CYCLIC[(expr)] distribution partitions the
elements of the dimension into pieces of size expr each and distributes them
sequentially across the processors:

148 SR–3907 3.0.2

Parallel Processing on Origin series Systems [5]

P0 P1

a11357

Pp-1

k • • •k k k

P0

• • •

Figure 5. Cyclic distribution

A distributed array is distributed across all of the processors being used in that
particular execution of the program, as determined by the OMP_NUM_THREADS
environment variable. If a distributed array is distributed in more than one
dimension, then by default the processors are apportioned as equally as possible
across each distributed dimension. For example, if an array has two distributed
dimensions, then an execution with 16 processors assigns 4 processors to each
dimension (4 x 4=16), whereas an execution with 8 processors assigns 4
processors to the first dimension and 2 processors to the second dimension. You
can override this default and explicitly control the number of processors in each
dimension using the ONTO clause with a data distribution directive.

5.3.1 Regular Data Distribution

The DISTRIBUTE and REDISTRIBUTE data distribution directives achieve the
desired distribution by influencing the mapping of virtual addresses to physical
pages without affecting the layout of the data structure. Because the granularity
of data allocation is a physical page (at least 16 KB), the achieved distribution is
limited by the underlying page granularity. However, the advantages are that
regular data distribution directives can be added to an existing program
without any restrictions, and they can be used for affinity scheduling.

For example, the following directive dynamically redistributes array A:

!$SGI REDISTRIBUTE A (BLOCK, CYCLIC(K))

The !$SGI REDISTRIBUTE directive is an executable statement that changes
the distribution permanently (or until another !$SGI REDISTRIBUTE
statement). It also affects subsequent affinity scheduling.

The !$SGI DYNAMIC directive specifies that the named array is redistributed in
the program, and is useful in controlling affinity scheduling for dynamically
redistributed arrays.

For more information on the !$SGI REDISTRIBUTE and !$SGI DYNAMIC
directives, see Section 5.2.1, page 140, and Section 5.2.3, page 146.

SR–3907 3.0.2 149

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

5.3.2 Data Distribution with Reshaping

Similar to regular data distribution, the RESHAPE directive specifies the desired
distribution of an array. In addition, however, the
!$SGI DISTRIBUTE_RESHAPE directive declares that the program makes no
assumptions about the storage layout of that array. The compiler performs
aggressive optimizations for reshaped arrays that may violate standard Fortran
layout assumptions, but it guarantees the desired data distribution for that array.

As shown in the following example, the !$SGI DISTRIBUTE_RESHAPE
directive accepts the same distributions as the regular data distribution directive:

!$SGI DISTRIBUTE_RESHAPE (BLOCK, CYCLIC(1))

5.3.2.1 Restrictions on Reshaped Arrays

Because the !$SGI DISTRIBUTE_RESHAPE directive specifies that the program
does not depend on the storage layout of the reshaped array, restrictions on the
arrays that can be reshaped include the following:

• Deferred-shape arrays (pointers, assumed-shape arrays, dummy arguments,
and allocatable arrays) cannot be reshaped.

• The distribution of a reshaped array cannot be changed dynamically (that is,
there is no REDISTRIBUTE_RESHAPE directive).

• Initialized data cannot be reshaped.

• Arrays that are explicitly allocated through the alloca(3C) or MALLOC(3F)
routines and accessed through Cray pointers cannot be reshaped.

• An array that is equivalenced to another array cannot be reshaped.

• I/O for a reshaped array cannot be mixed with namelist I/O or a function
call in the same I/O statement.

• A common block that contains a reshaped array cannot be declared
THREADPRIVATE. For more information on the THREADPRIVATE directive,
see Section 4.7.1, page 103.

!
Caution: A common block containing a reshaped array cannot be loaded
with the -Wl,-Xlocal option. This user error is not detected by the
compiler or loader.

There are two possible outcomes if a reshaped array is passed as an actual
parameter to a subroutine:

150 SR–3907 3.0.2

Parallel Processing on Origin series Systems [5]

• The array is passed in its entirety; that is, CALL FUNC(A) passes the entire
array A, whereas CALL FUNC(A(I,J)) passes a portion of A. The compiler
automatically clones a copy of the called subroutine and compiles it for the
incoming distribution. The actual arguments and dummy arguments must
match in the number of dimensions and the size of each dimension.

You can restrict a subroutine to accept a particular reshaped distribution on
a parameter by specifying a !$SGI DISTRIBUTE_RESHAPE directive on the
dummy argument within the subroutine. All calls to this subroutine with a
mismatched distribution will lead to compile time or load time.

• A portion of the array can be passed as an actual argument, but the callee
must access only a single processor’s portion. If the callee exceeds a single
processor’s portion, the results are undefined. You can use the intrinsics
described on the MP(3F) man page under the heading Query Intrinsics for
Distributed Arrays to find details about the array distribution.

5.3.2.2 Error Detection for Reshaped Arrays

Most errors in accessing reshaped arrays are detected either at compile time or
at load time. These errors include:

• Inconsistencies in reshaped arrays across common blocks (including across
files)

• Using the EQUIVALENCE statement to declare a reshaped array as
equivalent to another array

• Inconsistencies in reshaped distributions on actual and dummy arguments

• Other errors such as disallowed I/O statements involving reshaped arrays,
reshaping initialized data, or reshaping dynamically allocated data

Errors such as matching the declared size of an array dimension typically can
be caught only at run time. You can use the -MP:CHECK_RESHAPE=ON option
on the f90(1) command to perform these tests at run time. These run-time
checks are not generated by default because they incur overhead, but they are
useful during program development.

The types of run-time checks performed can detect the following:

• Inconsistencies in array bounds declarations on each actual and dummy
argument

• Inconsistencies in declared bounds of a dummy argument that corresponds
to a portion of a reshaped actual argument

SR–3907 3.0.2 151

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

5.3.2.3 Implementation of Reshaped Arrays

The compiler transforms a reshaped array into a pointer to a processor array.
The processor array has one element per processor, with the element pointing to
the portion of the array local to the corresponding processor.

Figure 6, page 152, shows the effect of a !$SGI DISTRIBUTE_RESHAPE
directive with a BLOCK distribution on a one-dimensional array, as follows:

REAL A(N)

!$SGI DISTRIBUTE_RESHAPE A(BLOCK)

N is the size of the array dimension, P is the number of processors, and B is the
block-size on each processor, CEILING(N/P).

Before

After

A

A

B

P0 P1 P2 • • •

P0

P1

P2

B

• • •

• • •

a11358

Figure 6. Implementation of the !$SGI DISTRIBUTE_RESHAPE A(BLOCK)
distribution directive

With this implementation array reference A(I) is transformed into the
two-dimensional reference A[I/B][I%B] (in C syntax with C dimension
order), where B is the size of each block and given by CEILING(N/P). Thus
A[I/B] points to a processor’s local portion of the array, and A[I/B][I%B]
refers to a specific element within the local processor’s portion.

152 SR–3907 3.0.2

Parallel Processing on Origin series Systems [5]

A CYCLIC distribution with a chunk size of 1 is implemented as shown in
Figure 7, page 153.

Before

After

A

A

P0 P1 P2

P0

P1

P2

0

• • •

a11359

(Chunks of size 1)

P 2P 3P

Figure 7. Implementation of the
!$SGI DISTRIBUTE_RESHAPE A(CYCLIC(1)) distribution directive

An array reference, A(I), is transformed to A[I%P][I/P], where P is the
number of threads in that distributed dimension.

Finally, a CYCLIC distribution with a chunk size that is either a constant greater
than 1 or a run-time value (also called BLOCK-CYCLIC) is implemented as
Figure 8, page 154, shows.

SR–3907 3.0.2 153

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

Before

After

A

A

P0 P1 P2

P0

P1

P2

N

• • •

a11360

(Chunks of size k)

Pk

k

Figure 8. Implementation of the
!$SGI DISTRIBUTE_RESHAPE A(CYCLIC(K)) directive (a BLOCK-CYCLIC

Distribution)

An array reference, A(I), is transformed to the three-dimensional reference
A[(I/K)%P][I/(PK)][I%K], where P is the total number of threads in that
dimension and K is the chunk size.

The compiler tries to optimize these divide/modulo operations out of inner
loops through aggressive loop transformations such as blocking and peeling.

5.3.3 Regular versus Reshaped Data Distribution

Regular distributions have an advantage in that they do not impose any
restrictions on the distributed arrays and can be freely applied in existing codes.
Furthermore, they work well for distributions where page granularity is not a
problem. For example, consider a BLOCK distribution of the columns of a
two-dimensional Fortran array of size A(R,C) (column-major layout) and
distribution (*, BLOCK). If the size of each processor’s portion,
CEILING=(C/P)(R)(element_size) is significantly greater than the page size
(16 KB on Origin2000 systems), then regular data distribution should be
effective in placing the data in the desired fashion.

154 SR–3907 3.0.2

Parallel Processing on Origin series Systems [5]

However, regular data distribution is limited by page-granularity considerations.
For instance, consider a (BLOCK,BLOCK) distribution of a two-dimensional
array in which the size of a column is much smaller than a page. Each physical
page is likely to contain data belonging to multiple processors, making the data
distribution quite ineffective. However, data distribution may still be useful
from the standpoint of affinity scheduling considerations.

Reshaped data distribution addresses the problems of regular distributions by
changing the layout of the array in memory to guarantee the desired
distribution. However, because the array no longer conforms to standard
Fortran storage layout, there are restrictions on the usage of reshaped arrays.

Given both types of data distribution, you can choose between the two based
on the characteristics of the particular array in an application.

5.4 Examples

The following sections provide several examples of data distribution and
affinity scheduling.

5.4.1 Distributing Columns of a Matrix

Example 1. This example distributes the columns of a matrix in a round-robin
fashion across threads. Such a distribution places data effectively only if the
size of an individual column exceeds that of a page.

REAL(KIND=8) A(N, N)

! DISTRIBUTE COLUMNS IN CYCLIC FASHION

!$SGI DISTRIBUTE A (*, CYCLIC(1))

! PERFORM GAUSSIAN ELIMINATION ACROSS COLUMNS

! THE AFFINITY CLAUSE DISTRIBUTES THE LOOP ITERATIONS BASED

! ON THE COLUMN DISTRIBUTION OF A

DO I = 1, N

!$OMP PARALLEL DO
!$SGI+AFFINITY(J) = DATA(A(I,J))

DO J = I+1, N

! ... REDUCE COLUMN J BY COLUMN I ...

END DO

END DO

SR–3907 3.0.2 155

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

If the columns are smaller than a page, it may be beneficial to reshape the array.
This is specified by using a !$SGI DISTRIBUTE_RESHAPE directive in place of
the !$SGI DISTRIBUTE directive.

In addition to overcoming size constraints as shown in the preceding example,
the !$SGI DISTRIBUTE_RESHAPE directive is useful when the desired
distribution is contrary to the layout of the array.

Example 2. This example uses the !$SGI DISTRIBUTE_RESHAPE directive to
distribute the rows of a two-dimensional matrix. It shows how to overcome the
storage layout constraints to provide the desired distribution.

REAL(KIND=8) A(N, N)

! DISTRIBUTE ROWS IN BLOCK FASHION
!$SGI DISTRIBUTE_RESHAPE A (BLOCK, *)

REAL(KIND=8) SUM(N)

!$SGI DISTRIBUTE SUM(BLOCK)

! PERFORM SUM-REDUCTION ON THE ELEMENTS OF EACH ROW
!$OMP PARALLEL DO PRIVATE (J)

!$SGI+AFFINITY(I) = DATA(A(I,J))

DO I = 1,N

DO J = 1,N

SUM(I) = SUM(I) + A(I,J)

ENDDO
ENDDO

5.4.2 Using Data Distribution and Data Affinity Scheduling

The following example demonstrates regular data distribution and data affinity.
This example, run on a 4-processor Origin2000 server, uses simple block
scheduling. Processor 0 calculates the values of the first 25,000 elements of A,
processor 1 calculates the second 25,000 values of A, and so on. Arrays B and C
are initialized using one processor. Therefore, all of the memory pages are
touched by the master processor (processor 0) and are placed in processor 0’s
local memory.

Using data distribution changes the placement of memory pages for arrays A, B,
and C to match the data reference pattern.

Without data distribution:

REAL(KIND=8) A(1000000), B(1000000)

REAL(KIND=8) C(1000000)

156 SR–3907 3.0.2

Parallel Processing on Origin series Systems [5]

INTEGER I

!$OMP PARALLEL SHARED(A, B, C) PRIVATE(I)

!$OMP DO

DO I = 1, 1000000

A(I) = B(I) + C(I)

END DO

!$OMP END PARALLEL

With data distribution:

REAL(KIND=8) A(1000000), B(1000000)
REAL(KIND=8) C(1000000)

INTEGER I

!$SGI DISTRIBUTE A(BLOCK), B(BLOCK), C(BLOCK)

!$OMP PARALLEL SHARED(A, B, C) PRIVATE(I)
!$OMP DO

!$SGI+AFFINITY(I) = DATA(A(I))

DO I = 1, 100000

A(I) = B(I) + C(I)

END DO
!$OMP END PARALLEL

5.4.3 Argument Passing

The following code shows how a distributed array can be passed as an
argument to a subroutine that has a matching declaration for the dummy
argument:

REAL(KIND=8) A(M, N)

!$SGI DISTRIBUTE_RESHAPE A (BLOCK, *)
CALL FOO(A, M, N)

END

SUBROUTINE FOO(A, P, Q)

REAL(KIND=8) A(P, Q)

!$SGI DISTRIBUTE_RESHAPE A (BLOCK, *)
!$OMP PARALLEL DO

!$SGI+AFFINITY(I) = DATA(A(I, J))

DO I = 1, P

END DO

END

SR–3907 3.0.2 157

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

Because the array is reshaped, the !$SGI DISTRIBUTE_RESHAPE directive in
the caller and the callee must match exactly. Furthermore, all calls to subroutine
FOO must pass in an array with the exact same distribution.

If the array was only distributed (but not reshaped) in the preceding example,
then subroutine FOO could be called from different places with different
incoming distributions. In that case, you could omit the distribution directive
on the dummy argument, thereby ensuring that any data affinity within the
loop is based on the distribution (at run time) of the incoming actual argument,
as shown in this example:

REAL(KIND=8) A(M, N), B(P, Q)
REAL(KIND=8) A (BLOCK, *)

REAL(KIND=8) B (CYCLIC(1), *)

CALL FOO(A, M, N)

CALL FOO(B, P, Q)

! ---
SUBROUTINE FOO(X, S, T)

REAL(KIND=8) X(S, T)

!$OMP PARALLEL DO

!$SGI+AFFINITY(I) = DATA(X(I+2, J))
DO I =

...

END DO

5.4.4 Redistributed Arrays

Example 1. The following example shows how an array is redistributed at run
time:

SUBROUTINE BAR(X, N)
REAL(KIND=8) X(N, N)

...

!$SGI REDISTRIBUTE X (*, CYCLIC(expr))
...

END

!---
SUBROUTINE FOO

REAL(KIND=8) LOCALARRAY(1000, 1000)

!$SGI DISTRIBUTE LOCALARRAY (*, BLOCK)

! THE CALL TO SUBROUTINE BAR MAY REDISTRIBUTE LOCALARRAY

!$SGI DYNAMIC LOCALARRAY

158 SR–3907 3.0.2

Parallel Processing on Origin series Systems [5]

...

CALL BAR(LOCALARRAY, 100)
! THE DISTRIBUTION FOR THE FOLLOWING DOACROSS

! IS NOT KNOWN STATICALLY

!$OMP PARALLEL DO

!$SGI+AFFINITY(I) = DATA(A(I, J))

END

Example 2. The following example illustrates a situation in which the
!$SGI DYNAMIC directive can be optimized away. The main routine contains
local array A that is both distributed and dynamically redistributed. This array
is passed as an argument to FOO before being redistributed and to FOO after
being (possibly) redistributed. The incoming distribution for FOO is statically
known; you can specify a !$SGI DISTRIBUTE directive on the dummy
argument, thereby obtaining more efficient static scheduling for the
!$OMP PARALLEL DO directive with data affinity. The subroutine BAR,
however, can be called with multiple distributions, requiring run-time
scheduling of the !$OMP PARALLEL DO loop.

PROGRAM MAIN

!$SGI DISTRIBUTE A (BLOCK, *)

!$SGI DYNAMIC A
CALL FOO(A)

IF (X .NE. 17) THEN

!$SGI REDISTRIBUTE A (CYCLIC(X), *)

END IF

CALL BAR(A)

END

SUBROUTINE FOO (A)

!Incoming distribution is known to the user

!$SGI DISTRIBUTE A(BLOCK, *)

!$OMP PARALLEL DO
!$SGI+AFFINITY(I) = DATA(A(I, J))

...

END

SUBROUTINE BAR(A)

SR–3907 3.0.2 159

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

!Incoming distribution is not known statically

!$SGI DYNAMIC A
!$OMP PARALLEL DO

!$SGI+AFFINITY(I) = DATA(A(I, J))

...

END

5.4.5 Irregular Distributions and Thread Affinity

This example consists of a large array that is conceptually partitioned into
unequal portions, one for each processor. This array is indexed through index
array IDX, which stores the starting index value and the size of each processor’s
portion.

REAL(KIND=8) A(N)

! IDX ---> INDEX ARRAY CONTAINING START INDEX INTO A (IDX(P, 0))

! AND SIZE (IDX(P, 1)) FOR EACH PROCESSOR
REAL(KIND=4) IDX (P, 2)

!$SGI PAGE_PLACE (A(IDX(0, 0)), IDX(0, 1)*8, 0)

!$SGI PAGE_PLACE (A(IDX(1, 0)), IDX(1, 1)*8, 1)

!$SGI PAGE_PLACE (A(IDX(2, 0)), IDX(2, 1)*8, 2)

...

!$OMP PARALLEL DO
!$SGI+ AFFINITY(I) = THREAD(I)

DO I = 0, P-1

! ... PROCESS ELEMENTS ON PROCESSOR I

! ... A(IDX(I, 0)) TO A(IDX(I,0)+IDX(I,1))

END DO

160 SR–3907 3.0.2

CF90 Directives [6]

The MIPSpro 7 Fortran 90 compiler, running on IRIX systems, recognizes some
of the directives that are supported by the Cray Research CF90 compiler on
UNICOS and UNICOS/mk systems. The directives themselves and the sections
in which they are discussed are as follows:

• Section 6.1, page 161, describes using directives.

• Section 6.2, page 163, describes the BOUNDS and NOBOUNDS directives.

• Section 6.3, page 164, describes the FREE and FIXED directives.

• Section 6.4, page 164, describes the ID directive.

• Section 6.5, page 166, describes the IGNORE_TKR directive.

• Section 6.6, page 167, describes the IVDEP directive.

• Section 6.7, page 170, describes the NAME directive.

• Section 6.8, page 170, describes the NOINTERCHANGE directive.

• Section 6.9, page 170, describes the PREFERTASK directive.

• Section 6.10, page 171, describes the TASK and NOTASK directives.

• Section 6.11, page 172, describes the UNROLL and NOUNROLL directives.

6.1 Using Directives

The following sections describe how to use the CF90 directives and the effects
they have on IRIX platforms.

For additional general information on using directives, see Section 3.1, page 61.

6.1.1 Directive Continuation

In the following example, an asterisk (*) appears in column 6 to indicate that
the second line is a continuation of the preceding line:

!DIR$ NA

!DIR$*ME

SR–3907 3.0.2 161

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

The FIXED and FREE directives must appear alone on a directive line and
cannot be continued.

If you want to specify more than one directive on a line, separate each directive
with a comma. Some directives require that you specify one or more
arguments; when specifying a directive of this type, no other directive can
appear on the line.

Spaces can precede, follow, or be embedded within a directive, regardless of
source form.

Do not use source preprocessor (#) directives within multiline compiler
directives.

6.1.2 Directive Range and Placement

The range and placement of directives is as follows:

• The FIXED and FREE directives can appear anywhere in your source code.
All other directives must appear within a program unit.

• The BOUNDS/NOBOUNDS and TASK/NOTASK directives take effect at the
point at which they appear in the source code.

• The ID directive does not apply to any particular range of code. It adds
information to the file.o generated from the input program.

• The following directives apply only to the next loop encountered lexically:

– IVDEP

– NOINTERCHANGE

– PREFERTASK

– UNROLL/NOUNROLL

• The NAME and IGNORE_TKR directives do not apply to particular ranges of
code. They are declarative directives that alter the status of entities in ways
that affect compilation.

6.1.3 Interaction of Directives with the -x Command Line Option

The -x option on the f90(1) command line accepts one or more directives as
arguments. When your input is compiled, the compiler ignores directives
named as arguments to the -x option. For example, if you specify

162 SR–3907 3.0.2

CF90 Directives [6]

-x mipspro, all directives are ignored. If you specify -x dirname, the
particular directive named in dirname is ignored. For more information on this
command line option, see Section 2.64, page 58.

6.2 Check Array Bounds: BOUNDS and NOBOUNDS

Array bounds checking provides a check of most array references at both
compile time and run time to ensure that each subscript is within the array’s
declared size.

The -C option on the f90(1) command line controls bounds checking for a
whole compilation. The BOUNDS and NOBOUNDS directives toggle the feature on
and off within a program unit. Either directive can specify particular arrays or
can apply to all arrays. The formats of these directives are as follows:

!DIR$ BOUNDS [array [, array] ...]

!DIR$ NOBOUNDS [array [, array] ...]

array The name of an array. The name cannot be a subobject of a
derived type. When no array name is specified, the directive
applies to all arrays.

BOUNDS remains in effect for a given array until the appearance of a NOBOUNDS
directive that applies to that array, or until the end of the program unit. Bounds
checking can be enabled and disabled many times in a single program unit.

Note: To be effective, these directives must follow the declarations for all
affected arrays. It is suggested that they be placed at the end of a program
unit’s specification statements unless they are meant to control particular
ranges of code.

The bounds checking feature detects any reference to an array element whose
subscript exceeds the array’s declared size. For example:

REAL A(10)

! DETECTED AT COMPILE TIME:

A(11) = X

! DETECTED AT RUN TIME IF IFUN(M) EXCEEDS 10:

A(IFUN(M)) = W

SR–3907 3.0.2 163

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

The compiler generates a message when it detects an out-of-bounds subscript.
If the compiler cannot detect the out-of-bounds subscript (for example, if the
subscript includes a function reference), a message is issued for out-of-bound
subscripts when your program runs.

Bounds checking increases program run time. If an array’s last dimension
declarator is *, checking is not performed on the last dimension’s upper bound.
Arrays in formatted WRITE and READ statements are not checked.

If bounds checking detects an out-of-bounds array reference, a message is
issued and the program halts.

6.3 Specify Source Form: FREE and FIXED

The FREE and FIXED directives specify whether the source code in the program
unit is written in free source form or fixed source form. The FREE and FIXED
directives override the -fixedform and -freeform options, if specified, on
the f90(1) command line. For more information on the -fixedform and
-freeform options, see Section 2.20, page 15, and Section 2.21, page 15.

The formats of these directives are as follows:

!DIR$ FREE

!DIR$ FIXED

These directives apply to the source file in which they appear, and they allow
you to switch source forms within a source file.

You can change source form within an INCLUDE file. After the INCLUDE file
has been processed, the source form reverts back to the source form that was
being used prior to processing of the INCLUDE file.

Note: The source preprocessor does not recognize the FREE and FIXED
directives. These directives must not be specified in a file that is submitted to
the source preprocessor.

6.4 Create Identification String: ID

The ID directive inserts a character string into the file.o produced for a Fortran
source file. The format of this directive is as follows:

164 SR–3907 3.0.2

CF90 Directives [6]

!DIR$ ID "character_string"

character_ string The character string to be inserted into file.o. The
syntax box shows quotation marks as the
character_string delimiter, but you can use either
apostrophes (’ ’) or quotation marks (" ").

The character_string can be obtained from file.o in one of the following ways:

• Method 1. Using the what(1) command. To use the what(1) command to
retrieve the character string, begin the character string with the sentinel
characters @(#). For example, assume that id.f contains the following
source code:

!DIR$ ID "@(#)file.f 01 July 1997"

PRINT *, ’hello’

END

The next step is to use file id.o as the argument to the what(1) command,
as follows:

% what id.o

% id.o:
% file.f 01 July 1997

Note that what(1) does not include the special sentinel characters in the
output.

In the following example, character_string does not begin with the characters
@(#). The output shows that what(1) does not recognize the string.

Input file id2.o contains the following:

!DIR$ ID ’file.f 01 July 1997’

PRINT *, ’Hello, world’

END

The what(1) command generates the following output:

% what id2.o

% id2.o:

• Method 2. Using the strings(1) or od(1) command. The following
example shows how to obtain output using the strings(1) command.

Input file id.f contains the following:

SR–3907 3.0.2 165

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

!DIR$ ID "File: id.f Date: 1 July 1997"

PRINT *, ’hello’

END

The strings(1) command generates the following output:

% f90 -c id.o

% strings id.o

File: id.f Date: 1 July 1997

% od -c id.o

... portion of dump deleted

0002300 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0

0002320 F i l e : i d . f D a t

0002340 e : 1 J u l y 1 9 9 7 001 \0

0002360 \0 \0 \0 \0 024 003 240 031 \0 \0 203 031 \0 \0 205 005

... portion of dump deleted

6.5 Disregard Dummy Argument Type, Kind, and Rank: IGNORE_TKR

The IGNORE_TKR directive directs the compiler to ignore the type, kind, and
rank (TKR) of specified dummy arguments in a procedure interface. For
information on Fortran 90 TKR rules, see chapters 4 and 6 of the Fortran
Language Reference Manual, Volume 2, publication SR–3903.

The format for this directive is as follows:

!DIR$ IGNORE_TKR [darg_name [, darg_name] ...]

darg_name If specified, indicates the dummy arguments for which TKR rules
should be ignored. Dummy arguments for assumed-shape arrays
or Fortran 90 pointers cannot be specified.

If not specified, TKR rules are ignored for all dummy arguments
in the procedure that contains the directive.

The directive causes the compiler to ignore type and kind and rank of the
specified dummy arguments when resolving a generic to a specific call. The
compiler also ignores type and kind and rank on the specified dummy
arguments when checking all the specifics in a generic call for ambiguities.

166 SR–3907 3.0.2

CF90 Directives [6]

Example. The following directive instructs the compiler to ignore type, kind,
and rank rules for the dummy arguments supplied for the SHMEM_PUT64(3)
function call:

INTERFACE SHMEM_PUT64

SUBROUTINE SHMEM_PUT64(targ, src, len, pe)

!DIR$ IGNORE_TYPE targ, src

INTEGER(KIND=4) len

INTEGER(KIND=4) pe

END SUBROUTINE SHMEM_PUT64
END INTERFACE

The preceding code specifies that targ and src can be any data type, but len
and pe must be INTEGER(KIND=4) data.

6.6 Ignore Vector Dependencies: IVDEP

The IVDEP directive directs the compiler to perform a more liberal dependency
analysis for the purpose of software pipelining and other optimizations. The
format of this directive is as follows:

!DIR$ IVDEP

This directive’s effects depend on command line settings. When this directive is
in effect, certain dependencies are ignored depending on the state of the
following f90(1) command line options:

Option Effect

-OPT:cray_ivdep=OFF

Default command line setting. IRIX semantics are used when
performing dependency analysis. Loop-carried dependencies in
the subsequent loop are ignored between any two array
references whenever the location referred to by at least one of
the array references varies inside the loop. For more information
on this command line option, see Section 2.47.3, page 41.

-OPT:cray_ivdep=ON

UNICOS semantics are used when performing dependency
analysis. The compiler disregards backward dependencies only.

SR–3907 3.0.2 167

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

For more information on this command line option, see Section
2.47.3, page 41.

-OPT:liberal_ivdep=ON

All dependencies are disregarded. For more information on this
command line option, see Section 2.47.19, page 45.

The IVDEP directive applies only to inner loops, and it applies to the first DO
loop that follows the directive within the same program unit.

Example 1. There are two basic types of dependencies in the loop below:
loop-carried and non-loop-carried. A loop-carried dependency occurs across
iterations of the loop. A non-loop-carried dependency occurs within an iteration of
the loop.

!DIR$ IVDEP

DO I = 1,N

A(INDEX(1,I)) = B(I)

A(INDEX(2,I)) = C(I)

END DO

A loop-carried dependency would occur if INDEX(1,I) in some iteration of I
was equal to INDEX(1,I+K) in some other iteration of I. A non-loop-carried
dependency would occur if INDEX(1,I) was equal to INDEX(2,I) in any
iteration of I.

Example 2. The following loop is executed with default command line options:

!DIR$ IVDEP

DO I = 1,N

A(B(K)) = A(C(K)) + D(I)

END DO

Neither the reference to A(B(K)) nor to A(C(K)) vary inside the loop, so the
IVDEP directive does not break the dependence.

Example 3. The following loop is executed with default command line options:

!DIR$ IVDEP
DO I = 1,N

A(I) = A(I-1) + 3.0

END DO

The IVDEP directive breaks the dependence, but the compiler issues a message
indicating that an obvious dependence is being broken.

168 SR–3907 3.0.2

CF90 Directives [6]

Example 4. The following loop is executed with default command line options,
and the IVDEP directive breaks the dependence:

!DIR$ IVDEP
DO I = 1,N

A(B(I)) = A(B(I)) + 3.0

END DO

Example 5. The following loop is executed with default command line options,
and the IVDEP directive does not break the dependence on A(I) because the
dependence is non-loop-carried:

!DIR$ IVDEP

DO I = 1,N
A(I) = B(I)

C(I) = A(I) + 3.0

END DO

Example 6. The following loop is executed with -OPT:cray_ivdep=ON in
effect:

!DIR$ IVDEP

DO I = 1,N
A(I) = A(I-1) + 3.0

END DO

UNICOS semantics are used, and the IVDEP directive breaks all lexically
backward dependencies. When the loop is executed, however, the compiler
issues a message indicating that it is breaking an obvious dependence.

Example 7. When the following loop is executed, the IVDEP directive does not
break the dependence. This is because the dependence is from the load to the
store, and the load comes lexically before the store. Assume that the code
fragment in this example was compiled with -OPT:cray_ivdep=ON.

!DIR$ IVDEP

DO I = 1,N

A(I) = A(I+1) + 3.0

END DO

To break all dependencies, specify -OPT:liberal_ivdep=ON. Both
-OPT:cray_ivdep and -OPT:liberal_ivdep are disabled by default.

For Cray Research UNICOS vector codes being transitioned to IRIX, it is
recommended that -OPT:cray_ivdep=ON be used.

SR–3907 3.0.2 169

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

6.7 External Name Mapping Directive: NAME

The NAME directive allows you to specify a case-sensitive external name, or a
name that contains characters outside of the Fortran character set, in a Fortran
program. This directive must appear inside a program unit. The case-sensitive
external name is specified on the NAME directive, in the following format:

!DIR$ NAME (fortran_name="external_name"
[, fortran_name="external_name"] ...)

fortran_name The name used for the object throughout the
Fortran program.

external_name The external form of the name.

Rules for Fortran naming do not apply to the external_name string; any character
sequence is valid. You can use this directive, for example, when writing calls to
C routines.

Example:

PROGRAM MAIN

!DIR$ NAME (FOO="XyZ")

CALL FOO ! XyZ IS REALLY BEING CALLED

END PROGRAM

6.8 Inhibit Loop Interchange: NOINTERCHANGE

The NOINTERCHANGE directive inhibits the compiler’s ability to interchange the
loop that follows the directive with another inner or outer loop. The format of
this directive is as follows:

!DIR$ NOINTERCHANGE

6.9 Designate a Nest to Task: PREFERTASK

The PREFERTASK directive allows loops with large iteration counts to be
considered as candidates for tasking.

170 SR–3907 3.0.2

CF90 Directives [6]

The compiler analyzes loops that follow a PREFERTASK directive to determine
whether the loop is suitable for Autotasking. The PREFERTASK directive
disables the compiler’s threshold checking.

Note: The Autotasking directives are outmoded. Silicon Graphics and Cray
Research encourage you to write new codes using the OpenMP Fortran API
directives.

This directive can be used if there is more than one loop in the nest that can be
autotasked. Autotasking must be enabled for this directive to take effect. The
format of this directive is as follows:

!DIR$ PREFERTASK

In the following example, both loops can be autotasked, but the PREFERTASK
directive directs the compiler to autotask the inner DO J loop. Without the
directive and without any knowledge of N and M, the compiler would task the
outer DO I loop. With the directive, the loops are interchanged, to increase
parallel granularity, and the resulting outer DO J loop is autotasked.

DO I = 1, N

!DIR$ PREFERTASK
DO J = 1, M

E(J,I) = F(J,I) + G(J,I)

END DO

END DO

6.10 Tasking Directives: TASK and NOTASK

The NOTASK directive suppresses compiler attempts to task loops and disables
recognition of Autotasking directives. NOTASK takes effect at the next statement
and applies to the rest of the program unit unless it is superseded by a TASK
directive. These directives are disabled if tasking is disabled.

Note: The Autotasking directives are outmoded. Silicon Graphics and Cray
Research encourage you to write new codes using the OpenMP Fortran API
directives.

The formats of these directives are as follows:

SR–3907 3.0.2 171

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

!DIR$ TASK

!DIR$ NOTASK

When !DIR$ NOTASK has been used within the same program unit,
!DIR$ TASK causes the compiler to resume its attempts to task loops. After a
TASK directive is specified, the compiler again attempts to autotask loops and
array syntax statements and !MIC$ directives are again recognized.

The TASK directive affects subsequent loops. The NOTASK directive also affects
subsequent loops, but if it is specified within the body of a loop, it affects the
loop in which it is contained and all subsequent loops.

6.11 Unroll Loops: UNROLL and NOUNROLL

Loop unrolling can improve program performance by revealing cross-iteration
memory optimization opportunities such as read-after-write and
read-after-read. The effects of loop unrolling also include:

• Improved loop scheduling by increasing basic block size

• Reduced loop overhead

• Improved chances for cache hits

The formats of these directives are as follows:

!DIR$ UNROLL [n]

!DIR$ NOUNROLL

n Specifies the total number of loop body copies to be generated. n
must be a positive integer.

If you specify a value for n, the compiler does not attempt to
determine the number of copies to generate based on the number
of inner loops in the loop nest.

The UNROLL directive should be placed immediately before the DO statement of
the loop that should be unrolled.

172 SR–3907 3.0.2

CF90 Directives [6]

Warning: If placed prior to a noninnermost loop, the UNROLL directive
asserts that the following loop has no dependencies across iterations of that
loop. If dependencies exist, incorrect code could be generated.

The UNROLL directive can be used only on loops whose iteration counts can be
calculated before entering the loop. If UNROLL is specified on a loop that is not
the innermost loop in a loop nest, the inner loops must be nested perfectly.
That is, all loops in the nest can contain only 1 loop, and only the innermost
loop can contain work.

The NOUNROLL directive inhibits loop unrolling.

SR–3907 3.0.2 173

Source Preprocessing [7]

Source preprocessing can help you port a program from one platform to
another by allowing you to specify source text that is platform specific.

For a source file to be preprocessed automatically, it must have an uppercase
extension, either .F (for a file in fixed source form) or .F90 (for a file in free
source form). Files with these suffixes are preprocessed automatically by the
FTPP preprocessor.

To specify preprocessing of source files with other extensions, including
lowercase ones, use the -cpp, -E, -ftpp, or -P options described in Chapter 2,
page 7.

7.1 General Rules

You can alter the source code through source preprocessing directives. These
directives are fully explained in Section 7.2, page 177. The directives must be
used according to the following rules:

• Do not attempt macro substitution in Fortran comments. This will cause
macros beginning with a C in column 1 (in fixed source form) not to be
substituted.

• When the FTPP preprocessor is used, you must specify -macro_expand on
the f90(1) command line if you want to enable macro expansion outside of
preprocessor directive lines.

• Do not use source preprocessor (#) directives within multiline compiler
directives.

• You cannot include a source file that contains an #if directive without a
balancing #endif directive within the same file.

The #if directive includes the #ifdef and #ifndef directives.

• If a directive is too long for one source line, the backslash character (\) is
used to continue the directive on successive lines. Successive lines of the
directive can begin in any column (up to the column limit of 132).

The backslash character (\) can appear in any location within a directive in
which whitespace can occur. A backslash character (\) in a comment is

SR–3907 3.0.2 175

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

treated as a comment character. It is not recognized as signaling
continuation.

• Every directive begins with the pound character (#), and the pound
character (#) must be in column 1.

• Blank and tab (HT) characters can appear between the pound character (#)
and the directive keyword.

• You cannot write form feed (FF) or vertical tab (VT) characters to separate
tokens on a directive line. That is, if a source preprocessing line spans lines,
it must be continued by using a backslash character (\).

• Blanks are significant, so the use of spaces within a source preprocessing
directive is independent of the source form of the file. The fields of a source
preprocessing directive must be separated by blank or tab (HT) characters.

• Because source preprocessing directives are independent of source form, a
directive can be up to 132 columns on a single source line.

Any directive text that extends past column 132 is ignored. The directive
text is truncated, which is likely to produce parsing errors or unexpected
results. If a directive is too long to fit on a single line, you can continue the
line by using the backslash character (\). It cannot be continued using
standard Fortran 90 continuation methods.

• Any user-specified identifier that is used in a directive must follow
Fortran 90 rules for identifier formation. There are two exceptions to this
rule:

– The first character in the name can be an underscore character (_).

– Although Fortran 90 rules state that only the first 31 characters of
identifiers are significant, to the source preprocessor, the first 132
characters are significant.

• Source preprocessing identifier names are case sensitive.

• Numeric literal constants must be integer literal constants or real literal
constants, as defined for Fortran 90.

• Comments written in the style of the C language, beginning with /* and
ending with */, can appear anywhere within a source preprocessing
directive in which blanks or tabs can appear. The comment, however, must
begin and end on a single source line.

176 SR–3907 3.0.2

Source Preprocessing [7]

• The blanks shown in the syntax descriptions of the source preprocessing
directives are significant. The tab character (HT) can be used in place of a
blank. Multiple blanks can appear wherever a single blank appears in a
syntax description.

7.2 Directives

The following sections describe the source preprocessing directives.

7.2.1 #include Directive

The #include directive directs the system to use the content of a file or
directory. Just as with the INCLUDE line processing defined by the Fortran 90
standard, an #include directive effectively replaces that directive line with the
content of filename. This directive has the following formats:

#include "filename"

#include <filename>

filename A file or directory to be used.

In the first form, if filename does not begin with a slash (/)
character, the system searches for the named file, first in the
directory of the file containing the #include directive, then in
the sequence of directories specified by the -I option(s) on the
f90(1) command line, and then the standard (default) sequence.
If filename begins with a slash (/) character, it is used as is and is
assumed to be the full path to the file.

The second form directs the search to begin in the sequence of
directories specified by the -I option(s) on the f90(1) command
line and then search the standard (default) sequence.

The Fortran 90 standard prohibits recursion in INCLUDE files, so recursion is
also prohibited in the #include form.

The #include directives can be nested.

When the compiler is invoked to do only source preprocessing, not compilation,
text will be included by #include directives but not by Fortran 90 INCLUDE

SR–3907 3.0.2 177

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

lines. For information on the source preprocessing command line options, see
Section 7.4, page 184.

7.2.2 #define Directive

The #define directive lets you declare a source preprocessing variable and
associate a token string with the variable. It also allows you to define a
function-like macro. This directive has the following formats:

#define identifier value

#define identifier(dummy_arg_list) value

The first format defines an object-like macro (also called a source preprocessing
variable), and the second defines a function-like macro. In the second format,
the left parenthesis that begins the dummy_arg_list must immediately follow the
identifier, with no intervening white space.

identifier Specifies the name of the variable or macro being
defined.

dummy_arg_list Specifies a list of dummy argument identifiers.

value Specifies the value as a sequence of tokens. The
value can be continued onto more than one line
using backslash (\) characters.

If a preprocessor identifier appears in a subsequent #define directive without
being the subject of an intervening #undef directive, and the value in the
second #define directive is different from the value in the first #define
directive, then the preprocessor issues a warning message about the
redefinition. The second directive’s value is used. For more information on the
#undef directive, see Section 7.2.3, page 179.

When an object-like macro’s identifier is encountered as a token in the source
file, it is replaced with the value specified in the macro’s definition. This is
referred to as an invocation of the macro. By default, tokens are not processed in
Fortran source code. They are recognized only when used in other source
preprocessing directives.

The invocation of a function-like macro is more complicated. It consists of the
macro’s identifier, immediately followed by a left parenthesis with no
intervening white space, then a list of actual arguments separated by commas,
and finally a terminating right parenthesis. There must be the same number of

178 SR–3907 3.0.2

Source Preprocessing [7]

actual arguments in the invocation as there are dummy arguments in the
#define directive. Each actual argument must be balanced in terms of any
internal parentheses. The invocation is replaced with the value given in the
macro’s definition, with each occurrence of any dummy argument in the
definition replaced with the corresponding actual argument in the invocation.

The following two examples must be compiled with -macro_expand specified
on the f90(1) command line:

• The following program prints Hello, world. when compiled and run:

PROGRAM P

#define GREETING ’Hello, world.’

PRINT *, GREETING
END PROGRAM P

• The following program prints Hello, Hello, world. when compiled
and run:

PROGRAM P

#define GREETING(str1, str2) str1, str1, str2

PRINT *, GREETING(’Hello, ’, ’world.’)

END PROGRAM P

For information on the -macro_expand option, see Section 2.37, page 32.

7.2.3 #undef Directive

The #undef directive sets the definition state of identifier to an undefined value.
If identifier is not currently defined, the #undef directive has no effect. This
directive has the following format:

#undef identifier

identifier Specifies the name of the source preprocessing variable or macro
being undefined.

7.2.4 # (Null) Directive

The null directive simply consists of the pound character (#) in column 1 with
no significant characters following it. That is, the remainder of the line is
typically blank or is a source preprocessing comment. This directive is
generally used for spacing out other directive lines.

SR–3907 3.0.2 179

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

7.2.5 Conditional Directives

Conditional directives cause lines of code to either be produced by the source
preprocessor or to be skipped. The conditional directives within a source file
form if-groups. An if-group begins with an #if, #ifdef, or #ifndef directive,
followed by lines of source code that you may or may not want skipped.
Several similarities exist between the Fortran 90 IF construct and if-groups:

• The #elif directive corresponds to the ELSE IF statement.

• The #else directive corresponds to the ELSE statement.

• Just as an IF construct must be terminated with an END IF statement, an
if-group must be terminated with an #endif directive.

• Just as with an IF construct, any of the blocks of source statements in an
if-group can be empty.

For example, you can write the following directives:

#if MIN_VALUE == 1

#else
...

#endif

Determining which group of source lines (if any) to compile in an if-group is
essentially the same as the Fortran 90 determination of which block of an IF
construct should be executed.

7.2.5.1 #if Directive

The #if directive has the following format:

#if expression

expression An expression. The values in expression must be integer literal
constants or previously defined preprocessor variables. The
expression is an integer constant expression as defined by the C
language standard. All the operators in the expression are C
operators, not Fortran 90 operators. The expression is evaluated
according to C language rules, not Fortran 90 expression
evaluation rules.

180 SR–3907 3.0.2

Source Preprocessing [7]

Note that unlike the Fortran 90 IF construct and IF statement
logical expressions, the expression in an #if directive need not be
enclosed in parentheses.

The #if expression can also contain the unary defined operator, which can be
used in either of the following formats:

defined identifier

defined(identifier)

When the defined subexpression is evaluated, the value is 1 if identifier is
currently defined, and 0 if it is not.

All currently defined source preprocessing variables in expression, except those
that are operands of defined unary operators, are replaced with their values.
During this evaluation, all source preprocessing variables that are undefined
evaluate to 0.

Note that the following two directive forms are not equivalent:

• #if X

• #if defined(X)

In the first case, the condition is true if X has a nonzero value. In the second
case, the condition is true only if X has been defined (has been given a value
that could be 0).

7.2.5.2 #ifdef Directive

The #ifdef directive is used to determine if identifier is predefined by the
source preprocessor, has been named in a #define directive, or has been
named in the -D option on the f90(1) command line. For more information on
the -D option, see Section 7.4, page 184.

This directive has the following format:

#ifdef identifier

SR–3907 3.0.2 181

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

The #ifdef directive is equivalent to either of the following two directives:

• #if defined identifier

• #if defined(identifier)

7.2.5.3 #ifndef Directive

The #ifndef directive tests for the presence of an identifier that is not defined.
This directive has the following format:

#ifndef identifier

This directive is equivalent to either of the following two directives:

• #if ! defined identifier

• #if ! defined(identifier)

7.2.5.4 #elif Directive

The #elif directive serves the same purpose in an if-group as does the ELSE
IF statement of a Fortran 90 IF construct. This directive has the following
format:

#elif expression

expression The expression follows all the rules of the integer constant
expression in an #if directive.

7.2.5.5 #else Directive

The #else directive serves the same purpose in an if-group as does the ELSE
statement of a Fortran 90 IF construct. This directive has the following format:

#else

182 SR–3907 3.0.2

Source Preprocessing [7]

7.2.5.6 #endif Directive

The #endif directive serves the same purpose in an if-group as does the
END IF statement of a Fortran 90 IF construct. This directive has the following
format:

#endif

7.3 Predefined Macros

The MIPSpro 7 Fortran 90 source preprocessor supports a number of predefined
macros. They are divided into groups as follows:

• Macros that are based on the host machine

• Macros that are based on IRIX system targets

The following predefined macros are based on the host system (the system
upon which the compilation is being done):

Macro Notes

___unix Always defined. The leading characters consist of
2 consecutive underscores.

The following predefined macros are based on an IRIX system target:

Macro Notes

_ABIabi=n Defined when abi is set to N32 or 64. Its value is
the instruction set architecture. For example,
_ABIN32=2 is set when -n32 is specified on the
f90(1) command line; _ABI64=3 is set when -64
is specified on the f90(1) command line.

For information on the f90(1) command line, see
Chapter 2, page 7.

_COMPILER_VERSION Defined as the compiler version. For example, for
the MIPSpro 7.2.1 release it is set as follows:
_COMPILER_VERSION=721.

SR–3907 3.0.2 183

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

LANGUAGE_FORTRAN90,
_LANGUAGE_FORTRAN90

__host_mips The leading characters in the second form consist
of 2 consecutive underscores.

LANGUAGE_FORTRAN,
_LANGUAGE_FORTRAN

MIPSEB, _MIPSEB

__mips Set to the instruction set architecture, either 3 or
4. The leading characters consist of 2 consecutive
underscores.

_MIPS_ISA Set to the instruction set architecture, either 3 or
4.

_MIPS_SIM Set to the instruction set architecture, as follows:
_MIPS_SIM=_ABIN32 when -n32 is specified on
the f90(1) command line; _MIPS_SIM=_ABI64
when -64 is specified on the f90(1) command
line.

For information on the f90(1) command line, see
Chapter 2, page 7.

_OPENMP

__sgi The leading characters consist of 2 consecutive
underscores.

_SYSTYPE_SVR4

7.4 Command Line Options

Several f90(1) command line options affect source preprocessing. The following
list indicates the sections in this manual that describe preprocessing options:

• Section 2.12, page 13, describes the -cpp option.

• Section 2.14, page 14, describes the -Dvar[=def][,var[=def]]… option.

• Section 2.18, page 15, describes the -E option.

• Section 2.22, page 16, describes the -ftpp option.

184 SR–3907 3.0.2

Source Preprocessing [7]

• Section 2.37, page 32, describes the -macro_expand option.

• Section 2.43, page 39, describes the -nocpp option.

• Section 2.49, page 49, describes the -P option.

• Section 2.58, page 56, describes the -Uvar option.

The -D identifier[=value] [, identifier[=value]] ..., -F, and
-U identifier [, identifier] ... options are ignored unless the Fortran input
source file is specified as either file.F or file.F90.

SR–3907 3.0.2 185

Interlanguage Calling [8]

You may want to call external procedures written in C, C++, or some other
language, or you may need to call a Fortran 90 procedure from one of those
languages. This chapter focuses on the interface between Fortran 90 and C/C++.

If your application has source programs written in different languages, you
should compile each file separately, with the appropriate compiler, and then
load them in a separate step. You can create object files suitable for loading by
specifying the -c option on the f90(1) command, which disables the load step
and writes the binary file to file.o. For information on the -c option, see
Section 2.7, page 12.

In the following example, the C/C++ compiler and the MIPSpro 7 Fortran 90
compilers produce object files that can be loaded. These files are named
main.o and rest.o:

% cc -c main.c

% f90 -c rest.f

This chapter provides more details on compiling and loading application
programs that are written in Fortran 90, C, and C++.

8.1 External and Public Names

When your Fortran 90 program defines the body of a procedure, the compiler
places the name of the procedure, as a character string, in the object file it
generates. This is a public name, which is accessible to other object files.

When your Fortran 90 program uses a procedure, the compiler places the name
of the procedure in the generated object file. This is an external name, which is
used by the object file but not defined in it. Names of common blocks and
names of data and procedures declared within object files are also external
names. You can use the nm(1) utility to display the public and external names
defined in a file. For more information on this utility, see the MIPS Compiling
and Performance Tuning Guide.

It is up to the IRIX loader, ld(1), to resolve each reference to an external name
by finding that same name as a public name in some other module. This is the
main job of the loader.

SR–3907 3.0.2 187

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

8.1.1 Fortran 90 Treatment of External and Public Names

The Fortran 90 compiler ignores the case of the input source text (other than the
contents of character literals). As a result, it may change the case of the names
of procedures and named common blocks while it translates the source file. The
names recorded in the object file are changed in the following two ways from
the way you may have written them:

• They are converted to all lowercase letters.

• They are normally extended with a final underscore (_) character.

Procedure names and common block names are translated, too.

The following declarations produce the identifiers matrix_, mixedcase_, and
cblk_ in the object file:

SUBROUTINE MATRIX

external function MixedCase()

COMMON /CBLK/a,b,c

These changes cause no problems when loading program units compiled by
Fortran 90 or FORTRAN 77. The same convention is used for both the public
and external names, so the names match.

Note: Some IRIX-based FORTRAN 77 compilers support the -U command
line option, which prevents the compiler from forcing all uppercase input to
lowercase. As a byproduct, it becomes possible to put mixed case public
names in the object file. This option is not supported by the MIPSpro 7
Fortran 90 compiler.

In addition, some IRIX-based FORTRAN 77 compilers take the use of the $
character as the final letter of a procedure name as a signal to suppress the
underscore in the public name. The $ is not permitted to appear in a name if
the program is to be compiled by the MIPSpro 7 Fortran 90 compiler. There
is no way to suppress the final underscore in an external name.

You can override the default conventions by using the !DIR$ NAME directive
described in Section 6.7, page 170.

Module and internal procedure names are connected with .in. to make a
unique name. For example, the following code creates procedures named
MPROC.in.MMM and IPROC.in.MPROC.in.MMM:

MODULE MMM

...

CONTAINS

188 SR–3907 3.0.2

Interlanguage Calling [8]

SUBROUTINE MPROC()

...
CONTAINS

SUBROUTINE IPROC()

...

8.1.2 Calling a Fortran 90 Subprogram from C

To call a Fortran 90 subprogram from a C procedure, spell the name the way
the Fortran 90 compiler spells it, using all lowercase letters and a trailing
underscore.

For example, consider the following Fortran 90 declaration:

SUBROUTINE HYPOT()

This must be declared in a C function as follows (note the use of lowercase with
a trailing underscore):

extern int hypot_()

Note: You cannot call Fortran 90 subroutines that contain assumed-shape
dummy arguments or Fortran 90 pointer arguments from C.

8.1.3 Calling a C Function from Fortran 90

To call a C function from a Fortran 90 program, ensure that the C function’s
name is spelled the way the Fortran 90 compiler expects it to be. When you
control the name of the C function, the simplest solution is to give it a name
that consists of lowercase letters with a terminal underscore. For example, the
following C function:

int fromfort_() {...}

could be declared in a Fortran 90 program as follows:

external FROMFORT

When you do not control the name of a C function, you must either supply a
function name that the Fortran 90 compiler can call or use the !DIR$ NAME
directive described in Section 6.7, page 170. If you choose to supply a function
name that the Fortran 90 compiler can call, you need to write a C function that
accepts the same arguments and has a name composed of lowercase letters
followed by an underscore. This C function can then call the function whose

SR–3907 3.0.2 189

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

name contains mixed case letters. You can write such a wrapper function
manually, or you can use the mkf2c(1) utility to do it automatically.

8.2 Correspondence of Fortran 90 and C Data Types

When you exchange data between Fortran 90 and C, either as arguments, as
function results, or as members of common blocks, you must make sure that the
two languages agree on the size, alignment, and subscript of each data object.

8.2.1 Corresponding Scalar Types

The correspondence between Fortran 90 and C scalar data types is shown in
Table 2. This table assumes that the default command line options that affect
precision are in effect. Certain f90(1) command line options (such as -i2 or
-r8) affects storage sizes for integer, logical, real, and double precision data
types. For information on the -i2 and -r8 options, see Section 2.28, page 18,
and Section 2.51, page 50.

Table 2. Corresponding Fortran 90 and C Data Types

Fortran Data Type Declaration C Data Type

INTEGER(KIND=1),
LOGICAL(KIND=1)

signed char

CHARACTER unsigned char

INTEGER(KIND=2),
LOGICAL(KIND=2)

short

INTEGER,
INTEGER(KIND=4),
LOGICAL,
LOGICAL(KIND=4)

int

INTEGER(KIND=8),
LOGICAL(KIND=8)

long long

REAL, REAL(KIND=4) float

DOUBLE PRECISION,
REAL(KIND=8)

double

REAL(KIND=16) long double

190 SR–3907 3.0.2

Interlanguage Calling [8]

Fortran Data Type Declaration C Data Type

COMPLEX,
COMPLEX(KIND=4)

struct{float real, imag;};

DOUBLE COMPLEX,
COMPLEX(KIND=8)

struct{double real, imag;};

COMPLEX(KIND=16) struct{long double real, imag;};

CHARACTER(n) char fstr_n[n]

For type character, Fortran 90 declarations with a length designator, such as
CHARACTER(LEN=N) :: X, are equivalent to a C declaration of unsigned
char X[N].

To set a NULL character in a Fortran string, use CHAR(0). Examples:

character*4 aaa

aaa(1:3) = ’abc’

aaa(4:4) = CHAR(0)

8.2.2 Corresponding Character Types

The Fortran 90 CHARACTER data type declaration corresponds to the C type
unsigned char. However, the two languages differ in the treatment of strings
of characters.

A Fortran 90 variable can be declared as CHARACTER(n), where n>1, contains
exactly n characters at all times. When a shorter character expression is
assigned to it, it is padded on the right with spaces to reach n characters.

A C vector of characters is normally sized 1 greater than the longest string
assigned to it. It may contain fewer meaningful characters than its size allows,
and the end of meaningful data is marked by a null byte. There is no null byte
at the end of a Fortran 90 string (except by chance memory alignment).

There is no terminal null byte, so most of the string library functions familiar to
C programmers (strcpy()(3C), strcat()(3C), strcmp()(3C), and so on)
cannot be used with Fortran 90 string values. The strncpy()(3C),
strncmp()(3C), bcopy()(3C), and bcmp()(3C) functions can be used because
they depend on a count rather than a delimiter.

SR–3907 3.0.2 191

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

8.2.3 Unsupported Array Arguments

Fortran 90 supports assumed-shape arrays, deferred-shape arrays, and array
sections. You cannot pass any of these types of array to a non-Fortran 90
procedure because Fortran 90 represents such arrays in memory using a
descriptor containing indirect pointers and other data. The format of this
descriptor is not part of the published programming interface to the MIPSpro 7
Fortran 90 compiler because it is subject to change.

8.3 How Fortran 90 Passes Arguments

When calling non-Fortran 90 functions, you must know how arguments are
passed. When calling Fortran 90 subprograms from other languages, you must
cause the other language to pass arguments correctly.

Note: All compilers for a given version of IRIX use identical conventions for
passing arguments. These conventions are documented at the machine
instruction level in the MIPSpro Assembly Language Programmer’s Guide, which
also describes the differences in the conventions used in different releases.

An argument passed to a subprogram, regardless of its data type, is passed as
the address of the actual in memory. This rule is extended for two special cases:

• The length of each CHARACTER(n) declaration is passed as an implicit
additional INTEGER(KIND=4) value, following the explicit arguments.

• When a function returns type CHARACTER(n), the address of the space to
receive the result is passed as the first argument to the function, and the
length of the result space is passed as the second implicit argument,
preceding all explicit arguments.

Example 1. Consider the following code:

COMPLEX(KIND=8) :: CMPLX8

CHARACTER*(16) :: CSTR1, CSTR2

EXTERNAL CPXASC
CALL CPXASC(CSTR1,CSTR2,CMPLX8)

The code generated from the subroutine call in this example passes the
following arguments:

• The address of CSTR1

• The address of CSTR2

• The address of CMPLX8

192 SR–3907 3.0.2

Interlanguage Calling [8]

• The length of CSTR1, an integer value of 16

• The length of CSTR2, an integer value of 16

Example 2. Consider the following code:

CHARACTER*(8) :: SYMBL,PICKSYM

CHARACTER*(100) :: SENTENCE

INTEGER NSYM
SYMBL = PICKSYM(SENTENCE,NSYM)

The code generated from the function call in the preceding example passes the
following arguments:

• The address of an unnamed result variable

• The length of an unnamed result variable

• The address of SENTENCE, the first explicit argument

• The address of NSYM, the second explicit argument

• The length of SENTENCE, an integer value of 100

8.4 Calling Fortran 90 from C

There are two types of callable Fortran 90 subprograms: subroutines and
functions. In C terminology, both types of subprograms are external functions.
The difference is the use of the function return value from each.

8.4.1 Calling a Fortran 90 Subroutine from C

From the standpoint of a C function, a Fortran 90 subroutine is an external
function returning void.

Example 1. The following example shows a simple Fortran 90 subroutine that
adds arrays of complex numbers:

SUBROUTINE ADDC32(Z, A, B, N)

INTEGER :: N

COMPLEX(KIND=16),DIMENSION(N) :: Z,A,B

Z = A + B
RETURN

END SUBROUTINE

SR–3907 3.0.2 193

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

The Fortran 90 subroutine could be called from C using the following code
fragment:

typedef struct{long double real, imag;} cpx32;
extern void

addc32_(cpx32 *,cpx32 *,cpx32 *,int *);

cpx32 z[MAXARRAY], a[MAXARRAY], b[MAXARRAY];

...

int n = MAXARRAY;

addc32_(&z, &a, &b, &n);

The preceding code fragments show how the Fortran 90 subroutine is named in
the C code using lowercase letters and a terminal underscore. This is the way
the Fortran 90 compiler spells the public name in the object file.

Example 2. The following subroutine takes assumed-length character
arguments:

SUBROUTINE PRT(BEF, VAL, AFT)

CHARACTER*(*) :: BEF, AFT

REAL :: VAL
PRINT *, BEF, VAL, AFT

RETURN

END SUBROUTINE PRT

The following C code prepares CHARACTER(16) values and passes them to the
Fortran 90 subroutine:

typedef char fstr_16[16];

extern void

prt_(fstr_16 *, float *, fstr_16 *,
int, int);

main()

{

float val = 2.1828e0;

fstr_16 bef,aft;
strncpy(bef,"Before..........",sizeof(bef));

strncpy(aft,"...........After",sizeof(aft));

prt_(bef, &val, aft, sizeof(bef), sizeof(aft));

}

Note that the subroutine call requires five actual arguments: the addresses of
the three explicit arguments and the lengths of the two string arguments. In the
C code, the string length arguments are generated using sizeof(), which
returns the memory size of the typedef fstr_16.

194 SR–3907 3.0.2

Interlanguage Calling [8]

When the Fortran 90 code does not require a specific string length, the C code
that calls it can pass an ordinary C character vector, as shown in the following
code fragment:

extern int

prt_(char *, float *, char *, int, int);

main()

{

float val = 2.1828e0;

char *bef = "Start:";
char *aft = ":End";

(void)prt_(bef, &val, aft, strlen(bef), strlen(aft));

}

In this example, the string length implicit argument values are calculated
dynamically using strlen().

8.4.2 Calling a Fortran 90 Function from C

A Fortran 90 function that returns a scalar value as its result corresponds
exactly to the C concept of a function with an explicit return value. When a
Fortran 90 function returns any type shown in Table 2, page 190, other than
CHARACTER(n), where n>1, you can call the function from C and handle its
return value exactly as if it were a C function returning that data type.

Example 1. The following function accepts and returns COMPLEX(KIND=8)
values.

FUNCTION FSUB8(INP)
COMPLEX(KIND=8) :: INP,FSUB8

FSUB8 = INP

END FUNCTION FSUB8

Although a complex value is declared as a structure in C, it can be used as the
return type of a function. The following C code shows how the preceding
Fortran 90 function is declared and called:

typedef struct{ double real, imag; } cpx8;

extern cpx8 fsub8_(cpx8 *);
main()

{

cpx8 inp = { -3.333, -5.555 };

cpx8 oup = { 0.0, 0.0 };

printf("testing fsub8...");

SR–3907 3.0.2 195

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

oup = fsub8_(&inp);

if (inp.real == oup.real && inp.imag == oup.imag)
printf("Ok\n");

else

printf("Nope\n");

}

The arguments to a function, like the arguments to a subroutine, are passed as
pointers, but the value returned is a value, not a pointer to a value.

Example 2. The following function has a CHARACTER(16) return value.

FUNCTION FS16(J, K, S)

CHARACTER*(16) :: FS16, S
INTEGER J, K

FS16 = S(J:K)

RETURN

END FUNCTION FS16

When a Fortran 90 function returns CHARACTER(n), where n>1, value, the
returned value is not the explicit result of the function. Instead, you must pass
the address and length of the result area as the first two arguments of the
function, preceding the explicit arguments. This is demonstrated in the
following C code:

typedef char fstr_16[16];

extern void

fs16_ (fstr_16 *, int, int *, int *, fstr_16 *, int);

main()
{

char work[64];

fstr_16 inp, oup;

int j = 7;

int k = 11;
strncpy(inp,"0123456789abcdef", sizeof(inp));

fs16_ (oup, sizeof(oup), &j, &k, inp, sizeof(inp));

strncpy(work, oup, sizeof(oup));

work[sizeof(oup)] = ’\0’;

printf("FS16 returns <%s>\n", work);

}

In this example, the address and length of the function result are the first two
arguments of the function. Because type fstr_16 is an array, its name, oup,
evaluates to the address of its first element. The next three arguments are the

196 SR–3907 3.0.2

Interlanguage Calling [8]

addresses of the three named arguments. The final argument is the length of
the string argument.

8.5 Calling C from Fortran 90

You can call units of C code from Fortran 90 as if they were written in
Fortran 90, provided that the C modules follow the Fortran 90 conventions for
passing arguments. For more information on this, see Section 8.3, page 192.

When the C function expects arguments passed using other conventions, you
normally need to build a wrapper for the C function using the mkf2c(1)
command.

8.5.1 Calls to C Functions

The following C function is written to use the Fortran 90 conventions for its
name (lowercase with final underscore) and for argument passing:

/*

|| C functions to export the facilities of strtoll()

|| to Fortran 90 programs. Effective Fortran declaration:

||
|| FUNCTION ISCAN(S,J)

|| INTEGER(KIND=8) :: ISCAN

|| CHARACTER*(*) S

|| INTEGER J

||

|| String S(J:) is scanned for the next signed long value
|| as specified by strtoll(3c) for a "base" argument of 0

|| (meaning that octal and hex literals are accepted).

||

|| The converted long long is the function value, and J is

|| updated to the nonspace character following the last
|| converted character, or to 1+LEN(S).

||

|| Note: if this routine is called when S(J:J) is neither

|| whitespace nor the initial of a valid numeric literal,

|| it returns 0 and does not advance J.

*/
#include <ctype.h> /* for isspace() */

long long iscan_(char *ps, int *pj, int ls)

{

SR–3907 3.0.2 197

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

int scanPos, scanLen;

long long ret = 0;
char wrk[1024];

char *endpt;

/* when J>LEN(S), do nothing, return 0 */

if (ls >= *pj)

{

/* convert J to origin-0, permit J=0 */
scanPos = (0 < *pj)? *pj-1 : 0 ;

/* calculate effective length of S(J:) */

scanLen = ls - scanPos;

/* copy S(J:) and append a null for strtoll() */

strncpy(wrk,(ps+scanPos),scanLen);

wrk[scanLen] = ‘\0’;

/* scan for the integer */
ret = strtoll(wrk, &endpt, 0);

/*

|| Advance over any whitespace following the number.

|| Trailing spaces are common at the end of Fortran

|| fixed-length char vars.
*/

while(isspace(*endpt)) { ++endpt; }

*pj = (endpt - wrk)+scanPos+1;

}

return ret;
}

The following Fortran 90 code fragment demonstrates a call to the preceding C
function:

EXTERNAL ISCAN

INTEGER(KIND=8) ISCAN

INTEGER(KIND=8) RET

INTEGER J,K

CHARACTER*(50) INP
INP = ’1 -99 3141592 0xfff 033 ’

J = 0

DO WHILE (J .LT. LEN(INP))

K = J

198 SR–3907 3.0.2

Interlanguage Calling [8]

RET = ISCAN(INP,J)

PRINT *, K,’: ’,RET,’ -->’,J
END DO

END

8.5.2 Using Fortran 90 Common Blocks in C Code

A C function can refer to the contents of a common block defined in a
Fortran 90 program. The name of the block as given in the COMMON statement is
altered as described in Section 8.1.1, page 188. (The name is converted to
lowercase and extended with an underscore). The name of the blank common
is _BLNK__, with one leading underscore and two trailing ones.

To refer to the contents of a common block, take these steps:

1. Declare a C structure with fields that have the appropriate data types to
match the successive elements of the Fortran 90 common block. For
information on corresponding data types, see Table 2, page 190.

2. Declare the common block name as an external structure of that type.

The following example employs this method:

INTEGER STKTOP, STKLEN, STACK(100)

COMMON /WITHC/ STKTOP, STKLEN, STACK

struct fstack {

int stktop, stklen;

int stack[100];

}

extern fstack withc_;
int peektop_()

{

if (withc_.stktop) /* stack not empty */

return withc_.stack[withc_.stktop-1];

else...
}

The restrictions on this capability are as follows:

• You cannot map a common block that contains Fortran 90 pointer-based
variables.

• If the common block contains a variable of Fortran 90 derived type (a
structure), ensure that the derived type is declared with the SEQUENCE

SR–3907 3.0.2 199

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

attribute. Otherwise, its fields may not appear in the expected sequence in
memory.

• When -O3 is in effect, the compiler may split up common blocks. For
information on the -O3 option to the f90(1) command, see Section 2.46,
page 39.

8.5.3 Using Fortran 90 Arrays in C Code

A C program can access arrays created in Fortran 90. The following example
illustrates this.

The following Fortran 90 code fragment declares a matrix in a common block
and then calls a C subroutine to modify the array:

INTEGER IMAT(10,100), R, C
COMMON /WITHC/ IMAT

R = 74

C = 6

CALL CSUB(C, R, 746)

PRINT *, IMAT(6,74)

END

The following C function stores its third argument in the common array using
the subscripts passed in the first two arguments. In the C function, the order of
the dimensions of the array are reversed, so the subscript values are reversed to
match, and decremented by 1 to provide 0-origin indexing:

extern struct { int imat[100][10]; } withc_;

void csub_(int *pc, int *pr, int *pval)

{
withc_.imat[*pr-1][*pc-1] = *pval;

}

8.5.4 Calls to C Using LOC and %VAL

You can use the nonstandard intrinsic functions %VAL and LOC to pass
arguments in ways other than the standard Fortran 90 conventions described in
Section 8.3, page 192.

200 SR–3907 3.0.2

Interlanguage Calling [8]

8.5.4.1 Using %VAL

The %VAL function is used in an argument list to cause an argument to be
passed by value rather than by reference. Suppose that you need to call a C
function having the following prototype in file ti.c:

#includevoid takesint_(int i, char *s, int len)

{

printf("i: %d\n", i);

printf("s: %.*s\n", len, s);

}

The first argument to this function is an integer value, not the address of an
integer value in memory. You could call this function from the following
Fortran 90 code in file ti_f.f:

CHARACTER(80) SENTENCE

INTEGER(4) J

J = 13

SENTENCE = "Hello, there."

CALL TAKESINT(%VAL(J), SENTENCE)
END

The use of %VAL(j) causes the contents of j to be passed, rather than the
address of j.

% f90 -n32 ti_f.f ti.c

ti_f.f:

ti.c:

% ./a.out

i: 13
s: Hello, there.

8.5.4.2 Using LOC

The LOC function returns the address of its argument. It can be used with %VAL
to prevent passing the length of a character value as a hidden argument. In
other words, the argument %VAL(LOC(char_var)) passes only the address of
char_var. It does not pass the implicit length argument.

SR–3907 3.0.2 201

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

8.6 Calling Assembly Language from Fortran 90

You can write modules in MIPS assembly language, following the guidelines in
the MIPSpro Assembly Language Programmer’s Guide. Procedures in these
modules can be called from Fortran 90. There is only one special consideration.

Operating in assembly language, you can change the operating mode and the
rounding mode of the CPU. When running Fortran 90 programs that contain
quad precision operations, you must run the compiler in round-to-nearest
mode. This mode is in effect by default, so you usually do not need to set it.
When writing programs that call your own assembly routines, ensure that this
mode is set. For more information, see the swapRM(3C) man page.

202 SR–3907 3.0.2

Libraries [A]

The MIPSpro 7 Fortran 90 compiler works with the following other commands,
intrinsic procedures, and library routines:

• The assign(1) command. This command can be used to alter the details of
a Fortran file connection, such as device residency, alternative file names, or
file space allocations. The assign(1) options are associated with file names,
file name patterns, or unit numbers. When associated with file names or file
name patterns, the options are applied whenever a matching file name is
opened from a Fortran program. When associated with a unit number, the
options are applied whenever that unit becomes connected.

For complete details about the assign command, see the assign(1) man
page or the Application Programmer’s I/O Guide, publication SG–2168.

• The Flexible File I/O (FFIO) system. This system lets you specify a
comma-separated list of layers through which I/O data will be passed. The
FFIO layers act as filters that manipulate the data file as it is being read or
written. The layers include performance options and the capability to read
and write files in different vendors’ blocking formats. For more information
on FFIO, see the intro_ffio(3F) man page and the Application
Programmer’s I/O Guide, publication SG–2168.

• Intrinsic procedures. These procedures are predefined by the computer
programming language. They are invoked in the same way that other
procedures are invoked. The Fortran 90 standard defines intrinsic
procedures, and the MIPSpro 7 Fortran 90 compiler includes other intrinsics
as extensions to the standard.

For details about the available intrinsic procedures, see the following Cray
Research publications: the Intrinsic Procedures Reference Manual, publication
SR–2138, or the Fortran Language Reference Manual, Volume 2, publication
SR–3903.

• POSIX library routines. The POSIX FORTRAN 77 Language Interfaces
Standard IEEE Std 1003.9-1992 (POSIX.a) defines a standardized interface for
accessing the system services of IEEE Std 1003.1-1990 (POSIX.1) and
supports routines to access constructs not directly accessible with FORTRAN
77. These routines can also be used by Fortran 90 programs. For more
information on these routines, see the intro_pxf(3F) man page.

• Miscellaneous library routines. A library is a collection of subprograms,
usually grouped around a specific subject, such as input and output (I/O).

SR–3907 3.0.2 203

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

You can call library routines explicitly in your program, or they can be
called by the compiler. The following sections describe the library routines
are available to you.

A.1 Miscellaneous Library Routines

The following list describes the library routines that are available with the
MIPSpro 7 Fortran 90 compiler. See the individual man pages for more details.

• FFIO routines (C routines used with the FFIO layers):

– fffcntl(3C)

– ffopen(3C)

– ffpos(3C)

– ffread(3C)

– ffseek(3C)

• Interface routines (job control routines that control program terminations
or execute a shell command):

– ABORT(3F)

– EXIT(3F)

– ISHELL(3F)

• I/O routines to control input and output:

– ASNCTL(3F)

– ASNQFILE(3F)

– ASSIGN(3F)

– FLUSH(3F)

– NUMBLKS(3F)

– RNL(3F)

– RNLECHO(3F)

– RNLSKIP(3F)

– RNLTYPE(3F)

204 SR–3907 3.0.2

Libraries [A]

– WNL(3F)

– WNLLINE(3F)

– WNLLONG(3F)

• Programming aids (routines for times and dates, packing and unpacking,
and character argument counters):

– SECOND(3F)

– SECONDR(3F)

– SYSCLOCK(3F)

– TIMEF(3F)

• Multiprocessing routines for Fortran:

– mp_block(3F)

– mp_blocktime(3F)

– mp_create(3F)

– mp_destroy(3F)

– mp_my_threadnum(3F)

– mp_numthreads(3F)

– mp_set_numthreads(3F)

– mp_setup(3F)

– mp_unblock(3F)

– mp_setlock(3F)

– mp_unsetlock(3F)

– mp_barrier(3F)

– mp_in_doacross_loop(3F)

– mp_set_slave_stacksize(3F)

SR–3907 3.0.2 205

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

A.2 Library Functions

The Fortran library routines provide an interface from Fortran programs to the
IRIX system functions. System functions are facilities that are provided by the
IRIX system kernel directly, as opposed to functions that are supplied by library
code loaded with your program.

Table 3 summarizes the routines in the Fortran run-time library that can be
used with the compiler. The table indicates PXF POSIX Library standard
routines as recommended substitutions for IRIX system functions. See the
individual man pages for details about each routine.

Table 3. Summary of System Interface Library Routines

Function Recommended Purpose

abort Abnormal termination

access PXFACCESS Determine accessibility of a file

acct Enable/disable process accounting

alarm PXFALARM Execute a subroutine after a specified time

barrier Perform barrier operations

blockproc Block processes

brk Change data segment space allocation

chdir PXFCHDIR Change default directory

chmod PXFCHMOD Change mode of a file

chown PXFCHOWN Change owner

chroot PXFCHROOT Change root directory for a command

close Close a file descriptor

creat PXFCREAT Create or rewrite a file

ctime Return system time

dtime Return elapsed execution time

dup Duplicate an open file descriptor

etime Return elapsed execution time

exit PXFFASTEXIT Terminate process with status

206 SR–3907 3.0.2

Libraries [A]

Function Recommended Purpose

fcntl File control

fdate Return date and time in an ASCII string

fgetc Get a character from a logical unit

fork PXFFORK Create a copy of this process

fputc Write a character to a Fortran logical unit

free_barrier Free barrier

fseek Reposition a file on a logical unit

fseek64 Reposition a file on a logical unit for 64-bit architecture

fstat Get file status

ftell Reposition a file on a logical unit

ftell64 Reposition a file on a logical unit for 64-bit architecture

gerror Get system error messages

getarg PXFGETARG Return command line arguments

getc Get a character from a logical unit

getcwd PXFGETCWD Get pathname of current working directory

getdents Read directory entries

getegid PXFGETEGID Get effective group ID

gethostid Get unique identifier of current host

getenv PXFGETENV Get value of environment variables

geteuid PXFGETEUID Get effective user ID

getgid PXFGETGID Get user or group ID of the caller

gethostname Get current host ID

getlog Get user’s login name

getpgrp PXFGETPGRP Get process group ID

getpid PXFGETPID Get process ID

getppid PXFGETPPID Get parent process ID

getsockopt Get options on sockets

getuid PXFGETUID Get user or group ID of caller

SR–3907 3.0.2 207

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

Function Recommended Purpose

gmtime Return system time

iargc IPXFARGC Return command line arguments

idate Return date or time in numerical form

ierrno Get system error messages

ioctl Control device

isatty PXFISATTY Determine if unit is associated with tty

itime Return date or time in numerical form

kill PXFKILL Send a signal to a process

link PXFLINK Make a link to an existing file

loc Return the address of an object

lseek Move read/write file pointer

lseek64 Move read/write file pointer for 64-bit architecture

lstat Get file status

ltime Return system time

m_fork Create parallel processes

m_get_myid Get task ID

m_get_numprocs Get number of subtasks

m_kill_procs Kill process

m_lock Set global lock

m_next Return value of counter

m_park_procs Suspend child processes

m_rele_procs Resume child processes

m_set_procs Set number of subtasks

m_sync Synchronize all threads

m_unlock Unset a global lock

mkdir Make a directory

mknod Make a directory/file

mount Mount a filesystem

208 SR–3907 3.0.2

Libraries [A]

Function Recommended Purpose

new_barrier Initialize a barrier structure

nice Lower priority of a process

open PXFOPEN Open a file

oserror Get/set system error

pause PXFPAUSE Suspend process until signal

perror Get system error messages

pipe Create an interprocess channel

plock Lock process, test, or data in memory

prctl Control processes

profil Execution-time profile

ptrace Process trace

putc Write a character to a Fortran logical unit

putenv Set environment variable

qsort Quick sort

read Read from a file descriptor

readlink Read value of symbolic link

rename PXFRENAME Change the name of a file

rmdir PXFRMDIR Remove a directory

sbrk Change data segment space allocation

schedctl Call to scheduler control

send Send a message to a socket

setblockproccnt Set semaphore count

setgid PXFSETGID Set group ID

sethostid Set current host ID

setoserror Set system error

setpgrp PXFSETPGRP Set process group ID

setsockopt Set options on sockets

setuid PXFSETUID Set user ID

SR–3907 3.0.2 209

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

Function Recommended Purpose

sginap Put process to sleep

sginap64 Put process to sleep in 64-bit environment

shmat Attach shared memory

shmdt Detach shared memory

sighold Raise priority and hold signal

sigignore Ignore signal

signal Change the action for a signal

sigpause Suspend until receive signal

sigrelse Release signal and lower priority

sigset Specify system signal handling

sleep PXFSLEEP Suspend execution for an interval

socket Create an endpoint for communication TCP

sproc Create a new share group process

stat PXFSTAT Get file status

stime Set time

symlink Make symbolic link

sync Update superblock

sysmp Control multiprocessing

sysmp64 Control multiprocessing in 64-bit environment

system Issue a shell command

taskblock Block tasks

taskcreate Create a new task

taskctl Control task

taskdestroy Kill task

tasksetblockcnt Set task semaphore count

taskunblock Unblock task

time PXFTIME Return system time (must be declared EXTERNAL)

ttynam Find name of terminal port

210 SR–3907 3.0.2

Libraries [A]

Function Recommended Purpose

uadmin Administrative control

ulimit Get and set user limits

ulimit64 Get and set user limits in 64-bit architecture

umask PXFUMASK Get and set file creation mask

umount Dismount a file system

unblockproc Unblock processes

unlink PXFUNLINK Remove a directory entry

uscalloc Shared memory allocator

uscalloc64 Shared memory allocator in 64-bit environment

uscas Compare and swap operator

usclosepollsema Detach file descriptor from a pollable semaphore

usconfig Semaphore and lock configuration operations

uscpsema Acquire a semaphore

uscsetlock Unconditionally set lock

usctlsema Semaphore control operations

usdumplock Dump lock information

usdumpsema Dump semaphore information

usfree User shared memory allocation

usfreelock Free a lock

usfreepollsema Free a pollable semaphore

usfreesema Free a semaphore

usgetinfo Exchange information through an arena

usinit Semaphore and lock initialize routine

usinitlock Initialize a lock

usinitsema Initialize a semaphore

usmalloc Allocate shared memory

usmalloc64 Allocate shared memory in 64-bit environment

usmallopt Control allocation algorithm

SR–3907 3.0.2 211

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

Function Recommended Purpose

usnewlock Allocate and initialize a lock

usnewpollsema Allocate and initialize a pollable semaphore

usnewsema Allocate and initialize a semaphore

usopenpollsema Attach a file descriptor to a pollable semaphore

uspsema Acquire a semaphore

usputinfo Exchange information through an arena

usrealloc User share memory allocation

usrealloc64 User share memory allocation in 64-bit environment

ussetlock Set lock

ustestlock Test lock

ustestsema Return value of semaphore

usunsetlock Unset lock

usvsema Free a resource to a semaphore

uswsetlock Set lock

wait PXFWAIT Wait for a process to terminate

write Write to a file

A.3 Compatibility with sproc(2)

The parallelism used in Fortran is implemented using the sproc(2) system call.
It is recommended that programs not attempt to use both !$OMP PARALLEL DO
loops and sproc calls. It is possible, but there are several restrictions:

• Any threads you create may not execute !$OMP PARALLEL DO loops; only
the original thread is allowed to do this.

• The calls to routines like mp_block and mp_destroy apply only to the
threads created by mp_create or to those automatically created when the
Fortran job starts; they have no effect on any user-defined threads.

• Calls to routines such as m_get_numprocs do not apply to the threads
created by the Fortran routines. However, the Fortran threads are ordinary
subprocesses; using the kill routine with the arguments 0 and sig (for
example, kill(0,sig)) to signal all members of the process group might kill

212 SR–3907 3.0.2

Libraries [A]

threads used to execute !$OMP PARALLEL DO. If you choose to intercept
the SIGCLD signal, you must be prepared to receive this signal when the
threads used for the !$OMP PARALLEL DO loops exit; this occurs when
mp_destroy is called or at program termination.

• The m_fork call is implemented using sproc(2), so it is not legal to run
m_fork on a family of processes that each subsequently executes
!$OMP PARALLEL DO loops. Only the original thread can execute
!$OMP PARALLEL DO loops.

A.4 Communicating between Threads

The routines described in this section allow you to perform explicit
communication between threads within a multiprocessed Fortran program.
These communication mechanisms are similar to message-passing,
one-sided-communication, or the shared memory routines (SHMEM) and can
be desirable for reasons of performance or style.

The operations allow a thread to fetch from (get) or send to (put) data
belonging to other threads. These operations can be performed only on data
that has been declared to be -Xlocal. That is, each thread has its own private
copy of that data. See the ld(1) man page for details on the -Xlocal option.
The -Xlocal option is equivalent to the UNICOS TASKCOMMON directive. A
get operation requires that source point to Xlocal data, while a put operation
requires that target point to -Xlocal data.

These routines are similar to the original SHMEM routines (see
intro_shmem(3)), but are prefixed by mp_:

• mp_shmem_get32

• mp_shmem_put32

• mp_shmem_iget32

• mp_shmem_iput32

• mp_shmem_get64

• mp_shmem_put64

• mp_shmem_iget64

• mp_shmem_iput64

For the preceding routines:

SR–3907 3.0.2 213

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

• Both source and target are pointers to 32-bit quantities for the 32-bit versions,
and to 64-bit quantities for the 64-bit versions of these calls.

• length specifies the number of elements to be copied, in units of 32 or 64-bit
elements, as appropriate.

• The source_thread and target_thread specify the thread number of the remote
PE.

• A get copies from the remote PE, and a put copies to the remote PE.

• target_inc and source_inc are specified for the strided iget/iput operations.
They specify the increment (in units of 32 or 64 bit elements) along each of
source and target when performing the data transfer. The number of elements
copied during a strided put or get operation is still determined by length.

Call these routines only after the threads have been created (typically, the first
DOACROSS/PARALLEL region). Performing these operations while the program
is still serial leads to a run-time error because each thread’s copy has not yet
been created.

Example 1. In the following example, compiling with -Wl,
-Xlocal,mycommon_ ensures that each thread has a private copy of x and y:

INTEGER X

REAL(KIND=8) Y(100)

COMMON /MYCOMMON/ X, Y

Example 2. The following example copies the value of x on thread 3 into the
private copy of x for the current thread:

CALL MP_SHMEM_GET32 (X, X, 1, 3)

Example 3. The next example copies the value of localvar into the thread 5
copy of x:

CALL MP_SHMEM_PUT32 (X, LOCALVAR, 1, 5)

Example 4. The following example fetches values from the thread 7 copy of
array y into localarray:

CALL MP_SHMEM_GET64 (LOCALARRAY, Y, 100, 7)

Example 5. The following example copies the value of every other element of
localarray into the thread 9 copy of y:

CALL MP_SHMEM_IPUT64 (Y, LOCALARRAY, 2, 2, 50, 9)

214 SR–3907 3.0.2

Debugging and Profiling Multiprocessed
Programs [B]

This appendix describes some aspects of debugging multiprocessed Fortran 90
source code. The recommended debugger for use with the MIPSpro 7 Fortran
90 compiler is dbx(1). The dbx(1) debugger includes the following features to
support the Fortran 90 language: allocatable arrays, pointer-based variables,
nonstandard stride arrays, modules, and derived types. For more information
on this debugger, see the dbx(1) man page.

B.1 Setting Up Your Environment

When debugging a program with dbx(1), enter the following command:

% (dbx) ignore TERM

This command allows a multiprocessed program to terminate gracefully after
execution is complete.

B.2 Profiling a Parallel Fortran 90 Program

It is easiest to debug a program for execution on multiple processors in a
single-processor environment. After your program executes successfully on a
single processor, you can compile it for multiprocessing by using the -mp
option on the f90(1) command line.

After converting a program from use on one processor to one that can be
multiprocessed, you should examine execution profiles to judge the
effectiveness of the transformation. Good profiles of the program are crucial to
help you focus on the loops that use the most time. You can use SpeedShop to
obtain these profiles. For more information on SpeedShop, see the SpeedShop
User’s Guide or the ssrun(1) man page.

If your job uses multiple threads, you can use SpeedShop to create multiple
profile data files, one profile file for each thread. Use the prof(1) standard
profile analyzer to examine this output. You can also use timex(1); this
command indicates if the parallelized versions performed better overall than
the serial version.

SR–3907 3.0.2 215

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

The profile of a Fortran parallel job is different from a standard profile. To
produce a parallel program, the compiler pulls the parallel DO loops out into
separate subroutines, one routine for each loop. Each of these loops is shown as
a separate procedure in the profile. You can compare the amount of time spent
in each loop by the various threads to determine how well the workload is
balanced.

You can use par(1) to trace the activity of a single process, a related group of
processes, or the system as a whole. The par(1) utility is a process activity
reporter. For more information on par(1), see the par(1) man page.

In addition to the loops, the profile returned by the prof(1) command shows
the special routines that actually do the multiprocessing. The
__mp_parallel_do routine is the synchronizer and controller. Slave threads
wait for work in the routine __mp_slave_wait_for_work; the less time they
wait, the more time they work. This gives a rough estimate of the extent of
parallelism in a program. For more information on these routines, see the
mp(3F) man page.

B.3 Debugging Parallel Fortran

After you have isolated program bugs to one or two loops, you can begin to
debug. To determine if a loop can be multiprocessed, change the order of the
iterations on the parallel DO loop on a single-processor version. If the loop can
be multiprocessed, the iterations can execute in any order and produce the
same answer. If the loop cannot be multiprocessed, changing the order usually
causes the single-processor version to fail. You can use single-process
debugging techniques to determine the problem.

Example. Erroneous !$OMP PARALLEL DO. In this example, two references to
A have the indexes in reverse order. If the indexes were in the same order (if
both were A(I,J) or both were A(J,I)), the loop could be multiprocessed. As
written, there is a data dependency, so the !$OMP PARALLEL DO is an error.

!$OMP PARALLEL DO PRIVATE(I,J)
DO I = 1, N

DO J = 1, N

A(I,J) = A(J,I) + X*B(I)

END DO

END DO

Because a (correct) multiprocessed loop can execute its iterations in any order,
you could rewrite this as:

216 SR–3907 3.0.2

Debugging and Profiling Multiprocessed Programs [B]

!$OMP PARALLEL DO PRIVATE(I,J)

DO I = N, 1, -1
DO J = 1, N

A(I,J) = A(J,I) + X*B(I)

END DO

END DO

This loop no longer gives the same answer as the original even when compiled
without the -mp option. This reduces the problem to a normal debugging
problem.

B.3.1 Other Debugging Tips for Multiprocessed Loops

If a multiprocessed loop produces the wrong answer, use the following
checklist to determine the cause:

Item to investigate Reasons

PRIVATE variables Check the PRIVATE variables when the code runs
correctly as a single process but fails when
multiprocessed. Check any scalar variables that
appear in the left-hand side of an assignment
statement in the loop to be sure they are all
declared as PRIVATE. Be sure to include the DO
variable of any loop nested inside the parallel
loop.

LASTPRIVATE A problem occurs when you need the final value
of a variable but the variable is declared
PRIVATE rather than LASTPRIVATE. If the use of
the final value happens several hundred lines
farther down, or if the variable is in a common
block and the final value is used in a completely
separate routine, a variable can look as if it is
PRIVATE when in fact it should be
LASTPRIVATE. To combat this problem, simply
declare all the PRIVATE variables LASTPRIVATE
when debugging a loop.

EQUIVALENCE Check for EQUIVALENCE problems. Two
variables of different names may in fact refer to
the same storage location if they are associated
through an EQUIVALENCE.

SR–3907 3.0.2 217

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

EQUIVALENCE statements affect storage of local
variables and can cause data dependencies when
parallelizing code. EQUIVALENCE statements
with local variables cause the storage location to
be initialized to zero and saved between calls to
the subroutine.

Uninitialized variables Some programs assume uninitialized variables
are set to 0. This works with the -static option
on the f90(1) command, but without it,
uninitialized values assume the value that
remains on the stack. When compiling with the
-mp option on the f90(1) command, the program
executes differently and the stack contents are
different. You should suspect this type of
problem when a program is compiled with -mp
and is run on a single processor and produces a
different result when it is compiled without -mp.

To discover this type of problem, compile
suspected routines with the -static option. If
an uninitialized variable is the problem, you
should initialize the variable rather than compile
the program with the -static option.

Ranges on arrays Perform array bounds checking analysis by
compiling with the -C option on the f90(1)
command. If arrays are indexed out of bounds, a
memory location may be referenced in
unexpected ways. This is particularly true of
adjacent arrays in a common block.

Errors in choosing which arrays are SHARED can be detected only when
running on multiple processors. When stepping through the code in the
debugger, the program executes correctly.

The most likely candidates for this error are arrays with complicated subscripts.
If the array subscripts are simply the variables of a DO loop, the analysis is
probably correct. If the subscripts are more involved, examine those subscripts
first.

If you suspect this type of error, print out all the values of all the subscripts on
each iteration through the loop. Then use the uniq(1) command to look for
duplicates. If duplicates are found, there is a data dependency.

218 SR–3907 3.0.2

Differences [C]

This appendix describes differences between the various Fortran compiler
supported on IRIX, UNICOS, and UNICOS/mk systems. Specifically, section
Section C.1, page 219, describes the differences between the MIPSpro 7 Fortran
90 compiler on Silicon Graphics IRIX systems and the Cray Research CF90
compiler on UNICOS and UNICOS/mk systems. Section Section C.2, page 222,
describes the differences between the Silicon Graphics MIPSpro FORTRAN 77
compiler and the MIPSpro 7 Fortran 90 compiler.

C.1 MIPSpro 7 Fortran 90 and CF90 Compiler Differences

The following sections describe various differences found when compiling
Fortran programs with the MIPSpro 7 Fortran 90 compiler and the CF90
compiler.

C.1.1 Numerical Model Differences

The model differences are as follows:

• The model for the CF90 REAL(KIND=16) data type on CRAY T90 systems
that support IEEE floating-point arithmetic is different from the model for
the MIPSpro 7 Fortran 90 compiler. This means that the results of math
functions, arithmetic calculations, I/O, and other library routines are
different for this particular data type.

• The internal size of INTEGER(KIND=1), INTEGER(KIND=2),
LOGICAL(KIND=1), and LOGICAL(KIND=2) on the MIPSpro 7 Fortran 90
compiler is actually 1 and 2 bytes, respectively. The CF90 compiler treats
these kind type parameters as INTEGER(KIND=4) and LOGICAL(KIND=4).

• The default sizes of the MIPSpro 7 Fortran 90 integer, real, and logical data
types are 32 bits. This differs from the CF90 default of 64 bits. The default
data type sizes for the MIPSpro 7 Fortran 90 compiler may be incorrect for
routines such as IRTC(3I) and SHMEM.

• The MIPSpro 7 Fortran 90 compiler does not support Cray character pointers.

• Pointer arithmetic is in default numeric storage units when using the CF90
compiler. Pointer arithmetic is in bytes when using the MIPSpro 7 Fortran
90 compiler.

SR–3907 3.0.2 219

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

For more information on the model, see the model(3I) man page.

C.1.2 Fortran 90 Statement Differences

The Fortran 90 statement differences are as follows:

• When using the MIPSpro 7 Fortran 90 compiler, the execution of the STOP
statement does not cause the word STOP to be written to stdout unless
there is an argument to the STOP statement. The CF90 compiler always
writes STOP to stdout.

• When using the MIPSpro 7 Fortran 90 compiler, the initialization of entities
in a common block in a DATA statement can only be done in one program
unit. That is, if a common block contains two variables initialized in a DATA
statement, those DATA statements must be in one program unit. The load
indicates the presence of multiple initializations, and only one initialization
is done.

With the CF90 compiler, different variables can be initialized in DATA
statements in separate program units.

C.1.3 Function and Procedure Differences

The CF90 typeless functions (such as MASK(3I), SHIFTL(3I), SHIFTR(3I),
SHIFT(3I), CVM(3I), and so on) are typed as integer functions by the MIPSpro 7
Fortran 90 compiler. Conversion occur in expressions involving a mixture of
floating point and integer functions. When called by the CF90 compiler, these
functions are typeless and no conversion occurs when there is a mixture of
floating point and these typeless functions.

C.1.4 Modules Differences

When using the MIPSpro 7 Fortran 90 compiler, the compilation of Fortran 90
modules creates a file.mod for each module in the source file and creates a
file.o for any module procedures.

To load compiled module procedures, specify module.o on the command line.

When using the CF90 compiler, compiling modules creates one file.o that
contains all the Fortran 90 modules in the source file.

220 SR–3907 3.0.2

Differences [C]

C.1.5 I/O Library Differences

The I/O library differences are as follows:

• Direct access formatted output files cannot be read as sequential formatted
files by MIPSpro 7 Fortran 90 programs unless an assign(1) command with
-s unblocked, -F cachea, or -F cache is supplied for the particular
file.

• The set of I/O library errors begins at 4000 for MIPSpro 7 Fortran 90
programs. The error numbers begin at 1000 for CF90 programs.

• The FILENV environment variable must be set for MIPSpro 7 Fortran 90
programs when using the assign(1) command. For CF90 uers, this
environment variable need not be set.

C.1.6 Library Function and Procedure Differences

The library function and intrinsic procedure differences are as follows:

• The CRI_IEEE_DEFINITIONS module is available for the MIPSpro 7
Fortran 90 compiler, but the preferred name is FTN_IEEE_DEFINITIONS
for the IEEE module and the interface to the IEEE procedures.

• The MAXVAL(3I) intrinsic procedure returns negative infinity for a zero-sized
input array when called from a MIPSpro 7 Fortran 90 program and returns
-HUGE(3I) when called from a CF90 program. A request for interpretation
has been submitted to the Fortran standards committee.

• The MINVAL(3I) intrinsic procedure returns positive infinity for a zero-sized
input array when called from a MIPSpro 7 Fortran 90 program and returns
+HUGE(3I) when called from a CF90 program. A request for interpretation
has been submitted to the Fortran standards committee.

C.1.7 Math Library Differences

The math library differences are as follows:

• The math routines from the MIPSpro 7 Fortran 90 compiler are referenced
from the compiler. The results of the math routines from the MIPSpro 7
Fortran 90 compiler may differ from the results returned by the math
routines for the CF90 compiler.

• Signaling of errors during references to the MIPSpro 7 Fortran 90 compiler
math routines is not turned off. For the CF90 compiler, the math routines

SR–3907 3.0.2 221

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

turn off signaling of errors and detect input data errors through source code
checks.

C.2 MIPSpro FORTRAN 77 and MIPSpro 7 Fortran 90 Compiler Differences

The following sections describe various differences found when compiling
Fortran programs with the MIPSpro FORTRAN 77 compiler and the MIPSpro 7
Fortran 90 compiler.

C.2.1 Intrinsic Function and Subroutine Differences

The MIPSpro FORTRAN 77 compiler supports the TIME intrinsic function and
the MIPSpro 7 Fortran 90 compiler does not. The Fortran 90 standard defines
the DATE_AND_TIME(3I) function, and its use is recommended when using the
MIPSpro 7 Fortran 90 compiler.

C.2.2 DATA Statement Initialization Differences

Section 5.2.10 of the Fortran 90 standard, ISO/IEC 1539:1991-1, explicitly
disallows multiple explicit intitializations of the same variable or part of a
variable. Doing so results in undefined behavior.

Some codes initialize the same local variable or part of a variable in a DATA
statement. Some codes initialize data in COMMON blocks more than once, either
in the same or in different program units.

The MIPSpro 7 Fortran 90 compiler, like many other implementations, allows
COMMON blocks to be initialized in program units other than BLOCKDATA
subprograms. Multiple initializations are not detected by the system. As a
result, different processors may exhibit different behavior in cases of multiple
initializations. For example, one processor may use the last value seen as the
value of the initialized variable, while another may use the first value seen.
Porting a code from one of these processors to another may result in differing
results due to this difference.

Permitting multiple initializations of the same or part of a variable is not an
extension. It is a user error that cannot be detected, in all cases, by the compiler.
Behavior of multiple intializations is different across the IRIX, UNICOS, and
UNICOS/mk platforms. For the program to be a standard conforming program
with predictable results, you must remove multiple initializations.

222 SR–3907 3.0.2

Differences [C]

C.2.3 I/O Record Length Differences

Fortran 90 standard I/O always specifies record lengths in I/O statements in
bytes. By default, FORTRAN 77 direct-access unformatted I/O specifies the
record length in words. This can cause incompatibilities when moving codes
from FORTRAN 77 to Fortran 90 and vice versa. The -bytereclen option to
the f77(1) command causes the FORTRAN 77 compiler to interpret all record
lengths in bytes.

C.2.4 Special File Formats Differences

The MIPSpro FORTRAN 77 compiler permits you to specify the following two
special modes in the FORM= clause of the OPEN statement:

• FORM="BINARY", which permits reading and writing binary data from
character variables.

• FORM="SYSTEM", which allows input ignoring record boundaries.

These special modes are permitted in early releases of the MIPSpro 7 Fortran 90
compiler. However, neither form is supported by the Fortran 90 standard or by
the MIPSpro 7 Fortran 90 compiler, releases 7.2 and later. Either type of file
access can also be achieved by using the read(2) and write(2) IRIX kernel
functions.

SR–3907 3.0.2 223

Multiprocessing Directives (Outmoded) [D]

The MIPSpro 7 Fortran 90 multiprocessing directives let you optimize your
code by helping you to split your program into concurrently executing pieces.
This appendix describes techniques for analyzing your code and preparing it
for execution on multiple CPUs.

Note: The directives in this appendix are outmoded. They are supported for
older codes that require this functionality. Silicon Graphics and Cray
Research encourage you to write new codes using the OpenMP directives
described in Chapter 4, page 81.

This appendix describes two sets of directives to use for multiprocessing. The
first set consists of the loop-level multiprocessing directives. The second set
consists of directives based on the work of the Parallel Computing Forum
(PCF). The PCF directives allow you to specify multiprocessing based on the
model of a parallel region. The following sections describe the multiprocessing
directives and how to use them.

The -mp option must be specified on the f90(1) command line in order for the
compiler to honor the directives in this chapter. For more information on
multiprocessing, see the mp(3F) and sync(3F) man pages.

D.1 Using Directives

Certain multiprocessing features are available to you either through the
command line or through directives. For command line options and directives
that accept either ON or OFF as arguments, the compiler turns the feature OFF
when conflicting settings are present. If a feature accepts a numeric setting as
an argument, the compiler compares the command line setting and the directive
setting and uses the minimum setting.

The following sections contain general information that applies to both the
loop-level and the PCF directives.

D.1.1 Directive Range

Directives placed in a file prior to program code are called global directives. The
compiler interprets them as if they appeared at the top of each program unit in
the file.

SR–3907 3.0.2 225

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

Directives appearing anywhere else in the file apply only until the end of the
current program unit. The compiler resets the value of the directive to the
global value at the start of the next program unit.

D.1.2 Directive Continuation

To continue the loop-level multiprocessing directives onto another line, use !$&
as the first characters in the continued line(s). For example:

!$DOACROSS share(ALPHA, BETA, GAMMA, DELTA,
!$& EPSILON, OMEGA), LASTLOCAL(I, J, K, L, M, N),

!$& LOCAL(XXX1, XXX2, XXX3, XXX4, XXX5, XXX6, XXX7,

!$& XXX8, XXX9)

To continue the PCF directives onto another line, begin the continued line with
the characters !$PAR&.

D.2 Loop-level Multiprocessing Directives

It is possible for the compiler to execute different iterations of a DO loop on
multiple processors. For example, suppose a DO loop consisting of 200 iterations
will run on a machine with four processors using the simplest scheduling
method. The first 50 iterations run on one processor, the next 50 on another,
and so on.

A multiprocessing code adjusts itself at run time to the number of processors
actually available to it on the machine. By default, the multiprocessing code
does not use more than eight processors. If you want to use more processors,
set the MP_SET_NUMTHREADS environment variable to a different value. If the
200-iteration loop was moved to a machine with only two processors, it would
be divided into two blocks of 100 iterations each, without any need to
recompile or reload. In fact, multiprocessing code can be run on
single-processor machines; on such systems the iterations are divided into one
block of 200 iterations. This allows code to be developed on a single-processor
system and later run on a multiprocessor.

The processes that participate in the parallel execution of a task are arranged in
a master/slave organization. The original process is the master. It creates zero
or more slaves to assist. When a parallel DO loop is encountered, the master
contacts the slaves for help. When the loop is complete, the slaves wait for the
master, and the master resumes normal execution. The master process and each
of the slave processes are called a thread of execution or simply a thread. By
default, the number of threads is set to the number of processors on the

226 SR–3907 3.0.2

Multiprocessing Directives (Outmoded) [D]

machine or is set to 8, whichever is smaller. You can override the default and
explicitly control the number of threads of execution used by a parallel job.

For multiprocessing to work correctly, the iterations of the loop must not
depend on each other; each iteration must stand alone and produce the same
answer regardless of when any other iteration of the loop is executed. Not all
DO loops have this property, and loops without it cannot be correctly executed
in parallel. However, many of the loops encountered in practice fit this model.
Further, many loops that cannot be run in parallel in their original form can be
rewritten to run wholly or partially in parallel. For information about
determining data dependencies in loops, see Section 4.10, page 118.

The loop-level multiprocessing directives are as follows:

• DOACROSS

• CHUNK

• MP_SCHEDTYPE

The following sections describe the loop-level multiprocessing directives.

Note: Localized ALLOCATABLE or POINTER arrays are not supported on the
DOACROSS directive. They cannot be specified in a LOCAL clause. Also, Cray
Pointees are not supported in a LOCAL clause.

D.2.1 DOACROSS Directive

The basis for the loop-level multiprocessing directives is the DOACROSS
directive. This directive indicates to the compiler that it should run iterations of
the subsequent DO loop in parallel. This directive must appear directly before
the loop that is to be operated on, and it remains in effect for that loop only.

The format of this directive is as follows:

!$DOACROSS [clause [, clause] ...]

clause This directive accepts one or more of the following clauses:

• AFFINITY

• BLOCKED

• CHUNK

SR–3907 3.0.2 227

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

• IF

• LASTLOCAL

• LOCAL

• MP_SCHEDTYPE

• NEST

• PRIVATE

• REDUCTION

• SHARED

The sections that follow describe the DOACROSS directive clauses.

Appendix B, page 215, contains information on debugging when DOACROSS
directives are used.

Note: The Fortran compiler does not support direct nesting of DOACROSS
loops.

For example, the following is illegal and generates a compilation error:

!$DOACROSS LOCAL(I)

DO I = 1, N

!$DOACROSS LOCAL(J)

DO J = 1, N

A(I,J) = B(I,J)
END DO

END DO

However, to simplify separate compilation, a different form of nesting is
allowed. A routine that uses !$DOACROSS can be called from within a
multiprocessed region. This can be useful if a single routine is called from
several different places: sometimes from within a multiprocessed region,
sometimes not. Nesting does not increase the parallelism. When the first
!$DOACROSS loop is encountered, that loop is run in parallel. While in the
parallel loop, if a call is made to a routine that itself has a !$DOACROSS, the
subsequent loop is executed serially.

D.2.1.1 AFFINITY Clause

Affinity scheduling allows you to map parallel loop iterations onto underlying
threads. This clause is used most often on Origin series systems.

228 SR–3907 3.0.2

Multiprocessing Directives (Outmoded) [D]

For more information on using this DOACROSS clause, see Section 5.2.2.1, page
142.

D.2.1.2 BLOCKED and CHUNK Clauses

These clauses affect work scheduling among the participating tasks in a loop.
They break up the work into pieces specified by int_expr. These clauses are
valid only when the MP_SCHEDTYPE=DYNAMIC or
MP_SCHEDTYPE=INTERLEAVE clauses have also been specified.

The BLOCKED and CHUNK clauses have the following formats:

BLOCKED (int_expr)

CHUNK = int_expr

int_expr Specify an integer expression that represents the
size of the chunk (that is, the number of iterations
per chunk).

If CHUNK or BLOCKED are specified, and MP_SCHEDTYPE is not, MP_SCHEDTYPE
defaults to DYNAMIC. For more information on how these clauses interact with
the MP_SCHEDTYPE clause, see Section D.2.1.5, page 231.

The CHUNK directive also affects the division of work. For more information on
the CHUNK directive, see Section D.2.2, page 233.

D.2.1.3 IF Clause

The IF clause determines whether the loop is actually executed in parallel. This
clause has the following format:

IF (logical_expr)

SR–3907 3.0.2 229

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

logical_expr Specify a logical expression. If logical_expr
evaluates to TRUE, the loop is executed in
parallel. If logical_expr evaluates to FALSE, the
loop is executed serially.

D.2.1.4 LASTLOCAL, LOCAL, PRIVATE and SHARED Clauses

The LASTLOCAL, LOCAL, and SHARED clauses specify lists of variables used
within parallel loops. A variable can appear in only one of these lists. The
effect of these clauses is as follows:

• The LASTLOCAL clause specifies variables that are local to each process.
Unlike with the LOCAL clause, the compiler saves only the value of the
logically last iteration of the loop when it exits. The name LASTLOCAL is
preferred over LAST LOCAL.

• The LOCAL clause specifies variables that are local to each process. If a
variable is declared as LOCAL, each iteration of the loop is given its own
uninitialized copy of the variable. You can declare a variable as LOCAL if its
value does not depend on any other iteration of the loop and if its value is
used only within a single iteration. In effect, the LOCAL variable is just
temporary; a new copy can be created in each loop iteration without
changing the final answer. The name LOCAL is preferred over PRIVATE.

Note: Localized ALLOCATABLE or POINTER arrays cannot be specified in
a LOCAL clause. Also, Cray Pointees are not supported in a LOCAL clause.

• The SHARED clause specifies variables that are shared across all processes. If
a variable is declared as SHARED, all iterations of the loop use the same copy
of the variable. You can declare a variable as SHARED if it is only read (not
written) within the loop or if it is an array in which each iteration of the
loop uses a different element of the array. The name SHARED is preferred
over SHARE.

By default, the DO variable is LASTLOCAL and all other variables are SHARED.

These clauses have the following formats:

LASTLOCAL var [, var ...]

LOCAL var [, var ...]

SHARED var [, var ...]

230 SR–3907 3.0.2

Multiprocessing Directives (Outmoded) [D]

var Specify the name of a variable. If any var is an array, it is listed
without any subscripts.

Common blocks, allocatable arrays, and Fortran 90 pointers
cannot appear as var arguments in a LOCAL list.

LOCAL is a little faster than LASTLOCAL, so if you do not need the final value, it
is good practice to put the DO index variable into the LOCAL list, although this
is not required.

D.2.1.5 MP_SCHEDTYPE Clause

The MP_SCHEDTYPE clause affects the way the compiler schedules work among
the participating tasks in a loop.

This clause has the following format:

MP_SCHEDTYPE = mode

mode Specify one of the following for mode:

• DYNAMIC. Specifying MP_SCHEDTYPE=DYNAMIC breaks the
iterations into pieces the size of which is specified with the
CHUNK clause. As each process finishes a piece, it enters a
critical section to grab the next available piece. This gives
good load balancing at the price of higher overhead. The
CHUNK clause is valid with this mode.

• GSS. Specifying MP_SCHEDTYPE=GSS results in a variation of
the guided self-scheduling algorithm. The piece size is varied
depending on the number of iterations remaining. By
parceling out relatively large pieces to start with and relatively
small pieces toward the end, the system can achieve good load
balancing while reducing the number of entries into the
critical section. Specifying GUIDED for mode performs the
same function as specifying GSS, but GSS is preferred.

• INTERLEAVE. Specifying MP_SCHEDTYPE=INTERLEAVE
breaks the iterations into pieces of the size specified by the
CHUNK clause, and execution of those pieces is interleaved
among the processes. For example, if there are four processes
and CHUNK=2, the first process executes iterations 1–2, 9–10,
17–18, …; the second process executes iterations 3–4, 11–12,
19–20,…; and so on. Although this is more complex than the

SR–3907 3.0.2 231

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

simple method, it is still a fixed schedule with only a single
scheduling decision. The CHUNK clause is valid with this mode.
Specifying INTERLEAVED for mode performs the same function
as specifying INTERLEAVE, but INTERLEAVE is preferred.

• RUNTIME. Specifying MP_SCHEDTYPE=RUNTIME directs the
scheduling routine to examine environment variables to select
a mode. For the list of valid environment variables, see the
pe_environ(5) man page.

• SIMPLE. Specifying MP_SCHEDTYPE=SIMPLE divides the
iterations among processes by dividing them into contiguous
pieces and assigning one piece to each process. Specifying
STATIC for mode performs the same function as specifying
SIMPLE, but SIMPLE is preferred. Default is SIMPLE.

The MP_SCHEDTYPE clause interacts with the CHUNK clause as follows:

• If both the MP_SCHEDTYPE and CHUNK clauses are omitted, SIMPLE
scheduling is assumed.

• If MP_SCHEDTYPE=INTERLEAVE or MP_SCHEDTYPE=DYNAMIC and the
CHUNK clause is omitted, CHUNK=1 is assumed.

• If MP_SCHEDTYPE is set to one of the other values, CHUNK is ignored.

• If the MP_SCHEDTYPE clause is omitted, but CHUNK is set,
MP_SCHEDTYPE=DYNAMIC is assumed.

D.2.1.6 NEST Clause

The NEST clause allows you to exploit nested concurrency. This DOACROSS
clause is used most often on Origin series systems. For more information on
this clause, see Section 5.2.2, page 141.

D.2.1.7 REDUCTION Clause

The REDUCTION clause specifies variables involved in a reduction operation. In
a reduction operation, the compiler keeps local copies of the variables and
combines them when it exits the loop.

This clause has the following format:

REDUCTION var [, var]...

232 SR–3907 3.0.2

Multiprocessing Directives (Outmoded) [D]

var Specify one or more variable names for var. Each var must be a
scalar individual variable, not an array. A var can be an array
element (for example REDUCTION(A(I,J))).

One element of an array can be used in a reduction operation while other
elements of the array are used in other ways. To allow for this, if an element of
an array appears in the REDUCTION list, the entire array can also appear in the
SHARED list.

The four types of reductions supported are sum(+), product(*), min(), and
max(). Note that min and max reductions must use the MIN(3I) and MAX(3I)
intrinsic functions to be recognized correctly.

The compiler confirms that the reduction expression is legal by making some
simple checks. The compiler does not, however, check all statements in the DO
loop for illegal reductions. You must ensure that the reduction variable is used
correctly in a reduction operation.

Example:

!$DOACROSS LOCAL(I), REDUCTION(A(1))

DO I = 2,N

A(1) = A(1) + A(I)
END DO

D.2.2 CHUNK Directive

The CHUNK directive breaks work up into pieces. Like the MP_SCHEDTYPE
directive, the CHUNK directive acts as an implicit clause, in this case a CHUNK
clause, for all DOACROSS directives in the scope. The CHUNK directive is in
effect from the place it occurs in the source until another corresponding
directive is encountered or the end of the procedure is reached.

The format of this directive is as follows:

!$CHUNK=int_expr

int_expr Specify an integer expression that represents the size of the chunk
(that is, the number of iterations per chunk).

The CHUNK clause to the DOACROSS directive also divides work. For more
information, see Section D.2.1.2, page 229.

SR–3907 3.0.2 233

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

D.2.3 MP_SCHEDTYPE Directive

The MP_SCHEDTYPE directive affects the way the compiler schedules work
among the participating tasks in a loop. Like the CHUNK directive, the
MP_SCHEDTYPE directive acts as an implicit clause, in this case an
MP_SCHEDTYPE clause, for all DOACROSS directives in the scope. The
MP_SCHEDTYPE directive is in effect from the place it occurs in the source until
another corresponding directive is encountered or the end of the procedure is
reached.

The MP_SCHEDTYPE directive specifies the scheduling type to be used for
subsequent !$DOACROSS directives that are specified without an explicit
scheduling type.

The format of this directive is as follows:

!$MP_SCHEDTYPE mode

mode This directive accepts a mode argument as described in Section
D.2.1.5, page 231.

The MP_SCHEDTYPE clause to the DOACROSS directive also divides work. For
more information, see Section D.2.1.5, page 231.

D.2.4 !$ Directive

The !$ directive, which is really only a prefix, precedes code that should be
recognized only when multiprocessing is enabled. Multiprocessing is enabled
when either -pfa or -mp is specified on the f90(1) command line.

These directive lines are considered comment lines except when
multiprocessing. A line beginning with !$ is treated as a conditionally
compiled Fortran statement.

The format of this directive is as follows:

!$ statement

statement For statement, specify a standard Fortran statement. This feature
can be used to insert debugging statements or other arbitrary
code.

234 SR–3907 3.0.2

Multiprocessing Directives (Outmoded) [D]

If statement is a Fortran 90 statement, the statement can be
continued to a subsequent line in fixed source form by placing an
ampersand (&) in column 6 of the continued line.

If statement is a directive, continue it using the rules for directive
continuation described in Section D.1.2, page 226.

The following code demonstrates the use of the !$ directive:

!$ PRINT 10

!$ 10 FORMAT(’BEGIN MULTIPROCESSED LOOP’)

!$DOACROSS LOCAL(I), SHARED(A,B)
DO I = 1, 100

CALL COMPUTE(A, B, I)

END DO

D.2.5 DOACROSS Directive Examples

This section contains examples of DOACROSS directives.

Example 1. Simple DOACROSS directive. Consider the following code fragment:

DO 10 I = 1, 100
A(I) = B(I)

10 CONTINUE

By inserting a directive, it can be multiprocessed:

!$DOACROSS LOCAL(I), SHARED(A, B)

DO 10 I = 1, 100

A(I) = B(I)

10 CONTINUE

Here, the defaults are sufficient provided that A and B are mentioned in a
nonparallel region or in another SHARED list. The following code will then work:

!$DOACROSS

DO 10 I = 1, 100

A(I) = B(I)

10 CONTINUE

SR–3907 3.0.2 235

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

Example 2. A DOACROSS directive with a LOCAL clause. Consider the following
code fragment:

DO 10 I = 1, N

X = SQRT(A(I))

B(I) = X*C(I) + X*D(I)

10 CONTINUE

The following code shows this fragment rewritten for multiprocessing using
explicit clauses:

!$DOACROSS LOCAL(I, X), SHARED(A, B, C, D, N)

DO 10 I = 1, N

X = SQRT(A(I))
B(I) = X*C(I) + X*D(I)

10 CONTINUE

The following code shows the fragment rewritten for multiprocessing using the
default settings:

!$DOACROSS LOCAL(X)

DO 10 I = 1, N

X = SQRT(A(I))

B(I) = X*C(I) + X*D(I)

10 CONTINUE

Example 3. A DOACROSS directive with a LASTLOCAL clause. Consider the
following code fragment:

DO 10 I = M, K, N

X = D(I)**2
Y = X + X

DO 20 J = I, MAX

A(I,J) = A(I,J) + B(I,J) * C(I,J) * X + Y

20 CONTINUE

10 CONTINUE
PRINT*, I, X

In this example, the final values of I and X are needed after the loop completes.
A correct directive is shown in the following:

!$DOACROSS LOCAL(Y,J), LASTLOCAL(I,X),
!$& SHARED(M,K,N,ITOP,A,B,C,D)

DO 10 I = M, K, N

X = D(I)**2

236 SR–3907 3.0.2

Multiprocessing Directives (Outmoded) [D]

Y = X + X

DO 20 J = I, ITOP
A(I,J) = A(I,J) + B(I,J) * C(I,J) *X + Y

20 CONTINUE

10 CONTINUE

PRINT*, I, X

You can also use the defaults:

!$DOACROSS LOCAL(Y,J), LASTLOCAL(X)

DO 10 I = M, K, N

X = D(I)**2

Y = X + X
DO 20 J = I, MAX

A(I,J) = A(I,J) + B(I,J) * C(I,J) *X + Y

20 CONTINUE

10 CONTINUE

PRINT*, I, X

In the preceding code example, I is a loop index variable for the DOACROSS
loop, so it is LASTLOCAL by default. Even though J is a loop index variable, it
is not the loop index of the loop being multiprocessed and has no special status.
If it is not declared, it is assigned the default value of SHARED, which produces
an incorrect answer.

D.3 Local Common Blocks

The -Xlocal option to the ld(1) command allows named common blocks to
be local to a process. Each process in the parallel job gets its own private copy
of the common block. This can be helpful in converting certain types of Fortran
programs into a parallel form.

The common block must be a named common block (blank common cannot be
made local), and it must not be initialized by DATA statements.

To create a local common block, use the special loader option -Xlocal
followed by a list of common block names. The external name of a common
block known to the loader has a trailing underscore and is not surrounded by
slashes. For example, the following command makes the common block /foo/
a local common block in the resulting a.out file. You can specify multiple
-Xlocal options if necessary.

% f90 -mp a.o -Wl,-Xlocal,foo_

SR–3907 3.0.2 237

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

You can use the !$COPYIN directive to copy values from the master thread’s
version of the common block into the slave thread’s version. This directive has
the following format:

!$COPYIN item [, item] ...

item Specify one or more members of a local common block. Each item
can be a variable, an array, an individual element of an array, or
the entire common block.

Note: The !$COPYIN directive cannot be executed from inside a parallel
region.

The following example propagates the values for x and y, all the values in the
common block foo, and the Ith element of array A:

!$COPYIN X,Y, /FOO/, A(I)

These items must be either common blocks or members of common blocks. The
directive is translated into executable code, so in this example, I is evaluated at
the time this statement is executed.

D.4 PCF Directives

In addition to the simple loop-level parallelism offered by the DOACROSS
directive, the compiler supports a set of directives that allows you to specify a
more general model of parallelism. This model is based on the work done by
the Parallel Computing Forum (PCF), which itself formed the basis for the
proposed ANSI-X3H5 standard.

The main concept in this model is the parallel region, which can be any arbitrary
section of code (not just a DO loop). Within the parallel region, there are special
work-sharing constructs that can be used to divide the work among separate
processes or threads. All master and slave threads synchronize at the bottom of
a work-sharing construct. None of the threads continue past the end of a
construct until they all have completed execution within that construct.

The parallel region can also contain a critical section construct, where exactly one
process executes at a time. Within a critical section, only one thread executes at
a time, and threads do not synchronize at the bottom of a critical section.

The master thread executes the user program until it reaches a parallel region.
It then spawns one or more slave threads that begin executing code at the

238 SR–3907 3.0.2

Multiprocessing Directives (Outmoded) [D]

beginning of a parallel region. Each thread executes all the code in the region
until a work sharing construct is encountered. Each thread then executes some
portion of the work sharing construct, and then resumes executing the parallel
region code. At the end of the parallel region, all the threads synchronize, and
the master thread continues execution of the user program.

For information on interthread communication with library routines, see
Appendix A, page 203.

The compiler recognizes the PCF directives when multiprocessing is enabled
with either the -mp or the -pfa option to the f90(1) command. The PCF
directives are as follows:

• BARRIER

• CRITICAL SECTION, END CRITICAL SECTION

• PARALLEL, END PARALLEL

• PARALLEL DO

• PDO, END PDO

• PSECTION[S], SECTION, and END PSECTION[S]

• SINGLE PROCESS, END SINGLEPROCESS

The following sections describe the syntax of the PCF directives.

Note: Generated code from the PCF directives is sometimes slower than the
generated code from the special case parallelism offered by the DOACROSS
directive. PCF directive code is slower because of the extra synchronization
required. When a DOACROSS loop executes, there is a synchronization point
at entry and another at exit. When a parallel region executes, there is a
synchronization point at entry to the region, another at each entry to a
work-sharing construct, another at each exit from a work-sharing construct,
and one at exit from the region. Thus, several separate DOACROSS loops
typically execute faster than a single parallel region with several PDO
directives. Limit your use of the parallel region construct to those few cases
that actually need it.

D.4.1 BARRIER Directive

The BARRIER directive ensures that each process waits until all processes reach
the barrier before proceeding.

SR–3907 3.0.2 239

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

This directive has the following format:

!$PAR BARRIER

D.4.2 CRITICAL SECTION and END CRITICAL SECTION Directives

The CRITICAL SECTION and END CRITICAL SECTION directives ensure that
the enclosed block of code is executed by only one process (thread) at a time.
Another process attempting to gain entry to the critical section must wait until
the previous process has exited. Threads do not synchronize at the bottom of a
critical section.

The critical section construct can appear anywhere in a program, including
inside and outside a parallel region and within a DOACROSS loop.

These directives have the following format:

!$PAR CRITICAL SECTION [(lock_variable)]

!$PAR END CRITICAL SECTION

lock_variable Specify an integer variable that is initialized to zero. The
parentheses are required. If you do not specify lock_variable, the
compiler automatically supplies a global lock. Multiple critical
section constructs inside the same parallel region are considered
to be independent of each other unless they use the same explicit
lock_variable.

D.4.3 PARALLEL and END PARALLEL Directives

The PARALLEL and END PARALLEL directives enclose a parallel region that
includes work-sharing constructs and critical sections. It signifies the boundary
within which slave threads execute. A user program can contain any number of
parallel regions.

These directives have the following format:

!$PAR PARALLEL [clause [,clause]...]

!$PAR END PARALLEL

240 SR–3907 3.0.2

Multiprocessing Directives (Outmoded) [D]

clause Specify one of the following clauses:

• IF (logical_expression)

• LOCAL var[, var] ...

• SHARED var[, var] ...

The IF, LOCAL, and SHARED clauses have the same meaning as
for the DOACROSS directive. Also as with the DOACROSS
directive, the keyword LOCAL is preferred to PRIVATE and the
keyword SHARED is preferred to SHARE. For more information on
these clauses and their syntax, see Section D.2.1, page 227.

The preferred form of the directive has no commas between the clauses.

In the following code, all threads enter the parallel region and call routine FOO:

SUBROUTINE EX1(INDEX)

INTEGER I

!$PAR PARALLEL LOCAL(I)
I = MP_MY_THREADNUM()

CALL FOO(I)

!$PAR END PARALLEL

END

D.4.4 PARALLEL DO Directive

The PARALLEL DO directive indicates that the iterations of the subsequent DO
loop should be executed by different processes. This directive produces the
same effect as the DOACROSS directive, and it is conceptually the same as a
parallel region containing exactly one PDO construct and no other code. Each
thread inside the enclosing parallel region executes separate iterations of the
loop within the parallel DO construct. This directive must not appear within a
parallel region.

This directive has the following format:

!$PAR PARALLELDO [clause [,clause] ...]

SR–3907 3.0.2 241

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

clause For clause, enter one or more of the DOACROSS clauses described
in Section D.2.1, page 227.

D.4.5 PDO and END PDO Directives

The PDO and END PDO directives surround a loop and indicate that the
iterations of the enclosed loop should be executed by different processes. These
directives must be enclosed within a parallel region delimited by PARALLEL
and END PARALLEL directives.

Within a parallel region, each thread inside the region executes a separate
iteration of a loop within a PDO construct.

These directives have the following format:

!$PAR PDO [clause [, clause]...]

[!$PAR END PDO [NOWAIT]]

clause Specify one of the following clauses:

• AFFINITY

• CHUNK=int_expr

• LASTLOCAL var

• LOCAL var [, var] ...

• MP_SCHEDTYPE=mode

• (ORDERED). Specifying the (ORDERED) clause is equivalent to
specifying MP_SCHEDTYPE=DYNAMIC and CHUNK=1. The
parentheses are required.

Each clause has the same meaning as for the DOACROSS directive.
Also as with the DOACROSS directive, the keyword LASTLOCAL is
preferred to LAST LOCAL and the keyword LOCAL is preferred to
PRIVATE.

The (ORDERED) clause is not a supported DOACROSS clause.

242 SR–3907 3.0.2

Multiprocessing Directives (Outmoded) [D]

For more information on the AFFINITY clause and its syntax, see
Section 5.2.2.1, page 142. For more information on the other
clauses and their syntax, see Section D.2.1, page 227.

It is legal to declare a data item as LOCAL in a PDO directive even if it was
declared as SHARED in the enclosing parallel region.

The END PDO directive is optional. If specified, this directive must appear
immediately after the end of the DO loop. The optional NOWAIT clause specifies
that each process should proceed directly to the code immediately following the
directive. If you do not specify NOWAIT, the processes wait until all have
reached the directive before proceeding.

Note: Localized ALLOCATABLE or POINTER arrays are not supported on the
PDO directive.

The code in the following example is equivalent to a DOACROSS loop. In fact,
the compiler recognizes this as a special case and generates the same (more
efficient) code as for a DOACROSS directive.

SUBROUTINE EX2(A,N)

REAL A(N)
!$PAR PARALLEL LOCAL(I) SHARED(A)

!$PAR PDO

DO I = 1, N

A(I) = A(I) + 1.0

END DO
!$PAR END PARALLEL

END

D.4.6 PSECTION[S], SECTION, and END PSECTION[S] Directives

The PSECTION[S] and END PSECTION[S] directives delimit a parallel section
construct and distribute code blocks to processes. These directives have an
effect that is similar to the Fortran 90 SELECT construct. Each block of code is
parceled out in turn to a separate thread.

The SECTION directive indicates a starting line for an individual section within
a parallel section.

These directives must be enclosed within a parallel region delimited by
PARALLEL and END PARALLEL directives.

These directives have the following format:

SR–3907 3.0.2 243

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

!$PAR PSECTION[S] [LOCAL var[, var] ...]

[!$PAR SECTION]

!$PAR END PSECTION[S] [NOWAIT]

var Specify a variable name for var. The LOCAL keyword has the
same meaning as it does on the DOACROSS directive. The LOCAL
keyword is preferred to PRIVATE. For more information on
LOCAL, see Section D.2.1, page 227.

It is legal to declare a data item as LOCAL in a parallel sections
construct even if it was declared as SHARED in the enclosing
parallel region.

The optional NOWAIT clause specifies that each process should proceed directly
to the code immediately following the directive. If you do not specify NOWAIT,
the processes wait until all have reached the END PSECTION directive before
proceeding.

Parallel sections can contain critical section constructs, but they cannot contain
any of the following types of constructs:

• A DO loop that is preceded by a PDO directive

• A DO loop that is preceded by a PARALLEL DO or a DOACROSS directive

• Code delimited by SINGLEPROCESS and END SINGLEPROCESS directives

Each code block is executed in parallel (depending on the number of processes
available). The code blocks are assigned to threads one at a time, in the order
specified. Each code block is executed by only one thread.

For example, consider the following code:

SUBROUTINE EX3(A,N1,B,N2,C,N3)

REAL A(N1), B(N2), C(N3)

!$PAR PARALLEL LOCAL(I) SHARED(A,B,C)

!$PAR PSECTIONS

!$PAR SECTION

DO I = 1, N1
A(I) = 0.0

END DO

!$PAR SECTION

DO I = 1, N2

244 SR–3907 3.0.2

Multiprocessing Directives (Outmoded) [D]

B(I) = 0.5

END DO
!$PAR SECTION

CALL NORMALIZE(C,N3)

DO I = 1, N3

C(I) = C(I) + 1.0

END DO

!$PAR END PSECTION
!$PAR END PARALLEL

END

The first thread to enter the parallel section construct executes the first block,
the second thread executes the second block, and so on. This example has only
three sections, so if more than three threads are in the parallel region, the fourth
and higher threads wait at the !$PAR END PSECTION directive until all
threads are finished. If the parallel region is being executed by only two
threads, whichever thread finishes its block first continues and executes the
remaining block.

This example uses DO loops, but a parallel section can be any arbitrary block of
code. Parallel constructs have significant overhead. Make sure the amount of
work performed is enough to outweigh the extra overhead.

The sections within a parallel section construct are assigned to threads one at a
time, from the top down. There is no other implied ordering to the operations
within the sections. In particular, a later section cannot depend on the results of
an earlier section, unless some form of explicit synchronization is used. If there
is such explicit synchronization, you must be sure that the lexical ordering of
the blocks is a legal order of execution.

D.4.7 SINGLEPROCESS and END SINGLEPROCESS Directives

The SINGLEPROCESS and END SINGLEPROCESS directives enclose a block of
code that should be executed by only one process. These directives must be
enclosed within a parallel region delimited by PARALLEL and ENDPARALLEL
directives.

These directives have the following format:

!$PAR SINGLEPROCESS [LOCAL var [, var] ...]

!$PAR END SINGLEPROCESS [NOWAIT]

SR–3907 3.0.2 245

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

var Specify a variable name for var. The LOCAL keyword has the
same meaning as it does on the DOACROSS directive. The LOCAL
keyword is preferred to PRIVATE. For more information on
LOCAL, see Section D.2.1, page 227.

It is legal to declare a data item as LOCAL in a single process
construct even if it was declared as SHARED in the enclosing
parallel region.

The optional NOWAIT clause specifies that each process should proceed directly
to the code immediately following the directive. If you do not specify NOWAIT,
the processes wait until all have reached the END SINGLEPROCESS directive
before proceeding.

This construct is semantically equivalent to a parallel section construct with only
one section. The single process construct provides a more descriptive syntax.

The first thread to reach a single process section executes the code in that block.
All other threads wait at the end of the block until the code has been executed.

Notice the use of the repetition of the IF test in the first parallel loop:

IF (A(I,J) .GT. CUR_MAX) THEN

!$PAR CRITICAL SECTION

IF (A(I,J) .GT. CUR_MAX) THEN

This practice is called test&test&set. It is a multiprocessing optimization. The
following straightforward code segment is incorrect:

DO I = 1, N

IF (A(I,J) .GT. CUR_MAX) THEN

!$PAR CRITICAL SECTION

INDEX_X = I

INDEX_Y = J
CUR_MAX = A(I,J)

!$PAR END CRITICAL SECTION

ENDIF

ENDDO

Because many threads execute the loop in parallel, there is no guarantee that
once inside the critical section, CUR_MAX still has the same value it did in the
IF test outside the critical section (some other thread may have updated it). In
particular, CUR_MAX may now have a value that is larger than A(I,J).
Therefore, the critical section must be locked before testing the value of
CUR_MAX. Changing the previous code into the following code works correctly,

246 SR–3907 3.0.2

Multiprocessing Directives (Outmoded) [D]

but suffers from a serious performance penalty: the critical section lock must be
acquired and released (an expensive operation) for each element of the array:

DO I = 1, N

!$PAR CRITICAL SECTION

IF (A(I,J) .GT. CUR_MAX) THEN

INDEX_X = I

INDEX_Y = J
CUR_MAX = A(I,J)

ENDIF

!$PAR END CRITICAL SECTION

ENDDO

Because the values are rarely updated, this process involves a lot of wasted
effort. It is almost certainly slower than just executing the loop serially.

Combining the two methods, as in the original example, produces code that is
both fast and correct. If the IF test outside of the critical section fails, you can
be certain that the values will not be updated and can proceed. You can expect
that the outside IF test will account for the majority of cases. If the outer IF
test passes, then the values might be updated, but you cannot always be
certain. To ensure correctness, you must perform the test again after acquiring
the critical section lock.

You can prefix one of the two identical IF tests with !$ to reduce overhead in
the non-multiprocessed case.

Lastly, note the difference between the single process and critical section
constructs. If several processes arrive at a critical section construct, they execute
the code one at a time. However, they will all execute the code. If several
processes arrive at a single process construct, only one process executes the
code. The other processes bypass the code and wait at the end of the construct
for the chosen process to finish.

D.4.8 Restrictions on the PCF Directives

The three work-sharing constructs, PDO, PSECTION, and SINGLEPROCESS,
must be executed by all the threads executing in the parallel region or by none
of the threads. The following is illegal:

...

!$PAR PARALLEL

IF (MP_MY_THREADNUM() .GT. 5) THEN

!$PAR SINGLE PROCESS

SR–3907 3.0.2 247

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

MANY_PROCESSES = .TRUE.

!$PAR END SINGLE PROCESS
ENDIF

...

The preceding code cannot run successfully when more than six processors are
used. One or more processes will be stuck at the !$PAR ENDSINGLEPROCESS
directive waiting for all the threads to arrive. Because some of the threads
never took the appropriate branch, they will never encounter the construct.
However, the following kind of simple looping is supported:

...
!$PAR PARALLEL LOCAL(I,J) SHARED(A)

DO I= 1,N

!$PAR PDO

DO J = 2,N

...

The distinction here is that all of the threads encounter the work-sharing
construct. They all complete it, and they all loop around and encounter it again.

This restriction does not apply to the critical section construct, which operates
on one thread at a time without regard to any other threads.

Parallel regions cannot be nested inside of other parallel regions, nor can
work-sharing constructs be nested. However, as an aid to writing library code,
you can call an external routine that contains a parallel region even from within
a parallel region. In this case, only the first region is actually run in parallel.
Therefore, you can create a parallelized routine without accounting for whether
it will be called from within an already parallelized routine.

248 SR–3907 3.0.2

Autotasking Directives (Outmoded) [E]

If your system includes multiple central processing units (CPUs), your program
may be able to make use of multitasking, or running simultaneously on more
than one CPU. This technology speeds up program execution by decreasing
elapsed time. You can determine the number of CPUs on your system by
entering the hinv(1) command.

The compiler automatically recognizes many parallel coding constructs, and it
compiles them for multitasking without requiring additional user input; this
capability is called Autotasking.

Autotasking directives let you specify the level of parallelism desired. You can
start and end parallel processing at any number of suitable points within a
subprogram. These directives are useful when the compiler fails to recognize
parallelism that you know exists. This can occur, for example, when you have
subroutine calls that can be executed in parallel.

Note: The directives in this section are outmoded, but they are still
supported for older codes that require this functionality. Silicon Graphics and
Cray Research encourage you to write new codes using the OpenMP
directives described in Chapter 4, page 81.

This section provides an overview of the Autotasking directives recognized by
the compiler.

!
Caution: The ability to use Autotasking directives in a subprogram that host
associates a variable can result in undefined behavior. This applies only to
Autotasking directives; it does not apply to parallelism detected by the
compiler.

A branch out of a parallel region is not permitted and can produce incorrect
results.

Autotasking directives control the way the compiler multitasks your program.
You can insert tasking directive lines directly into your source code. The
compiler supports the following Autotasking directives:

• CASE, ENDCASE

• CNCALL

• DOALL

• DOPARALLEL, ENDDO

SR–3907 3.0.2 249

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

• GUARD, ENDGUARD

• NUMCPUS

• PARALLEL, ENDPARALLEL

• PERMUTATION

The following sections describe the Autotasking directives.

E.1 Using Directives

The following sections describe how to use the CF90 Autotasking directives and
the effects they have on programs.

For additional general information on using directives, see Section 3.1, page 61.

E.1.1 Directive Continuation

In the following example, an asterisk (*) appears in column 6 to indicate that
the second line is a continuation of the preceding line:

!MIC$ GU

!MIC$*ARD

If you want to specify more than one directive on a line, separate each directive
with a comma. Some directives require that you specify one or more
arguments; when specifying a directive of this type, no other directive can
appear on the line.

Spaces can precede, follow, or be embedded within a directive, regardless of
source form.

Do not use source preprocessor (#) directives within multiline compiler
directives (CMIC$ or !MIC$).

E.1.2 Directive Range and Placement

The range and placement of directives is as follows:

• The Autotasking directives must appear within a program unit.

• The ENDDO directive must appear after the loop body of a DOPARALLEL loop,
if it appears. The corresponding DOPARALLEL directive must be present.

250 SR–3907 3.0.2

Autotasking Directives (Outmoded) [E]

• The following directives apply only to the next loop encountered lexically:

– DOALL

– DOPARALLEL

• The following Autotasking directives must appear as pairs within a program
unit:

– CASE, ENDCASE

– GUARD, ENDGUARD

– PARALLEL, ENDPARALLEL

E.1.3 Interaction of Directives with the -x Command Line Option

The -x option on the f90(1) command accepts one or more directives as
arguments. When your input is compiled, the compiler ignores directives
named as arguments to the -x option. If you specify -x mipspro, all directives
are ignored. If you specify -x dirname, a particular directive is ignored. For
more information on this command line option, see Section 2.64, page 58.

E.2 Concurrent Blocks: CASE and ENDCASE

The !MIC$ CASE directive serves as a separator between adjacent code blocks
that can be executed concurrently. It marks the beginning of a control structure
and signals that the code following it will be executed on a single processor.

!MIC$ ENDCASE serves as the terminator for a group of one or more parallel
CASE directives. All work within the control structure must complete before
execution continues with the code below the ENDCASE. The compiler does not
automatically generate CASE directives.

The formats for these directives are as follows:

!MIC$ CASE

!MIC$ ENDCASE

Example. A single CASE/ENDCASE directive pair can also be used within a
parallel region to allow only one processor to execute a code block, as follows:

SR–3907 3.0.2 251

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

!MIC$ PARALLEL

!MIC$ CASE
CALL XYZ

!MIC$ ENDCASE

:

!MIC$ DOPARALLEL

DO I = 1, IMAX

:
END DO

!MIC$ ENDPARALLEL

In the preceding code, only one processor calls XYZ, and then all available
processors execute the code following the ENDCASE.

E.3 Declare Lack of Side Effects: CNCALL

The !MIC$ CNCALL directive allows a loop to be Autotasked by asserting that
subroutines called from the loop have no loop-related side effects (that is, they
do not modify data referenced in other iterations of the loop) and therefore can
be called concurrently by separate iterations of the loop. CNCALL is inserted
immediately preceding the loop.

The format for this directive is as follows:

!MIC$ CNCALL

Example:

!MIC$ CNCALL

DO I = 1, N

CALL CRUNCH(A(I), B(I))

END DO

E.4 Mark Parallel Loop: DOALL

The !MIC$ DOALL directive indicates that the DO loop beginning on the next
line may be executed in parallel by multiple processors. No directive is needed
to end a DOALL loop, (that is, the DOALL initiates a parallel region that contains
only a DO loop with independent iterations). The loop index variable for a
DOALL must be specified as a PRIVATE variable.

252 SR–3907 3.0.2

Autotasking Directives (Outmoded) [E]

For a !MIC$ DOALL directive, all the variables and arrays in the region must be
defined in a SHARED or PRIVATE parameter.

The format of this directive is as follows:

!MIC$ DOALL parameter [[,] parameter] ... [[,] work_distribution]

parameter Table 4, page 254, describes parameters for the
DOALL directive. More than one parameter can
appear on the directive, but they must be
separated by commas or blanks.

work_distribution Parameters that specify the work distribution
policy for iterations of the parallel DO loop. Only
one can be used for a given DO loop.

By default, iterations are distributed one at a
time. Table 5, page 255, describes the work
distribution parameters.

The default scheduling for a DOALL directive is STATIC. In addition,
CHUNKSIZE = CEILING(n/p), where n is the number of trips and p is the
number of processors.

The DOALL directive does not accept the MAXCPUS or AUTOSCOPE clauses; their
presence generates a fatal error.

SR–3907 3.0.2 253

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

Table 4. Autotasking directive parameter values

parameter Description

IF(expr) Performs a run-time test to choose between uniprocessing and
multiprocessing. When not specified, multiprocessing is chosen if the
loop is not in a routine that was called from within a parallel region. The
logical expression (expr) determines (at run time) whether
multiprocessing will occur. When expr is true, multiprocessing is enabled.

PRIVATE(var[,var] ...) Specifies that the variables listed will have private scope; that is, each task
(original or helper) will have its own private copy of these variables. The
PRIVATE clause identifies those variables that are not shared between
parallel processes. One variable cannot be declared both PRIVATE and
SHARED. The loop control variable of the DOALL loop cannot be specified
as SHARED; it must be specified as PRIVATE. Variables cannot be
subobjects (that is, array elements or components of derived types).

SAVELAST Specifies that the values of private variables, from the final iteration of a
DOALL directive, will continue in the original task after execution of the
iterations of the DOALL. By default, private variables are not guaranteed
to retain the last iteration values. SAVELAST can be used only with
DOALL, and if the full iteration set is not completed (for example, if the
loop is exited early), the values of private variables are indeterminate.

SHARED(var[,var] ...) Specifies that the variables listed will have shared scope; that is, they are
accessible to both the original task and all helper tasks. The SHARED
clause identifies those variables that are shared between parallel
processes. One variable cannot be declared both PRIVATE and SHARED.
The loop control variable of the DOALL loop cannot be specified as
SHARED; it must be specified as PRIVATE. Variables cannot be subobjects
(that is, array elements or components of derived types).

254 SR–3907 3.0.2

Autotasking Directives (Outmoded) [E]

Table 5. Autotasking directive work_distribution values

work_ distribution Description

CHUNKSIZE(n) Specifies the number of iterations to distribute to an available processor. n
is an integer expression. For best performance, n should be an integer
constant. For example, given 100 iterations and CHUNKSIZE(4), 4 iterations
at a time are distributed to each available processor until the 100 iterations
are complete.
By default, n is the number of loop iterations divided by the number of
processors.

GUIDED[(vl)] Specifies the use of guided self-scheduling to distribute the iterations to
available processors. This mechanism minimizes synchronization overhead
while providing acceptable dynamic load balancing.
The vl argument is the vector length. vl must be of type integer and can be
either a constant or a variable.
The default vl is 1.

E.5 Mark Parallel Loop: DOPARALLEL and ENDDO

The !MIC$ DOPARALLEL directive indicates that the DO loop beginning on the
next line may be executed in parallel by multiple processors. No directive is
needed to end a DOPARALLEL loop.

The !MIC$ ENDDO directive extends a control structure beyond the DO loop.
Without a !MIC$ ENDDO directive, all CPUs synchronize immediately after the
loop, so that no processors can continue executing until all of the iterations are
done. A !MIC$ ENDDO directive moves this point of synchronization from the
end of the loop to the line of the !MIC$ ENDDO directive.

This lets the compiler use parallelism in loops containing some forms of
reduction computations. These directives can be used only within a parallel
region bounded by the PARALLEL and ENDPARALLEL directives.

All variables and arrays in a parallel region must be declared as PRIVATE or
SHARED.

The formats for these directives are as follows:

SR–3907 3.0.2 255

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

!MIC$ DOPARALLEL [work_distribution]

!MIC$ ENDDO

The work_distribution arguments are described in Table 5, page 255. Only one
work_distribution can be used for a given DO loop.

In the following example, a parallel region is defined by PARALLEL and
ENDPARALLEL. A reduction computation is implemented by a
DOPARALLEL/ENDDO pair, which ensures that all contributions to SUM and BIG
are included, and GUARD/ENDGUARD, which protects the updating of shared
variables SUM and BIG.

SUM = 0.0

BIG = -1.0
!MIC$ PARALLEL PRIVATE(XSUM,XBIG,I)

!MIC$* SHARED(SUM,BIG,AA,BB,CC)

XSUM = 0.0

XBIG = -1.0

!MIC$ DOPARALLEL
DO I = 1, 2000

:

XSUM = XSUM + (AA(I)*(BB(I)-CC(AA(I))))

XBIG = MAX(ABS(AA(I)*BB(I)), XBIG)

:

END DO
!MIC$ GUARD

SUM = SUM + XSUM

BIG = MAX(XBIG,BIG)

!MIC$ ENDGUARD

!MIC$ ENDDO
!MIC$ ENDPARALLEL

E.6 Critical Region: GUARD and ENDGUARD

The !MIC$ GUARD and !MIC$ ENDGUARD directives delimit a critical region,
providing the necessary synchronization to protect or guard the code inside the
critical region. A critical region is a code block that is to be executed by only one
processor at a time, although all processors that enter a parallel region will
execute it.

The formats for these directives are as follows:

256 SR–3907 3.0.2

Autotasking Directives (Outmoded) [E]

!MIC$ GUARD [n]

!MIC$ ENDGUARD [n]

n Mutual exclusion flag; two regions with the same flag cannot be
active concurrently. n must be of type integer and can be a
variable or an expression, from which the low-order 6 bits are
used. For example, GUARD 1 and GUARD 2 can be active
concurrently, but two GUARD 7 directives cannot.

For optimal performance, no n should be specified. Otherwise, n should be an
integer constant; a general expression can be used for the unusual case that the
critical region number must be passed to a lower-level routine. When n is not
provided, the critical region blocks only other instances of itself, but no other
critical regions. Critical regions may appear anywhere in a program. That is,
they are not limited to parallel regions.

Numbered GUARD directives are not supported. They are implemented as
unnamed GUARD directives. This can lead to deadlock if the user has nested
GUARD directives.

E.7 Specify Maximum Number of CPUs for a Parallel Region: NUMCPUS

The !MIC$ NUMCPUS directive globally indicates the maximum number of
CPUs that a section of code can use effectively. It does not guarantee that this
number of processors will actually be assigned. The NUMCPUS directive is in
effect until a subsequent NUMCPUS directive is encountered. The NUMCPUS
directive stays in effect across program units. The NUMCPUS directive remains in
effect for all subsequently called subroutines. Without this directive, CPUs are
allocated based on the MP_SET_NUMTHREADS environment variable and
workload.

The format for this directive is as follows:

!MIC$ NUMCPUS (ncpus)

SR–3907 3.0.2 257

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

ncpus Globally specifies the maximum number of CPUs that a code can
use effectively. ncpus must be of type integer and can be a
constant, variable, or expression.

The number of CPUs specified with this directive should be equal to or less
than the number of CPUs specified by the MP_SET_NUMTHREADS environment
variable. If the number requested with the NUMCPUS directive is greater than
the number specified by the MP_SET_NUMTHREADS environment variable, no
error is issued, but the directive has no effect.

E.8 Mark Parallel Region: PARALLEL and ENDPARALLEL

The !MIC$ PARALLEL and !MIC$ ENDPARALLEL directives mark,
respectively, the beginning and end of a parallel region. Parallel regions are
combinations of redundant code blocks and partitioned code blocks. The
formats for these directives are as follows:

!MIC$ PARALLEL [parameter [[,] parameter] ...]

!MIC$ ENDPARALLEL

The parameters are described in Table 4, page 254.

The PARALLEL directive indicates where multiple processors enter execution.
The portion of code that all processors execute until reaching a DOPARALLEL
directive is called a redundant code block. Because the iterations of the DO loop
within a DOPARALLEL directive are distributed across available processors, this
portion of code is called the partitioned code block. The scope of a variable in a
parallel region is either shared or private. Shared variables are used by all
processors; private variables are unique to a processor.

When the compiler generates code for a !MIC$ PARALLEL directive, all the
variables and arrays in the region must be defined in a SHARED or PRIVATE
parameter.

E.9 Declare an Array with No Repeated Values: PERMUTATION

The !MIC$ PERMUTATION directive declares that an integer array has no
repeated values. This is useful when the integer array is used as a subscript for
another array (vector-valued subscript). The format for this directive is as
follows:

258 SR–3907 3.0.2

Autotasking Directives (Outmoded) [E]

!MIC$ PERMUTATION (ia [, ia] ...)

ia Integer array that has no repeated values for the entire routine.

When an array with a vector-valued subscript appears on both sides of the equal
sign in a loop, many-to-one assignment is possible even when the subscript is
identical. Many-to-one assignment occurs if any repeated elements exist in the
subscripting array. If it is known that the integer array is used merely to
permute the elements of the subscripted array, it can often be determined that
many-to-one assignment does not exist with that array reference.

Sometimes a vector-valued subscript is used as a means of indirect addressing
because the elements of interest in an array are sparsely distributed; in this
case, an integer array is used to select only the desired elements, and no
repeated elements exist in the integer array, as in the following example:

!MIC$ PERMUTATION(IPNT) ! IPNT has no repeated values
...

DO I = 1, N

A(IPNT(I)) = A(IPNT(I)) + B(I)

END DO

E.10 Examples

The following examples show shared and private variables and arrays.

E.10.1 Read-only Variables

The following examples show read-only variables:

!MIC$ DOALL PRIVATE(I) SHARED(N1,N2,A)

DO I = N1, N2

...= A

END DO

A is a shared variable because it is a read-only variable. All processors share the
same location for A.

!MIC$ DOALL SHARED(N1,N2,M1,M2,V) PRIVATE(I,J)

DO 10 I = N1, N2
DO 10 J = M1, M2

... = V(J)

END DO

SR–3907 3.0.2 259

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

V is shared because it is a read-only array. N1, N2, M1, and M2 are also shared
because they are read-only variables. I and J are written and then read, so they
are private variables.

E.10.2 Array Indexed by Loop Index

The following example shows an array indexed by the loop index:

!MIC$ DOALL SHARED(N1,N2,V,U,J) PRIVATE(I,T)

DO I = N1, N2
T = V(I)

U(I,J) = T

END DO

U and V are shared arrays because they are indexed by the loop index. All
processors share the same location for V and U. T is written and then read, so it
is a private variable. J is shared because it is a read-only variable.

E.10.3 Read-then-write Variables

The following example shows read-then-write variables:

SUM = 0.0

!MIC$ DOALL SHARED(N1,N2,V,SUM) PRIVATE(I,T)
DO I = N1, N2

T = V(I)

!MIC$ GUARD

SUM = SUM + T

!MIC$ ENDGUARD
END DO

SUM is a shared variable because it is read before it is written. Special care is
needed in writing into a shared variable that is not indexed by the loop control
variable.

E.10.4 Write-then-read Variables and Arrays

The following example shows write-then-read variables and arrays:

!MIC$ DOALL SHARED(N1,N2,M1,M2) PRIVATE(I,J,V)

DO 10 I = N1, N2

DO 10 J = M1, M2

V(J) = ...

260 SR–3907 3.0.2

Autotasking Directives (Outmoded) [E]

... = V(J)

END DO

V is written to and then read. It must be a private array.

SR–3907 3.0.2 261

Index

!$, 139
!$ directive, 234
(null) directive, 179
– option, 59
-32 option, 8
-64 option, 8

A

ABI, 8
Affinity clause, 142
Affinity scheduling, 142

data affinity, 142
examples, 155
thread affinity, 142

AGGRESSIVEINNERLOOPFISSION directive, 65
AINT, 43
ALIGN_SYMBOL directive, 75
-alignn option, 10
AMOD, 43
ANINT, 43
-ansi option, 11
Application Binary Interface (ABI)

See "ABI", 8
ar, 5
Archive library

definition, 4
Archiving tool

definition, 4
Argument aliasing directives

See "Directives", 74
Array slices, 192
Arrays

assumed-shape, 192
deferred-shape, 192
example, 9
Fortran 90 arrays in C code, 200
processor, 152

reshaped, 150
slices, 192
unsupported array arguments, 192

Assembly language
calling from Fortran 90, 202

ASSERT ARGUMENTALIASING directive, 74
ASSERT NOARGUMENTALIASING directive, 74
assign, 203
Assumed-shape arrays, 192
ATOMIC directive, 99
Autocloning

enable/disable, 35
Automatic page migration, 135
Autotasking

restrictions, 249
Autotasking directives

overview, 249
-autouse option, 11
-avoid_gp_overflow option, 11

B

BARRIER directive, 99, 239
BLOCK distribution, 152
BLOCK-CYCLIC distribution, 153
BLOCKABLE directive, 65
BLOCKINGSIZE directive, 65
Blocks

common, 237
BOUNDS directive, 162, 163

C

C$, 139
C$OMP, 82
C$SGI, 139

SR–3907 3.0.2 263

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

-C option, 11
-c option, 12
C/C++, 187

calling C from Fortran 90, 197
calling Fortran 90, 193
calling Fortran 90 functions, 195
calling Fortran 90 subroutines, 193
external functions, 193
Fortran 90 and C correspondence, 190
Fortran 90 arrays in C code, 200
Fortran 90 blocks in C code, 199
normal calls to C functions, 197
using %VAL, 200
using LOC, 200

Cache
and optimization, 128
memory management, 29
performance, 128
prefetch options, 31
TLB, 30
transformation options, 24

CASE Autotasking directive, 251
CDIR$, 161
Character types

Fortran 90 and C correspondence, 191
-check_bounds option, 11
CHUNK directive, 233
-chunk=integer option, 12
CHUNKSIZE work distribution, 255
CIF, 4
cifconv, 4
Clauses

affinity, 142
COPYIN, 111
DEFAULT, 106
FIRSTPRIVATE, 107
LASTPRIVATE, 107
NEST, 144
PRIVATE, 105
REDUCTION, 108
SHARED, 106

CMIC!, 250
CMIC$, 161

CNCALL Autotasking directive, 252
Code scheduler

specifying, 50
-coln option, 12
Common blocks

Fortran 90 in C code, 199
reorganizing, 45

common blocks, 237
Communication

between threads, 213
Compiler

invoking, 2
Compiler differences, 219
Compiler features, 61
Compiler information file (CIF)

See "CIF", 4
COMPILER_DEFAULTS_PATH, 52, 53
Conditional compilation

directives
See "Directives", 177

overview, 175
Conditional directives

See "Directives", 180
Consistency checks, 35
Constructs

critical section, 238, 246
parallel sections, 243, 246
PDO, 242
single process, 246
work-sharing, 238

Continuation character, 63
COPYIN clause, 111
!$COPYIN directive, 238
cord, 13
-cord option, 13
Correspondence

between Fortran 90 and C data types, 190
cpp, 13
-cpp option, 13
CPU targeting

See also "Cross compiling", 52
CRITICAL directive, 97

264 SR–3907 3.0.2

Index

Critical section, 238
CRITICAL SECTION directive, 240
Cross compiling

definition, 52
CYCLIC distribution, 153

D

-D option, 14
Data dependence

examples, 119
rewriting, 122

Data dependencies, 118
multiprocessing errors, 218

Data distribution
*, 148
BLOCK, 148
CYCLIC, 148
DISTRIBUTE directive, 140
DISTRIBUTE_RESHAPE, 140
examples, 155
REDISTRIBUTE, 140
regular, 137, 149
regular vs. reshaped, 154
RESHAPE directive, 150
reshaped, 137
restriction on reshaped arrays, 150
with reshaping, 150

Data placement
automatic page migration, 135
regular data distribution, 135

Data types
Fortran 90 and C correspondence, 190

Debugging
generating information, 16
parallel Fortran, 216
tips for multiprocessed loops, 217

DEFAULT clause, 106
-default64 option, 14
Deferred-shape arrays, 192
#define, 14
#define directive, 178

Dependency analysis
examples, 119

Differences, 219
!DIR$, 161
Directive

definition, 61
Directives

!$, 234
(null), 179
AGGRESSIVEINNERLOOPFISSION, 65
ALIGN_SYMBOL, 75

example, 76
and command line options, 63, 225
ASSERT ARGUMENTALIASING, 74
ASSERT NOARGUMENTALIASING, 74
ATOMIC, 99
BARRIER, 99, 239
BLOCKABLE, 65
BLOCKINGSIZE, 65
CHUNK, 233
conditional, 180
continuation, 63, 226
continuing, 162, 250
!$COPYIN, 238
CRITICAL, 97
CRITICAL SECTION, 240
data distribution, 35
#define, 14, 178
DISTRIBUTE, 140
DISTRIBUTE_RESHAPE, 137, 140, 152
DO, 88
DOACROSS, 141, 227
DSM, 33
DYNAMIC, 146
#elif, 180, 182
#else, 180, 182
END CRITICAL, 97
END CRITICAL SECTION, 240
END DO, 88
END MASTER, 97
END ORDERED, 102
END PARALLEL, 85, 240

SR–3907 3.0.2 265

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

END PARALLEL DO, 93
END PARALLEL SECTIONS, 95
END PDO, 242
END PSECTION, 243
END SECTIONS, 91
END SINGLE, 92
END SINGLEPROCESS, 245
#endif, 180, 183
FILL_SYMBOL, 75

example, 76
FISSION, 67
FISSIONABLE, 67
fixed source form, 62
FLUSH, 77, 100
for Autotasking, 249
free source form, 62
FUSE, 67
FUSEABLE, 67
global

definition, 225
#if, 180
#ifdef, 181
#ifndef, 182
#include, 177
INLINE, 78
Inlining and interprocedural analysis (IPA), 78
interaction with -x dirname option, 162, 251
INTERCHANGE, 69
IPA, 78
IVDEP, 41
LNO, 64
MASTER, 97
MP_SCHEDTYPE, 234
multiprocessing, 225
NOBLOCKING, 65
NOFISSION, 67
NOFUSION, 67
NOINLINE directive, 78
NOINTERCHANGE, 69
NOIPA, 78
OpenMP Fortran API, 37, 81
ORDERED, 102
outmoded SGI multiprocessing, 36

overview, 161
PAGE_PLACE, 147
PARALLEL, 85, 240
PARALLEL DO, 93, 241
PARALLEL SECTIONS, 95
PCF, 238

restrictions, 247
PDO, 242
performance tuning, 138
PREFETCH, 70
PREFETCH_MANUAL, 70
PREFETCH_REF, 71
PREFETCH_REF_DISABLE, 72
PSECTION, 243
range, 63
range and placement, 162, 250
REDISTRIBUTE, 140
regular data distribution, 149
RESHAPE, 150
SECTION, 91, 243
SECTION_GP, 78
SECTION_NON_GP, 78
SECTIONS, 91
SINGLE, 92
SINGLEPROCESS, 245
source preprocessor, 64
symbol storage, 75
syntax, 61
THREADPRIVATE, 103
#undef, 179
UNROLL, 73
using, 61

DISTRIBUTE directive, 140
DISTRIBUTE_RESHAPE directive, 137, 140, 152
-dn option, 14
DO directive, 88
DO loop, 226
DO PARALLEL directive, 255
DOACROSS

example, 235
DOACROSS directive, 141, 227
!$DOACROSS loop, 228

266 SR–3907 3.0.2

Index

DOALL directive, 251, 252
DOPARALLEL directive, 251
DYNAMIC directive, 146
DYNAMIC schedules, 132
Dynamic shared libraries, 18

E

-E option, 15
#elif directive, 180, 182
#else directive, 180, 182
END CASE Autotasking directive, 251
END CRITICAL directive, 97
END CRITICAL SECTION directive, 240
END DO directive, 88
END MASTER directive, 97
END ORDERED directive, 102
END PARALLEL directive, 85, 240
END PARALLEL DO directive, 93
END PARALLEL SECTIONS directive, 95
END PDO directive, 242
END PSECTION directive, 243
END SECTIONS directive, 91
END SINGLE directive, 92
END SINGLEPROCESS directive, 245
ENDDO directive, 250, 255
ENDGUARD directive, 251, 256
#endif directive, 180, 183
ENDPARALLEL directive, 251, 258
Environment variables

affecting compilation, 8
COMPILER_DEFAULTS_PATH, 52, 53
MP_SET_NUMTHREADS, 226
OMP_NUM_THREADS, 34, 149

Error detection, 4
Examples

arrays, 9
loading Fortran 90 object files, 19
setting stack size, 10
specifying libraries, 19

-extend_source option, 15
External name, 187

F

f90 command
example, 2
MIPSpro Automatic Parallelization Option, 8
options, 22

–, 59
-32, 8
-64, 8
-alignn, 10
-ansi, 11
-autouse option, 11
-avoid_gp_overflow, 11
-C, 11
-c, 12
-check_bounds, 11
-chunk=integer, 12
-coln, 12
-cord, 13
-cpp, 13
-D, 14
-default64, 14
-dn, 14
-E, 15
-extend_source, 15
-fixedform, 15
-freeform, 15
-ftpp, 16
-gdebug_lvl, 16
-help, 16
-Idir, 17
-ignore_suffix, 18
-in, 18
-INLINE, 79
-INLINE:…, 17
-IPA, 79
-IPA:…, 17
-keep, 18
-KPIC, 18
-Ldirectory, 18
-LIST:..., 20
-listing, 21

SR–3907 3.0.2 267

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

-llibrary, 19
-LNO:…, 21
-macro_expand, 32
-MDupdate, 32
-mipsn, 8, 33
-mp, 33
-MP:, 35
-nocpp, 39
-noextend_source, 39
-nostdinc, 39
-o, 49
-Olevel, 39
-OPT:…, 40
-P, 49
-pfa, 49
-rprocessor, 50
-rreal_spec, 50
-S, 51
-static, 51, 120
-TARG:..., 52
-TENV:..., 54
-trapuv, 56
-u, 56
-Uvar, 56
-version, 57
-warg, 57
-Wl, 57
-woffnum, 57
-x, 58
-xgot, 58

syntax, 7
using multiple options, 7

FFIO
routines

See "Library routines", 204
file.suffix90, 59
file.suffix90 option, 59
FILL_SYMBOL directive, 75
FIRSTPRIVATE clause, 107
FISSION directive, 67
FISSIONABLE directive, 67
FIXED directive, 162, 164
Fixed source form, 62

-fixedform option, 15
Flexible File I/O (FFIO)

See "FFIO", 203
Floating-point mode, 52
FLUSH directive, 77, 100
FORTRAN 77 compiler

$ character difference, 188
-U option, 188

Fortran 90
and C data types, 190
arrays in C code, 200
calling assembly language, 202
calling C, 197
calling from C, 193
calling function from C, 195
calling subroutines from C, 193
common blocks in C code, 199
compiling, 34
functions, 193
naming C functions, 189
naming subprogram from C, 189
normal calls to C functions, 197
passing subprogram arguments, 192
subroutines, 193
using %VAL, 200
using LOC, 200

FREE directive, 162, 164
Free source form, 62
-freeform option, 15
ftnchop, 5
ftnlint, 4
ftnlist, 4
ftnmgen, 5
ftnsplit, 5
ftpp, 15, 16
-ftpp option, 16
Functions

calling Fortran 90 from C, 195
normal calls to C functions, 197

FUSE directive, 67
FUSEABLE directive, 67

268 SR–3907 3.0.2

Index

G

-gdebug_lvl option, 16
getwd, 19
Global directives, 225
Global Symbol Table (GOT)

See "GOT", 11
GOT, 11

accommodating larger, 54
overflow message, 58

GUARD directive, 251, 256
GUIDED schedules, 132
GUIDED work distribution, 255

H

-help option, 16
hinv, 8, 40

I

I/O routines
See "Library routines", 204

ID directive, 162, 164
-Idir option, 17
IEEE Floating-point Arithmetic

level of conformance, 44
IF parameter, 254
#if directive, 180
#ifdef directive, 181
#ifndef directive, 182
-ignore_suffix option, 18
-in option, 18
#include directive, 177
#include files

searching for, 17
INLINE directive, 78
-INLINE option, 79
-INLINE:… option, 17
Inlining

definition, 79

intrafile subprogram inlining, 17
standalone inliner, 17

Inlining and interprocedural analysis (IPA)
directives

See "Directives", 78
Instruction Set Architecture (ISA)

See "ISA", 8
INTERCHANGE directive, 69
Interface routines

See "Library routines", 204
Interlanguage calling, 187
Interleaving

cache performance, 132
load balancing, 131

Interprocedural analysis (IPA)
definition, 79
ipa, 79

Interprocedural analyzer (IPA)
See "IPA", 17

Interthread communication, 238
Intrinsic procedures, 4, 203

AINT, 43
AMOD, 43
ANINT, 43
libfortran, 4
libm, 4
NINT, 43
turning into a call, 45

IPA, 17
directives, 78

ipa, 79
IPA directive, 78
-IPA option, 79
-IPA:… option, 17
IRIX loader

ld, 4
Irregular data structures, 147
ISA

specifying, 33
IVDEP directive, 162

SR–3907 3.0.2 269

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

K

-keep option, 18
KIND specification

values, 14
Kind specification

real values, 50
-KPIC option, 18

L

Language interface
C/C++, 187

LASTPRIVATE clause, 107
LASTPRIVATE variable, 118
ld, 4, 187, 237
-Ldirectory option, 18
libfortran, 4
libm, 4
Libraries, 4

changing search algorithm, 18
loaded by default, 19
searching lib.library.a, 19

Library options, 203
Library routines, 203, 206

communication between threads, 213
FFIO, 204
I/O, 204
Interface, 204
programming aids, 205

Lines
restricting Fortran source code lines, 39
specifying length, 15
specifying width, 12

lint
See "ftnlint", 4

-LIST:... option
arguments, 20

Lister
ftnlist, 4
using f90 command, 4

Listing file

writing to, 20
writing to assembly listing file, 20

-listing option, 21
-llibrary option, 19
LNO

directives
See "Directives", 64

-LNO option, 21
-LNO option arguments, 21

Load balancing, 131, 132
Loader

ld, 4
Loading compiler, 4
LOC intrinsic function, 201
Local common blocks, 237
Loop nest optimization, 64
Loop nest optimizer (LNO)

See "LNO", 21
Loop unrolling

UNROLL directive, 73
Loops

unrolled, 48

M

Macro expansion, 32
-macro_expand option, 32
Macros

based on host system, 183
based on IRIX system, 183
predefined, 183, 184

_ABI, 183
_COMPILER_VERSION, 183
host_mips, 184
LANGUAGE_FORTRAN, 184
LANGUAGE_FORTRAN90, 184
_LANGUAGE_FORTRAN90, 184
_LANGUAGE_FORTRAN, 184
__mips, 184
_MIPS_ISA, 184
_MIPS_SIM, 184

270 SR–3907 3.0.2

Index

MIPSEB, 184
_MIPSEB, 184
_OPENMP, 184
__sgi, 184
_SYSTYPE_SVR4, 184
__unix, 183

man, 5
MASTER directive, 97
Master/slave

Common block, 238
Master/slave organization, 226
Matrix multiply, 128
-MDupdate option, 32
Message system, 5
Messages

generation of, 11
specifying, 57

!MIC$, 161, 250
-mipsn option, 8, 33
MIPSpro 7 Fortran 90 compiler

definition, 3
invoking, 7

MIPSpro assembly language
calling from Fortran 90, 202

MIPSpro Automatic Parallelization Option, 8
Modules utility, 5
-mp option, 33
-MP: option

arguments, 35
MP_SCHEDTYPE directive, 234
MP_SET_NUMTHREADS environment

variable, 226
Multiprocessing

analyzing data dependencies, 118
debugging program, 216
directives

See "Directives", 225
DO loop, 226
!$DOACROSS, 228
loop-level, 226
master/slave orgzniation, 226
Origin series, 133
parallel Fortran, 34

specifying options, 35
thread of execution, 226
work quantum, 127

multiprocessing routines, 205
Multitasking, 249

N

NAME directive, 162, 170
NEST clause, 144
Nested parallelism, 144
NINT, 43
nm, 187
NOBLOCKING directive, 65
NOBOUNDS directive, 162, 163
-nocpp option, 39
-noextend_source option, 39
NOFISSION directive, 67
NOFUSION directive, 67
NOINLINE directive, 78
NOINTERCHANGE directive, 69, 170
NOIPA directive, 78
-nostdinc option, 39
NOTASK directive, 171
NOUNROLL directive, 172
NUMCPUS Autotasking directive, 257

O

-O ieeeconform option, 46
-O noieeeconform option, 46
-o option, 49
Object file tools

definition, 5
-Olevel option, 39
!$OMP, 82
!$OMP PARALLEL DO

sproc compatibility, 212
OMP_NUM_THREADS, 34, 149
Online documentation utilities, 5

SR–3907 3.0.2 271

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

OpenMP clauses
COPYIN, 111
DEFAULT, 106
FIRSTPRIVATE, 107
LASTPRIVATE, 107
PRIVATE, 105
REDUCTION, 108
SHARED, 106

OpenMP directives
ATOMIC, 99
BARRIER, 99
CRITICAL, 97
DO, 88
END CRITICAL, 97
END DO, 88
END MASTER, 97
END ORDERED, 102
END PARALLEL, 85
END PARALLEL DO, 93
END PARALLEL SECTIONS, 95
END SINGLE, 92
ENS SECTIONS, 91
FLUSH, 100
MASTER, 97
ORDERED, 102
PARALLEL, 85
PARALLEL DO, 93
PARALLEL SECTIONS, 95
SECTION, 91
SECTIONS, 91
SINGLE, 92
THREADPRIVATE, 103

OpenMP Fortran API directives, 81
-OPT:… option, 40
Optimization

controlling, 40
costs, 129
specifying level, 39

option, 22
Options

help, 16
ORDERED directive, 102
Origin series

improving program performance, 134
memory hierarchy, 134
parallel programming, 133
performance tuning, 133

P

-P option, 49
PAGE_PLACE directive, 147
Parallel Computing Forum (PCF)

See "PCF", 238
PARALLEL directive, 85, 240, 251, 258
PARALLEL DO directive, 93, 241
Parallel processing

analyzing source code, 49
Parallel programming

Origin series, 133
Parallel region

definition, 238
PARALLEL SECTIONS directive, 95
Parallelism

cache performance, 128
conditional, 128
general model based on PCF, 238
implementation, 212
nested, 144
profiling, 215
sproc, 212

Passing arguments, 192
PCF

directives, 238
PDO directive, 242
pe_environ, 8
Performance tuning, 133
Performance tuning directives

See "Directives", 138
PERMUTATION Autotasking directive, 258
-pfa option, 49
pixie, 13
pmake command, 32
Position-independent code (PIC)

272 SR–3907 3.0.2

Index

See "PIC", 18
POSIX library routines, 203
Power Fortran, 118
Predefined macros

for conditional compilation, 183
PREFERTASK directive, 170
PREFETCH directive, 70
PREFETCH_MANUAL directive, 70
PREFETCH_REF directive, 71
PREFETCH_REF_DISABLE directive, 72
Preprocessing, 175

f90 command line options, 184
Power Fortran, 118
source, 13

Preprocessor
using f90 command, 4

PRIVATE clause, 105, 106
PRIVATE parameter, 254
PRIVATE variable, 118
Procedure rearranging, 13
Processor array, 152
prof, 13, 215
Profiling

a parallel Fortran program, 215
Fortran parallel vs. standard, 216
__mp_parallel_do synchronizer and

controller, 216
__mp_slave_wait_for_work routine, 216
prof standard profile analyzer, 215
timex profile analyzer, 215

Programming aids
See "Library routines", 205

PSECTION directive, 243
Public name, 187

R

Reciprocal operations
specifying faster, 46

REDISTRIBUTE directive, 140
Redistribution

DYNAMIC directive, 146

REDUCTION clause, 108
Reduction operation

definition, 232
REDUCTION variable, 118
Regular data distribution directives

See "Directives", 149
Relational operators, 43

unsigned, 43
RESHAPE directive, 150
Reshaped arrays

error detection, 151
implementation of, 152
restrictions, 150

Restrictions
on PCF directives, 247
on reshaped arrays, 150

-rprocessor option, 50
-rreal_spec option, 50

S

-S option, 51
SAVELAST parameter, 254
Scalar types

Fortran 90 and C correspondence, 190
Scheduling, 38

affinity, 142, 228
DYNAMIC schedules, 132
fixed schedules, 132
GUIDED schedules, 132
interleaving, 132
work, 229

SECTION directive, 91, 243
SECTION_GP directive, 78
SECTION_NON_GP directive, 78
SECTIONS directive, 91
Semantics, 41
!$SGI, 139
sh, 10
SHARED parameter, 254
SHARED variable, 118

SR–3907 3.0.2 273

MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

shmem
thread communication, 213

SINGLE directive, 92
SINGLEPROCESS directive, 245
smake command, 32
Source preprocessing, 49, 175
Source preprocessor, 16

cpp, 13
disabling, 39
ftpp, 15

Speculative code motion, 55
SpeedShop, 132
sproc

compatibility with !$OMP PARALLEL DO, 212
Square root

calculation, 42
Static analyzer

ftnlint utility, 4
-static option, 51

Caution, 120
Subroutines

calling Fortran 90 from C, 193
Symbol storage directives, 75
System defaults

predefined, 8

T

-TARG:... option
arguments, 52

Target environment
controlling alignment, 54
specifying, 54

TASK directive, 171
TASKCOMMON directive

thread communication, 213
Tasking directives, 249
-TENV:... option, 54
Thread communication, 213

examples, 214
THREADPRIVATE directive, 103

timex, 215
-trapuv option, 56
Tuning, 133

choosing a method, 137

U

-u option, 56
#undef directive, 179
UNROLL directive, 73, 172
-Uvar option, 56

V

%VAL intrinsic function, 201
Variables

allocating local, 51
Vector dependencies

ignoring, 45
-version option, 57
VSEARCH directive, 162

W

-warg option, 57
-Wl option, 57
-woffnum option, 57
Work quantum, 127
Work-sharing constructs, 238

X

-x dirname option, 162, 251
-x option, 58
-xgot option, 58
Xlocal

thread communication, 213

274 SR–3907 3.0.2

Tell Us About This Manual

As a user of Silicon Graphics products, you can help us to better understand your needs
and to improve the quality of our documentation.

Any information that you provide will be useful. Here is a list of suggested topics:

• General impression of the document

• Omission of material that you expected to find

• Technical errors

• Relevance of the material to the job you had to do

• Quality of the printing and binding

Please send the title and part number of the document with your comments. The part
number for this document is 007-3696-002.

Thank you!

Three Ways to Reach Us

• To send your comments by electronic mail, use either of these addresses:

– On the Internet: techpubs@sgi.com

– For UUCP mail (through any backbone site): [your_site]!sgi!techpubs

• To fax your comments (or annotated copies of manual pages), use this
fax number: 650-932-0801

• To send your comments by traditional mail, use this address:

Technical Publications
Silicon Graphics, Inc.
2011 North Shoreline Boulevard, M/S 535
Mountain View, California 94043-1389

