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About This Guide

This publication describes the SGI Scientific Computing Software Library (SCSL)
which runs on SGI IRIX and Linux systems. The information in this manual
supplements the man pages provided with the SCSL release.

This document is a user’s guide for programmers. Readers should have a working
knowledge of the IRIX and Linux operating systems, have an understanding of the
Fortran and C programming languages, and have a working familiarity with scientific
and mathematical theories.

Related publications
The following publications provide information that can supplement the information
in this document.

Release notes for Linux systems are stored in
/usr/share/doc/sgi-scsl-versionnumber/README.relnotes.

Related Operating System Documentation

The following documents provide information about IRIX and Linux implementations
on SGI systems:

• Linux Installation and Getting Started

• Linux Resource Administration Guide

• IRIX Admin: Resource Administration

• SGI ProPack for Linux Start Here

• Message Passing Toolkit: MPI Programmer’s Manual

Tuning and Application Guides

The following documents provide information about the applications used on IRIX
and Linux systems and about tuning issues on those systems:

• Origin 2000 and Onyx2 Performance Tuning and Optimization Guide
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• Linux Application Tuning Guide

• MIPSpro Fortran 77 Programmer’s Guide

• MIPSpro Fortran 90 Commands and Directives Reference Manual

• C++ Programmer’s Guide

• Guide to SGI Compilers and Compiling Tools

• ProDev WorkShop: Overview

The following documentation is provided for the compilers and performance tools
which run on SGI Linux systems:

• http://sources.redhat.com/gdb/onlinedocs/gdb_toc.html

• http://intel.com/software/perflib; documentation for Intel compiler products can
be downloaded from this website.

• http://developer.intel.com/software/products/vtune/vtune61/index.htm/

• Information about the OpenMP Standard can be found at
http://www.openmp.org/specs.

Third Party Documentation

The following publications provide detailed information about the topics discussed in
this manual. In many cases, these documents are referenced specifically in this
manual.

• Anderson, E., Z. Bai, et al. LAPACK User’s Guide. Philadelphia SIAM, 1999. This
manual is available online at http://www.netlib.org/lapack/lug/index.html.

• Anderson, Edward, Jack Dongarra, and Susan Blackford. Installation guide for
LAPACK. LAPACK Working Note 41, Technical Report CS-91-138. University of
Tennessee (Feb. 1992).

• Argham, Nicolas J. Accuracy and Stability of Numeric Algorithms. Philadelphia
SIAM, 1996.

• Arioli, M., J. W. Demmel, and I. S. Duff. Solving sparse linear systems with sparse
backward error. SIAM J. Matrix Anal. Appl. 10 (1989).
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• Ashcraft, Cleve. A vector implementation of the multifrontal method for large
sparse, symmetric positive definite linear systems. Technical Report ETA-TR-51.
Boeing Computer Services, 1987.

• Duff, I. S., A. M. Erisman, and J. K. Reid. Direct Methods for Sparse Matrices.
Monographs on Numerical Analysis. New York: Oxford University Press, 1986.

• George, Alan and Joseph W-H Liu. Computer Solution of Large Sparse Positive
Definite Systems. Prentice-Hall Series in Computational Mathematics. Englewood
Cliffs, NJ: Prentice-Hall, Inc., 1981.

• Golub, Gene and James M. Ortega. Scientific Computing: An Introduction with
Parallel Computing. Boston: Academic Press, 1993.

• Golub, Gene H. and Charles F. Van Loan. Matrix Computations. 2nd edition.
Baltimore, Maryland: Johns Hopkins University Press, 1989.

• Hageman, Louis A. and David M. Young. Applied Iterative Methods. Computer
Science and Applied Mathematics. New York and London: Academic Press, 1981.

• Heroux, Michael A. A reverse communication interface for ‘‘matrix-free’’
preconditioned iterative solvers. Edited by C.A. Brebbia, D. Howard, and A.
Peters In Applications of Supercomputers in Engineering II, 207-213. Boston:
Computational Mechanics Publications, 1991.

• Heroux, Michael A., Phuong Vu, and Chao Wu Yang. A parallel preconditioned
conjugate gradient package for solving sparse linear systems on a Cray Y-MP.
Applied Numerical Mathematics, 8 (1991).

• Hestenes, M. R. and E. Stiefel. Methods of conjugate gradients for solving linear
systems. J. Res. National Bureau of Standards 49 (1952): 409-436.

• Kincaid, David R., Thomas C. Oppe, John R. Respess, and David M. Young.
ITPACKV 2C User’s Guide. Technical Report CNA-191. The University of Texas at
Austin: Center for Numerical Analysis, (Nov. 1984).

• Manteuffel, T. A. An incomplete factorization technique for positive definite linear
systems. Math. Comp. 34 (1980): 473-497.

• Oppe, Thomas C., Wayne D. Joubert, and David R. Kincaid. NSPCG User’s Guide.
The University of Texas at Austin: Center for Numerical Analysis, (Dec. 1988).

• Reid, J. K., editor. On the Method of Conjugate Gradients for the Solution of Large
Sparse Systems of Linear Equations. Large Sparse Sets of Linear Equations, Academic
Press, 1971.

007–4325–001 xv



About This Guide

• Saad, Youcef. Practical use of polynomial preconditionings for the conjugate
gradient method., 6(4) (Oct. 1985): 865-881.

• Saad, Youcef and Martin H. Schultz. GMRES: A generalized minimal residual
algorithm for solving nonsymmetric linear systems. SIAM Journal of Scientific and
Statistical Computing, 7(3) (Jul. 1986): 856-869.

• Sonneveld, Peter. CGS, a fast lanczos-type solver for nonsymmetric linear systems.
SIAM Journal of Scientific and Statistical Computing, 10(1) (Jan. 1989): 36-52.

• Stewart, G. W. Introduction to Matrix Computations. Orlando, Florida: Academic
Press, 1973.

• Wilkinson, J. H. The Algebraic Eigenvalue Problem. Oxford, England: Oxford
University Press, 1965.

• Yang, Chao W. A parallel multifrontal method for sparse symmetric definite linear
systems on the Cray Y-MP. Proceedings of the Fifth SIAM Conference on Parallel
Processing for Scientific Computing. Houston, Texas (Apr. 1992).

You can find a good general reference on the solution of sparse linear systems in
Golub and Van Loan. You can find a good introduction to direct and iterative
methods, as well as methods for special linear systems, in these texts. See the special
section of the November 1989 issue of the SIAM Journal of Scientific and Statistical
Computing, pages 1135-1232 for an updated general reference.

See George and Liu, Duff and Erisman, and Reid for classical references that give a
thorough and in-depth treatment of sparse direct solvers. Another common reference
is Ashcraft.

The original conjugate gradient algorithm was presented in Hestenes and Stiefel;
however, Reid presented the first practical application. A classical text in iterative
methods is that of Hageman and Young. You can find good discussions of the
biconjugate gradient and biconjugate gradient squared methods in Sonneveld.
GMRES is presented by Saad and Schultz.

Conventions
The following conventions are used throughout this documentation:

command This fixed-space font denotes literal items, such as
pathnames, man page names, commands, and
programming language structures.
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variable Italic typeface denotes variable entries and words or
concepts being defined.

[ ] Brackets enclose optional portions of a command line.

Obtaining Publications
You can obtain SGI documentation as follows:

• See the SGI Technical Publications Library at http://docs.sgi.com. Various formats
are available. This library contains the most recent and most comprehensive set of
online books, release notes, man pages, and other information.

• If it is installed on your SGI system, you can use InfoSearch, an online tool that
provides a more limited set of online books, release notes, and man pages. With
an IRIX system, enter infosearch at a command line or select Help >
InfoSearch from the Toolchest.

• On IRIX systems, you can view release notes by entering either grelnotes or
relnotes at a command line.

• On Linux systems, you can view release notes on your system by accessing the
README.txt file for the product. This is usually located in the
/usr/share/doc/productname directory, although file locations may vary.

• You can view man pages by typing man title at a command line.

Reader Comments
If you have comments about the technical accuracy, content, or organization of this
publication, contact SGI. Be sure to include the title and document number of the
publication with your comments. (Online, the document number is located in the
front matter of the publication. In printed publications, the document number is
located at the bottom of each page.)

You can contact SGI in any of the following ways:

• Send e-mail to the following address:

techpubs@sgi.com

• Use the Feedback option on the Technical Publications Library Web page:
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http://docs.sgi.com

• Contact your customer service representative and ask that an incident be filed in
the SGI incident tracking system.

• Send mail to the following address:

Technical Publications
SGI
1500 Crittenden Lane, M/S 535
Mountain View, California 94043–1351

SGI values your comments and will respond to them promptly.
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Chapter 1

Introduction

This manual describes the SGI Scientific Computer Software Library, which runs on
SGI IRIX and Linux systems. The information in this manual supplements the man
pages provided with SCSL and provides details about the implementation and usage
of these library routines.

SCSL contains the following groups of routines:

• Vector-vector linear algebra subprograms (Level 1 BLAS routines).

• Matrix-vector linear algebra subprograms (Level 2 BLAS routines).

• Matrix-matrix linear algebra subprograms (Level 3 BLAS routines).

• LAPACK routines for the solution of dense linear systems of equations, linear
least-squares problems, eigenvalue problems and singular value decomposition.

• Direct linear solvers for real and complex sparse systems with symmetric non-zero
structure, and iterative solvers for real sparse systems with arbitrary structure.

• Signal processing routines, which include Fast Fourier Transform (FFT) routines,
convolution routines, and correlation routines.

• 64–bit thread-safe parallel random number generators.

The SCSL routines are loaded by using the -lscs option or the -lscs_mp options to
the compiler command line. The -lscs_mp option directs the linker to use the
multi-processor version of the library.

When linking with SCSL, the default integer size is 4 bytes (32 bits). Another version
of SCSL is available in which integers are 8 bytes (64 bits). This version allows the
users access to larger memory sizes. It can be loaded by using the -lscs_i8 option
or the -lscs_i8_mp option. A program can use only one of the two versions; 4–byte
integer and 8–byte integer library calls cannot be mixed.

Many SCSL routines are multitasked or multithreaded; this means that a program
that calls a multitasked routine will run in parallel mode and take advantage of
multiple processors whenever possible, even if the program has not specifically
requested multitasking. If a significant percentage of time is spent in the routine, this
feature can significantly reduce wall-clock time.
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1: Introduction

Note that most LAPACK routines do not perform multiprocessing, but almost all
LAPACK routines call Level 2 BLAS and Level 3 BLAS that do multiprocessing.

This manual includes the following sections:

• Chapter 2, "Basic Linear Algebra Subprogram (BLAS) Routines" on page 5,
discusses the Basic Linear Algebra Subprogram (BLAS) routines.

• Chapter 3, "LAPACK" on page 13, discusses the LAPACK routines and their
implementation on SGI Linux systems.

• Chapter 4, "Using Sparse Linear Equation Solvers" on page 41, discusses sparse
matrices and solution techniques for sparse linear systems.

• Chapter 5, "Signal Processing Routines" on page 47, discusses the Fast Fourier
Transform (FFT) routines.

Parallel Processing Issues
Parallel processing is a method of splitting a computational task into subtasks, and
then simultaneously performing the subtasks. In many cases, the use of specialized
libraries, such as SCSL, is a key component of parallel processing.

Parallel processing can eliminate idle CPU time because the workload is divided
among all CPUs; therefore, the amount of work performed per unit time (the
throughput) increases. However, parallel processing also introduces some overhead
into program execution. In some cases, you may be able to reduce wall-clock time,
but at the cost of extra CPU time which increases because more machine resources are
used.

By using parallel processing, you can alleviate some of the following common
problems:

• Maximum-memory jobs: if the memory is occupied by a few large-memory jobs,
one or more of the CPUs might be idle even though there are other jobs to run.

• Dedicated machine: if the computer is running a single job, then all other CPUs
are idle.

• Light workload: if the amount of jobs waiting for a CPU is less than the total
number of CPUs, then one or more of the CPUs becomes idle.
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With parallel processing, the additional CPUs reduce the wall-clock time instead of
sitting idle. Even when very little idle time exists, using additional CPUs can still
lead to benefits.

Parallel processing introduces some overhead into program execution. This subsection
discusses some of the common types of overhead introduced by parallel processing:

• Multitasked programs require more memory than unitasked programs, and they
can contain more code, more temporary variables, and can require additional stack
space.

• Multitasked jobs can be swapped more often, and remain swapped longer, on a
heavily loaded production system.

• Processors are forced to wait on semaphores during the process of synchronization.

• Overhead is incurred when slave processors are acquired (on entry to a parallel
region) and at synchronization points within parallel regions. Tests show that the
overhead of executing extra autotasking code adds a nominal 0% to 5% to the
overall execution time.

• If inner-loop autotasking is used, vector performance can decrease because of
shorter vector lengths and more vector loop startups.

• Processors are sometimes held for the next parallel region to improve efficiency.
While holding a processor can save time, it also costs time to acquire and hold
them.

Because overhead is associated with work distribution, jobs with large granularity
have less partitioning than smaller jobs. Large jobs, however, may have problems
with load balancing.

Parallel processing implementation strategies are discussed in detail in the following
books:

• Linux Application Tuning Guide

• Origin 2000 and Onyx2 Performance Tuning and Optimization Guide

In addition to these books, other documents in the MIPSpro compiler documentation
set discuss parallel processing issues that are specific to compiler use. See the Guide to
SGI Compilers and Compiling Tools for information about those books.
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Chapter 2

Basic Linear Algebra Subprogram (BLAS)
Routines

The SCSL BLAS routines are a library of routines that perform basic operations
involving matrices and vectors. The BLAS are used in a wide range of software,
including LINPACK, LAPACK, and many other algorithms commonly in use today.
They have become a de facto standard for elementary vector and matrix operations.

There are three ’levels’ of BLAS routines:

• Level 1: these routines perform vector-vector operations such as dot-product and
the adding of a multiple of one vector to another.

• Level 2: these routines perform matrix-vector operations that occur frequently in
the implementation of many of the most common linear algebra algorithms. Note
that algorithms that use Level 2 BLAS can be very efficient on vector computers,
but are not well suite to computers with a hierarchy of memory (that is, cache
memory).

• Level 3: these routines are used for matrix-matrix operations.

See the remaining subsections in this chapter for details about each type of BLAS.

BLAS 2 and BLAS 3 modules in SCSL are optimized and parallelized to take
advantage of SGI’s hardware architecture. Best performance is achieved with BLAS 3
routines where outer-loop unrolling and blocking techniques have been applied to
take advantage of the memory cache.

SCSL’s LAPACK algorithms make extensive use of BLAS 3 modules and are more
efficient than the older, BLAS 1–based LINPACK algorithms.

Data Types
The BLAS routines use the following data types:

• Single precision: Fortran “real” data types, C/C++ “float” data types, 32–bit
floating point. These routine names begin with S.

• Single precision complex: Fortran “complex” data type, C/C++ “scsl_complex”
data type (defined in <scsl_blas.h>), C++ STL “complex<float>” data type
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2: Basic Linear Algebra Subprogram (BLAS) Routines

(defined in <complex.h>), two 32–bit floating point reals. These routine names
begin with C.

• Double precision: Fortran “double precision” data type, C/C++ “double” data
type, 64–bit floating point. These routine names begin with D.

• Double precision complex: Fortran “double complex” data type, C/C++
“scsl_zomplex” data type (defined in <scsl_blas.h>), C++ STL
“complex<double>” data type (defined in <complex.h>), two 64–bit floating
point doubles. These routine names begin with Z.

The man(1) command can find a man page online by either the single precision, single
precision complex, double precision, or double precision complex name, as shown in
the following table:

--------------------------------------------------------------

Single Double

Single Double Precision Precision

Precision Precision Complex Complex

--------------------------------------------------------------

form: Sname Dname Cname Zname

example: SGEMM DGEMM CGEMM ZGEMM

--------------------------------------------------------------

C Interface to the BLAS Routines
SCSL supports two different C interfaces to the BLAS:

• The C interface described in individual BLAS man pages follows the same
conventions used for the C interface to the SCSL signal processing library.

• SCSL also supports the C interface to the legacy BLAS set forth by the BLAS
Technical Forum. This interface supports row-major storage of multidimensional
arrays; see the INTRO_CBLAS(3S) man page for details.

By default, the integer arguments are 4 bytes (32 bits) in size; this is the size obtained
when the SCSL library is linked with -lscs or lscs_mp. Another version of SCSL is
available, however, in which integers are 8 bytes (64 bits). This version allows the
user access to larger memory sizes and helps when porting legacy Cray codes. It can
be loaded by using either the -lscs_i8 or -lscs_i8_mp link option. Any program
may use only one of the two versions; 4-byte integer and8-byte integer library calls
cannot be mixed.
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C/C++ function prototypes for Level 1 BLAS routines are provided in
<scsl_blas.h>, when using the default 4-byte integers, and in
<scsl_blas_i8.h> when using 8-byte integers. These header files define the
complex types scsl_complex and scsl_zomplex, which are used in the
prototypes. Alternatively, C++ programs may declare arguments using the types
complex<float> and complex<double> from the standard template library. But if
these types are used, <complex.h> must be included before <scsl_blas.h> (or
<scsl_blas_i8.h>). Both complex types are equivalent: they simply represent
(real, imaginary) pairs of floating point numbers stored contiguously in memory.
With the proper casts, you can simply pass arrays of floating point data to the
routines where complex arguments are expected.

Casts, however, can be avoided. The header files <scsl_blas.h> and
<scsl_blas_i8.h> directly support the use of user-defined complex types or
disabling prototype checking for complex arguments completely. By defining the
symbol SCSL_VOID_ARGS before including <scsl_blas.h> or
<scsl_blas_i8.h> all complex arguments will be prototyped as void *. To define
the symbol SCSL_VOID_ARGS at compile time use the -D compiler option (for
example, -DSCSL_VOID_ARGS) or use an explicit #define SCSL_VOID_ARGS in the
source code. This allows the use of any complex data structure without warnings
from the compiler, provided the structure is the following:

1. The real and imaginary components must be contiguous in memory.

2. Sequential array elements must also be contiguous in memory

While this allows the use of non-standard complex types without generating compiler
warnings, it has the disadvantage that the compiler does not catch type mismatches.

Strong type checking can be enabled employing user-defined complex types instead
of SCSL’s standard complex types. To do this, define
SCSL_USER_COMPLEX_T=my_complex and SCSL_USER_ZOMPLEX_T=my_zomplex,
where my_complex and my_zomplex are the names of user-defined complex types.
These complex types must be defined before including the <scsl_blas.h> or
<scsl_blas_i8.h> header file.

Fortran 90 users on IRIX systems can perform compile-time checking of SCSL BLAS
subroutine and function calls by adding USE SCSL_BLAS (for 4-byte integer
arguments) or USE SCSL_BLAS_I8 (for 8-byte integer arguments) to the source code
from which the BLAS calls are made. Alternatively, the compile-time checking can be
invoked without any source code modifications by using the -auto_use compiler
option, as in the following example:
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% f90 -auto_use SCSL_BLAS test.f -lscs
% f90 -auto_use SCSL_BLAS_I8 -i8 test.f -lscs_i8

Increment Arguments
A vector’s description consists of the name of the array (x or y) followed by the storage
spacing (increment) in the array of vector elements (incx or incy). The increment can
be positive or negative. When a vector x consists of n elements, the corresponding
actual array arguments must be of a length at least 1+(n-1)*|incx|. For a negative
increment, the first element of x is assumed to be x(1+(n-1)*|incx|) for Fortran
arrays, x[(n-1)*|incx|] for C/C++ arrays. The standard specification of _SCAL,
_NRM2, _ASUM, and I_AMAX does not define the behavior for negative increments, so
this functionality is an extension to the standard BLAS.

Note that setting an increment argument to 0 can cause unpredictable results.

Array Storage (BLAS 2 and BLAS 3)
Multidimensional arrays passed as arguments to BLAS routines must be stored in
column-major order, the storage convention used in Fortran programs. C and C++
users must explicitly store multidimensional arrays column-by-column.

One way to do this is to reverse the order of array dimensions with respect to the
Fortran declaration (for example., x(ldx,n) in Fortran versus x[n][ldx] in
C/C++). Because of the prototypes used in <scsl_blas.h>, the array should be cast
as a pointer to the appropriate type when passed as an argument to a BLAS routine
in order to avoid potential compiler type mismatch errors or warning messages.

C and C++ users who want to employ row-major storage for multidimensional arrays
when calling the BLAS routines should see the INTRO_CBLAS(3S)man page for details.

Level 1 BLAS Routines
The Level 1 BLAS routines perform vector-vector linear algebra operations. The
following types of vector-vector operations are available:

• Dot products and various vector norms

• Scaling, copying, swapping, and computing linear combinations of vectors
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• Generating or applying plane or modified plane rotations.

You should use Fortran type declarations for functions. Declaring the data type of the
complex Level 1 BLAS functions is important because, based on the first letter of the
name of the routine and the Fortran data typing rules, the default implied data type
would be REAL.

Fortran type declarations for function names are as follows:

Type Function Name

REAL SASUM, SCASUM, SCNRM2, SDOT, SNRM2, SSUM

COMPLEX CDOTC, CDOTU, CSUM

DOUBLE PRECISION DASUM, DZASUM, DDOT, DNRM2, DZNRM2, DSUM

DOUBLE COMPLEX ZDOTC, ZDOTU, ZSUM

INTEGER ISAMAX, IDAMAX, ICAMAX, IZAMAX, ISAMIN, IDAMIN,
ISMAX, IDMAX, ISMIN, IDMIN

The following routines are available in the SCSL BLAS 1:

• SASUM, DASUM: Sums the absolute values of the elements of a real vector (also
called the l norm).

• SCASUM, DZASUM: Sums the absolute values of the real and imaginary parts of the
elements of a complex vector.

• SAXPBY*, DAXPBY*, CAXPBY*, ZAXPBY*: Adds a scalar multiple of a real or
complex vector to a scalar multiple of another vector.

• SAXPY, DAXPY, CAXPY, ZAXPY: Adds a scalar multiple of a real or complex vector
to another vector.

• SCOPY, DCOPY, CCOPY, ZCOPY: Copies a real or complex vector into another vector.

• CDOTC, ZDOTC: Computes a dot product of the conjugate of a complex vector and
another complex vector.

• SHAD*, DHAD*, CHAD*, ZHAD*: Computes the Hadamard product of two vectors.

• SNRM2, DNRM2: Computes the Euclidean norm (also called l2 norm) of a real vector.

• SCNRM2, DZNRM2: Computes the Euclidean norm (12 norm) of a complex vector. 2

• CSROT*, ZDROT*, CROT*, ZROT*: Applies a real plane rotation to a pair of
complex vectors.

007–4325–001 9



2: Basic Linear Algebra Subprogram (BLAS) Routines

• SROT, DROT: Applies an orthogonal plane rotation.

• SROTG, DROTG, CROTG*, ZROTG*: Constructs a Givens plane rotation.

• SROTM, DROTM: Applies a modified Givens plane rotation.

• SROTMG,DROTMG: Constructs a modified Givens plane rotation.

• SSCAL, DSCAL, CSCAL, ZSCAL, CSSCAL, ZDSCAL: Scales a real or complex vector.

• SSUM*, DSUM*, CSUM*, ZSUM*: Sums the elements of a real or complex vector.

• SSWAP, DSWAP, CSWAP, ZSWAP: Swaps two real or two complex vectors.

• ISAMAX, IDAMAX, ICAMAX, IZAMAX: Searches a vector for the first occurrence of
the maximum absolute value.

• ISAMIN*, IDAMIN*: Searches a vector for the first occurrence of the minimum
absolute value.

• ISMAX*, IDMAX*: Searches a vector for the first occurrence of the maximum value.

• ISMIN*, IDMIN*: Searches a vector for the first occurrence of the minimum value.

Level 2 BLAS Routines
The Level 2 BLAS routines perform matrix-vector linear algebra operations. The
following routines are available:

• CHBMV, ZHBMV: Multiplies a complex vector by a complex Hermitian band matrix.

• CHEMV, ZHEMV: Multiplies a complex vector by a complex Hermitian matrix.

• CHER, ZHER: Performs Hermitian rank 1 update of a complex Hermitian matrix.

• CHER2, ZHER2: Performs Hermitian rank 2 update of a complex Hermitian matrix.

• CHPMV, ZHPMV: Multiplies a complex vector by a packed complex Hermitian
matrix.

• CHPR, ZHPR: Performs Hermitian rank 1 update of a packed complex Hermitian
matrix.

• CHPR2, ZHPR2: Performs Hermitian rank 2 update of a packed complex Hermitian
matrix.
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• SGBMV, DGBMV, CGBMV, ZGBMV: Multiplies a real or complex vector by a real or
complex general band matrix.

• SGEMV, DGEMV, CGEMV, ZGEMV: Multiplies a real or complex vector by a real or
complex general matrix.

• SGER, DGER: Performs rank 1 update of a real general matrix.

• CGERC, ZGERC: Performs conjugated rank 1 update of a complex general matrix.

• CGERU, ZGERU: Performs unconjugated rank 1 update of a complex general matrix.

• SGESUM*, DGESUM*, CGESUM*, ZGESUM*: Adds a scalar multiple of a real or
complex matrix to a scalar multiple of another real or complex matrix.

• SSBMV, DSBMV: Multiplies a real vector by a real symmetric band matrix.

• SSPMV, DSPMV, CSPMV*, ZSPMV*: Multiplies a real or complex vector by a real or
complex symmetric packed matrix.

• SSPR, DSPR, CSPR*, ZSPR*: Performs symmetric rank 1 update of a real or
complex symmetric packed matrix.

• SSPR2, DSPR2: Performs symmetric rank 2 update of a real symmetric packed
matrix.

• SSYMV, DSYMV, CSYMV*, ZSYMV*: Multiplies a real or complex vector by a real or
complex symmetric matrix.

• SSYR, DSYR, CSYR*, ZSYR*: Performs symmetric rank 1 update of a real or
complex symmetric matrix.

• SSYR2, DSYR2: Performs symmetric rank 2 update of a real symmetric matrix.

• STBMV, DTBMV, CTBMV, ZTBMV: Multiplies a real or complex vector by a real or
complex triangular band matrix.

• STBSV, DTBSV, CTBSV, ZTBSV: Solves a real or complex triangular band system of
equations.

• STPMV, DTPMV, CTPMV, ZTPMV: Multiplies a real or complex vector by a real or
complex triangular packed matrix.

• STPSV, DTPSV, CTPSV, ZTPSV: Solves a real or complex triangular packed system
of equations.
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• STRMV, DTRMV, CTRMV, ZTRMV: Multiplies a real or complex vector by a real or
complex triangular matrix.

• STRSV, DTRSV, CTRSV, ZTRSV: Solves a real or complex triangular system of
equations.

Level 3 BLAS Routines
The Level 3 BLAS routines perform matrix-matrix linear algebra operations. The
following routines are available:

• SGEMM, DGEMM, CGEMM, ZGEMM: Multiplies a real or complex general matrix by a
real or complex general matrix.

• CGEMM3M*, ZGEMM3M*: Multiplies a complex general matrix by a complex general
matrix, using 3 real matrix multiplications and 5 matrix additions.

• DGEMMS*: Multiplies a double precision general matrix by a double precision
general matrix, using a variation of Strassen’s algorithm.

• SSYMM, DSYMM, CSYMM, ZSYMM: Multiplies a real or complex general matrix by a
real or complex symmetric matrix.

• CHEMM, ZHEMM: Multiplies a complex general matrix by a Hermitian matrix.

• SSYR2K, DSYR2K, CSYR2K, ZSYR2K: Performs symmetric rank 2k update of a real
or complex symmetric matrix.

• CHER2K, ZHER2K: Performs Hermitian rank 2k update of a complex Hermitian
matrix.

• SSYRK, DSYRK, CSYRK, ZSYRK: Performs symmetric rank k update of a real or
complex symmetric matrix.

• CHERK, ZHERK: Performs Hermitian rank k update of a complex Hermitian matrix.

• STRMM, DTRMM, CTRMM, ZTRMM: Multiplies a real or complex general matrix by a
real or complex triangular matrix.
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Chapter 3

LAPACK

LAPACK is a public domain library of subroutines for solving dense linear algebra
problems, including systems of linear equations, linear least squares problems,
eigenvalue problems, and singular value decomposition problems. It has been
designed for efficiency on high-performance computers.

LAPACK is the successor to LINPACK and EISPACK. It uses today’s
high-performance computers more efficiently than the older packages and it extends
the functionality of these packages by including equilibration, iterative refinement,
error bounds, and driver routines for linear systems. It also includes routines for
computing and reordering the Schur factorization, and condition estimation routines
for eigenvalue problems.

Performance issues are addressed by implementing the most
computationally-intensive algorithms using the Level 2 and 3 Basic Linear Algebra
Subprograms (BLAS). Because most of the BLAS were optimized in single and
multiple-processor environments, these algorithms give near optimal performance.

LAPACK and SCSL
All routines from LAPACK 3.0 are included in SCSL. This includes driver routines,
computational routines, and auxiliary routines for solving linear systems, least
squares problems, and eigenvalue and singular value problems. See the
INTRO_LAPACK(3S) man page for details about the routines that are available in the
current release of SCSL.

Online man pages are available for individual LAPACK subroutines. For example, to
view a description of the calling sequence for the subroutine to perform the LU
factorization of a real matrix, see the DGETRF(3S) man page. The user interface to all
supported LAPACK routines is the same as the standard LAPACK interface.

Several enhancements improve the performance of the LAPACK routines on SGI
systems. For example, the LU, Cholesky, and QR factorization routines are redesigned
for better performance and scalability when running multiple processes.

Tuning parameters for the block algorithms provided in SCSL are set within the
ILAENV LAPACK routine. ILAENV is an integer function subprogram that accepts
information about the problem type and problem dimensions and returns a single
integer parameter such as the optimal block size, the minimum block size for which a
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block algorithm should be used, or the crossover point (the problem size at which it
becomes more efficient to switch to an unblocked algorithm). Setting tuning
parameters occurs without user intervention, but users can call ILAENV directly to
check the values to be used.

Naming Scheme for Individual Routines
The name of each LAPACK routine is a coded specification of its function. All driver
and computational routines have five or six character names of the form XYYZZ or
XYYZZZ. The first letter, X, indicates the data type:

• S: real

• D: double precision

• C: complex

• Z: double complex

The next two letters, YY, indicate the type of matrix or the most signficant matrix type.
Most of these two letter codes apply to both real and complex matrices, but some
apply specifically to only one or the other. The following list shows all matrix types:

BD BiDiagonal

DI Diagonal

GB General Band

GE GEneral (nonsymmetric)

GG General matrices, Generalized problem

GT General Tridiagonal

HB Hermitian Band (complex only)

HE HErmitian (possibly indefinite) (complex only)

HG Hessenberg matrix, Generalized problem

HP Hermitian Packed (possibly indefinite) (complex only)

HS upper HeSsenberg

OP Orthogonal Packed (real only)

OR ORthogonal (real only)

PB Positive definite Band (symmetric or Hermitian)

PO POsitive definite (symmetric or Hermitian)

PP Positive definite Packed (symmetric or Hermitian)

PT Positive definite Tridiagonal (symmetric or Hermitian)

SB Symmetric Band (real only)

SP Symmetric Packed (possibly indefinite)
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ST Symmetric Tridiagonal

SY SYmmetric (possibly indefinite)

TB Triangular Band

TG Triangular matrices, Generalized problem

TP Triangular Packed

TR TRiangular

TZ TrapeZoidal

UN UNitary (complex only)

UP Unitary Packed (complex only)

The last letters, ZZ or ZZZ, indicate the computation performed. For example, TRF is
a Triangular Factorization.

See the INTRO_LAPACK(3s) man page for details about the types of computations
performed and a list of supported routines.

Types of Problems Solved by LAPACK
LAPACK routines can solve systems of linear equations, linear least squares
problems, eigenvalue problems, and singular value problems. LAPACK routines can
also handle many associated computations such as matrix factorizations and
estimating condition numbers. Dense and banded matrices are provided for, but not
general sparse matrices.

This subsection discusses the LAPACK routines for solving the following two basic
problems:

• Computing the unique solution to a linear system
�������

, where the coefficient
matrix A is dense, banded, triangular, or tridiagonal, and the matrix B may
contain one or more right-hand sides.

• Computing a least squares solution to an overdetermined system
�������

, where
A is ��	�
 with �
��
 , or a minimum norm solution to an underdetermined
system

�������
, where A is ��	�
 with ����
 .

See "Solving Linear Systems" on page 16, and "Solving Least Squares Problems" on
page 34, for a discussion of the software used to solve these problems. The
orthogonal transformation routines described in "Solving Least Squares Problems" on
page 34, also have application in eigenvalue and singular value computations.
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There are three classes of LAPACK routines: LAPACK driver routines solve a complete
problem; LAPACK computational routines perform one step of the computation; and
LAPACK auxiliary routines perform certain subtask or low-lvel computation.

The driver routines generally call the computational routines to do their work, and
offer a more convenient interface; therefore, LAPACK users are advised to use a
driver routine if there is one that meets their requirements.

Man pages for both driver and computational routines are available with SCSL. A list
of the auxiliary routines, with a brief description, can be found in the LAPACK User’s
Guide.

Solving Linear Systems
Finding the solution of a system of simulataneous linear equations is one of the most
frequently encountered problems in scientific computing.

A linear system of equations (n equations with n unknowns) can be written as follows:������������������� �!���#"$"$"%�&����'���'�(*)+�� �,� � � ��� ��� � � �*"$"$"%��� �-' � ' (*) �"$"$"$"."$" "$"."� '�� � � ��� '/� � � �*"$"$"%��� '0' � ' (*) '
Equation 3-1

This system can also be written in the form 1 � (�) where A is a square matrix of
order n, b is a given column vector of n components and x is an unknown column
vector of n components.

For example, the following linear equations:2 �3�&45(768 �9��4�(;:
Equation 3-2

can be written in matrix/vector notation as the following:< 2 :8 : :>= < � 4 = ( < 6 : =
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Equation 3-3

The solution to this system of equations is the set of vectors ? @BADCFE$G that satisfy both
equations. The physical interpretation of this system of equations is that it represents
two lines in the (x,y) plane, which may intersect in one point, no points (if they are
parallel), or an infinite number of points (if the two equations are multiples of each
other).

To solve the system, it is helpful to simply the system as much as possible. A
standard method for doing this (Gaussian elimination) is to use the following
elementary operations:

• interchange any two equations

• multiply an equation by a nonzero constant

• add a multiple of one equation to any other one

This reduces the system to a triangular form. The system obtained after each operation
will be equivalent to the original system and therefore have the same solution.

For illustration consider the following system of linear equations:@3H�CIH J5KML@3H�N0CIH�O/J5KQPSR@3H�T0CIH�U0J5KMN
Equation 3-4

Subtract the first equation from the second equation and subtract the first equation
from the third one. The result is the following system:@3H�CIH J3K*LCIH�T0J3KVP�RNWCIH�X0J3K*N

Equation 3-5

Note the first variable x no longer appears in the second or third equation. Similarly,
the second variable y can be eliminated from the third equation by subtracting 2
times the second equation from the third equation to obtain the following:
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Y5Z&[IZ�\3]*^[IZ&_W\3]V`�ab \3]#c
Equation 3-6

The resulting system is upper triangular and it can easily be deduced that:b \d]*c3ef\3] b[IZ�_W\d]V`�aIef[#]Vg-`�ah`i_kj bml ]V`onY5Z&[IZ�\d]p^defYq]Mnr` b ]*s
Equation 3-7

To represent these steps in matrix form, let A=A1, A2, and A3 represent the matrices
of the systems (Equation 3-4, Equation 3-5, Equation 3-6, respectively), for example:

t b ]Vuv awa a^ ax_^ b y{z|
Equation 3-8

Then A2 is obtained from A1 by subtracting the first row from the second row and
subtracting the first row from the third row. This means that A2 can be obtained by
pre-multiplying A1 by a suitable matrix, and in this example, it is easy to verify thatt b ]�}~arj t a

Equation 3-9

that is:

uv afawa^ a�_^ bwy z| ] uv a�^ a`�a a�^`�a ^ a z| uv awa aa b ca�_ � z|
Equation 3-10

In a similar way
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�o�������k�����
Equation 3-11

or �
���f�w�� � ��f� �B�� �

�
��� �w�� � �� � � � ��

�
���w� �� � �� � �{��

Equation 3-12

Combining Equation 3-9 and Equation 3-11 we have�o�����q�k��� � ���
Equation 3-13

Therefore, to solve the system Ax=b, we only need to calculate the following:� ���q�k��� � ���
Equation 3-14

and solve the upper triangular system���k��� ���q�k��� � ���q��� ���q�k��� � ���h� �
Equation 3-15

Moreover, M1 and M2 are nonsingular matrices so:����� ����� ���q� �B� �����
Equation 3-16

Because M1 and M2 are unit lower triangular, so is the product of their inverses.
Therefore, A can be written as the product of a lower triangular matrix
L=M1-1 � M2-1 and an upper triangular matrix U=A3. Equation 3-16 becomes A=LU,
which is the factorization of the coefficient matrix A.
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The LAPACK routines for solving linear systems assume the system is already in a
matrix form. The data type (real or complex), characteristics of the coefficient matrix
(general or symmetric, and positive definite or indefinite if symmetric), and the
storage format of the matrix (dense, band, or packed), determine the routines that
should be used.

Factoring a Matrix

Most of the techniques in LAPACK are based on a matrix factorization as the first
step. There are two main types of factorization forms:

• explicit: The actual factors are returned. For example, the Cholesky factorization
routine DPOTRF(3S), with UPLO = ‘L’, returns a matrix L such that ��������� .

• factored form: The factorization is returned as a product of permutation matrices
and triangular matrices that are low-rank modifications of the identity. For
example, the diagonal pivoting factorization routine DSYTRF(3S), with UPLO = ‘L’,
computes a factorization of the following form:

���q �¡£¢¤�¥¢¤¡%¦§��¦§¨ ¨ ¨©¡�ª��£ª¬«�­� ®¡¯¢D�°¢±¡£¦¤��¦§¨ ¨ ¨©¡Bª!�£ª¬« �
Equation 3-17

where each ¡B² is a rank-1 permutation, each ��² is a rank-1 or rank-2 modification
of the identity, and D is a diagonal matrix with 1-by-1 and 2-by–2 diagonal blocks.

Generally, users do not have to know the details of how the factorization is stored,
because other LAPACK routines manipulate the factored form.

Regardless of the form of the factorization, it reduces the solution phase to one that
requires only permutations and the solution of triangular systems. For example, the
LU factorization of a general matrix, ���9¡��¥³ , is used to solve for X in the system of
equations ��´��9µ by successively applying the inverses of P, L, and U to the
right-hand side:

1. ´�¶#¡�µ
2. ´�¶#�h· ¢ ´
3. ´�¶M³�· ¢ ´

In the last two steps, the inverse of the triangular factors is not computed, but
triangular systems of the form ��¸¹��º and ³�´���¸ are solved instead.
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The following table lists the factorization forms for each of the factorization routines
for real matrices. The factorization forms differ for DGETRF and DGBTRF, even though
both compute an LU factorization with partial pivoting. You can also obtain the same
factorizations through the LAPACK driver routines (for instance, DGESV or DGESVX).

Table 3-1 Factorization forms

Name Form Equation Notes

DGBTRF Factored form A = LU

DGTTRF Factored form A = LU

L is a product of permutations
and unit lower triangular
matrices Li; Li differs from the
identity matrix only in column i.

DGETRF Explicit A = PLU

DPBTRF Explicit A = LLT or A = UTU

DPOTRF Explicit A = LLT or A = UTU

DPPTRF Explicit A = LLT or A = UTU

DPTTRF Explicit A = LDLT or A = UTDU

DSPTRF Factored form A = LDLT or A = UDUT

DSYTRF Factored form A = LDLT or A = UDUT

L (or U) is a product of
permutations and block unit
lower (upper) triangular matrices
Li (Ui); Li (Ui) differs from the
identity matrix only in the one or
two columns that correspond to
the 1-by-1 or 2-by-2 diagonal
block Di.

Example 3-1 LU factorization

The DGETRF subroutine performs an LU factorization with partial pivoting
(»�¼�½�¾¥¿ ) as the first step in solving a general system of linear equations »�À�¼�Á .
If DGETRF is called with the following:

»�¼ÃÂÄÆÅ¬Ç�È�Ç�É�ÇÊ Ç�Ë�Ç�Ì�ÇÍ Ç*ÎWÇ�Ï�Ç
ÐÑ
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Equation 3-18

details of the factorization are returned, as follows:

Ò�ÓVÔÕÕÖ!×�ØÙ Ø ÚÙ Ø ÛWÜ0Ú
Ý Ø×�ØÞÚÙ ØÞÚ+ßWß Ý

à Øá Ý Ø ÙÚ�Ø â0ãmß
ä©ååæçWè�çêé Ó¹ë Û/ì�Û�ì�Û§í Equation 3-19

Matrices L and U are given explicitly in the lower and upper triangles, respectively, of
A:

î Ó ÔÕÕÖ Ý ØÙ Ø ÚÙ Ø Û0ÜWÚ
Ý ØÙ ØÞÚmßWß ÝïÝ Ø

ä ååæ ì¥ð Ó ÔÕÕÖ ×�Ø Ý Ø×�ØÞÚ
à Øá Ý Ø ÙÚ/Ø ßÆâ0ãmß

ä ååæ
Equation 3-20

The IPIV vector specifies the row interchanges that were performed. IPIV(1)= 3
implies that the first and third rows were interchanged when factoring the first
column; IPIV(2)= 3 implies that the second and third rows were interchanged when
factoring the second column. In this case, IPIV(3) must be 3 because there are only
three rows. Thus, the permutation matrix is the following:

è Ó ÔÖ Ý ÙwÙÙwÙ ÝÙ Ý Ù äæ ÔÖ ÙwÙ ÝÙ Ý ÙÝ Ù Ù äæ Ó ÔÖ Ù Ý ÙÙwÙ ÝÝ ÙfÙ äæ
Equation 3-21

Generally, the pivot information is used directly from IPIV without constructing
matrix P.

Example 3-2 Symmetric indefinite matrix factorization

DSYTRF factors a symmetric indefinite matrix A into one of the forms
Ò�Ó î�ñ î�ò

orÒ�Ó ð ñ ð ò , where L and U are lower triangular and upper triangular matrices,
respectively, in factored form, and D is a diagonal matrix with 1-by-1 and 2-by-2
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diagonal blocks. To illustrate this factorization, choose a symmetric matrix that
requires both 1-by-1 and 2-by-2 pivots:

ó�ô;õö÷ ø�ùú ù û�ùüþý¤ÿ ù ý�� ù � ù� ù ü�� ù ý�� ù � ù
�	�


Equation 3-22

Only the lower triangle of A is specified because the matrix is symmetric, but you
could have specified the upper triangle instead. The output from DSYTRF is the
following:

ó�ô õööööö÷ ø�ùü�ý ÿ ùü�� ù ø � � øü�� ù û ú ý0ý
� ùü�� ù � ��ý��ü�� ù ÿ û � ú ��ý ù

� û� ù � ú ø0û ý � ù ��ý
� �����
�
����� ô�� ü ��� ü ������� ���

Equation 3-23

The signs of the indices in the IPIV vector indicate that a 2-by-2 pivot block was
used for the first two columns, and 1-by-1 pivots were used for the third and fourth
columns. Therefore, D must be the following:

� ô;õö÷ ø�ùü�ý ÿ ù � ù ��ý ù � û ý � ù ��ý
�	�


Equation 3-24

Matrix L is supplied in factored form as � ô ��� � ����� � � , where the parts of each ���
that differ from the identity are stored in A below their corresponding blocks

� � :
� � ôÃõö÷ ý �!� ��!� ý"�� ý � ��!�!� ý

�	�
 � � � ô õööö÷ ý ù� ùü#� ùÞø � � øü#� ùÞû ú ý0ý
ý ùü�� ù � ��ý��ü�� ù ÿ û � ú ý� ù � ý ù �

�	���

007–4325–001 23



3: LAPACK

Equation 3-25

$&%('*),+.-�%('0/12435 35!5 376 55!5 5 6 8:97;=< 3
>	?@

Equation 3-26

Error Codes

The LAPACK routines always check the arguments on entry for incorrect values. If an
illegal argument value is detected, the error-handling subroutine XERBLA is called.
XERBLA prints a message similar to the following to standard error, and then it aborts:

** On entry to DGETRF parameter number 4 had an illegal value

All other errors in the LAPACK routines are described by error codes returned in info,
the last argument. The values returned in info are routine-specific, except for info = 0,
which always means that the requested operation completed successfully.

For example, an error code of info > 0 from DGETRF means that one of the diagonal
elements of the factor U from the factorization A 'B$�-DC is exactly 0. This indicates
that one of the rows of A is a linear combination of the other rows, and the linear
system does not have a unique solution.

Example 3-3 Error conditions

If DGETRF is given the matrix

A ' /2 376E8F6G<�6H 6G9I6GJ�6K 6GLI6G;�6
>@

Equation 3-27

it returns
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MBNPOQQR SITUITVS7SWSWSUITVX7XWX=Y
XITZ TUIT [
\] U
^	__`aWb�a�c N�d S
efSIefS�g

Equation 3-28

which corresponds to the factorization

b N OR U h UU!U hh U!U ^` e�i N OR hWTVUUITVSWS7SWS h7T UUITVXWX7XWY U�T [ hWT ^` e�j N OR SITGX�TG\ITZ T ] TUIT ^`
Equation 3-29

On exit from DGETRF, info = 3, indicating that U(3,3) is exactly 0. This is not an error
condition for the factorization because the factors that were computed satisfyMkN b ilj

, but the factorization cannot be used to solve the system.

Solving from the Factored Form
In LAPACK, the solution step is generally separated from the factorization. This
allows the matrix factorization to be reused if the same coefficient matrix appears in
several systems of equations with different right-hand sides. If the number of
right-hand sides is also large, it is often more efficient to separate the solve from the
factorization. The typical usage is found in the driver routine DGESV, which solves a
general system of equations

MnmoN*p
by using two subroutine calls, the first to factor

the matrix A and the second to solve the system, using the factored form:

CALL DGETRF( N, N, A, LDA, IPIV, INFO )

IF( INFO.EQ.0 ) THEN

CALL DGETRS( ’No transpose’, N, NRHS, A, LDA,

$ IPIV, B, LDB, INFO )

END IF

As shown, you should always check the return code from the factorization to see
whether it completed successfully and did not produce any singular factors. To
obtain further information about proceeding with the solve, estimate the condition
number (see "Condition Estimation" on page 26, for details).
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Because most of the LAPACK driver routines do their work in the LAPACK
computational routines, a call to a driver routine gives the same performance as
separate calls to the computational routines. The exceptions are the simple driver
routines used for solving tridiagonal systems: SGTSV, SPTSV, CGTSV, and CPTSV.
These routines compute the solution while performing the factorization for certain
numbers of right-hand sides. Because the amount of work in each loop is small, some
reloading of constants and loop overhead is saved by combining the factorization
with part of the solve.

Condition Estimation

A return code of info = 0 from a factorization routine indicates that the triangular
factors have nonzero diagonals. The linear system still may be too ill-conditioned to
give a meaningful solution.

One indicator that you can examine before computing the solution is the reciprocal
condition number, RCOND. The condition number, defined as qsrutwv�xzy{t|y(}} t�~4�
}} , tells
how much the relative errors in A and b are magnified in the solution x. DGECON and
the other condition estimation routines compute �:�
�7�7��x����Wqsr�t�v by using the exact
1-norm or infinity-norm of A and an estimate for the norm of A–1, because computing
the inverse explicitly would be very expensive, and the inverse may not even exist.
By convention, if A–1 does not exist, qsrut�v�xB� and RCOND should be computed as 0
or a small number on the order of � , the machine epsilon.

If the condition number is large (that is, if RCOND is small), small errors in A and b
may lead to large errors in the solution x. The rule of thumb is that the solution loses
one digit of accuracy for every power of 10 in the condition number, assuming that
the elements of A all have about the same magnitude. For example, a condition
number of 100 (RCOND = 0.01) implies that the last 2 digits are inaccurate; a condition
number of ���W� (RCOND < � , the machine epsilon which is approximately �7���(������~4�u� on
Altix systems) implies that all of the digits have been lost. This value for the machine
epsilon assumes a model of rounded floating-point arithmetic with base ��xB� and� xB�7� mantissa digits, and ��x��&���f~F��  .
The expert driver routine DGESVX uses this rule of thumb to decide whether the
solution and error bounds should be computed. If RCOND is less than the machine
epsilon, DGESVX returns info = N+1, indicating that the matrix A is singular to
working precision, and it does not compute the solution.

Example 3-4 Roundoff errors

The matrix
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¡B¢0£¤¦¥7§G¨I§G©�§ª §G«I§G¬�§­ §G®I§G¯�§
°±

Equation 3-30

is singular in exact arithmetic, but on Altix systems, DGETRF returns

¡k¢ £²¤ ­ §³ §�¥ ª ¨W¯³ §V« ­ ¥ ª ®I§³ §V®W« ­ ¥³ §V« ¯I§¥W§ ­ ¥ ª´ ¥7§ «7®W¬
§�µ¶¥ ³�·4¸º¹
°	»±

Equation 3-31

where IPIV=[3,3,3] and info = 0. In exact arithmetic, A(3,3) would have been 0, but
roundoff error has made this entry ´ ¥7§V«W®W¬�µ¶¥ ³ ·¼¸½¹ instead. The reciprocal condition
number computed by DGECON is ¨�§ ¨ ³ µ¾¥ ³ ·4¸�¿ , which is less than the machine epsilon
of ¥7§À¥7¥�µÁ¥ ³ ·4¸.¹ . Therefore, DGESVX returns info= 4 and does not try to solve any
systems with this A.

Use in Error Bounds

You can use the condition number to compute a simple bound on the relative error in
the computed solution to a system of equations

¡wÂÃ¢BÄ
(see Introduction to Matrix

Computations, by Stewart). If x is the exact solution and ÅÂ is the computed solution,
let r be the residual Æ ¢kÄ ´ ¡wÂÃ¢k¡ÈÇÉÂ ´ ÅÂ,Ê . If A is nonsingular:Â ´ ÅÂÃ¢Ë¡ ·4¸ Æ

Equation 3-32

and Ì Â ´ ÅÂ ÌsÍ�ÎÎ ¡ ·4¸ ÎÎ Ì Æ Ì
Equation 3-33

From Equation 3-33 we can already see that if
Ì ¡ Ì

is large, then the error in ÅÂ may be
significantly greater than the residual r.

Since
¡wÂÃ¢BÄ

, it follows that
Ì Â Ì�ÏzÌ Ä Ì¦Ð#Ì ¡ Ì

, therefore
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Ñ�Ò|Ó�ÔÒ4ÑÑ�Ò¼Ñ Õ Ñ{Ö|Ñ×ÑfÖËÓÙØ7Ñ Ñ{Ú
ÑÑ�Û=Ñ
Equation 3-34

Define the condition number ÜwÝ Ö�Þ�ßzÑ�ÖàÑáÑ{ÖâÓkØ7Ñ . This gives the boundÑ�Ò|Ó�ÔÒ¼ÑÑ�Ò4Ñ Õ ÜsÝ ÖwÞ Ñ�Ú
ÑÑ�Û=Ñ
Equation 3-35

For a description of a more precise error bound based on a component-wise error
analysis, see "Error Bounds" on page 32.

Another application of the condition number is to consider the computed solutionÔÒÃß*Ò�ãåäÃÒ
to be the exact solution of a slightly perturbed linear system:

Ý Öåãâä|ÖwÞ Ý Ò�ãæäÃÒIÞ�ß Ý Û�ãâäÃÛfÞ
Equation 3-36

where ç A is small in norm with respect to A, and ç b is small in norm with respect to
b. For Gaussian elimination with partial pivoting, it has been shown thatÑ{ä|Ö|Ñ Õæè Ñ{ÖàÑ and

Ñ�äÃÛ�Ñ Õæè Ñ�Û=Ñ , where é is the product of ê and a slowly growing
function of n (see The Algebraic Eigenvalue Problem, by Wilkinson). Proving that an
algorithm has this property is the stuff of backward error analysis, and it ensures that,
if the problem is well-conditioned, the computed solution is near the exact solution of
the original problem. Because

Ö�ÒëßBÛ
(Equation 3-34) simplifies toÖ�äÃÒÃß*äÃÛ�Óìä|Ö Ý Ò�ãåäÃÒ,Þ

Equation 3-37

Assuming A is nonsingular,äÃÒÃßËÖ�í4î Ý äÃÛïÓÈä|Ö Ý Ò�ãæäÃÒIÞfÞ
Equation 3-38

Taking norms and dividing by
Ñ
x
Ñ
,
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ð{ñÃò¼ðð�ò¼ðôóöõõ{÷�ø4ù õõ�ú ð�ñ|û=ðð�ò4ðöü ð{ñ ÷ ð ü ð{ñ ÷ ðáð�ñÃòýðð{ò¼ð þ
Equation 3-39

Using the inequality
ð{û=ð ó ð ÷ ðáð�ò¼ð ,ð�ñÃò¼ðð�ò¼ðôó ð ÷ ð õõ ÷ ø¼ù õõ ú ð�ñÃû=ðð�û=ðEü ð�ñ ÷ ðð ÷ ðGü ð�ñ ÷ ð�ð�ñÃòýðð ÷ ð�ð�ò¼ð þ

Equation 3-40

and substituting ÿ�� ÷ ����ð ÷ ð õõ{÷ ø4ù õõ ,ð�ñÃò ðð�ò4ð ó ÿ�� ÷ � ����
	�����
��� ü �
	�
����
����� ÿ�� ÷ � �
	�
����
�� ��
Equation 3-41

provided ÿ�� ÷ � ð�ñ ÷ ð��#ð ÷ ð�� � . In terms of the relative backward error � ,ð�ñÃò ðð�ò4ð ó � ��ÿ�� ÷ ���� ��ÿ�� ÷ �
Equation 3-42

In "Error Bounds" on page 32, the backward error is defined slightly differently to
obtain a component-wise error bound.

Equilibration

The condition number defined in the last section is sensitive to the scaling of A. For
example, the matrix

÷ ��� �! " ��# %$&� " ù�')(
Equation 3-43

has as its inverse
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*,+�-/.1032!45 6 2�782 5%+�-:92!4;782 5 +�-
9;<
Equation 3-44

and so RCOND= 2>=�?A@ * @�BB * +�- BBDC . 2!4%7E2 5 +�-
9 . If this value of RCOND is less than the
machine epsilon on a system, DGESVX (with FACT = ‘N’) does not try to solve a
system with this matrix. However, A has elements that vary widely in magnitude, so
the bounds on the relative error in the solution may be pessimistic. For example, if
the right-hand side in

*GFH.JI
is the following:IK.ML N 4 52#4 5 782 5 -
9#O

Equation 3-45

DGETRF followed by DGETRS produces the exact answer,
FH.QP 2!4SRT2!4 USV .

You can improve the condition of this example by a simple row scaling. Scaling a
problem before computing its solution is known as equilibration, and it is an option to
some of the expert driver routines (those for general or positive definite matrices).
Enabling equilibration does not necessarily mean it will be done; the driver routine
will choose to do row scaling, column scaling, both row and column scaling, or no
scaling, depending on the input data. The usage of this option is as follows:

CALL DGESVX(’E’, ’N’, N, NRHS, A, LDA, AF,

$ LDAF, IPIV, EQUED, R, C, B, LDB, X, LDX,

$ RCOND, FERR, BERR, WORK, IWORK, INFO)

The ’E’ in the first argument enables equilibration. For this example, EQUED = ’R’
on return, indicating that only row scaling was done, and the vector R contains the
scaling constants: W . L 2!4 52!4 5 7X2 5 +�-
9#O

Equation 3-46

The form of the equilibrated problem is:Y�Z\[^]#_`Y W�a * Z%[^]#_KY:b a�adc Z%[e]#_KY�b a +�-gfih . Z%[e]#_KY WGa�j
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Equation 3-47

or k�l�mnlporqKl , where k`l is returned in A:ktsvugw#x ygxy;x�w!xzy,{8wTy%|�}�~)� ugw#x x�wy;x�w!xzyn{8wTy%|�}
~;� o�u;w!x�w#xygx�w#x^�
Equation 3-48

and q l is returned in B:qQs u w#x ygxy;x�w!xzy,{8wTy |�}
~;� u � xw#xzy�{Xw�y }
~;� o u � xw!x �
Equation 3-49

The factored form, AF, returns the same matrix as A in this example, because A is
upper triangular, and RCOND = 0.3, which is the estimated reciprocal condition
number for the equilibrated matrix. The only output quantity that pertains to the
original problem before equilibration is the solution matrix X. In this example, X is
also the solution to the equilibrated problem because no column scaling was done,
but if EQUED had returned ’C’ or ’B’ and the solution to the equilibrated system
were desired, it could be computed from m l o��#���#�K�:��� |�} m .

Iterative Refinement

Iterative refinement in LAPACK uses all same-precision arithmetic, a recent
innovation, because it was long believed that a successful algorithm would require
the residual to be computed in double precision. The following example illustrates
the results of iterative refinement; "Error Bounds" on page 32, discusses the error
bounds computed in the course of the algorithm.

One possible use of iterative refinement is to smooth out numerical differences
between floating-point number representations. For example, a result computed on a
system, which has about 13 digits of accuracy, may be improved on IEEE system,
which has about 15 digits of accuracy, through the 0(n2) process of iterative
refinement, instead of the 0(n3) process of recomputing the solution.

Example 3-5 Hilbert matrix

The classic example of an ill-conditioned matrix is the Hilbert matrix, defined byk���� ��o wT� �:�g���`� w � . For example, the 5-by-5 Hilbert matrix is
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�������������
� �� �� �� ���� �� �� �� ���� �� �� �� � �� �� �� �  �¡�� �� �  �¡ �¢

£S¤¤¤¤¤¤¤¤¤¤¤¥
Equation 3-50

which has a condition number of ¦3§ ¨#¨n© �Tª � . A rule of thumb ("Condition Estimation"
on page 26) suggests almost 8 digits of accuracy in the solution are possible on
systems, because «­¬ � § ¦H© ��ª¯® � � and «�°�±e²�³�´ ª § µn© �Tª%® ¡ . If the matrix is factored
using DGETRF and DGETRS is used to solve ²G¶H¬J· , where ·/¬Q¸ �º¹Aª;¹Aª;¹Aª;¹Aª�»�¼ .

Error Bounds

In addition to performing iterative refinement on each column of the solution matrix,
DGERFS and the other xxxRFS routines also compute error bounds for each column of
the solution. These bounds are returned in the real arrays FERR (forward error) and
BERR (backward error), both of length NRHS. For a computed solution x̂ to the system
of equations ²�¶H¬�· , the forward error bound ƒ is the following:½ ¶¿¾tÀ¶ ½½ ¶ ½ ÁrÂ

Equation 3-51

and the backward error bound Ã bounds the relative errors in each component of A
and b in the perturbed equation 2 from "Use in Error Bounds" on page 27.½TÄ ²`Å�Æ Ç ½ ÁdÈ ½ ²`Å^Æ Ç ½ ¹ ½>Ä ·ÉÅ ½ Á�È ½ ·ÉÅ ½

Equation 3-52

In Example 3-5 on page 31, the first column of the inverse of the Hilbert matrix of
order 5 is computed by solving Ê � ¶H¬�Ë � , and DGERFS computed error bounds ofÂ ´ � § ¦,© �Tª%® ¡ and È ´�Ì;§ � © �Tª%® � � on systems. This provides direct information about
the solution; its relative error is at most 0(10–8); therefore, the largest components of
the solution should exhibit about 8 digits of accuracy, and the system for which this
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solution is an exact solution is within a factor of epsilon Í�Î�ÏÑÐºÒ ÓHÔEÐ>Õ%Ö�×�Ø>Ù from the
system whose solution was attempted, so the solution is as good as the data warrants.

The component-wise relative backward error bound (equation 3) is more restrictive
than the classical backward error bound ÚTÛnÜÝÚ�ÞpßiÚ>ÜnÚ , because it assumes Ú�ÛnÜ�Ú has
the same sparsity structure as ÚDÜÝÚ , because if Ü�àeá â is 0, so must be ÛnÜ�àeá â . The
backward error for the solution x̂ is computed from the equationß&ãåäçæTèà é êgé àë é Ü é�é^ìí éDîïé ð#é ñ à Equation 3-53

where ê ã ð­ò Ü ìí , and the forward error bound is computed from the equationó ã1ôôgõõ Ü,Ö�× õõ ë é êgé>î ëeö î Ð ñ Î ë é Ü é�é í éDî�é ð!é ñ�ñ ôôÚ í Ú
Equation 3-54

where ÷ is the maximum number of nonzeros in any row of A. To avoid computing
A–1 an approximation is used for ôôgõõ Ü�Ö�× õõ�ø ôô , where g is the nonnegative vector in
parentheses (see Arioli, et al., for details).

Inverting a Matrix

Subroutines to compute a matrix inverse are provided in LAPACK, but they are not
used in the driver routines. The inverse routines sometimes use extra workspace and
always require more operations than the solve routines. For example, if there is one
right-hand side in the equation Ü í ã ð , where A is a square general matrix, the solves
following the factorization require 2n2 operations, while inverting the matrix A
requires 4/3n3 operations, plus another 2n2 to multiply b by A–1. The inverse must be
computed only once, however, and the cost can be amortized over the number of
right-hand sides. Because multiplying by the inverse may be more efficient than
doing a triangular solve, the extra cost to compute the inverse may be overcome if the
number of right-hand sides is large.
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Solving Least Squares Problems
In some applications, the best solution to a system of equations ù`úüûJý that does not
have a unique solution is required. If A is overdetermined, that is, A is þüÿ�� withþ � � and rank at least n, the system does not have a solution, but the linear least
squares problem may have to be solved:þ������eþ��	��

�Tý��8ù�ú����

Equation 3-55

If A is underdetermined, that is, A is þ ÿ�� with þ���� , generally many solutions
exist, and you may want to find the solution X with minimum 2-norm. Solving these
problems requires that you first obtain a basis for the range of A, and several
orthogonal factorization routines are provided in LAPACK for this purpose.

An orthogonal factorization decomposes a general þ ÿ�� matrix A into a product of
an orthogonal matrix Q and a triangular or trapezoidal matrix. A real matrix Q is
orthogonal if ����� û�� , and a complex matrix Q is unitary if ������û�� . The key
property of orthogonal matrices for least squares problems is that multiplying a
vector by an orthogonal matrix does not change its 2-norm, because

������� � û! � � � � ���Hû�" � � �Hû#���$� �
Equation 3-56

Orthogonal Factorizations

LAPACK provides four different orthogonal factorizations for each data type. For real
data, they are as follows:

• DGELQF: LQ factorization

• DGEQLF: QL factorization

• DGEQRF: QR factorization

• DGERQF: RQ factorization

Each of these factorizations can be done regardless of whether m or n is larger, but the
QR and QL factorizations are most often used when þ � � , and the LQ and RQ
factorizations are most often used when þ&%'� .
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The QR factorization of an m-by-n matrix A for (�)�* has the form+-,�.0/�1 243
Equation 3-57

where Q is an m-by-m orthogonal matrix, and R is an n-by-n upper triangular matrix.
If m > n, it is convenient to write the factorization as+-,�5�.�6�798$.�6;:<8;=
/>1 2 3

Equation 3-58

or simply +�?@.A6�798 1
Equation 3-59

where
. 6;798

consists of the first n columns of Q, and
. 6;:<8

consists of the remaining
m–n columns. The LAPACK routine SGEQRF computes this factorization. See the
LAPACK User’s Guide for details.

Example 3-6 Orthogonal factorization

The result of calling DGEQRF with the matrix A equal to

+-,CBDE F�G HIG JIG? JKG HIG F�GHIG 2 G ? F�GJIG ? FLG HIG
MONP

Equation 3-60

is a compact representation of Q and R consisting of
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Q-RTSUUUUUV
WYX[Z]\_^L`WbaIZ]cedf\�`aIZ]ghXicIdaIZ]cKd�\�`

dLZ Xi`�aW4jKZ]`�jIdW4aKZ]a�g_k�aLcW4aKZ]j�`IdLd
WbaKZ kLg_XldWbjKZ \Lc_XjKZ cL^�gWbaKZ gLj�jLg

mOnnnnnop Qrq'R#s dLZ jLa�kLcet�dLZ kL`�^Lk_t�dLZ]kId�dfk<u
Equation 3-61

The matrix R appears in the upper triangle of A explicitly:

v R SUV WwXlZ]\�^�`aKZaKZ dLZ Xe`�aWbjKZ `LjIdaKZ WbaKZ kLg_XldWbjKZ \Lc_XjKZ cL^�g
mOno

Equation 3-62

while the matrix Q is stored in a factored form x R xby_x�z{x}| where each x�~ is an
elementary Householder transformation of the following form: x�~ R�� W@� ~��L~	�e�~ . Each
vector � ~ has � ~ s a��b��W'd�u R aKt � ~ s ��u R dLt and � s �l��d����Ku is stored below the diagonal
in the �;��� column of A. Therefore,

x | R-� W�d�Z]jLa�k�c SUUUV
d�ZWbaIZ]cIdf\�`aIZ]g_XecIdaIZ]cIdf\�`

mOnnno s d�Z�W@aIZ]cKd�\�`�aIZ]g_XecId
aIZ]cIdf\�`�u
Equation 3-63

x�z R�� W�dLZ]k�`�^Lk SUUUV
aIZd�ZWbaIZ]aLg�k�aLcWbaIZ]jL`Id�d

mOnnno s a�dLZ�W
aIZ]a�gLk�a�c�W
aIZ]j�`Kd�d�u
Equation 3-64
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���b�-���'�_�]�K�������� �� 
¡ �¡ ��_�� ¡ �]¢�£L£�¢

¤O¥¥¥¦�§ ¡�¡ �¨� ¡ �]¢L£�£�¢�©
Equation 3-65

Each transformation is orthogonal (to machine precision) because ª is chosen to have
the value

£�«�¬�­¯®°­K±
, so that¬ ����²I­I­ ® ±b¬ ����²I­K­ ® ± �����@£L²I­I­ ®´³ ²Iµ ¬ ­ ® ­ ± ­I­ ® �-�

Equation 3-66

Multiplying by the Orthogonal Matrix

In the example of the last subsection, the elementary orthogonal matrices Qi were
expressed in terms of the scalar ª and the vector v that defines them, without
multiplying out the expression. This was done to make the point that the elementary
transformation is most often used in its factored form. This subsection describes one
application in which multiplication by the orthogonal matrix Q is required. An
alternative interface for this application is the LAPACK driver routine DGELS.

Given the QR factorization of a ¶¸·�¹ matrix A with m>n (Equation 3-57), if R has
rank n, the solution to the linear least squares problem (Equation 3-55) is obtained by
the following steps: º¼»

½¿¾�À � ®°Á» ÀÃÂ�Ä$Å »
Equation 3-67

The LAPACK routine DORMQR is used in step 1 to multiply the right-hand side matrix
by the transpose of the orthogonal matrix Q, using Q in its factored form. The
triangular system solution in step 2 can be done using the LAPACK routine DTRTRS.

Continuing the example of "Orthogonal Factorizations" on page 34, suppose the
right-hand side vector is Æ � § ����£K��¢I�fÇ[� © ® . Multiplying b by

��®
by using the LAPACK

routine DORMQR, you get
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È�É Ê$Ë}Ì�Í�Î°Ï>ÌCÐÑÑÑÒ�Ó4ÔKÕ ÖK×�×Ó4ÔKÕ]Ô�Ö_ØÙ Õ ÚLÖI×�ÔÛ Õ�× Û Ø
ÜOÝÝÝÞ

Equation 3-68

and after solving the triangular system with the 3-by-3 matrix R,

É Ì ÐÑÒ Ù Õ]Ö�Ô Ù ØÙ Õ ß�Ø�ÚLßÙ Õ]Ô�Ô Ù Ø
ÜOÝÞ

Equation 3-69

The last m–n elements of
Í Î Ï

can be used to compute the 2-norm of the residual,
because àfáeà{âYã!à Ê à_â . Here, àfáeà�â Ì Û Õ�× Û Ø .

Generating the Orthogonal Matrix

The DORMxx routines described in the previous subsection are useful for operating
with the orthogonal matrix Q in its factored form, but sometimes it is the matrix Q
itself that is of interest.

For example, the first step in the computational procedure for the generalized
eigenvalue problem äbå Ì'æwç å is to find orthogonal matrices U and Z such thatè Î äêé is upper Hessenberg and

è Î ç é is upper triangular (see Golub and Van Loan
for details). First, the matrix B is reduced to upper triangular form by the QR
factorization, and A is overwritten by

Í Î ä , using the subroutines of the previous
section for multiplying by the orthogonal matrix.

Next, the updated A is reduced to Hessenberg form while preserving the triangular
structure of B by applying Givens rotations to A and B, alternately from the left and
the right. In order to obtain the orthogonal matrices U and Z that reduce the original
problem, it is necessary to keep a copy of the matrix Q from

ç�Ì�Í�ë
and continually

update it. This requires that Q be generated after the QR factorization.

The DORGxx routines generate the orthogonal matrix Q as a full matrix by expanding
its factored form. Using the example of "Orthogonal Factorizations" on page 34, Q can
be generated from its factored form by using the following Fortran code:
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DO J = 1, N

DO I = J+1, M

Q(I,J) = A(I,J)

END DO

END DO

CALL GORGQR(M,M,N,Q,LDQ,TAU,WORK,LWORK,INFO)

where the data from the QR factorization of A has been copied into a separate matrix
Q because DORGQR overwrites its input data with the expanded matrix. The
orthogonal matrix is returned in Q:

ì�íïîðððñ�ò óKô õ�óLö�÷óKô ø�õL÷�÷
ò óKô ù[úfû�óò óKô øLõ�÷L÷

ò óIô]ö�û_üLõò óIô ù[ú¼ùiûò óIô]õ_ý�õLõóIô]ó�ýLýIú�ö
óKô�ú�÷�øLõóKô�ú{ùiøL÷
ò óKô]û�ø�øL÷óKô]ø�ó�÷hù ò óIô]ý�üLö�üóIô]ø_ùLù�ùóIô ùiõLü�øóIô ùiüKú�ó

þOÿÿÿ
�

Equation 3-70

The matrix Q(1), consisting of only the first n columns of Q, could be generated by
specifying N, rather than M, as the second argument in the call to DORGQR.

Comparing Answers
The results obtained by LAPACK routines should be deterministic; that is, if the same
input is provided to the same subroutine in the same system environment, the output
should be the same. However, because all computers operate in finite-precision
arithmetic, a different order of operations may produce a different set of rounding
errors, so results of the same operation obtained from different subroutines, or from
the same subroutine with different numbers of processors, are not guaranteed to
agree to the last decimal place.

In testing LAPACK, the test ratios in the following table were used to verify the
correctness of different operations. All of these ratios give a measure of relative error.
Residual tests are scaled by 1/ � , the reciprocal of the machine precision, to make the
test ratios O(1), and results that are sensitive to conditioning are scaled by 1/ � , where� í������
		 ����
�		 is the condition number of the matrix A, as computed from the norms
of A and its computed inverse A–1. If a given result has a test ratio less than 30, it is
judged to be as accurate as the machine precision and the conditioning of the problem
will allow. See the Installation Guide for LAPACK for further details on the testing
strategy used for LAPACK.
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Table 3-2 Verification tests for LAPACK (all should be O(1))

Operation or result Test ratio

Factorization A = LU �������������������������� 
Solution x̂ to Ax = b ��!"�#�%$& �����'�(���)�*$& ���� 
Compared to exact soln x � & �+$& �����'�*$& ��,*�� 
Reciprocal condition number RCOND max(RCOND, - )/min(RCOND, - )

Forward error bound f � & �+$& �����'�*$& ��.� 
Backward error bound / / / 0
Computation a A–1 1132 �4�5�7698 11 �5:;���(��� 11 �76�8 11 �=<
Orthogonality check for Q 11 2 �?>A@B> 11 ���;���= 
0 = Machine epsilon
n = Order of matrices- = ,DCE�(��� 11 �76�8 11

40 007–4325–001



Chapter 4

Using Sparse Linear Equation Solvers

Many techniques exist for solving sparse linear systems. The appropriate technique
depends on many factors, including the mathematical and structural properties of
matrix A, the dimension of A, and the number of right-hand sides b.

SGI provides two direct solvers, PSLDLT and PSLDU, and one iterative solver,
DITERATIVE, for sparse linear systems of equations. These solvers are optimized and
parallelized for SGI platforms.

Direct solvers of dense linear systems of equations are described on the
INTRO_LAPACK(3s) man page.

This section describes some of the properties that are useful in determining a good
solution technique, with some common sources of matrices with these properties.

Sparse Matrices
A linear system can be described as FHGJILK , where A is an n-by-n matrix, and x and b
are n dimensional vectors. A system of this kind is considered sparse if the matrix A
has a small percentage of nonzero terms (less than 10%, often less than 1%). Large
sparse linear systems occur frequently in engineering and scientific applications, and
the solution of these systems (finding x given A and b) is an important and costly step.

If matrix A has a regular pattern, such as a banded or block structure, good
performance can easily be obtained when solving the linear system. Good
performance is much more difficult to obtain in problems in which A has no
discernible pattern. The goal of the routines described in this section is to solve
sparse linear systems efficiently, especially those where matrix A has no known
regular pattern.

The following list defines the different types of sparse matrices:

• symmetric positive definite matrix: A matrix A is symmetric if FMINF�O (that is, if the
coefficients of A are such that PRQ SHILPTS(Q for all i and j).

A matrix A is defined to be symmetric positive definite (SPD) if A is symmetric andU O F U�VXW for all vectors UZYI W . It is usually difficult to directly verify that a matrix
is SPD; however, it can often be determined by considering the problem source.
For example, many finite difference or finite volume approximations of partial
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differential equations (PDEs) with Dirichlet or mixed boundary conditions and other
mild assumptions generate SPD matrices. Also, finite element approximations
with a symmetric bilinear form and equivalent test and basis functions generate
SPD matrices.

SPD matrices occur frequently in applications. Optimal techniques exist to solve
the related linear systems. Common sources of SPD matrices are finite element
analysis of structures, the pressure correction phase of a segregated fluid dynamics
simulation, and the analysis of electrical networks.

• Diagonally dominant matrix: A matrix A is (strictly) diagonally dominant if[ \R]_^`[�a�bc];de ^f[ \R]_^g[ for all i. If A is diagonally dominant, operations that involve A
are often numerically stable. Common sources of diagonally-dominant matrices
are simple reservoir simulation models and the velocity equations of a segregated
fluid dynamics solver.

• Structurally symmetric matrix: If the nonzero pattern of A is symmetric, a matrix
A is structurally symmetric; that is,

\ ] ^ihjLk if and only if
\ ^�]lhjmk . The integer

complexity of a solver for a structurally symmetric matrix is greatly reduced
compared to a more general solver. If A is diagonally dominant, many of the
optimal solution techniques for SPD matrices can be used. Common sources of
these matrices are the same as those for diagonally dominant matrices.

• Banded matrix: If
\ ]_^ jLk for

[ n*oqpr[RaNs
, matrix A is banded. If k is small in relation

to the problem dimension n, special techniques exist for solving the related linear
systems. Systems of this form usually occur in special domains with a particular
ordering of the grid or node points.

• Tridiagonal matrix: If
\ ]_^ jMk for

[ nto%pu[Rawv
, matrix A is tridiagonal. Tridiagonal

matrices occur frequently in fluid dynamics and reservoir simulation.

During a simulation, an application often generates many sparse linear systems that
must be solved. These are usually related to some linear approximation of a nonlinear
function or some time-marching scheme for a time-dependent problem. In these
cases, the linear systems are often related and information from the previous solution
can be used to solve the next linear system.

For example, consider Newton’s method for a nonlinear PDE. In this case, the linear
system xfy is generated by evaluating the Jacobian at a certain point. A subsequent
matrix, x y{z}| , is generated using the Jacobian at a nearby point. Thus, the two
matrices x y and x y~z9| are close to each other, and this fact is used in the solver
technique. The structure of x y and x y~z9| is usually identical and all structural
preprocessing can be done once for all related matrices.
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Solution Techniques
Solution techniques for sparse linear systems can usually be divided into two broad
classes: direct methods and iterative methods. The following subsections provide an
overview of both classes and provide brief algorithmic descriptions.

Direct Methods

The DPSLDLT and ZPSLDLT routines solve sparse symmetric linear systems of the
form AX=b where A is a symmetric input matrix, b is an input vector of length n, and
x is a vector of unknowns of length n. This solver uses a direct method. A is factored
into A = L D LT where L is a lower triangular matrix with unit diagonal and D is a
diagonal matrix.

This solver supports both real and complex double precision data types and is
available in the multi-processing versions of SCSL. See the man pages for details.

DPSLDU and ZPSLDU solve sparse unsymmetric linear systems of the form Ax=b where
A is an input matrix with symmetric non-zero pattern but unsymmetric non-zero
values, b is an input vector of length n, and x is a vector of unknowns of length n.

The unsymmetric solver uses a direct method. A is factored into A = L D U where L
is a lower triangular matrix with unit diagonal, D is a diagonal matrix, and U is an
upper triangular matrix with unit diagonal.

The unsymmetric solver supports both real and complex double precision data types
and is available in the multi-processing versions of SCSL. See the man pages for
details.

How Direct Solvers Work

Direct solution methods transform matrix A into a product of several other operators
so that each of the resulting operators is easy to invert for a given right-hand side b.
For example, the LU factorization of A generates lower and upper triangular matrices,
L and U, respectively, such that �M�L��� .

To find �D�N������� , compute ���M���9��� followed by �J�L�7�9��� , both of which are
straightforward computations. Direct methods are usually popular because they are
considered to be very reliable. This is true if the problem dimension and the
condition number of A are not too large. See Matrix Computations, by Golub and Van
Loan for details about error bounds.
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Direct methods for dense, tridiagonal, and banded matrices are quite straightforward
to implement and use the three basic steps of LU factorization as mentioned
previously; they may also solve for a given right-hand side without factorization.
However, for general sparse matrices, the situation is considerably more complicated;
in particular, the factors L and U can become extremely dense. If pivoting is required,
implementing sparse factorization can use a lot of time searching lists of numbers and
creating a great deal of computational overhead.

Efficient implementations can be developed, especially for SPD and symmetric
pattern, positive definite matrices. See Computer Solution of Large Sparse Positive
Definite Systems, by George and Liu, for details.

The following algorithm shows the basic steps of the sparse Cholesky solver:

Structural preprocessing phase:

1. Find P so that �M�N�A�B��� has factor L with near minimal fill.

2. Compute symbolic factorization, that is, find structure of L.

3. Find optimal memory use and node execution sequence.

Numerical factorization phase:

4. Compute L such that �M�N���D�9� .

Solution phase:

5. Given b, compute ���M���9�����=�7�N�i�9�T�`���D�M���r��� .
In this case, A is SPD, and L and D can be found such that �M�N�)�D��� , where L is a
lower triangle with unit diagonal, and D is diagonal.

Steps 1 through 3 require only the nonzero structure of A. Therefore, if two matrices� � and �B� have the same structure, these steps can be skipped for �B� . Furthermore, if
the same matrix A is used for more than one right-hand side b, step 5 can be repeated
(or if all right-hand sides are available at once, they can be solved for simultaneously).

Iterative Solvers

The DITERATIVE solver solves sparse linear systems of the form Ax=b where A is a
sparse input matrix in Compressed Sparse Column (CSC) format or Compressed
Sparse Row (CSR) format, b is an input vector of length n, and x is a vector of
unknowns in length n.
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The iterative solver uses one of four preconditioned iterative methods:

• conjugate gradient (CG) and conjugate residual (CR) for symmetric systems

• conjugate gradient squared (CGS) and BiCGSTAB, a variant of CGS with smoother
convergence properties, for unsymmetric systems.

Four different types of preconditioners are available:

• Jacobi

• symmetric successive over-relaxation (SSOR)

• ILDLT (incomplete LDLT) by pattern

• ILDLT by value

The ILDLT preconditioners are only available for symmetric matrices and ILDLT by
value is currently not parallelized.

Note that the iterative solver supports only real double precision data. See the
ITERATIVE(3s) man page for details.

How Iterative Methods Work

Iterative solution methods comprise a wide variety of techniques. The solvers
presented in this subsection are all in the general class of preconditioned conjugate
gradient (CG) methods. These methods attempt to solve �B�D�L� by solving an
equivalent system �+ �¡��B�D�L�� �¡�� , where M is some approximation to A which is
inexpensive to construct and can be easily used to compute z such that ¢7�L�� �¡'£ .
This is left preconditioning. It is also possible to apply the preconditioner on the right
side of A or on both sides. After the preconditioner is constructed and an initial
approximation, �¥¤ to x is given, the iterative method generates a sequence of vectors¦ �r§=¨ such that �r§ converges to x. Each �`§ is chosen to satisfy some orthogonality or
minimization condition, or both.

Unlike direct methods, iterative methods are more special-purpose. No general,
effective iterative algorithms exist for an arbitrary sparse linear system. However, for
certain classes of problems, an appropriate iterative method can be used to yield an
approximate solution significantly faster than direct methods. Also, iterative methods
usually require less memory than direct methods, thus making them the only feasible
approach for large problems. See Matrix Computations, by Golub and Van Loan, for an
introduction to these methods.
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The standard preconditioned CG method, shown in the following algorithm,
illustrates the basic phases common to all CG type methods used in the solvers:

Preprocessing phase:

1. Compute structure of preconditioner M.

2. Compute values of preconditioner M.

3. Analyze structure of A to optimize performance of sparse matrix vector product,©HªN«�¬ .

Iterative phase:

4. ­¯® ªM°"±q«A² ®
Do k=0, ...

5. ³{´ ªLµ ­¯´
6. ¶ ´ ª¸· ­¯´�¹'³R´3º
7. » ´ ª ¶ ´{¼ ¶ ´�½�¾ ¹=»`¿ ªmÀ
8. ¬ ´ ª ³{´lÁ#» ´ ¬ ´�½�¾
9. © ´ ªN«�¬ ´

10. Â ´ ª · © ´ ¹ ¬ ´ º
11. Ã ´ ª ¶ ´ ¼ Â ´
12. ² ´�Ä9¾ ªM² ´�ÁÅÃ ´ ¬ ´
13. ­¯´TÄ9¾ ª ­¯´ ± Ã ´ ¬ ´

End Do

Iterative methods are very flexible. Like direct solvers, if two matrices A1 and A2
have the same structure, the structural preprocessing needs to be done only once. If
there are multiple right-hand sides, Steps 1 through 3 can be skipped after the first
right-hand side.
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Chapter 5

Signal Processing Routines

SCSL provides three types of signal processing routines:

• Fast Fourier Transform (FFT) routines

• Convolution routines

• Correlation routines

The SCSL FFT interfaces are incompatible with those of the IRIX
CHALLENGEcomplib scientific library, which has been superseded by SCSL. See the
release notes that are provided with your SCSL distribution for details about
converting CHALLENGEcomplib FFT calls to SCSL FFT calls.

FFT Routines
The FFT routines have been highly optimized for single-processor use. The
two-dimensional, three-dimensional, and one-dimentional multiple routines are also
multitasked (multithreaded) for all sizes for which there is a performance benefit. The
one-dimensional routines are multitasked if the data size exceeds the size of the
largest processor cache. Each routine can compute either a forward or an inverse
Fourier transform.

Data Types

The following data types are used in these routines:

• Single precision: Fortran "real"data type, C/C++ "float"data type, 32-bit floating
point; these routine names begin with S.

• Single precision complex: Fortran "complex"data type, C/C++ "scsl_complex"data
type (defined in <scsl_fft.h>), C++ STL "complex<float>" data type (defined in
<complex.h>, two 32-bit floating point reals; these routine names begin with C.

• Double precision: Fortran "double precision" data type, C/C++ "double"data type,
64-bit floating point; these routine names begin with D.

• Double precision complex: Fortran "double complex" data type, C/C++
“scsl_zomplex" data type (defined in <scsl_fft.h>), C++ STL

007–4325–001 47



5: Signal Processing Routines

"complex<double>" data type (defined in <complex.h>), two 64-bit floating point
doubles; these routine names begin with Z.

When using the C++ Standard Template Library (STL) to define complex types, the
include files must be used in the following order:

#include <complex.h>

#include <scsl_fft.h>

Implementation Details

Often little or no difference exists between these versions, other than the data types of
some inputs and outputs. In this case, the routines are described on the same man
page, and that man page is named after the real or complex routine.

The man(1) command can find a man page online by either the real, complex, double
precision, or double complex name.

The data types for the scale, table, and work arguments in these routines vary,
depending on the function which is called. In the CC, SC, and CS routines, the
arguments are single precision. In the ZZ, DZ and ZD routines, the arguments are
double precision.

By default, the integer arguments are 4 bytes (32 bits) in size; this is the size obtained
when one links to the SCSL library with -lscs or -lscs_mp. Another version of
SCSL is available, however, in which integers are 8 bytes (64 bits). This version allows
the user access to larger memory sizes and helps when porting legacy codes. It can be
loaded by using either the -lscs_i8 or -lscs_i8_mp link option. Note that any
program may use only one of the two versions; 4-byte integer and 8-byte integer
library calls cannot be mixed.

C/C++ function prototypes for the signal processing routines are provided in
<scsl_fft.h>, when using the default 4-byte integers, and <scsl_fft_i8.h>
when using 8-byte integers. These header files define the complex types
scsl_complex and scsl_zomplex, which are used in the prototypes. Alternatively,
C++ programs may declare arguments using the types complex<float> and
complex<double> from the standard template library (STL). But if these types are
used, <complex.h> must be included before <scsl_fft.h> (or
<scsl_fft_i8.h>). Note, though, that both complex types are equivalent: they
simply represent (real, imaginary) pairs of floating point numbers stored contiguously
in memory. With the proper casts, you can simply pass arrays of floating point data
to the routines where complex arguments are expected.
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Casts, however, can be avoided. The header files <scsl_fft.h> and
<scsl_fft_i8.h> directly support the use of user-defined complex types or
disabling prototype checking for complex arguments completely. By defining the
symbol SCSL_VOID_ARGS before including <scsl_fft.h> or <scsl_fft_i8.h>
all complex arguments will be prototyped as void *. To define the
symbol SCSL_VOID_ARGS at compile time use the -D compiler option (for example,
-DSCSL_VOID_ARGS) or use an explicit #define SCSL_VOID_ARGS in the source
code. This allows the use of any complex data structure without warnings from the
compiler, provided the structure is as described above:

1. The real and imaginary components must be contiguous in memory.

2. Sequential array elements must also be contiguous in memory.

While this allows the use of non-standard complex types without generating compiler
warnings, it has the disadvantage that the compiler will not catch type mismatches.

Strong type checking can be enabled employing user-defined complex types instead
of SCSL’s standard complex types. To do this, define
SCSL_USER_COMPLEX_T=my_complex and SCSL_USER_ZOMPLEX_T=my_zomplex,
where my_complex and my_zomplex are the names of user-defined complex types.
These complex types must be defined before including the <scsl_fft.h> (or
<scsl_fft_i8.h>) header file.

Fortran 90 users on IRIX systems can perform compile-time checking of SCSL FFT
subroutine calls by adding USE SCSL_FFT (for 4-byte integer arguments) or USE
SCSL_FFT_I8 (for 8-byte integer arguments) to the source code from which the FFT
calls are made. Alternatively, the compile-time checking can be invoked without any
source code modifications by using the -auto_use compiler option. For example:

% f90 -auto_use SCSL_FFT test.f -lscs
% f90 -auto_use SCSL_FFT_I8 -i8 test.f -lscs_i8

Fortran 90 users on SGI Altix systems can also perform compile-time argument
checking, but in this case the USE statements must be explicitly incorporated into the
source code.

Supported Routines

The following list describes the supported FFT routines. Rows of the table represent
input and output data types for the routines in each column:

• C->C implies 32-bit complex input and output.
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• Z->Z implies 64-bit double complex input and output. Each routine in this row is
documented with the complex routine in the prior row.

• S->C implies 32-bit real input and 32-bit complex output.

• D->Z implies 64-bit double precision real input and 64-bit double precision
complex output. Each routine in this row is documented with the real-to-complex
routine in the prior row.

• C->S implies 32-bit complex input and 32-bit real output.

• Z->D implies 64-bit double complex input and 64-bit double precision output.
Each routine named in this row is documented with the complex-real routine in
the prior row.

Columns of the table represent the number of dimensions for which the FFT is
calculated for the routines in each row:

• One-dimensional (single) calculates one FFT in one dimension.

• One-dimensional (multiple) calculates an FFT in one dimension for each column
(FFTM) or row (FFTMR) of a two-dimensional matrix.

• Two-dimensional calculates one FFT in two dimensions.

• Three-dimensional calculates one FFT in three dimensions.

---------------------------------------------------------------------------

1-dimensional 1-dimensional 2-dimensional 3-dimensional

(single) (multiple)

---------------------------------------------------------------------------

C->C CCFFT CCFFTM CCFFTMR CCFFT2D CCFFT3D

Z->Z ZZFFT ZZFFTM ZZFFTMR ZZFFT2D ZZFFT3D

S->C SCFFT SCFFTM SCFFT2D SCFFT3D

D->Z DZFFT DZFFTM DZFFT2D DZFFT3D

C->S CSFFT CSFFTM CSFFT2D CSFFT3D

Z->D ZDFFT ZDFFTM ZDFFT2D ZDFFT3D

---------------------------------------------------------------------------
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Implementation Notes: work and table arrays

The FFT routines were designed so that they can be implemented efficiently on many
different architectures. The calling sequence is the same in any implementation.
Certain details, however, depend on the particular implementation.

One area of difference is the size of the table and work arrays. Different systems may
need different sizes. The subroutine call requires no change, but you may have to
change array sizes in the DIMENSION or type statements that declare the arrays. The
following are the required array sizes for the Origin and Altix series (n, n1, n2, and n3
are transform sizes; the values of NF and NFR are explained below):

• CCFFT

table: 2n + NF REAL

work: 2n REAL WORDS

• ZZFFT

table: 2n + NF DBL PREC WORDS

work: 2n DBL PREC WORDS

• CCFFTMR

table: 2n + NF REAL WORDS

work: 2n REAL WORDS

• ZZFFTMR

table: 2n + NF DBL PREC WORDS

work: 2n DBL PREC WORDS

• CCFFT2D

table: (2*n1+NF) + (2*n2+NF) REAL WORDS

work: 2*MAX(n1,n2) REAL WORDS

• ZZFFT2D

table: (2*n1+NF) + (2*n2+NF) DBL PREC WORDS

work: 2*MAX(n1,n2) DBL PREC WORDS

• CCFFT3D

table: (2*n1+NF) + (2*n2+NF) + (2*n3+NF) REAL WORDS

work: 2*MAX(n1,n2,n3) REAL WORDS
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• ZZFFT3D

table: (2*n1+NF) + (2*n2+NF) + (2*n3+NF) DBL PREC WORDS

work: 2*MAX(n1,n2,n3) DBL PREC WORDS

• CCFFTM

table: (NF + 2 * n) REAL

work: 2n REAL WORDS

• ZZFFTM

table: (NF + 2 * n) DBL PREC

work: 2n DBL PREC WORDS

• SCFFT, CSFFT

table: (n+NFR) REAL

work: n+2 REAL WORDS

• DZFFT, ZDFFT

table: (n+NFR) DBL PREC

work: n + 2 DBL PREC WORDS

• SCFFT2D, CSFFT2D

table: (n+NFR) + (2*n2+NF) REAL

work: n1+4*n2 REAL WORDS

• DZFFT2D, ZDFFT2D

table: (n1+NFR) + (2*n2+NF) DBL PREC WORDS

work: n1 + 4 * n2 DBL PREC WORDS

• SCFFT3D, CSFFT3D

table: (n1+NFR) + (2*n2+NF) + (2*n3+NF) REAL WORDS

work: n1 + 4 * n3 REAL WORDS

• DZFFT3D, ZDFFT3D

table: (n1+NFR) + (2*n2+NF) + (2*n3+NF) DBL PREC WORDS

work: n1 + 4 * n3 DBL PREC WORDS
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• SCFFTM, CSFFTM

table: (n+NFR) REAL WORDS

work: n + 2 REAL WORDS

• DZFFTM, ZDFFTM

table: (n+NFR) DBL PREC

work: n + 2 DBL PREC WORDS

Implementation Notes: isys Parameter Array

The second area of difference is the isys parameter array, an array that gives certain
implementation-specific information. All features and functions of the FFT routines
specific to any particular implementation are confined to this isys array. On any
implementation, you can use the default values by using an argument value of 0.

In the Origin and Altix series implementations, isys(0)=0 and isys(0)=1 are
supported. In SCSL versions prior to 1.3, only isys(0)=0 was allowed. For isys(0)=0,
NF=30 and NFR=15, and for isys(0)=1, NF=NFR=256. The NF(R) words of storage
in the table array contain a factorization of the length of the transform.

The smaller values of NF and NFR for isys(0)=0 are historical. They are too small to
store all the required factors for the highest performing FFT, so when isys(0)=0, extra
space is allocated when the table array is initialized. To avoid memory leaks, this
extra space must be deallocated when the table array is no longer needed. The
routines CCFFTF, CCFFTMF, etc., are used to release this memory. Due to the potential
for memory leaks, the use of isys(0)=0 should be avoided.

For isys(0)=1, the values of NF and NFR are large enough so that no extra memory
needs to be allocated, and there is no need to call CCFFTF, etc. to release memory. (If
called, these routines do nothing.) isys(0) = 1 means that isys is an integer array
with two elements. The second element, isys(1), will not be accessed.

Implementation Notes: Scratch Space

Finally, in addition to the work array, the FFT routines also dynamically allocate
scratch space from the stack. The amount of space allocated can be slightly bigger
than the size of the largest processor cache. For single processor runs, the default
stack size is large enough that these allocations generally cause no problems. But for
parallel runs, you need to ensure that the stack size of slave threads is big enough to
hold this scratch space. Failure to reserve sufficient stack space will cause programs
to dump core due to stack overflows. The stack size of MP library slave threads on
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Origin systems is controlled via the MP_SLAVE_STACKSIZE environment variable or
the mp_set_slave_stacksize() library routine. See the mp(3c), mp(3F) and
pe_environ(5)man pages for more information on controlling the slave stack size.

On Altix systems, the OpenMP thread stack size is controlled by the KMP_STACKSIZE
environment variable or by the kmp_set_stacksize_s() library routine; see the
Intel compiler documentation for additional details. SCSL versions 1.4.1, or later, will
automatically attempt to increase the OpenMP thread stack size limit to a safe value if
the library detects an initial setting that is too low. Because this action is performed at
DSO initialization time, it is not possible for the library to detect subsequent
kmp_set_stacksize_s() calls within user code that may be below the
recommended threshold.

For pthreads applications, the thread’s stack size is specified as one of many creation
attributes provided in the pthread_attr_t argument to pthread_create(3P). The
stacksize attribute should be set explicitly to a non-default value using the
pthread_attr_setstacksize(3P) call, described in the pthread_attr_init(3P)
man page.

Convolution and Correlation Routines
The convolution routines feature convolution for Finite Impulse Response (FIR) filters,
as well as, correlations. Each routine is highly optimized for single-processor use. The
routines which use two-dimensional input sequences are multitasked (multi-threaded).

The convolution and correlation routines are very general. To achieve this generality
and maximum flexibility, one-dimensional sequences are defined by 3 parameters. Six
parameters are necessary for two-dimensional sequences. One drawback of this
generality is the long subroutine argument list.

The following table contains a summary of the filter and correlation routines. In this
table, rows of the table represent data types for the routines in each column:

• C implies 32-bit complex data.

• Z implies 64-bit double complex data

• S implies 32-bit real data.

• D implies 64-bit double precision real data.
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Columns of the table represent the type of computation as well as the number of
dimensions for which the convolution or correlation is calculated for the routines in
each row:

• One-dimensional FIR applies a Finite Impulse Response filter to one-dimensional
signals.

• One-dimensional (multiple) FIR applies a Finite Impulse Response filter to
multiple one-dimensional signals.

• Two-dimensional FIR applies a Finite Impulse Response filter to two-dimensional
signals.

• One-dimensional COR calculates the correlation of one-dimensional sequences.

• One-dimensional (multiple) COR calculates the correlation of multiple
one-dimensional sequences.

• Two-dimensional COR calculates the correlation of two-dimensional sequences.

------------------------------------------------------------

Type 1D (single) 1D (multiple) 2D

------------------------------------------------------------

C CFIR1D CFIRM1D CFIR2D

Z ZFIR1D ZFIRM1D ZFIR2D

S SFIR1D SFIRM1D SFIR2D

D DFIR1D DFIRM1D DFIR2D

------------------------------------------------------------

C CCOR1D CCORM1D CCOR2D

Z ZCOR1D ZCORM1D ZCOR2D

S SCOR1D SCORM1D SCOR2D

D DCOR1D DCORM1D DCOR2D

------------------------------------------------------------

007–4325–001 55





Appendix A

Supported SCSL Routines

This appendix lists all supported SCSL routines and a brief description of each.

For details, see the individual man pages.

Introductory Man Pages
The following man pages provide and introduction to the different types of routines
supported in SCSL.

• INTRO_BLAS1 - Introduction to vector-vector linear algebra subprograms

• INTRO_BLAS2 - Introduction to matrix-vector linear algebra subprograms

• INTRO_BLAS3 - Introduction to matrix-matrix linear algebra subprograms

• INTRO_BLAS - Introduction to SCSL Basic Linear Algebra Subprograms

• INTRO_CBLAS - Introduction to the C interface to Fortran 77 Basic Linear Algebra
Subprograms (legacy BLAS)

• INTRO_FFT - Introduction to signal processing routines

• INTRO_LAPACK - Introduction to LAPACK solvers for dense linear systems

• INTRO_SCSL - Introduction to Scientific Computing Software Library (SCSL)
routines

• INTRO_SOLVERS - Introduction to SGI-developed linear equation solvers

BLAS Routines
The following is a list of all BLAS 1, BLAS 2, and BLAS 3 supported routines.

• CGEMM3M, ZGEMM3M - Multiplies a complex general matrix by a complex general
matrix

• CHBMV, ZHBMV - Multiplies a complex vector by a complex Hermitian band matrix
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• CHEMM, ZHEMM - Multiplies a complex general matrix by a complex Hermitian
matrix

• CHEMV, ZHEMV - Multiplies a complex vector by a complex Hermitian matrix

• CHER2, ZHER2 - Performs Hermitian rank 2 update of a complex Hermitian matrix

• CHER2K, ZHER2K - Performs Hermitian rank 2k update of a complex Hermitian
matrix

• CHER, ZHER - Performs Hermitian rank 1 update of a complex Hermitian matrix

• CHERK, ZHERK - Performs Hermitian rank k update of a complex Hermitian matrix

• CHPMV, ZHPMV - Multiplies a complex vector by a packed complex Hermitian
matrix

• CHPR2, ZHPR2 - Performs Hermitian rank 2 update of a packed complex
Hermitian matrix

• CHPR, ZHPR - Performs Hermitian rank 1 update of a packed complex Hermitian
matrix

• CSROT, ZDROT - applies a real plane rotation to a pair of complex vectors

• DGEMMS - Multiplies a real general matrix by a real general matrix, using
Strassen’s algorithm

• ISAMAX, IDAMAX, ICAMAX, IZAMAX - Searches a vector for the first occurrence of
the maximum absolute value

• ISAMIN, IDAMIN - Searches a vector for the first occurrence of the minimum
absolute value

• ISMAX, IDMAX - Searches a real vector for the first occurrence of the maximum
value

• ISMIN, IDMIN - Searches a real vector for the first occurrence of the minimum
value

• SASUM, DASUM, SCASUM, DZASUM - Sums the absolute value of elements in a real
or complex vector

• SAXPBY, DAXPBY, CAXPBY, ZAXPBY - Adds a scalar multiple of a Single precision
or complex vector x to a scalar multiple of another Single precision or complex
vector y

58 007–4325–001



Scientific Computing Software Library (SCSL) User’s Guide

• SAXPY, CAXPY, DAXPY, ZAXPY - Adds a scalar multiple of a real or complex vector
to another real or complex vector

• SCOPY, DCOPY, CCOPY, ZCOPY - Copies a real or complex vector into another real
or complex vector

• SDOT, DDOT, CDOTC, ZDOTC, CDOTU, ZDOTU - Computes a dot product (inner
product) of two real or complex vectors

• SGBMV, DGBMV, CGBMV, ZGMBV - Multiplies a real or complex vector by a real or
complex general band matrix

• SGEMM, DGEMM, CGEMM, ZGEMM - Multiplies a real or complex general matrix by a
real or complex general matrix

• SGEMV, DGEMV, CGEMV, ZGEMV - Multiplies a real or complex vector by a real or
complex general matrix

• SGER, DGER, CGERC, ZGERC, CGERU, ZGERU - Performs rank 1 update of a real or
complex general matrix

• SGESUM, DGESUM, CGESUM, ZGESUM - Adds a scalar multiple of a real or complex
matrix to a scalar multiple of another real or complex matrix

• SHAD, DHAD, CHAD, ZHAD - Computes the Hadamard product of two vectors

• SNRM2, DNRM2, SCNRM2, DZNRM2 - Computes the Euclidean norm of a vector

• SROT, DROT, CROT, ZROT - applies a real plane rotation or complex coordinate
rotation

• SROTG, DROTG, CROTG, ZROTG - Constructs a Givens plane rotation

• SROTM, DROTM - applies a modified Givens plane rotation

• SROTMG, DROTMG - Constructs a modified Givens plane rotation

• SSBMV, DSBMV - Multiplies a real vector by a real symmetric band matrix

• SSCAL, DSCAL, CSSCAL, ZDSCAL, CSCAL, ZSCAL - Scales a real or complex vector

• SSPMV, DSPMV, CSPMV, ZSPMV - Multiplies a real or complex symmetric packed
matrix by a real or complex vector

• SSPR2, DSPR2 - Performs symmetric rank 2 update of a real symmetric packed
matrix
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• SSPR, DSPR, CSPR, ZSPR - Performs symmetric rank 1 update of a real or complex
symmetric packed matrix

• SSUM, DSUM, CSUM, ZSUM - Sums the elements of a real or complex vector

• SSWAP, DSWAP, CSWAP, ZSWAP - Swaps two real or complex vectors

• SSYMM, DSYMM, CSYMM, ZSYMM - Multiplies a real or complex general matrix by a
real or complex symmetric matrix

• SSYMV, DSYMV, CSYMV, ZSYMV - Multiplies a real or complex vector by a real or
complex symmetric matrix

• SSYR2, DSYR2 - Performs symmetric rank 2 update of a real symmetric matrix

• SSYR2K, DSYR2K, CSYR2K, ZSYR2K - Performs symmetric rank 2k update of a real
or complex symmetric matrix

• SSYR, DSYR, CSYR, ZSYR - Performs symmetric rank 1 update of a real or complex
symmetric matrix

• SSYRK, DSYRK, CSYRK, ZSYRK - Performs symmetric rank k update of a real or
complex symmetric matrix

• STBMV, DTBMV, CTBMV, ZTBMV - Multiplies a real or complex vector by a real or
complex triangular band matrix

• STBSV, DTBSV, CTBSV, ZTBSV - Solves a real or complex triangular banded
system of equations

• STPMV, DTPMV, CTPMV, ZTPMV - Multiplies a real or complex vector by a real or
complex triangular packed matrix

• STPSV, DTPSV, CTPSV, ZTPSV - Solves a real or complex triangular packed system
of equations

• STRMM, DTRMM, CTRMM, ZTRMM - Multiplies a real or complex general matrix by a
real or complex triangular matrix

• STRMV, DTRMV, CTRMV, ZTRMV - Multiplies a real or complex vector by a real or
complex triangular matrix

• STRSM, DTRSM, CTRSM, ZTRSM - Solves a real or complex triangular system of
equations with multiple right-hand sides
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• STRSV, DTRSV, CTRSV, ZTRSV - Solves a real or complex triangular system of
equations

FFT Routines
The following is a list of all supported Fast Fourier Transform (FFT) routines.

• CCFFT2D, ZZFFT2D - applies a two-dimensional complex-to-complex Fast Fourier
Transform (FFT)

• CCFFT3D, ZZFFT3D - applies a three-dimensional complex-to-complex Fast
Fourier Transform (FFT)

• CCFFT, ZZFFT - applies a complex-to-complex Fast Fourier Transform (FFT)

• CCFFTF, CCFFTMF, CCFFTMRF, CCFFT2DF, CCFFT3DF, ZZFFTF, ZZFFTMF,
ZZFFTMRF, ZZFFT2DF, ZZFFT3DF - deallocates memory tacked on to the table
array during initialization

• CCFFTM, ZZFFTM - applies multiple complex-to-complex Fast Fourier Transforms
(FFTs)

• CCFFTMR, ZZFFTMR - applies multiple complex-to-complex Fast Fourier
Transforms (FFTs) to the rows of a two-dimensional (2D) array

• CCOR1D, ZCOR1D, SCOR1D, DCOR1D - computes the one-dimensional (1D)
correlation of two sequences.

• CCOR2D, ZCOR2D, SCOR2D, DCOR2D - computes the two-dimensional (2D)
correlation of two two-dimensional (2D) arrays

• CCORM1D, ZCORM1D, SCORM1D, DCORM1D - computes multiple 1D correlations

• CFIR1D, ZFIR1D, SFIR1D, DFIR1D -computes the 1D convolution of a sequence

• CFIR2D, ZFIR2D, SFIR2D, DFIR2D - computes the two-dimensional (2D)
convolution of two 2D arrays

• CFIRM1D, ZFIRM1D, SFIRM1D, DFIRM1D - computes multiple 1D convolutions

• SCFFT2D, DZFFT2D, CSFFT2D, ZDFFT2D - applies a two-dimensional
real-to-complex or complex-to-real Fast Fourier Transform (FFT)
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• SCFFT3D, DZFFT3D, CSFFT3D, ZDFFT3D - applies a three-dimensional
real-to-complex Fast Fourier Transform (FFT)

• SCFFT, DZFFT, CSFFT, ZDFFT - computers a real-to-complex or complex-to-real
Fast Fourier Transform (FFT)

• SCFFTF, SCFFTMF, SCFFT2DF, SCFFT3DF, DZFFTF, DZFFTMF, DZFFT2DF,
DZFFT3DF - Deallocate memory tacked on to the table array during initialization

• SCFFTM, DZFFTM, CSFFTM, ZDFFTM - applies multiple real-to-complex or
complex-to-real Fast Fourier Transforms (FFTs)

LAPACK Routines
The following is a list of all supported LAPACK routines.

• CBDSQR - computes the singular value decomposition (SVD) of a real N-by-N
(upper or lower) bidiagonal matrix B

• CGBBRD - reduces a complex general m-by-n band matrix A to real upper
bidiagonal form B by a unitary transformation

• CGBCON - estimates the reciprocal of the condition number of a complex general
band matrix A

• CGBEQU - computes row and column scalings intended to equilibrate an M-by-N
band matrix A and reduce its condition number

• CGBRFS - improves the computed solution to a system of linear equations when
the coefficient matrix is banded

• CGBSV - computes the solution to a complex system of linear equations

• CGBSVX - uses the LU factorization to compute the solution to a complex system
of linear equations

• CGBTF2 - computes an LU factorization of a complex m-by-n band matrix A using
partial pivoting with row interchanges

• CGBTRF - computes an LU factorization of a complex m-by-n band matrix A using
partial pivoting with row interchanges

• CGBTRS - solves a system of linear equations with a general band matrix A using
the LU factorization computed by CGBTRF
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• CGEBAK - forms the right or left eigenvectors of a complex general matrix by
backward transformation on the computed eigenvectors of the balanced matrix
output by CGEBAL

• CGEBAL - balances a general complex matrix A

• CGEBD2 - reduces a complex general m by n matrix A to upper or lower real
bidiagonal form B by a unitary transformation

• CGEBRD - reduces a general complex M-by-N matrix A to upper or lower
bidiagonal form B by a unitary transformation

• CGECON - estimates the reciprocal of the condition number of a general complex
matrix A using the LU factorization computed by CGETRF

• CGEEQU - computes row and column scalings intended to equilibrate an M-by-N
matrix A and reduce its condition number

• CGEES - computes the eigenvalues, the Schur form T, and, optionally, the matrix of
Schur vectors Z

• CGEESX - computes the eigenvalues, the Schur form T, and, optionally, the matrix
of Schur vectors Z

• CGEEV - computes the eigenvalues and, optionally, the left and/or right
eigenvectors

• CGEEVX - computes the eigenvalues and, optionally, the left and/or right
eigenvectors

• CGEGS - routine is deprecated and has been replaced by routine CGGES

• CGEGV - routine is deprecated and has been replaced by routine CGGEV

• CGEHD2 - reduces a complex general matrix A to upper Hessenberg form H by a
unitary similarity transformation

• CGEHRD - reduces a complex general matrix A to upper Hessenberg form H by a
unitary similarity transformation

• CGELQ2 - computes an LQ factorization of a complex m by n matrix A

• CGELQF - computes an LQ factorization of a complex M-by-N matrix A

• CGELS - solves overdetermined or underdetermined complex linear systems
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• CGELSD - computes the minimum-norm solution to a real linear least squares
problem

• CGELSS - computes the minimum norm solution to a complex linear least squares
problem

• CGELSX - routine is deprecated and has been replaced by routine CGELSY

• CGELSY - computes the minimum-norm solution to a complex linear least squares
problem

• CGEQL2 - computes a QL factorization of a complex m by n matrix A

• CGEQLF - computes a QL factorization of a complex M-by-N matrix A

• CGEQP3 - computes a QR factorization with column pivoting of a matrix A

• CGEQPF - routine is deprecated and has been replaced by routine CGEQP3

• CGEQR2 - computes a QR factorization of a complex m by n matrix A

• CGEQRF - computes a QR factorization of a complex M-by-N matrix A

• CGERFS - improves the computed solution to a system of linear equations

• CGERQ2 - computes an RQ factorization of a complex m by n matrix A

• CGERQF - computes an RQ factorization of a complex M-by-N matrix A

• CGESC2 - solves a system of linear equations with a general N-by-N matrix A
using the LU factorization with complete pivoting computed by CGETC2

• CGESDD - computes the singular value decomposition (SVD) of a complex M-by-N
matrix A

• CGESV - computes the solution to a complex system of linear equations

• CGESVD - computes the singular value decomposition (SVD) of a complex M-by-N
matrix A, optionally computing the left and/or right singular vectors

• CGESVX - uses the LU factorization to compute the solution to a complex system
of linear equations

• CGETC2 - computes an LU factorization, using complete pivoting, of the n-by-n
matrix A
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• CGETF2 - computes an LU factorization of a general m-by-n matrix A using partial
pivoting with row interchanges

• CGETRF - computes an LU factorization of a general M-by-N matrix A using
partial pivoting with row interchanges

• CGETRI - computes the inverse of a matrix using the LU factorization computed
by CGETRF

• CGETRS - solves a system of linear equations with a general N-by-N matrix A
using the LU factorization computed by CGETRF

• CGGBAK - forms the right or left eigenvectors of a complex generalized eigenvalue
problem by backward transformation on the computed eigenvectors of the
balanced pair of matrices output by CGGBAL

• CGGBAL - balances a pair of general complex matrices (A,B)

• CGGES - computes the generalized eigenvalues, the generalized complex Schur
form (S, T), and optionally left and/or right Schur vectors (VSL and VSR)

• CGGESX - computes the generalized eigenvalues, the complex Schur form (S,T),

• CGGEV - computes the generalized eigenvalues, and optionally, the left and/or
right generalized eigenvectors

• CGGEVX - computes the generalized eigenvalues, and optionally, the left and/or
right generalized eigenvectors

• CGGGLM - solves a general Gauss-Markov linear model (GLM) problem

• CGGHRD - reduces a pair of complex matrices (A,B) to generalized upper
Hessenberg form using unitary transformations, where A is a general matrix and
B is upper triangular

• CGGLSE - solves the linear equality-constrained least squares (LSE) problem

• CGGQRF - computes a generalized QR factorization of an N-by-M matrix A and an
N-by-P matrix B

• CGGRQF - computes a generalized RQ factorization of an M-by-N matrix A and a
P-by-N matrix B

• CGGSVD - computes the generalized singular value decomposition (GSVD) of an
M-by-N complex matrix A and P-by-N complex matrix B
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• CGGSVP - computes unitary matrices

• CGTCON - estimates the reciprocal of the condition number of a complex
tridiagonal matrix A using the LU factorization as computed by CGTTRF

• CGTRFS - improves the computed solution to a system of linear equations when
the coefficient matrix is tridiagonal

• CGTSV - solves the equation AX = B,

• CGTSVX - uses the LU factorization to compute the solution to a complex system
of linear equations

• CGTTRF - computes an LU factorization of a complex tridiagonal matrix A using
elimination with partial pivoting and row interchanges

• CGTTRS - solves systems of equations

• CGTTS2 - solves systems of equations

• CHBEV - computes all the eigenvalues and, optionally, eigenvectors of a complex
Hermitian band matrix A

• CHBEVD - computes all the eigenvalues and, optionally, eigenvectors of a complex
Hermitian band matrix A

• CHBEVX - computes selected eigenvalues and, optionally, eigenvectors of a
complex Hermitian band matrix A

• CHBGST - reduces a complex Hermitian-definite banded generalized eigenproblem

• CHBGV - computes all the eigenvalues and optionally, the eigenvectors of a
complex generalized Hermitian-definite banded eigenproblem

• CHBGVD - computes all the eigenvalues, and optionally, the eigenvectors of a
complex generalized Hermitian-definite banded eigenproblem

• CHBGVX - computes all the eigenvalues, and optionally, the eigenvectors of a
complex generalized Hermitian-definite banded eigenproblem

• CHBTRD - reduces a complex Hermitian band matrix A to real symmetric
tridiagonal form T by a unitary similarity transformation

• CHECON - estimates the reciprocal of the condition number of a complex Hermitian
matrix A
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• CHEEV - computes all eigenvalues and, optionally, eigenvectors of a complex
Hermitian matrix A

• CHEEVD - computes all eigenvalues and, optionally, eigenvectors of a complex
Hermitian matrix A

• CHEEVR - computes selected eigenvalues and, optionally, eigenvectors of a
complex Hermitian matrix T

• CHEEVX - computes selected eigenvalues and, optionally, eigenvectors of a
complex Hermitian matrix A

• CHEGS2 - reduces a complex Hermitian-definite generalized eigenproblem to
standard form

• CHEGST - reduces a complex Hermitian-definite generalized eigenproblem to
standard form

• CHEGV - computes all the eigenvalues, and optionally, the eigenvectors of a
complex generalized Hermitian-definite eigenproblem

• CHEGVD - computes all the eigenvalues, and optionally, the eigenvectors of a
complex generalized Hermitian-definite eigenproblem

• CHEGVX - computes selected eigenvalues, and optionally, eigenvectors of a
complex generalized Hermitian-definite eigenproblem

• CHERFS - improves the computed solution to a system of linear equations when
the coefficient matrix is Hermitian indefinite

• CHESV - computes the solution to a complex system of linear equations

• CHESVX - uses the diagonal pivoting factorization to compute the solution to a
complex system of linear equations

• CHETD2 - reduces a complex Hermitian matrix A to real symmetric tridiagonal
form T by a unitary similarity transformation

• CHETF2 - computes the factorization of a complex Hermitian matrix A using the
Bunch-Kaufman diagonal pivoting method

• CHETRD - reduces a complex Hermitian matrix A to real symmetric tridiagonal
form T by a unitary similarity transformation

• CHETRF - computes the factorization of a complex Hermitian matrix A using the
Bunch-Kaufman diagonal pivoting method
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• CHETRI - computes the inverse of a complex Hermitian indefinite matrix A using
the factorization computed by CHETRF

• CHETRS - solves a system of linear equations with a complex Hermitian matrix A
using the factorization computed by CHETRF

• CHGEQZ - implements a single-shift version of the QZ method for finding the
generalized eigenvalues

• CHPCON - estimates the reciprocal of the condition number of a complex Hermitian
packed matrix A using the factorization computed by CHPTRF

• CHPEV - computes all the eigenvalues and, optionally, eigenvectors of a complex
Hermitian matrix in packed storage

• CHPEVD - computes all the eigenvalues and, optionally, eigenvectors of a complex
Hermitian matrix A in packed storage

• CHPEVX - computes selected eigenvalues and, optionally, eigenvectors of a
complex Hermitian matrix A in packed storage

• CHPGST - reduces a complex Hermitian-definite generalized eigenproblem to
standard form, using packed storage

• CHPGV - computes all the eigenvalues and, optionally, the eigenvectors of a
complex generalized Hermitian-definite eigenproblem

• CHPGVD - computes all the eigenvalues and, optionally, the eigenvectors of a
complex generalized Hermitian-definite eigenproblem

• CHPGVX - computes selected eigenvalues and, optionally, eigenvectors of a
complex generalized Hermitian-definite eigenproblem

• CHPRFS - improves the computed solution to a system of linear equations when
the coefficient matrix is Hermitian indefinite and packed

• CHPSV - computes the solution to a complex system of linear equations

• CHPSVX - uses diagonal pivoting factorization to compute the solution to a
complex system of linear equations

• CHPTRD - reduces a complex Hermitian matrix A stored in packed form to real
symmetric tridiagonal form T by a unitary similarity transformation

• CHPTRF - computes the factorization of a complex Hermitian packed matrix A
using the Bunch-Kaufman diagonal pivoting method
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• CHPTRI - computes the inverse of a complex Hermitian indefinite matrix A in
packed storage using the factorization computed by CHPTRF

• CHPTRS - solves a system of linear equations with a complex Hermitian matrix A
stored in packed format using the factorization computed by CHPTRF

• CHSEIN - uses inverse iteration to find specified right and/or left eigenvectors of a
complex upper Hessenberg matrix H

• CHSEQR - computes the eigenvalues of a complex upper Hessenberg matrix H,
and, optionally, the matrices T and Z from the Schur decomposition

• CLABRD - reduces the first NB rows and columns of a complex general m by n
matrix A to upper or lower real bidiagonal form

• CLACGV - conjugates a complex vector of length N

• CLACON - estimates the 1-norm of a square, complex matrix A

• CLACP2 - copies all or part of a real two-dimensional matrix A to a complex
matrix B

• CLACPY - copies all or part of a two-dimensional matrix A to another matrix B

• CLACRM - performs a very simple matrix-matrix multiplication

• CLACRT - perform the operation ( c s )( x )>= ( x )( -s c )( y )( y )where c and s are
complex and the vectors x and y are complex

• CLADIV - := X / Y, where X and Y are complex

• CLAED0 - computes all eigenvalues of a symmetric tridiagonal matrix which is one
diagonal block

• CLAED7 - computes the updated eigensystem of a diagonal matrix after
modification by a rank-one symmetric matrix

• CLAED8 - merges the two sets of eigenvalues together into a single sorted set

• CLAEIN - uses inverse iteration to find a right or left eigenvector corresponding to
the eigenvalue W of a complex upper Hessenberg matrix H

• CLAESY - computes the eigendecomposition of a 2-by-2 symmetric matrix

• CLAEV2 - computes the eigendecomposition of a 2-by-2 Hermitian matrix

• CLAGS2 - computes 2-by-2 unitary matrices U, V and Q
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• CLAGTM - performs a matrix-vector product

• CLAHEF - computes a partial factorization of a complex Hermitian matrix A using
the Bunch-Kaufman diagonal pivoting method

• CLAHQR - an auxiliary routine called by CHSEQR to update the eigenvalues and
Schur decomposition already computed by CHSEQR

• CLAHRD - reduces the first NB columns of a complex general matrix so that
elements below the k-th subdiagonal are zero

• CLAIC1 - applies one step of incremental condition estimation in its simplest
version

• CLALS0 - applies back the multiplying factors of either the left or the right
singular vector matrix of a diagonal matrix

• CLALSA - an itermediate step in solving the least squares problem by computing
the SVD of the coefficient matrix in compact form

• CLALSD - uses the singular value decomposition of A to solve the least squares
problem of finding X to minimize the Euclidean norm of each column of AX-B

• CLANGB - returns the value of the one norm, or the Frobenius norm, or the infinity
norm, or the element of largest absolute value of an n by n band matrix A

• CLANGE - returns the value of the one norm, or the Frobenius norm, or the infinity
norm, or the element of largest absolute value of a complex matrix A

• CLANGT - returns the value of the one norm, or the Frobenius norm, or the infinity
norm, or the element of largest absolute value of a complex tridiagonal matrix A

• CLANHB - returns the value of the one norm, or the Frobenius norm, or the infinity
norm, or the element of largest absolute value of an n by n hermitian band matrix
A, with k super-diagonals

• CLANHE - returns the value of the one norm, or the Frobenius norm, or the infinity
norm, or the element of largest absolute value of a complex hermitian matrix A

• CLANHP - returns the value of the one norm, or the Frobenius norm, or the infinity
norm, or the element of largest absolute value of a complex hermitian matrix A,
supplied in packed form

• CLANHS - returns the value of the one norm, or the Frobenius norm, or the infinity
norm, or the element of largest absolute value of a Hessenberg matrix A
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• CLANHT - returns the value of the one norm, or the Frobenius norm, or the infinity
norm, or the element of largest absolute value of a complex Hermitian tridiagonal
matrix A

• CLANSB - returns the value of the one norm, or the Frobenius norm, or the infinity
norm, or the element of largest absolute value of an n by n symmetric band matrix
A, with k super-diagonals

• CLANSP - returns the value of the one norm, or the Frobenius norm, or the infinity
norm, or the element of largest absolute value of a complex symmetric matrix A,
supplied in packed form

• CLANSY - returns the value of the one norm, or the Frobenius norm, or the infinity
norm, or the element of largest absolute value of a complex symmetric matrix A

• CLANTB - returns the value of the one norm, or the Frobenius norm, or the infinity
norm, or the element of largest absolute value of an n by n triangular band matrix
A, with ( k + 1 )diagonals

• CLANTP - returns the value of the one norm, or the Frobenius norm, or the infinity
norm, or the element of largest absolute value of a triangular matrix A, supplied
in packed form

• CLANTR - returns the value of the one norm, or the Frobenius norm, or the infinity
norm, or the element of largest absolute value of a trapezoidal or triangular matrix
A

• CLAPLL - computes the QR factorization of A=QR

• CLAPMT - rearranges the columns of the M by N matrix X

• CLAQGB - equilibrates a general M by N band matrix A

• CLAQGE - equilibrates a general M by N matrix A using the row and scaling
factors in the vectors R and C

• CLAQHB - equilibrates a symmetric band matrix A using the scaling factors in the
vector S

• CLAQHE - equilibrates a Hermitian matrix A using the scaling factors in the vector S

• CLAQHP - equilibrates a Hermitian matrix A using the scaling factors in the vector S

• CLAQP2 - computes a QR factorization with column pivoting
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• CLAQPS - computes a step of QR factorization with column pivoting of a complex
M-by-N matrix A

• CLAQSB - equilibrates a symmetric band matrix A using the scaling factors in the
vector S

• CLAQSP - equilibrates a symmetric matrix A using the scaling factors in the vector
S

• CLAQSY - equilibrates a symmetric matrix A using the scaling factors in the vector
S

• CLAR1V - computes the (scaled) rth column of the inverse of the sumbmatrix in
rows B1 through BN of a tridiagonal matrix

• CLAR2V - applies a vector of complex plane rotations with real cosines from both
sides to a sequence of 2-by-2 complex Hermitian matrices,

• CLARCM - performs a very simple matrix-matrix multiplication

• CLARF - applies a complex elementary reflector H to a complex M-by-N matrix C,
from either the left or the right

• CLARFB - applies a complex block reflector H or its transpose H’ to a complex
M-by-N matrix C, from either the left or the right

• CLARFG - generates a complex elementary reflector H of order n

• CLARFT - forms the triangular factor T of a complex block reflector H of order n,
which is defined as a product of k elementary reflectors

• CLARFX - applies a complex elementary reflector H to a complex m by n matrix C,
from either the left or the right

• CLARGV - generates a vector of complex plane rotations with real cosines,
determined by elements of the complex vectors x and y

• CLARNV - returns a vector of n random complex numbers from a uniform or
normal distribution

• CLARRV - computes the eigenvectors of a tridiagonal matrix

• CLARTG - generates a plane rotation

• CLARTV - applies a vector of complex plane rotations with real cosines to elements
of the complex vectors x and y
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• CLARZ - applies a complex elementary reflector H to a complex M-by-N matrix C,
from either the left or the right

• CLARZB - applies a complex block reflector H or its transpose to a complex
distributed M-by-N C from the left or the right

• CLARZT - forms the triangular factor T of a complex block reflector H

• CLASCL - multiplies the M by N complex matrix A by the real scalar CTO/CFROM

• CLASET - initializes a 2-D array A to BETA on the diagonal and ALPHA on the
offdiagonals

• CLASR - performs a transformation A := PA

• CLASSQ - returns the values scl and ssq

• CLASWP - performs a series of row interchanges on the matrix A

• CLASYF - computes a partial factorization of a complex symmetric matrix A using
the Bunch-Kaufman diagonal pivoting method

• CLATBS - solves a triangular system

• CLATDF - computes the contribution to the reciprocal Dif-estimate

• CLATPS - solves a triangular system

• CLATRD - reduces NB rows and columns of a complex Hermitian matrix A

• CLATRS - solves a triangular system

• CLATRZ - factors a M-by-(M+L) complex upper trapezoidal matrix

• CLATZM - routine is deprecated and has been replaced by routine CUNMRZ

• CLAUU2 - computes the product U Æ U’ or L’ Æ L

• CLAUUM - computes the product U Æ U’ or L’ Æ L, where the triangular factor U
or L is stored in the upper or lower triangular part of the array A

• CPBCON - estimates the reciprocal of the condition number (in the 1-norm) of a
complex Hermitian positive definite band matrix using the Cholesky factorization
computed by CPBTRF
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• CPBEQU - computes row and column scalings intended to equilibrate a Hermitian
positive definite band matrix A and reduce its condition number (with respect to
the two-norm)

• CPBRFS - improves the computed solution to a system of linear equations when
the coefficient matrix is Hermitian positive definite and banded

• CPBSTF - computes a split Cholesky factorization of a complex Hermitian positive
definite band matrix A

• CPBSV - computes the solution to a complex system of linear equations

• CPBSVX - uses the Cholesky factorization to compute the solution to a complex
system of linear equations

• CPBTF2 - computes the Cholesky factorization of a complex Hermitian positive
definite band matrix A

• CPBTRF - computes the Cholesky factorization of a complex Hermitian positive
definite band matrix A

• CPBTRS - solves a system of linear equations with a Hermitian positive definite
band matrix A

• CPOCON - estimates the reciprocal of the condition number (in the 1-norm) of a
complex Hermitian positive definite matrix

• CPOEQU - computes row and column scalings intended to equilibrate a Hermitian
positive definite matrix A and reduce its condition number (with respect to the
two-norm)

• CPORFS - improves the computed solution to a system of linear equations when
the coefficient matrix is Hermitian positive definite

• CPOSV - computes the solution to a complex system of linear equations

• CPOSVX - uses the Cholesky factorization to compute the solution to a complex
system of linear equations

• CPOTF2 - computes the Cholesky factorization of a complex Hermitian positive
definite matrix A

• CPOTRF - computes the Cholesky factorization of a complex Hermitian positive
definite matrix A

• CPOTRI - computes the inverse of a complex Hermitian positive definite matrix A
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• CPOTRS - solves a system of linear equations with a Hermitian positive definite
matrix A

• CPPCON - estimates the reciprocal of the condition number (in the 1-norm) of a
complex Hermitian positive definite packed matrix

• CPPEQU - computes row and column scalings intended to equilibrate a Hermitian
positive definite matrix A in packed storage and reduce its condition number
(with respect to the two-norm)

• CPPRFS - improves the computed solution to a system of linear equations when
the coefficient matrix is Hermitian positive definite and packed, and provides
error bounds and backward error estimates for the solution

• CPPSV - computes the solution to a complex system of linear equations

• CPPSVX - uses the Cholesky factorization to compute the solution to a complex
system of linear equations

• CPPTRF - computes the Cholesky factorization of a complex Hermitian positive
definite matrix A stored in packed format

• CPPTRI - computes the inverse of a complex Hermitian positive definite matrix A
using the Cholesky factorization computed by CPPTRF

• CPPTRS - solves a system of linear equations with a Hermitian positive definite
matrix A in packed storage using the Cholesky factorization computed by CPPTRF

• CPTCON - computes the reciprocal of the condition number (in the 1-norm) of a
complex Hermitian positive definite tridiagonal matrix using the factorization
computed by CPTTRF

• CPTEQR - computes all eigenvalues and, optionally, eigenvectors of a symmetric
positive definite tridiagonal matrix

• CPTRFS - improves the computed solution to a system of linear equations when
the coefficient matrix is Hermitian positive definite and tridiagonal

• CPTSV - computes the solution to a complex system of linear equations

• CPTSVX - computes the solution to a complex system of linear equations

• CPTTRF - computes the factorization of a complex Hermitian positive definite
tridiagonal matrix A

• CPTTRS - solves a tridiagonal system using the factorization computed by CPTTRF
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• CPTTS2 - solves a tridiagonal system using the factorization computed by CPTTRF

• CSPCON - estimates the reciprocal of the condition number (in the 1-norm) of a
complex symmetric packed matrix A

• CSPRFS - improves the computed solution to a system of linear equations when
the coefficient matrix is symmetric indefinite and packed

• CSPSV - computes the solution to a complex system of linear equations

• CSPSVX - uses diagonal pivoting factorization to compute the solution to a
complex system of linear equations

• CSPTRF - computes the factorization of a complex symmetric matrix A stored in
packed format using the Bunch-Kaufman diagonal pivoting method

• CSPTRI - computes the inverse of a complex symmetric indefinite matrix A in
packed storage using the factorization computed by CSPTRF

• CSPTRS - solves a system of linear equations with a complex symmetric matrix A
stored in packed format using the factorization computed by CSPTRF

• CSRSCL - multiplies an n-element complex vector x by the real scalar 1/a

• CSTEDC - computes all eigenvalues and, optionally, eigenvectors of a symmetric
tridiagonal matrix using the divide and conquer method

• CSTEGR - computes selected eigenvalues and, optionally, eigenvectors of a real
symmetric tridiagonal matrix T

• CSTEIN - computes the eigenvectors of a real symmetric tridiagonal matrix T
corresponding to specified eigenvalues, using inverse iteration

• CSTEQR - computes all eigenvalues and, optionally, eigenvectors of a symmetric
tridiagonal matrix using the implicit QL or QR method

• CSYCON - estimates the reciprocal of the condition number (in the 1-norm) of a
complex symmetric matrix A using the factorization computed by CSYTRF

• CSYRFS - improves the computed solution to a system of linear equations when
the coefficient matrix is symmetric indefinite, and provides error bounds and
backward error estimates for the solution

• CSYSV - computes the solution to a complex system of linear equations
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• CSYSVX - uses the diagonal pivoting factorization to compute the solution to a
complex system of linear equations

• CSYTF2 - computes the factorization of a complex symmetric matrix A using the
Bunch-Kaufman diagonal pivoting method

• CSYTRF - computes the factorization of a complex symmetric matrix A using the
Bunch-Kaufman diagonal pivoting method

• CSYTRI - computes the inverse of a complex symmetric indefinite matrix A using
the factorization computed by CSYTRF

• CSYTRS - solves a system of linear equations with a complex symmetric matrix A
using the factorization computed by CSYTRF

• CTBCON - estimates the reciprocal of the condition number of a triangular band
matrix A, in either the 1-norm or the infinity-norm

• CTBRFS - provides error bounds and backward error estimates for the solution to
a system of linear equations with a triangular band coefficient matrix

• CTBTRS - solves a triangular system

• CTGEVC - computes some or all of the right and/or left generalized eigenvectors
of a pair of complex upper triangular matrices (A,B)

• CTGEX2 - swaps adjacent diagonal 1 by 1 blocks (A11,B11) and (A22,B22)

• CTGEXC - reorders the generalized Schur decomposition of a complex matrix pair
(A,B), using a unitary equivalence transformation

• CTGSEN - reorders the generalized Schur decomposition of a complex matrix pair
(A, B)

• CTGSJA - computes the generalized singular value decomposition (GSVD) of two
complex upper triangular (or trapezoidal) matrices A and B

• CTGSNA - estimates reciprocal condition numbers for specified eigenvalues and/or
eigenvectors of a matrix pair (A, B)

• CTGSY2 - solves the generalized Sylvester equation using Level 1 and 2 BLAS

• CTGSYL - solves the generalized Sylvester equation

• CTPCON - estimates the reciprocal of the condition number of a packed triangular
matrix A, in either the 1-norm or the infinity-norm
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• CTPRFS - provides error bounds and backward error estimates for the solution to
a system of linear equations with a triangular packed coefficient matrix

• CTPTRI - computes the inverse of a complex upper or lower triangular matrix A
stored in packed format

• CTPTRS - solves a triangular system

• CTRCON - estimates the reciprocal of the condition number of a triangular matrix
A, in either the 1-norm or the infinity-norm

• CTREVC - computes some or all of the right and/or left eigenvectors of a complex
upper triangular matrix T

• CTREXC - reorders the Schur factorization of a complex matrix so that the diagonal
element of T with row index IFST is moved to row ILST

• CTRID - computes the solution to a complex system of linear equations

• CTRRFS - provides error bounds and backward error estimates for the solution to
a system of linear equations with a triangular coefficient matrix

• CTRSEN - reorders the Schur factorization of a complex matrix

• CTRSNA - estimates reciprocal condition numbers for specified eigenvalues and/or
right eigenvectors of a complex upper triangular matrix T

• CTRSYL - solves the complex Sylvester matrix equation

• CTRTI2 - computes the inverse of a complex upper or lower triangular matrix

• CTRTRI - computes the inverse of a complex upper or lower triangular matrix A

• CTRTRS - solves a triangular system

• CTZRQF - routine is deprecated and has been replaced by routine CTZRZF

• CTZRZF - reduces the M-by-N ( M<=N )complex upper trapezoidal matrix A to
upper triangular form by means of unitary transformations

• CUNG2L - generates an m by n complex matrix Q with orthonormal columns,

• CUNG2R - generates an m by n complex matrix Q with orthonormal columns,

• CUNGBR - generates one of the complex unitary matrices Q or PH determined by
CGEBRD when reducing a complex matrix A to bidiagonal form
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• CUNGHR - generates a complex unitary matrix Q which is defined as the product of
IHI-ILO elementary reflectors of order N, as returned by CGEHRD

• CUNGL2 - generates an m-by-n complex matrix Q with orthonormal rows,

• CUNGLQ - generates an M-by-N complex matrix Q with orthonormal rows,

• CUNGQL - generates an M-by-N complex matrix Q with orthonormal columns,

• CUNGQR - generates an M-by-N complex matrix Q with orthonormal columns,

• CUNGR2 - generates an m by n complex matrix Q with orthonormal rows,

• CUNGRQ - generates an M-by-N complex matrix Q with orthonormal rows,

• CUNGTR - generates a complex unitary matrix Q which is defined as the product of
n-1 elementary reflectors of order N, as returned by CHETRD

• CUNM2L - overwrites the general complex m-by-n matrix C

• CUNM2R - overwrites the general complex m-by-n matrix C

• CUNMBR - overwrites the general complex M-by-N matrix C

• CUNMHR - overwrites the general complex M-by-N matrix C

• CUNML2 - overwrites the general complex m-by-n matrix C

• CUNMLQ - overwrites the general complex M-by-N matrix C

• CUNMQL - overwrites the general complex M-by-N matrix C

• CUNMQR - overwrites the general complex M-by-N matrix C

• CUNMR2 - overwrites the general complex m-by-n matrix C

• CUNMR3 - overwrites the general complex m by n matrix C

• CUNMRQ - overwrites the general complex M-by-N matrix C

• CUNMRZ - overwrites the general complex M-by-N matrix C

• CUNMTR - overwrites the general complex M-by-N matrix C

• CUPGTR - generates a complex unitary matrix Q

• CUPMTR - overwrites the general complex M-by-N matrix C
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• DBDSDC - computes the singular value decomposition (SVD) of a real N-by-N
(upper or lower) bidiagonal matrix B

• DBDSQR - computes the singular value decomposition (SVD) of a real N-by-N
(upper or lower) bidiagonal matrix B

• DDISNA - computes the reciprocal condition numbers for the eigenvectors of a real
symmetric or complex Hermitian matrix or for the left or right singular vectors of
a general m-by-n matrix

• DGBBRD - reduces a real general m-by-n band matrix A to upper bidiagonal form
B by an orthogonal transformation

• DGBCON - estimates the reciprocal of the condition number of a real general band
matrix A

• DGBEQU - computes row and column scalings intended to equilibrate an M-by-N
band matrix A and reduce its condition number

• DGBRFS - improves the computed solution to a system of linear equations when
the coefficient matrix is banded

• DGBSV - computes the solution to a real system of linear equations

• DGBSVX - uses the LU factorization to compute the solution to a real system of
linear equations

• DGBTF2 - computes an LU factorization of a real m-by-n band matrix A using
partial pivoting with row interchanges

• DGBTRF - computes an LU factorization of a real m-by-n band matrix A using
partial pivoting with row interchanges

• DGBTRS - solves a system of linear equations with a general band matrix A using
the LU factorization computed by DGBTRF

• DGEBAK - forms the right or left eigenvectors of a real general matrix by backward
transformation on the computed eigenvectors of the balanced matrix output by
DGEBAL

• DGEBAL - balances a general real matrix A

• DGEBD2 - reduces a real general m by n matrix A to upper or lower bidiagonal
form B by an orthogonal transformation
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• DGEBRD - reduces a general real M-by-N matrix A to upper or lower bidiagonal
form B by an orthogonal transformation

• DGECON - estimates the reciprocal of the condition number of a general real matrix
A, in either the 1-norm or the infinity-norm, using the LU factorization computed
by DGETRF

• DGEEQU - computes row and column scalings intended to equilibrate an M-by-N
matrix A and reduce its condition number

• DGEES - computes for an N-by-N real nonsymmetric matrix A, the eigenvalues,
the real Schur form T, and, optionally, the matrix of Schur vectors Z

• DGEESX - computes for an N-by-N real nonsymmetric matrix A, the eigenvalues,
the real Schur form T, and, optionally, the matrix of Schur vectors Z

• DGEEV - computes for an N-by-N real nonsymmetric matrix A, the eigenvalues
and, optionally, the left and/or right eigenvectors

• DGEEVX - computes for an N-by-N real nonsymmetric matrix A, the eigenvalues
and, optionally, the left and/or right eigenvectors

• DGEGS - routine is deprecated and has been replaced by routine DGGES

• DGEGV - routine is deprecated and has been replaced by routine DGGEV

• DGEHD2 - reduces a real general matrix A to upper Hessenberg form H by an
orthogonal similarity transformation

• DGEHRD - reduces a real general matrix A to upper Hessenberg form H by an
orthogonal similarity transformation

• DGELQ2 - computes an LQ factorization of a real m by n matrix A

• DGELQF - computes an LQ factorization of a real M-by-N matrix A

• DGELS - solves overdetermined or underdetermined real linear systems involving
an M-by-N matrix A, or its transpose, using a QR or LQ factorization of A

• DGELSD - computes the minimum-norm solution to a real linear least squares
problem

• DGELSS - computes the minimum norm solution to a real linear least squares
problem

• DGELSX - routine is deprecated and has been replaced by routine DGELSY
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• DGELSY - computes the minimum-norm solution to a real linear least squares
problem

• DGEQL2 - computes a QL factorization of a real m by n matrix A

• DGEQLF - computes a QL factorization of a real M-by-N matrix A

• DGEQP3 - computes a QR factorization with column pivoting of a matrix A

• DGEQPF - routine is deprecated and has been replaced by routine DGEQP3

• DGEQR2 - computes a QR factorization of a real m by n matrix A

• DGEQRF - computes a QR factorization of a real M-by-N matrix A

• DGERFS - improves the computed solution to a system of linear equations and
provides error bounds and backward error estimates for the solution

• DGERQ2 - computes an RQ factorization of a real m by n matrix A

• DGERQF - computes an RQ factorization of a real M-by-N matrix A

• DGESC2 - solves a system of linear equations with a general N-by-N matrix A
using the LU factorization with complete pivoting computed by DGETC2

• DGESDD - computes the singular value decomposition (SVD) of a real M-by-N
matrix A

• DGESV - computes the solution to a real system of linear equations

• DGESVD - computes the singular value decomposition (SVD) of a real M-by-N
matrix A

• DGESVX - uses the LU factorization to compute the solution to a real system of
linear equations

• DGETC2 - computes an LU factorization with complete pivoting of the n-by-n
matrix A

• DGETF2 - computes an LU factorization of a general m-by-n matrix A using partial
pivoting with row interchanges

• DGETRF - computes an LU factorization of a general M-by-N matrix A using
partial pivoting with row interchanges

• DGETRI - computes the inverse of a matrix using the LU factorization computed
by DGETRF
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• DGETRS - solves a system of linear equations with a general N-by-N matrix A
using the LU factorization computed by DGETRF

• DGGBAK - forms the right or left eigenvectors of a real generalized eigenvalue
problem by backward transformation on the computed eigenvectors of the
balanced pair of matrices output by DGGBAL

• DGGBAL - balances a pair of general real matrices (A,B)

• DGGES - computes for a pair of N-by-N real nonsymmetric matrices (A,B),

• DGGESX - computes for a pair of N-by-N real nonsymmetric matrices (A,B), the
generalized eigenvalues and the real Schur form (S,T)

• DGGEV - computes for a pair of N-by-N real nonsymmetric matrices (A,B) the
generalized eigenvalues

• DGGEVX - computes for a pair of N-by-N real nonsymmetric matrices (A,B) the
generalized eigenvalues

• DGGGLM - solves a general Gauss-Markov linear model (GLM) problem

• DGGHRD - reduces a pair of real matrices (A,B) to generalized upper Hessenberg
form using orthogonal transformations, where A is a general matrix and B is
upper triangular

• DGGLSE - solves the linear equality-constrained least squares (LSE) problem

• DGGQRF - computes a generalized QR factorization of an N-by-M matrix A and an
N-by-P matrix B

• DGGRQF - computes a generalized RQ factorization of an M-by-N matrix A and a
P-by-N matrix B

• DGGSVD - computes the generalized singular value decomposition (GSVD) of an
M-by-N real matrix A and P-by-N real matrix B

• DGGSVP - computes orthogonal matrices U, V and Q

• DGTCON - estimates the reciprocal of the condition number of a real tridiagonal
matrix A using the LU factorization as computed by DGTTRF

• DGTRFS - improves the computed solution to a system of linear equations when
the coefficient matrix is tridiagonal

• DGTSV - solves the equation AX = B
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• DGTSVX - uses the LU factorization to compute the solution to a real system of
linear equations

• DGTTRF - computes an LU factorization of a real tridiagonal matrix A using
elimination with partial pivoting and row interchanges

• DGTTRS - solves one of the systems of equations AX = B or A’X = B

• DGTTS2 - solves one of the systems of equations AX = B or A’X = B

• DHGEQZ - implements a single-/double-shift version of the QZ method for finding
generalized eigenvalues

• DHSEIN - uses inverse iteration to find specified right and/or left eigenvectors of a
real upper Hessenberg matrix H

• DHSEQR - computes the eigenvalues of a real upper Hessenberg matrix H

• DLABAD - returns the square root of values

• DLABRD - reduces the first NB rows and columns of a real general m by n matrix
A to upper or lower bidiagonal form by an orthogonal transformation

• DLACON - estimates the 1-norm of a square, real matrix A

• DLACPY - copies all or part of a two-dimensional matrix A to another matrix B

• DLADIV - performs complex division in real arithmetic

• DLAE2 - computes the eigenvalues of a 2-by-2 symmetric matrix

• DLAEBZ - contains the iteration loops which compute and use the function N(w)

• DLAED0 - computes all eigenvalues and corresponding eigenvectors of a
symmetric tridiagonal matrix using the divide and conquer method

• DLAED1 - computes the updated eigensystem of a diagonal matrix after
modification by a rank-one symmetric matrix

• DLAED2 - merges the two sets of eigenvalues together into a single sorted set

• DLAED3 - finds the roots of the secular equation, as defined by the values in D, W,
and RHO, between 1 and K

• DLAED4 - computes the I-th updated eigenvalue of a symmetric rank-one
modification to a diagonal matrix
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• DLAED5 - computes the I-th eigenvalue of a symmetric rank-one modification of a
2-by-2 diagonal matrix

• DLAED6 - computes the positive or negative root (closest to the origin)

• DLAED7 - computes the updated eigensystem of a diagonal matrix after
modification by a rank-one symmetric matrix

• DLAED8 - merges the two sets of eigenvalues together into a single sorted set

• DLAED9 - finds the roots of the secular equation, as defined by the values in D, Z,
and RHO, between KSTART and KSTOP

• DLAEDA - computes the Z vector corresponding to the merge step in the CURLVLth

step of the merge process with TLVLS steps for the CURPBMth problem

• DLAEIN - uses inverse iteration to find a right or left eigenvector corresponding to
the eigenvalue (WR,WI) of a real upper Hessenberg matrix H

• DLAEV2 - computes the eigendecomposition of a 2-by-2 symmetric matrix

• DLAEXC - swaps adjacent diagonal blocks T11 and T22 of order 1 or 2 in an upper
quasi-triangular matrix T by an orthogonal similarity transformation

• DLAG2 - computes the eigenvalues of a 2 x 2 generalized eigenvalue problem with
scaling as necessary to avoid over-/underflow

• DLAGS2 - computes 2-by-2 orthogonal matrices U, V and Q

• DLAGTF - factorizes a matrix

• DLAGTM - performs a matrix-vector product

• DLAGTS - solves one of two systems of equations

• DLAGV2 - computes the Generalized Schur factorization of a real 2-by-2 matrix
pencil (A,B) where B is upper triangular

• DLAHQR - updates the eigenvalues and Schur decomposition already computed by
DHSEQR

• DLAHRD - reduces the first NB columns of a real general n-by-(n-k+1) matrix A so
that elements below the kth subdiagonal are zero

• DLAIC1 - applies one step of incremental condition estimation in its simplest
version
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• DLALN2 - solves a system with possible scaling and perturbation of A

• DLALS0 - applies back the multiplying factors of either the left or the right
singular vector matrix of a diagonal matrix appended by a row to the right hand
side matrix B in solving the least squares problem using the divide-and-conquer
SVD approach

• DLALSA - an itermediate step in solving the least squares problem by computing
the SVD of the coefficient matrix in compact form

• DLALSD - uses the singular value decomposition of A to solve the least squares
problem

• DLAMCH - determines double precision machine parameters

• DLAMRG - creates a permutation list which merges the elements of A

• DLANGB - returns the value of the one norm, or the Frobenius norm, or the infinity
norm, or the element of largest absolute value of an n by n band matrix A

• DLANGE - returns the value of the one norm, or the Frobenius norm, or the infinity
norm, or the element of largest absolute value of a real matrix A

• DLANGT - returns the value of the one norm, or the Frobenius norm, or the infinity
norm, or the element of largest absolute value of a real tridiagonal matrix A

• DLANHS - returns the value of the one norm, or the Frobenius norm, or the infinity
norm, or the element of largest absolute value of a Hessenberg matrix A

• DLANSB - returns the value of the one norm, or the Frobenius norm, or the infinity
norm, or the element of largest absolute value of an n by n symmetric band matrix
A, with k super-diagonals

• DLANSP - returns the value of the one norm, or the Frobenius norm, or the infinity
norm, or the element of largest absolute value of a real symmetric matrix A,
supplied in packed form

• DLANST - returns the value of the one norm, or the Frobenius norm, or the infinity
norm, or the element of largest absolute value of a real symmetric tridiagonal
matrix A

• DLANSY - returns the value of the one norm, or the Frobenius norm, or the infinity
norm, or the element of largest absolute value of a real symmetric matrix A
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• DLANTB - returns the value of the one norm, or the Frobenius norm, or the infinity
norm, or the element of largest absolute value of an n by n triangular band matrix
A, with ( k + 1 )diagonals

• DLANTP - returns the value of the one norm, or the Frobenius norm, or the infinity
norm, or the element of largest absolute value of a triangular matrix A, supplied
in packed form

• DLANTR - returns the value of the one norm, or the Frobenius norm, or the infinity
norm, or the element of largest absolute value of a trapezoidal or triangular matrix
A

• DLANV2 - computes the Schur factorization of a real 2-by-2 nonsymmetric matrix
in standard form

• DLAPLL - computers the QR factorization of A=QR

• DLAPMT - rearranges the columns of the M by N matrix X

• DLAPY2 - returns sqrt(x22+y2) without causing unnecessary overflow

• DLAPY3 - returns sqrt(x2+y2+z2) without causing unnecessary overflow

• DLAQGB - equilibrates a general M by N band matrix A with KL subdiagonals and
KU superdiagonals using the row and scaling factors in the vectors R and C

• DLAQGE - equilibrates a general M by N matrix A using the row and scaling
factors in the vectors R and C

• DLAQP2 - computes a QR factorization with column pivoting of the block
A(OFFSET+1:M,1:N)

• DLAQPS - computes a step of QR factorization with column pivoting of a real
M-by-N matrix A by using Blas-3

• DLAQSB - equilibrates a symmetric band matrix A using the scaling factors in the
vector S

• DLAQSP - equilibrates a symmetric matrix A using the scaling factors in the vector
S

• DLAQSY - equilibrates a symmetric matrix A using the scaling factors in the vector
S

• DLAQTR - solves a real quasi-triangular system

007–4325–001 87



A: Supported SCSL Routines

• DLAR1V - computes the (scaled) rth column of the inverse of a sumbmatrix

• DLAR2V - applies a vector of real plane rotations from both sides to a sequence of
2-by-2 real symmetric matrices, defined by the elements of the vectors x, y and z

• DLARF - applies a real elementary reflector H to a real m by n matrix C, from
either the left or the right

• DLARFB - applies a real block reflector H or its transpose H’ to a real m by n
matrix C, from either the left or the right

• DLARFG - generates a real elementary reflector H of order n

• DLARFT - forms the triangular factor T of a real block reflector H of order n, which
is defined as a product of k elementary reflectors

• DLARFX - applies a real elementary reflector H to a real m by n matrix C, from
either the left or the right

• DLARGV - generates a vector of real plane rotations, determined by elements of the
real vectors x and y

• DLARNV - returns a vector of n random real numbers from a uniform or normal
distribution

• DLARRB - does limited bisection to locate eigenvalues

• DLARRE - sets "small"off-diagonal elements to zero

• DLARRF - finds a robust representation of input values

• DLARRV - computes the eigenvectors of the tridiagonal matrix

• DLARTG - generates a plane rotation

• DLARTV - applies a vector of real plane rotations to elements of the real vectors x
and y

• DLARUV - returns a vector of n random real numbers from a uniform (0,1)

• DLARZ - applies a real elementary reflector H to a real M-by-N matrix C, from
either the left or the right

• DLARZB - applies a real block reflector H or its transpose to a real distributed
M-by-N C from the left or the right
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• DLARZT - forms the triangular factor T of a real block reflector H of order > n,
which is defined as a product of k elementary reflectors

• DLAS2 - computes the singular values of the 2-by-2 matrix

• DLASCL - multiplies the M by N real matrix A by the real scalar CTO/CFROM

• DLASD0 - computes the singular value decomposition (SVD) of a real upper
bidiagonal N-by-M matrix B

• DLASD1 - computes the SVD of an upper bidiagonal N-by-M matrix B

• DLASD2 - merges the two sets of singular values together into a single sorted set

• DLASD3 - finds all the square roots of the roots of the secular equation, as defined
by the values in D and Z

• DLASD4 - computes the square root of the Ith updated eigenvalue of a positive
symmetric rank-one modification to a positive diagonal matrix

• DLASD5 - computes the square root of the Ith eigenvalue of a positive symmetric
rank-one modification of a 2-by-2 diagonal matrix

• DLASD6 - computes the SVD of an updated upper bidiagonal matrix B obtained by
merging two smaller ones by appending a row

• DLASD7 - merges the two sets of singular values together into a single sorted set

• DLASD8 - finds the square roots of the roots of the secular equation,

• DLASD9 - finds the square roots of the roots of the secular equation,

• DLASDA - computes the singular value decomposition (SVD) of a real upper
bidiagonal N-by-M matrix B with diagonal D and offdiagonal E

• DLASDQ - computes the singular value decomposition (SVD) of a real (upper or
lower) bidiagonal matrix with diagonal D and offdiagonal E, accumulating the
transformations if desired

• DLASDT - creates a tree of subproblems for bidiagonal divide and conquer

• DLASET - initializes an m-by-n matrix A to BETA on the diagonal and ALPHA on
the offdiagonals

• DLASQ1 - computes the singular values of a real N-by-N bidiagonal matrix with
diagonal D and off-diagonal E
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• DLASQ2 - computes all the eigenvalues of the symmetric positive definite
tridiagonal matrix

• DLASQ3 - computes a shift (TAU)

• DLASQ4 - computes an approximation TAU to the smallest eigenvalue using
values of d from the previous transform

• DLASQ5 - computes one dqds transform in ping-pong form, one version for IEEE
machines another for non IEEE machines

• DLASQ6 - computes one dqd (shift equal to zero) transform in ping-pong form,
with protection against underflow and overflow

• DLASR - perform a transformation where A is an m by n real matrix and P is an
orthogonal matrix,

• DLASRT - sorts numbers

• DLASSQ - returns the values scl and smsq

• DLASV2 - computes the singular value decomposition of a 2-by-2 triangular matrix

• DLASWP - performs a series of row interchanges on the matrix A

• DLASY2 - solves for the N1 by N2 matrix X

• DLASYF - computes a partial factorization of a real symmetric matrix A using the
Bunch-Kaufman diagonal pivoting method

• DLATBS - solves one of two triangular systems with scaling to prevent overflow,
where A is an upper or lower triangular band matrix

• DLATDF - uses the LU factorization of the n-by-n matrix Z computed by DGETC2

• DLATPS - solves a triangular system with scaling to prevent overflow

• DLATRD - reduces NB rows and columns of a real symmetric matrix A to
symmetric tridiagonal form

• DLATRS - solves a triangular system with scaling to prevent overflow

• DLATRZ - factors the M-by-(M+L) real upper trapezoidal matrix by means of
orthogonal transformations

• DLATZM - routine is deprecated and has been replaced by routine DORMRZ
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• DLAUU2 - computes the product U Ç U’ or L’ Ç L, where the triangular factor U
or L is stored in the upper or lower triangular part of the array A

• DLAUUM - computes the product U Ç U’ or L’ Ç L, where the triangular factor U
or L is stored in the upper or lower triangular part of the array A

• DOPGTR - generates a real orthogonal matrix Q which is defined as the product of
n-1 elementary reflectors H(i) of order n, as returned by DSPTRD using packed
storage

• DOPMTR - overwrites the general real M-by-N matrix C with SIDE = ’L’ SIDE = ’R’
TRANS = ’N’

• DORG2L - generates an m by n real matrix Q with orthonormal columns

• DORG2R - generates an m by n real matrix Q with orthonormal columns

• DORGBR - generates one of the real orthogonal matrices Q or PT determined by
DGEBRD when reducing a real matrix A to bidiagonal form

• DORGHR - generates a real orthogonal matrix Q which is defined as the product of
IHI-ILO elementary reflectors of order N, as returned by DGEHRD

• DORGL2 - generates an m by n real matrix Q with orthonormal rows

• DORGLQ - generates an M-by-N real matrix Q with orthonormal rows

• DORGQL - generates an M-by-N real matrix Q with orthonormal columns

• DORGQR - generates an M-by-N real matrix Q with orthonormal columns

• DORGR2 - generates an m by n real matrix Q with orthonormal rows

• DORGRQ - generates an M-by-N real matrix Q with orthonormal rows

• DORGTR - generates a real orthogonal matrix Q as returned by DSYTRD

• DORM2L - overwrites the general real m by n matrix C

• DORM2R - overwrites the general real m by n matrix C

• DORMBR - overwrites the general real M-by-N matrix C

• DORMHR - overwrites the general real M-by-N matrix C

• DORML2 - overwrites the general real m by n matrix C

• DORMLQ - overwrites the general real M-by-N matrix C
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• DORMQL - overwrites the general real M-by-N matrix C

• DORMQR - overwrites the general real M-by-N matrix C

• DORMR2 - overwrites the general real m by n matrix C

• DORMR3 - overwrites the general real m by n matrix C

• DORMRQ - overwrites the general real M-by-N matrix C

• DORMRZ - overwrites the general real M-by-N matrix C

• DORMTR - overwrites the general real M-by-N matrix C

• DPBCON - estimates the reciprocal of the condition number (in the 1-norm) of a
real symmetric positive definite band matrix using the Cholesky factorization
computed by DPBTRF

• DPBEQU - computes row and column scalings intended to equilibrate a symmetric
positive definite band matrix A and reduce its condition number (with respect to
the two-norm)

• DPBRFS - improves the computed solution to a system of linear equations when
the coefficient matrix is symmetric positive definite and banded, and provides
error bounds and backward error estimates for the solution

• DPBSTF - computes a split Cholesky factorization of a real symmetric positive
definite band matrix A

• DPBSV - computes the solution to a real system of linear equations

• DPBSVX - uses the Cholesky factorization to compute the solution to a real system
of linear equations

• DPBTF2 - computes the Cholesky factorization of a real symmetric positive
definite band matrix A

• DPBTRF - computes the Cholesky factorization of a real symmetric positive
definite band matrix A

• DPBTRS - solves a system of linear equations with a symmetric positive definite
band matrix A using the Cholesky factorization computed by DPBTRF

• DPOCON - estimates the reciprocal of the condition number (in the 1-norm) of a
real symmetric positive definite matrix using the Cholesky factorization computed
by DPOTRF
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• DPOEQU - computes row and column scalings intended to equilibrate a symmetric
positive definite matrix A and reduce its condition number (with respect to the
two-norm)

• DPORFS - improves the computed solution to a system of linear equations when
the coefficient matrix is symmetric positive definite

• DPOSV - computes the solution to a real system of linear equations

• DPOSVX - uses the Cholesky factorization to compute the solution to a real system
of linear equations

• DPOTF2 - computes the Cholesky factorization of a real symmetric positive
definite matrix A

• DPOTRF - computes the Cholesky factorization of a real symmetric positive
definite matrix A

• DPOTRI - computes the inverse of a real symmetric positive definite matrix A
using the Cholesky factorization computed by DPOTRF

• DPOTRS - solves a system of linear equations with a symmetric positive definite
matrix A using the Cholesky factorization computed by DPOTRF

• DPPCON - estimates the reciprocal of the condition number (in the 1-norm) of a
real symmetric positive definite packed matrix using the Cholesky factorization
computed by DPPTRF

• DPPEQU - computes row and column scalings intended to equilibrate a symmetric
positive definite matrix A in packed storage and reduce its condition number
(with respect to the two-norm)

• DPPRFS - improves the computed solution to a system of linear equations when
the coefficient matrix is symmetric positive definite and packed

• DPPSV - computes the solution to a real system of linear equations

• DPPSVX - uses the Cholesky factorization to compute the solution to a real system
of linear equations

• DPPTRF - computes the Cholesky factorization of a real symmetric positive
definite matrix A stored in packed format

• DPPTRI - computes the inverse of a real symmetric positive definite matrix A
using the Cholesky factorization computed by DPPTRF
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• DPPTRS - solves a system of linear equations with a symmetric positive definite
matrix A in packed storage using the Cholesky factorization computed by DPPTRF

• DPTCON - computes the reciprocal of the condition number (in the 1-norm) of a
real symmetric positive definite tridiagonal matrix using the factorization
computed by DPTTRF

• DPTEQR - computes all eigenvalues and, optionally, eigenvectors of a symmetric
positive definite tridiagonal matrix

• DPTRFS - improves the computed solution to a system of linear equations when
the coefficient matrix is symmetric positive definite and tridiagonal

• DPTSV - computes the solution to a real system of linear equations

• DPTSVX - computes the solution to a real system of linear equations where A is an
N-by-N symmetric positive definite tridiagonal matrix and X and B are
N-by-NRHS matrices

• DPTTRF - computes the factorization of a real symmetric positive definite
tridiagonal matrix A

• DPTTRS - solves a tridiagonal system using the factorization of A computed by
DPTTRF

• DPTTS2 - solves a tridiagonal system using the factorization of A computed by
DPTTRF

• DRSCL - multiplies an n-element real vector x by the real scalar 1/a

• DSBEV - computes all the eigenvalues and, optionally, eigenvectors of a real
symmetric band matrix A

• DSBEVD - computes all the eigenvalues and, optionally, eigenvectors of a real
symmetric band matrix A

• DSBEVX - computes selected eigenvalues and, optionally, eigenvectors of a real
symmetric band matrix A

• DSBGST - reduces a real symmetric-definite banded generalized eigenproblem

• DSBGV - computes all the eigenvalues, and optionally, the eigenvectors of a real
generalized symmetric-definite banded eigenproblem

• DSBGVD - computes all the eigenvalues, and optionally, the eigenvectors of a real
generalized symmetric-definite banded eigenproblem
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• DSBGVX - computes selected eigenvalues, and optionally, eigenvectors of a real
generalized symmetric-definite banded eigenproblem

• DSBTRD - reduces a real symmetric band matrix A to symmetric tridiagonal form
T by an orthogonal similarity transformation

• DSECND - returns the user time for a process in seconds

• DSPCON - estimates the reciprocal of the condition number (in the 1-norm) of a
real symmetric packed matrix A

• DSPEV - computes all the eigenvalues and, optionally, eigenvectors of a real
symmetric matrix A in packed storage

• DSPEVD - computes all the eigenvalues and, optionally, eigenvectors of a real
symmetric matrix A in packed storage

• DSPEVX - computes selected eigenvalues and, optionally, eigenvectors of a real
symmetric matrix A in packed storage

• DSPGST - reduces a real symmetric-definite generalized eigenproblem to standard
form, using packed storage

• DSPGV - computes all the eigenvalues and, optionally, the eigenvectors of a real
generalized symmetric-definite eigenproblem

• DSPGVD - computes all the eigenvalues, and optionally, the eigenvectors of a real
generalized symmetric-definite eigenproblem

• DSPGVX - computes selected eigenvalues, and optionally, eigenvectors of a real
generalized symmetric-definite eigenproblem

• DSPRFS - improves the computed solution to a system of linear equations when
the coefficient matrix is symmetric indefinite and packed

• DSPSV - computes the solution to a real system of linear equations

• DSPSVX - uses the diagonal pivoting factorization to compute the solution to a real
system of linear equations where A is an N-by-N symmetric matrix stored in
packed format and X and B are N-by-NRHS matrices

• DSPTRD - reduces a real symmetric matrix A stored in packed form to symmetric
tridiagonal form T by an orthogonal similarity transformation

• DSPTRF - computes the factorization of a real symmetric matrix A stored in
packed format using the Bunch-Kaufman diagonal pivoting method
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• DSPTRI - computes the inverse of a real symmetric indefinite matrix A in packed
storage using a factorization computed by DSPTRF

• DSPTRS - solves a system of linear equations with a real symmetric matrix A
stored in packed format using a factorization computed by DSPTRF

• DSTEBZ - computes the eigenvalues of a symmetric tridiagonal matrix T

• DSTEDC - computes all eigenvalues and, optionally, eigenvectors of a symmetric
tridiagonal matrix using the divide and conquer method

• DSTEGR - computes selected eigenvalues and, optionally, eigenvectors of a real
symmetric tridiagonal matrix T

• DSTEIN - computes the eigenvectors of a real symmetric tridiagonal matrix T
corresponding to specified eigenvalues, using inverse iteration

• DSTEQR - computes all eigenvalues and, optionally, eigenvectors of a symmetric
tridiagonal matrix using the implicit QL or QR method

• DSTERF - computes all eigenvalues of a symmetric tridiagonal matrix using the
Pal-Walker-Kahan variant of the QL or QR algorithm

• DSTEV - computes all eigenvalues and, optionally, eigenvectors of a real symmetric
tridiagonal matrix A

• DSTEVD - computes all eigenvalues and, optionally, eigenvectors of a real
symmetric tridiagonal matrix

• DSTEVR - computes selected eigenvalues and, optionally, eigenvectors of a real
symmetric tridiagonal matrix T

• DSTEVX - computes selected eigenvalues and, optionally, eigenvectors of a real
symmetric tridiagonal matrix A

• DSYCON - estimates the reciprocal of the condition number (in the 1-norm) of a
real symmetric matrix A using a factorization computed by DSYTRF

• DSYEV - computes all eigenvalues and, optionally, eigenvectors of a real symmetric
matrix A

• DSYEVD - computes all eigenvalues and, optionally, eigenvectors of a real
symmetric matrix A

• DSYEVR - computes selected eigenvalues and, optionally, eigenvectors of a real
symmetric matrix T
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• DSYEVX - computes selected eigenvalues and, optionally, eigenvectors of a real
symmetric matrix A

• DSYGS2 - reduces a real symmetric-definite generalized eigenproblem to standard
form

• DSYGST - reduces a real symmetric-definite generalized eigenproblem to standard
form

• DSYGV - computes all the eigenvalues, and optionally, the eigenvectors of a real
generalized symmetric-definite eigenproblem

• DSYGVD - computes all the eigenvalues, and optionally, the eigenvectors of a real
generalized symmetric-definite eigenproblem

• DSYGVX - computes selected eigenvalues, and optionally, eigenvectors of a real
generalized symmetric-definite eigenproblem

• DSYRFS - improves the computed solution to a system of linear equations when
the coefficient matrix is symmetric indefinite, and provides error bounds and
backward error estimates for the solution

• DSYSV - computes the solution to a real system of linear equations

• DSYSVX - uses the diagonal pivoting factorization to compute the solution to a real
system of linear equations

• DSYTD2 - reduces a real symmetric matrix A to symmetric tridiagonal form T by
an orthogonal similarity transformation

• DSYTF2 - computes the factorization of a real symmetric matrix A using the
Bunch-Kaufman diagonal pivoting method

• DSYTRD - reduces a real symmetric matrix A to real symmetric tridiagonal form T
by an orthogonal similarity transformation

• DSYTRF - computes the factorization of a real symmetric matrix A using the
Bunch-Kaufman diagonal pivoting method

• DSYTRI - computes the inverse of a real symmetric indefinite matrix A using a
factorizationcomputed by DSYTRF

• DSYTRS - solves a system of linear equations with a real symmetric matrix A
using a factorization computed by DSYTRF
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• DTBCON - estimates the reciprocal of the condition number of a triangular band
matrix A, in either the 1-norm or the infinity-norm

• DTBRFS - provides error bounds and backward error estimates for the solution to
a system of linear equations with a triangular band coefficient matrix

• DTBTRS - solves a triangular system

• DTGEVC - computes some or all of the right and/or left generalized eigenvectors
of a pair of real upper triangular matrices (A,B)

• DTGEX2 - swaps adjacent diagonal blocks (A11, B11) and (A22, B22)

• DTGEXC - reorders the generalized real Schur decomposition of a real matrix pair
(A,B)

• DTGSEN - reorders the generalized real Schur decomposition of a real matrix pair
(A, B)

• DTGSJA - computes the generalized singular value decomposition (GSVD) of two
real upper triangular (or trapezoidal) matrices A and B

• DTGSNA - estimates reciprocal condition numbers for specified eigenvalues and/or
eigenvectors of a matrix pair (A, B) in generalized real Schur canonical form

• DTGSY2 - solves the generalized Sylvester equation

• DTGSYL - solves the generalized Sylvester equation

• DTPCON - estimates the reciprocal of the condition number of a packed triangular
matrix A, in either the 1-norm or the infinity-norm

• DTPRFS - provides error bounds and backward error estimates for the solution to
a system of linear equations with a triangular packed coefficient matrix

• DTPTRI - computes the inverse of a real upper or lower triangular matrix A stored
in packed format

• DTPTRS - solves a triangular system

• DTRCON - estimates the reciprocal of the condition number of a triangular matrix
A, in either the 1-norm or the infinity-norm

• DTREVC - computes some or all of the right and/or left eigenvectors of a real
upper quasi-triangular matrix T
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• DTREXC - reorders the real Schur factorization of a real matrix so that the diagonal
block of T with row index IFST is moved to row ILST

• DTRID - computes the solution to a real system of linear equations where A is an
N-by-N tridiagonal matrix, and x and b are vectors of length N

• DTRRFS - provide serror bounds and backward error estimates for the solution to
a system of linear equations with a triangular coefficient matrix

• DTRSEN - reorders the real Schur factorization of a real matrix so that a selected
cluster of eigenvalues appears in the leading diagonal blocks of the upper
quasi-triangular matrix T

• DTRSNA - estimates reciprocal condition numbers for specified eigenvalues and/or
right eigenvectors of a real upper quasi-triangular matrix T

• DTRSYL - solves the real Sylvester matrix equation

• DTRTI2 - computes the inverse of a real upper or lower triangular matrix

• DTRTRI - computes the inverse of a real upper or lower triangular matrix A

• DTRTRS - solves a triangular system

• DTZRQF - routine is deprecated and has been replaced by routine DTZRZF

• DTZRZF - reduces the M-by-N real upper trapezoidal matrix A to upper triangular
form by means of orthogonal transformations

• DZSUM1 - takes the sum of the absolute values of a complex vector and returns a
double precision result

• ICMAX1 - finds the index of the element whose real part has maximum absolute
value

• ILAENV - called from the LAPACK routines to choose problem-dependent
parameters for the local environment

• IZMAX1 - finds the index of the element whose real part has maximum absolute
value

• LSAME - return .TRUE

• LSAMEN - tests if the first N letters of CA are the same as the first N letters of CB,
regardless of case
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• SBDSDC - computes the singular value decomposition (SVD) of a real N-by-N
(upper or lower) bidiagonal matrix B

• SBDSQR - computes the singular value decomposition (SVD) of a real N-by-N
(upper or lower) bidiagonal matrix B

• SCSUM1 - take the sum of the absolute values of a complex vector and returns a
single precision result

• SDISNA - computes the reciprocal condition numbers for the eigenvectors of a real
symmetric or complex Hermitian matrix or for the left or right singular vectors of
a general m-by-n matrix

• SECOND - returns the user time for a process in seconds

• SGBBRD - reduces a real general m-by-n band matrix A to upper bidiagonal form
B by an orthogonal transformation

• SGBCON - estimates the reciprocal of the condition number of a real general band
matrix A, in either the 1-norm or the infinity-norm,

• SGBEQU - computes row and column scalings intended to equilibrate an M-by-N
band matrix A and reduce its condition number

• SGBRFS - improves the computed solution to a system of linear equations when
the coefficient matrix is banded

• SGBSV - computes the solution to a real system of linear equations where A is a
band matrix of order N with KL subdiagonals and KU superdiagonals, and X and
B are N-by-NRHS matrices

• SGBSVX - uses the LU factorization to compute the solution to a real system of
linear equations

• SGBTF2 - computes an LU factorization of a real m-by-n band matrix A using
partial pivoting with row interchanges

• SGBTRF - computes an LU factorization of a real m-by-n band matrix A using
partial pivoting with row interchanges

• SGBTRS - solves a system of linear equations with a general band matrix A using
the LU factorization computed by SGBTRF

• SGEBAK - forms the right or left eigenvectors of a real general matrix by backward
transformation on the computed eigenvectors of the balanced matrix output by
SGEBAL
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• SGEBAL - balances a general real matrix A

• SGEBD2 - reduces a real general m by n matrix A to upper or lower bidiagonal
form B by an orthogonal transformation

• SGEBRD - reduces a general real M-by-N matrix A to upper or lower bidiagonal
form B by an orthogonal transformation

• SGECON - estimates the reciprocal of the condition number of a general real matrix
A, in either the 1-norm or the infinity-norm, using the LU factorization computed
by SGETRF

• SGEEQU - computes row and column scalings intended to equilibrate an M-by-N
matrix A and reduce its condition number

• SGEES - computes for an N-by-N real nonsymmetric matrix A, the eigenvalues,
the real Schur form T, and, optionally, the matrix of Schur vectors Z

• SGEESX - computes for an N-by-N real nonsymmetric matrix A, the eigenvalues,
the real Schur form T, and, optionally, the matrix of Schur vectors Z

• SGEEV - computes for an N-by-N real nonsymmetric matrix A, the eigenvalues
and, optionally, the left and/or right eigenvectors

• SGEEVX - computes for an N-by-N real nonsymmetric matrix A, the eigenvalues
and, optionally, the left and/or right eigenvectors

• SGEGS - routine is deprecated and has been replaced by routine SGGES

• SGEGV - routine is deprecated and has been replaced by routine SGGEV

• SGEHD2 - reduces a real general matrix A to upper Hessenberg form H by an
orthogonal similarity transformation

• SGEHRD - reduces a real general matrix A to upper Hessenberg form H by an
orthogonal similarity transformation

• SGELQ2 - computes an LQ factorization of a real m by n matrix A

• SGELQF - computes an LQ factorization of a real M-by-N matrix A

• SGELS - solves overdetermined or underdetermined real linear systems involving
an M-by-N matrix A, or its transpose, using a QR or LQ factorization of A

• SGELSD - computes the minimum-norm solution to a real linear least squares
problem
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• SGELSS - computes the minimum norm solution to a real linear least squares
problem

• SGELSX - routine is deprecated and has been replaced by routine SGELSY

• SGELSY - computes the minimum-norm solution to a real linear least squares
problem

• SGEQL2 - computes a QL factorization of a real m by n matrix A

• SGEQLF - computes a QL factorization of a real M-by-N matrix A

• SGEQP3 - computes a QR factorization with column pivoting of a matrix A

• SGEQPF - routine is deprecated and has been replaced by routine SGEQP3

• SGEQR2 - computes a QR factorization of a real m by n matrix A

• SGEQRF - computes a QR factorization of a real M-by-N matrix A

• SGERFS - improves the computed solution to a system of linear equations and
provides error bounds and backward error estimates for the solution

• SGERQ2 - computes an RQ factorization of a real m by n matrix A

• SGERQF - computes an RQ factorization of a real M-by-N matrix A

• SGESC2 - solves a system of linear equations with a general N-by-N matrix A
using the LU factorization with complete pivoting computed by SGETC2

• SGESDD - computes the singular value decomposition (SVD) of a real M-by-N
matrix A

• SGESV - computes the solution to a real system of linear equations

• SGESVD - computes the singular value decomposition (SVD) of a real M-by-N
matrix A

• SGESVX - uses the LU factorization to compute the solution to a real system of
linear equations

• SGETC2 - computes an LU factorization with complete pivoting of the n-by-n
matrix A

• SGETF2 - computes an LU factorization of a general m-by-n matrix A using partial
pivoting with row interchanges

102 007–4325–001



Scientific Computing Software Library (SCSL) User’s Guide

• SGETRF - computes an LU factorization of a general M-by-N matrix A using
partial pivoting with row interchanges

• SGETRI - computes the inverse of a matrix using the LU factorization computed
by SGETRF

• SGETRS - solves a system of linear equations with a general N-by-N matrix A
using the LU factorization computed by SGETRF

• SGGBAK - forms the right or left eigenvectors of a real generalized eigenvalue
problem by backward transformation on the computed eigenvectors of the
balanced pair of matrices output by SGGBAL

• SGGBAL - balances a pair of general real matrices (A,B)

• SGGES - computes for a pair of N-by-N real nonsymmetric matrices (A,B),

• SGGESX - computes for a pair of N-by-N real nonsymmetric matrices (A,B), the
generalized eigenvalues, the real Schur form (S,T), and,

• SGGEV - computes for a pair of N-by-N real nonsymmetric matrices (A,B)

• SGGEVX - computes for a pair of N-by-N real nonsymmetric matrices (A,B)

• SGGGLM - solves a general Gauss-Markov linear model (GLM) problem

• SGGHRD - reduces a pair of real matrices (A,B) to generalized upper Hessenberg
form using orthogonal transformations, where A is a general matrix and B is
upper triangular

• SGGLSE - solves the linear equality-constrained least squares (LSE) problem

• SGGQRF - computes a generalized QR factorization of an N-by-M matrix A and an
N-by-P matrix B

• SGGRQF - computes a generalized RQ factorization of an M-by-N matrix A and a
P-by-N matrix B

• SGGSVD - computes the generalized singular value decomposition (GSVD) of an
M-by-N real matrix A and P-by-N real matrix B

• SGGSVP - computes orthogonal matrices U, V and Q

• SGTCON - estimates the reciprocal of the condition number of a real tridiagonal
matrix A using the LU factorization as computed by SGTTRF

007–4325–001 103



A: Supported SCSL Routines

• SGTRFS - improves the computed solution to a system of linear equations when
the coefficient matrix is tridiagonal

• SGTSV - solves the equation AX = B,

• SGTSVX - uses the LU factorization to compute the solution to a real system of
linear equations

• SGTTRF - computes an LU factorization of a real tridiagonal matrix A using
elimination with partial pivoting and row interchanges

• SGTTRS - solves one of two systems of equations

• SGTTS2 - solves one of two systems of equations

• SHGEQZ - implements a single-/double-shift version of the QZ method for finding
generalized eigenvalues

• SHSEIN - uses inverse iteration to find specified right and/or left eigenvectors of a
real upper Hessenberg matrix H

• SHSEQR - computes the eigenvalues of a real upper Hessenberg matrix H and,
optionally, the matrices T and Z from the Schur decomposition

• SLABAD - takes as input the values computed by SLAMCH for underflow and
overflow, and returns the square root of each of these values if the log of LARGE
is sufficiently large

• SLABRD - reduces the first NB rows and columns of a real general m by n matrix
A to upper or lower bidiagonal form by an orthogonal transformation

• SLACON - estimates the 1-norm of a square, real matrix A

• SLACPY - copies all or part of a two-dimensional matrix A to another matrix B

• SLADIV - performs complex division in real arithmetic

• SLAE2 - computes the eigenvalues of a 2-by-2 symmetric matrix

• SLAEBZ - contains the iteration loops which compute and use the function N(w)

• SLAED0 - computes all eigenvalues and corresponding eigenvectors of a
symmetric tridiagonal matrix using the divide and conquer method

• SLAED1 - computes the updated eigensystem of a diagonal matrix after
modification by a rank-one symmetric matrix
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• SLAED2 - merges the two sets of eigenvalues together into a single sorted set

• SLAED3 - finds the roots of the secular equation, as defined by the values in D, W,
and RHO, between 1 and K

• SLAED4 - computes the Ith updated eigenvalue of a symmetric rank-one
modification to a diagonal matrix

• SLAED5 - computes the Ith eigenvalue of a symmetric rank-one modification of a
2-by-2 diagonal matrix

• SLAED6 - computes the positive or negative root (closest to the origin)

• SLAED7 - computes the updated eigensystem of a diagonal matrix after
modification by a rank-one symmetric matrix

• SLAED8 - merges the two sets of eigenvalues together into a single sorted set

• SLAED9 - finds the roots of the secular equation, as defined by the values in D, Z,
and RHO, between KSTART and KSTOP

• SLAEDA - computes the Z vector corresponding to the merge step in the CURLVLth

step of the merge process with TLVLS steps for the CURPBMth problem

• SLAEIN - uses inverse iteration to find a right or left eigenvector corresponding to
the eigenvalue (WR,WI) of a real upper Hessenberg matrix H

• SLAEV2 - computes the eigendecomposition of a 2-by-2 symmetric matrix

• SLAEXC - swaps adjacent diagonal blocks T11 and T22 of order 1 or 2 in an upper
quasi-triangular matrix T by an orthogonal similarity transformation

• SLAG2 - computes the eigenvalues of a 2 x 2 generalized eigenvalue problem with
scaling as necessary

• SLAGS2 - computes 2-by-2 orthogonal matrices

• SLAGTF - factorizes the matrix where T is an n by n tridiagonal matrix and
lambda is a scalar

• SLAGTM - performs a matrix-vector product

• SLAGTS - solves one of twi systems of equations

• SLAGV2 - computes the Generalized Schur factorization of a real 2-by-2 matrix
pencil (A,B) where B is upper triangular
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• SLAHQR - an auxiliary routine called by SHSEQR to update the eigenvalues and
Schur decomposition already computed by SHSEQR

• SLAHRD - reduces the first NB columns of a real general n-by-(n-k+1) matrix A so
that elements below the kth subdiagonal are zero

• SLAIC1 - applies one step of incremental condition estimation in its simplest
version

• SLALN2 - solves a system with possible scaling ("s")and perturbation of A

• SLALS0 - applies back the multiplying factors of either the left or the right
singular vector matrix of a diagonal matrix

• SLALSA - an itermediate step in solving the least squares problem by computing
the SVD of the coefficient matrix in compact form

• SLALSD - uses the singular value decomposition of A to solve the least squares
problem

• SLAMCH - determines single precision machine parameters

• SLAMRG - creates a permutation list that merges the elements of A (which is
composed of two independently sorted sets) into a single set which is sorted in
ascending order

• SLANGB - returns the value of the one norm, or the Frobenius norm, or the infinity
norm, or the element of largest absolute value of an n by n band matrix A

• SLANGE - returns the value of the one norm, or the Frobenius norm, or the infinity
norm, or the element of largest absolute value of a real matrix A

• SLANGT - returns the value of the one norm, or the Frobenius norm, or the infinity
norm, or the element of largest absolute value of a real tridiagonal matrix A

• SLANHS - returns the value of the one norm, or the Frobenius norm, or the infinity
norm, or the element of largest absolute value of a Hessenberg matrix A

• SLANSB - returns the value of the one norm, or the Frobenius norm, or the infinity
norm, or the element of largest absolute value of an n by n symmetric band matrix
A, with k super-diagonals

• SLANSP - returns the value of the one norm, or the Frobenius norm, or the infinity
norm, or the element of largest absolute value of a real symmetric matrix A,
supplied in packed form
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• SLANST - returns the value of the one norm, or the Frobenius norm, or the infinity
norm, or the element of largest absolute value of a real symmetric tridiagonal
matrix A

• SLANSY - returns the value of the one norm, or the Frobenius norm, or the infinity
norm, or the element of largest absolute value of a real symmetric matrix A

• SLANTB - returns the value of the one norm, or the Frobenius norm, or the infinity
norm, or the element of largest absolute value of an n by n triangular band matrix
A

• SLANTP - returns the value of the one norm, or the Frobenius norm, or the infinity
norm, or the element of largest absolute value of a triangular matrix A

• SLANTR - returns the value of the one norm, or the Frobenius norm, or the infinity
norm, or the element of largest absolute value of a trapezoidal or triangular matrix
A

• SLANV2 - computes the Schur factorization of a real 2-by-2 nonsymmetric matrix
in standard form

• SLAPLL - computes the QR factorization of A=QR

• SLAPMT - rearranges the columns of the M by N matrix X

• SLAPY2 - returns sqrt(x2+y2) without causing unnecessary overflow

• SLAPY3 - returns sqrt(x2+y2+z2) without causing unnecessary overflow

• SLAQGB - equilibrates a general M by N band matrix A with KL subdiagonals and
KU superdiagonals

• SLAQGE - equilibrates a general M by N matrix A using the row and scaling
factors in the vectors R and C

• SLAQP2 - computes a QR factorization with column pivoting of the block
A(OFFSET+1:M,1:N)

• SLAQPS - computes a step of QR factorization with column pivoting of a real
M-by-N matrix A by using Blas3

• SLAQSB - equilibrates a symmetric band matrix A using the scaling factors in the
vector S

• SLAQSP - equilibrates a symmetric matrix A using the scaling factors in the vector
S

007–4325–001 107



A: Supported SCSL Routines

• SLAQSY - equilibrates a symmetric matrix A using the scaling factors in the vector
S

• SLAQTR - solves a real quasi-triangular system

• SLAR1V - computes the (scaled) rth column of the inverse of the sumbmatrix of a
tridiagonal matrix

• SLAR2V - applies a vector of real plane rotations from both sides to a sequence of
2-by-2 real symmetric matrices, defined by the elements of the vectors x, y and z

• SLARF - applies a real elementary reflector H to a real m by n matrix C, from
either the left or the right

• SLARFB - applies a real block reflector H or its transpose H’ to a real m by n
matrix C, from either the left or the right

• SLARFG - generates a real elementary reflector H of order n

• SLARFT - forms the triangular factor T of a real block reflector H of order n, which
is defined as a product of k elementary reflectors

• SLARFX - applies a real elementary reflector H to a real m by n matrix C, from
either the left or the right

• SLARGV - generates a vector of real plane rotations, determined by elements of the
real vectors x and y

• SLARNV - returns a vector of n random real numbers from a uniform or normal
distribution

• SLARRB - does limited bisection to locate eigenvalues

• SLARRE - sets "small"off-diagonal elements to zero

• SLARRF - finds a robust representation of input values.

• SLARRV - computes the eigenvectors of the tridiagonal matrix

• SLARTG - generates a plane rotation

• SLARTV - applies a vector of real plane rotations to elements of the real vectors x
and y

• SLARUV - returns a vector of n random real numbers from a uniform (0,1)
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• SLARZ - applies a real elementary reflector H to a real M-by-N matrix C, from
either the left or the right

• SLARZB - applies a real block reflector H or its transpose to a real distributed
M-by-N C from the left or the right

• SLARZT - forms the triangular factor T of a real block reflector H

• SLAS2 - computes the singular values of the 2-by-2 matrix

• SLASCL - multiplie the M by N real matrix A by the real scalar CTO/CFROM

• SLASD0 - computes the singular value decomposition (SVD) of a real upper
bidiagonal N-by-M matrix B

• SLASD1 - computes the SVD of an upper bidiagonal N-by-M matrix B,

• SLASD2 - merges the two sets of singular values together into a single sorted set

• SLASD3 - finds all the square roots of the roots of the secular equation, as defined
by the values in D and Z

• SLASD4 - computes the square root of the Ith updated eigenvalue of a positive
symmetric rank-one modification to a positive diagonal matrix

• SLASD5 -computes the square root of the Ith eigenvalue of a positive symmetric
rank-one modification of a 2-by-2 diagonal matrix

• SLASD6 - computes the SVD of an updated upper bidiagonal matrix B obtained by
merging two smaller ones by appending a row

• SLASD7 - merges the two sets of singular values together into a single sorted set

• SLASD8 - finds the square roots of the roots of the secular equation,

• SLASD9 - finds the square roots of the roots of the secular equation,

• SLASDA - computes the singular value decomposition (SVD) of a real upper
bidiagonal N-by-M matrix B with diagonal D and offdiagonal E

• SLASDQ - computes the singular value decomposition (SVD) of a real (upper or
lower) bidiagonal matrix with diagonal D and offdiagonal E, accumulating the
transformations if desired

• SLASDT - creates a tree of subproblems for bidiagonal divide and conquer
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• SLASET - initializes an m-by-n matrix A to BETA on the diagonal and ALPHA on
the offdiagonals

• SLASQ1 - computes the singular values of a real N-by-N bidiagonal matrix with
diagonal D and off-diagonal E

• SLASQ2 - computes all the eigenvalues of the symmetric positive definite
tridiagonal matrix associated with the qd array Z

• SLASQ3 - checks for deflation, computes a shift (TAU) and calls dqds

• SLASQ4 - computes an approximation TAU to the smallest eigenvalue using
values of d from the previous transform

• SLASQ5 - computes sone dqds transform in ping-pong form, one version for IEEE
machines another for non IEEE machines

• SLASQ6 - computes one dqd (shift equal to zero) transform in ping-pong form,
with protection against underflow and overflow

• SLASR - performs a transformation

• SLASRT - sorts numbers

• SLASSQ - returns the values scl and smsq

• SLASV2 - computes the singular value decomposition of a 2-by-2 triangular matrix

• SLASWP - performs a series of row interchanges on the matrix A

• SLASY2 - solves for the N1 by N2 matrix X

• SLASYF - computes a partial factorization of a real symmetric matrix A using the
Bunch-Kaufman diagonal pivoting method

• SLATBS - solves one of two triangular systems with scaling to prevent overflow

• SLATDF - computes a contribution to the reciprocal Dif-estimate

• SLATPS - solves one of two triangular systems with scaling to prevent overflow

• SLATRD - reduces NB rows and columns of a real symmetric matrix A to
symmetric tridiagonal form

• SLATRS - solves one of two triangular systems with scaling to prevent overflow
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• SLATRZ - factors the M-by-(M+L) real upper trapezoidal matrix by means of
orthogonal transformations

• SLATZM - routine is deprecated and has been replaced by routine SORMRZ

• SLAUU2 - computes the product U È U’ or L’ È L

• SLAUUM - computes the product U È U’ or L’ È L, where the triangular factor U
or L is stored in the upper or lower triangular part of the array A

• SOPGTR - generates a real orthogonal matrix Q as returned by SSPTRD using
packed storage

• SOPMTR - overwrites the general real M-by-N matrix C

• SORG2L - generates an m by n real matrix Q with orthonormal columns,

• SORG2R - generates an m by n real matrix Q with orthonormal columns,

• SORGBR - generates one of the real orthogonal matrices determined by SGEBRD
when reducing a real matrix A to bidiagonal form

• SORGHR - generates a real orthogonal matrix Q as returned by SGEHRD

• SORGL2 - generates an m by n real matrix Q with orthonormal rows

• SORGLQ - generates an M-by-N real matrix Q with orthonormal rows

• SORGQL - generates an M-by-N real matrix Q with orthonormal columns

• SORGQR - generates an M-by-N real matrix Q with orthonormal columns

• SORGR2 - generates an m by n real matrix Q with orthonormal rows

• SORGRQ - generates an M-by-N real matrix Q with orthonormal rows

• SORGTR - generates a real orthogonal matrix Q as returned by SSYTRD

• SORM2L - overwrites the general real m by n matrix C

• SORM2R - overwrites the general real m by n matrix C with Q

• SORMBR - VECT = ’Q’, SORMBR overwrites the general real M-by-N matrix C with
SIDE = ’L’ SIDE = ’R’ TRANS = ’N’

• SORMHR - overwrites the general real M-by-N matrix C

• SORML2 - overwrites the general real m by n matrix C
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• SORMLQ - overwrites the general real M-by-N matrix C

• SORMQL - overwrites the general real M-by-N matrix C

• SORMQR - overwrites the general real M-by-N matrix C

• SORMR2 - overwrites the general real m by n matrix C

• SORMR3 - overwrites the general real m by n matrix C

• SORMRQ - overwrites the general real M-by-N matrix C

• SORMRZ - overwrites the general real M-by-N matrix C

• SORMTR - overwrites the general real M-by-N matrix C

• SPBCON - estimates the reciprocal of the condition number (in the 1-norm) of a
real symmetric positive definite band matrix using the Cholesky factorization
computed by SPBTRF

• SPBEQU - computes row and column scalings intended to equilibrate a symmetric
positive definite band matrix A and reduce its condition number (with respect to
the two-norm)

• SPBRFS - improves the computed solution to a system of linear equations when
the coefficient matrix is symmetric positive definite and banded

• SPBSTF - computes a split Cholesky factorization of a real symmetric positive
definite band matrix A

• SPBSV - computes the solution to a real system of linear equations

• SPBSVX - uses the Cholesky factorization to compute the solution to a real system
of linear equations

• SPBTF2 - computes the Cholesky factorization of a real symmetric positive
definite band matrix A

• SPBTRF - computes the Cholesky factorization of a real symmetric positive
definite band matrix A

• SPBTRS - solves a system of linear equations with a symmetric positive definite
band matrix A using the Cholesky factorization computed by SPBTRF

• SPOCON - estimates the reciprocal of the condition number (in the 1-norm) of a
real symmetric positive definite matrix using the Cholesky factorization computed
by SPOTRF
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• SPOEQU - computes row and column scalings intended to equilibrate a symmetric
positive definite matrix A and reduce its condition number (with respect to the
two-norm)

• SPORFS - improves the computed solution to a system of linear equations when
the coefficient matrix is symmetric positive definite

• SPOSV - computes the solution to a real system of linear equations

• SPOSVX - uses the Cholesky factorization to compute the solution to a real system
of linear equations

• SPOTF2 - computes the Cholesky factorization of a real symmetric positive
definite matrix A

• SPOTRF - computes the Cholesky factorization of a real symmetric positive
definite matrix A

• SPOTRI - computes the inverse of a real symmetric positive definite matrix A
using the Cholesky factorization computed by SPOTRF

• SPOTRS - solves a system of linear equations with a symmetric positive definite
matrix A using the Cholesky factorization computed by SPOTRF

• SPPCON - estimates the reciprocal of the condition number (in the 1-norm) of a
real symmetric positive definite packed matrix using the Cholesky factorization
computed by SPPTRF

• SPPEQU - computes row and column scalings intended to equilibrate a symmetric
positive definite matrix A in packed storage and reduce its condition number
(with respect to the two-norm)

• SPPRFS - improves the computed solution to a system of linear equations when
the coefficient matrix is symmetric positive definite and packed, and provides
error bounds and backward error estimates for the solution

• SPPSV - computes the solution to a real system of linear equations

• SPPSVX - uses the Cholesky factorization to compute the solution to a real system
of linear equations

• SPPTRF - computes the Cholesky factorization of a real symmetric positive
definite matrix A stored in packed format

• SPPTRI - computes the inverse of a real symmetric positive definite matrix A
using the Cholesky factorization computed by SPPTRF
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• SPPTRS - solves a system of linear equations with a symmetric positive definite
matrix A in packed storage using the Cholesky factorization computed by SPPTRF

• SPTCON - computes the reciprocal of the condition number (in the 1-norm) of a
real symmetric positive definite tridiagonal matrix using the factorization
computed by SPTTRF

• SPTEQR - computes all eigenvalues and, optionally, eigenvectors of a symmetric
positive definite tridiagonal matrix by first factoring the matrix using SPTTRF, and
then calling SBDSQR to compute the singular values of the bidiagonal factor

• SPTRFS - improves the computed solution to a system of linear equations when
the coefficient matrix is symmetric positive definite and tridiagonal, and provides
error bounds and backward error estimates for the solution

• SPTSV - computes the solution to a real system of linear equations

• SPTSVX - uses a factorization to compute the solution to a real system of linear
equations

• SPTTRF - computes the factorization of a real symmetric positive definite
tridiagonal matrix A

• SPTTRS - solves a tridiagonal system

• SPTTS2 - solves a tridiagonal system using the factorization of A computed by
SPTTRF

• SRSCL - multiplies an n-element real vector x by the real scalar 1/a

• SSBEV - computes all the eigenvalues and, optionally, eigenvectors of a real
symmetric band matrix A

• SSBEVD - computes all the eigenvalues and, optionally, eigenvectors of a real
symmetric band matrix A

• SSBEVX - computes selected eigenvalues and, optionally, eigenvectors of a real
symmetric band matrix A

• SSBGST - reduces a real symmetric-definite banded generalized eigenproblem

• SSBGV - computes all the eigenvalues, and optionally, the eigenvectors of a real
generalized symmetric-definite banded eigenproblem

• SSBGVD - computes all the eigenvalues, and optionally, the eigenvectors of a real
generalized symmetric-definite banded eigenproblem
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• SSBGVX - computes selected eigenvalues, and optionally, eigenvectors of a real
generalized symmetric-definite banded eigenproblem

• SSBTRD - reduces a real symmetric band matrix A to symmetric tridiagonal form
T by an orthogonal similarity transformation

• SSPCON - estimates the reciprocal of the condition number (in the 1-norm) of a
real symmetric packed matrix A

• SSPEV - computes all the eigenvalues and, optionally, eigenvectors of a real
symmetric matrix A in packed storage

• SSPEVD - computes all the eigenvalues and, optionally, eigenvectors of a real
symmetric matrix A in packed storage

• SSPEVX - computes selected eigenvalues and, optionally, eigenvectors of a real
symmetric matrix A in packed storage

• SSPGST - reduces a real symmetric-definite generalized eigenproblem to standard
form, using packed storage

• SSPGV - computes all the eigenvalues and, optionally, the eigenvectors of a real
generalized symmetric-definite eigenproblem

• SSPGVD - computes all the eigenvalues, and optionally, the eigenvectors of a real
generalized symmetric-definite eigenproblem

• SSPGVX - computes selected eigenvalues, and optionally, eigenvectors of a real
generalized symmetric-definite eigenproblem

• SSPRFS - improves the computed solution to a system of linear equations when
the coefficient matrix is symmetric indefinite and packed

• SSPSV - computes the solution to a real system of linear equations

• SSPSVX - uses the diagonal pivoting factorization to compute the solution to a real
system of linear equations

• SSPTRD - reduces a real symmetric matrix A stored in packed form to symmetric
tridiagonal form T by an orthogonal similarity transformation

• SSPTRF - computes the factorization of a real symmetric matrix A stored in
packed format using the Bunch-Kaufman diagonal pivoting method

• SSPTRI - computes the inverse of a real symmetric indefinite matrix A in packed
storage using the factorization computed by SSPTRF
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• SSPTRS - solves a system of linear equations with a real symmetric matrix A
stored in packed format using the factorization computed by SSPTRF

• SSTEBZ - computes the eigenvalues of a symmetric tridiagonal matrix T

• SSTEDC - computes all eigenvalues and, optionally, eigenvectors of a symmetric
tridiagonal matrix using the divide and conquer method

• SSTEGR - computes selected eigenvalues and, optionally, eigenvectors of a real
symmetric tridiagonal matrix T

• SSTEIN - computes the eigenvectors of a real symmetric tridiagonal matrix T
corresponding to specified eigenvalues, using inverse iteration

• SSTEQR - computes all eigenvalues and, optionally, eigenvectors of a symmetric
tridiagonal matrix using the implicit QL or QR method

• SSTERF - computes all eigenvalues of a symmetric tridiagonal matrix using the
Pal-Walker-Kahan variant of the QL or QR algorithm

• SSTEV - computes all eigenvalues and, optionally, eigenvectors of a real symmetric
tridiagonal matrix A

• SSTEVD - computes all eigenvalues and, optionally, eigenvectors of a real
symmetric tridiagonal matrix

• SSTEVR - computes selected eigenvalues and, optionally, eigenvectors of a real
symmetric tridiagonal matrix T

• SSTEVX - computes selected eigenvalues and, optionally, eigenvectors of a real
symmetric tridiagonal matrix A

• SSYCON - estimates the reciprocal of the condition number (in the 1-norm) of a
real symmetric matrix A using the factorization computed by SSYTRF

• SSYEV - computes all eigenvalues and, optionally, eigenvectors of a real symmetric
matrix A

• SSYEVD - computes all eigenvalues and, optionally, eigenvectors of a real
symmetric matrix A

• SSYEVR - computes selected eigenvalues and, optionally, eigenvectors of a real
symmetric matrix T

• SSYEVX - computes selected eigenvalues and, optionally, eigenvectors of a real
symmetric matrix A
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• SSYGS2 - reduces a real symmetric-definite generalized eigenproblem to standard
form

• SSYGST - reduces a real symmetric-definite generalized eigenproblem to standard
form

• SSYGV - computes all the eigenvalues, and optionally, the eigenvectors of a real
generalized symmetric-definite eigenproblem

• SSYGVD - computes all the eigenvalues, and optionally, the eigenvectors of a real
generalized symmetric-definite eigenproblem

• SSYGVX - computes selected eigenvalues, and optionally, eigenvectors of a real
generalized symmetric-definite eigenproblem

• SSYRFS - improves the computed solution to a system of linear equations when
the coefficient matrix is symmetric indefinite

• SSYSV - computes the solution to a real system of linear equations

• SSYSVX - uses the diagonal pivoting factorization to compute the solution to a real
system of linear equations

• SSYTD2 - reduces a real symmetric matrix A to symmetric tridiagonal form T by
an orthogonal similarity transformation

• SSYTF2 - computes the factorization of a real symmetric matrix A using the
Bunch-Kaufman diagonal pivoting method

• SSYTRD - reduces a real symmetric matrix A to real symmetric tridiagonal form T
by an orthogonal similarity transformation

• SSYTRF - computes the factorization of a real symmetric matrix A using the
Bunch-Kaufman diagonal pivoting method

• SSYTRI - computes the inverse of a real symmetric indefinite matrix A using the
factorization computed by SSYTRF

• SSYTRS - solves a system of linear equations with a real symmetric matrix A
using the factorization computed by SSYTRF

• STBCON - estimates the reciprocal of the condition number of a triangular band
matrix A, in either the 1-norm or the infinity-norm

• STBRFS - provides error bounds and backward error estimates for the solution to
a system of linear equations with a triangular band coefficient matrix
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• STBTRS - solves a triangular system of the form

• STGEVC - computes some or all of the right and/or left generalized eigenvectors
of a pair of real upper triangular matrices (A,B)

• STGEX2 - swaps adjacent diagonal blocks (A11, B11) and (A22, B22) of size 1-by-1
or 2-by-2 in an upper (quasi) triangular matrix pair (A, B) by an orthogonal
equivalence transformation

• STGEXC - reorders the generalized real Schur decomposition of a real matrix pair
(A,B) using an orthogonal equivalence transformation

• STGSEN - reorders the generalized real Schur decomposition of a real matrix pair
(A, B)

• STGSJA - computes the generalized singular value decomposition (GSVD) of two
real upper triangular (or trapezoidal) matrices A and B

• STGSNA - estimates reciprocal condition numbers for specified eigenvalues and/or
eigenvectors of a matrix pair

• STGSY2 - solves the generalized Sylvester equation

• STGSYL - solves the generalized Sylvester equation

• STPCON - estimates the reciprocal of the condition number of a packed triangular
matrix A, in either the 1-norm or the infinity-norm

• STPRFS - provides error bounds and backward error estimates for the solution to
a system of linear equations with a triangular packed coefficient matrix

• STPTRI - computes the inverse of a real upper or lower triangular matrix A stored
in packed format

• STPTRS - solves a triangular system

• STRCON - estimates the reciprocal of the condition number of a triangular matrix
A, in either the 1-norm or the infinity-norm

• STREVC - computes some or all of the right and/or left eigenvectors of a real
upper quasi-triangular matrix T

• STREXC - reorders the real Schur factorization of a real matrix

• STRID - computes the solution to a real system of linear equations
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• STRRFS - provides error bounds and backward error estimates for the solution to
a system of linear equations with a triangular coefficient matrix

• STRSEN - reorders the real Schur factorization of a real matrix

• STRSNA - estimates reciprocal condition numbers for specified eigenvalues and/or
right eigenvectors of a real upper quasi-triangular matrix T

• STRSYL - solves the real Sylvester matrix equation

• STRTI2 - computes the inverse of a real upper or lower triangular matrix

• STRTRI - computes the inverse of a real upper or lower triangular matrix A

• STRTRS - solves a triangular system

• STZRQF - routine is deprecated and has been replaced by routine STZRZF

• STZRZF - reduces the M-by-N real upper trapezoidal matrix A to upper triangular
form by means of orthogonal transformations

• XERBLA - error handler for the LAPACK routines

• ZBDSQR - computes the singular value decomposition (SVD) of a real N-by-N
(upper or lower) bidiagonal matrix B

• ZDRSCL - multiplies an n-element complex vector x by the real scalar 1/a

• ZGBBRD - reduces a complex general m-by-n band matrix A to real upper
bidiagonal form B by a unitary transformation

• ZGBCON - estimates the reciprocal of the condition number of a complex general
band matrix A, in either the 1-norm or the infinity-norm,

• ZGBEQU - computes row and column scalings intended to equilibrate an M-by-N
band matrix A and reduce its condition number

• ZGBRFS - improves the computed solution to a system of linear equations when
the coefficient matrix is banded, and provides error bounds and backward error
estimates for the solution

• ZGBSV - computes the solution to a complex system of linear equations where A is
a band matrix of order N with KL subdiagonals and KU superdiagonals, and X
and B are N-by-NRHS matrices

• ZGBSVX - uses the LU factorization to compute the solution to a complex system
of linear equations
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• ZGBTF2 - computes an LU factorization of a complex m-by-n band matrix A using
partial pivoting with row interchanges

• ZGBTRF - computes an LU factorization of a complex m-by-n band matrix A using
partial pivoting with row interchanges

• ZGBTRS - solves a system of linear equations with a general band matrix A using
the LU factorization computed by ZGBTRF

• ZGEBAK - forms the right or left eigenvectors of a complex general matrix by
backward transformation on the computed eigenvectors of the balanced matrix
output by ZGEBAL

• ZGEBAL - balances a general complex matrix A

• ZGEBD2 - reduces a complex general m by n matrix A to upper or lower real
bidiagonal form B by a unitary transformation

• ZGEBRD - reduces a general complex M-by-N matrix A to upper or lower
bidiagonal form B by a unitary transformation

• ZGECON - estimates the reciprocal of the condition number of a general complex
matrix A, in either the 1-norm or the infinity-norm, using the LU factorization
computed by ZGETRF

• ZGEEQU - computes row and column scalings intended to equilibrate an M-by-N
matrix A and reduce its condition number

• ZGEES - computes for an N-by-N complex nonsymmetric matrix A, the
eigenvalues, the Schur form T, and, optionally, the matrix of Schur vectors Z

• ZGEESX - computes for an N-by-N complex nonsymmetric matrix A, the
eigenvalues, the Schur form T, and, optionally, the matrix of Schur vectors Z

• ZGEEV - computes for an N-by-N complex nonsymmetric matrix A, the
eigenvalues and, optionally, the left and/or right eigenvectors

• ZGEEVX - computes for an N-by-N complex nonsymmetric matrix A, the
eigenvalues and, optionally, the left and/or right eigenvectors

• ZGEGS - routine is deprecated and has been replaced by routine ZGGES

• ZGEGV - routine is deprecated and has been replaced by routine ZGGEV

• ZGEHD2 - reduces a complex general matrix A to upper Hessenberg form H by a
unitary similarity transformation
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• ZGEHRD - reduces a complex general matrix A to upper Hessenberg form H by a
unitary similarity transformation

• ZGELQ2 - computes an LQ factorization of a complex m by n matrix A

• ZGELQF - computes an LQ factorization of a complex M-by-N matrix A

• ZGELS - solves overdetermined or underdetermined complex linear systems
involving an M-by-N matrix A, or its conjugate-transpose, using a QR or LQ
factorization of A

• ZGELSD - computes the minimum-norm solution to a real linear least squares
problem

• ZGELSS - computes the minimum norm solution to a complex linear least squares
problem

• ZGELSX - routine is deprecated and has been replaced by routine ZGELSY

• ZGELSY - computes the minimum-norm solution to a complex linear least squares
problem

• ZGEQL2 - computes a QL factorization of a complex m by n matrix A

• ZGEQLF - computes a QL factorization of a complex M-by-N matrix A

• ZGEQP3 - computes a QR factorization with column pivoting of a matrix A

• ZGEQPF - routine is deprecated and has been replaced by routine ZGEQP3

• ZGEQR2 - computes a QR factorization of a complex m by n matrix A

• ZGEQRF - computes a QR factorization of a complex M-by-N matrix A

• ZGERFS - improves the computed solution to a system of linear equations and
provides error bounds and backward error estimates for the solution

• ZGERQ2 - computes an RQ factorization of a complex m by n matrix A

• ZGERQF - computes an RQ factorization of a complex M-by-N matrix A

• ZGESC2 - solves a system of linear equations with a general N-by-N matrix A
using the LU factorization with complete pivoting computed by ZGETC2

• ZGESDD - computes the singular value decomposition (SVD) of a complex M-by-N
matrix A
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• ZGESV - computes the solution to a complex system of linear equations

• ZGESVD - computes the singular value decomposition (SVD) of a complex M-by-N
matrix A

• ZGESVX - uses the LU factorization to compute the solution to a complex system
of linear equations

• ZGETC2 - computes an LU factorization, using complete pivoting, of the n-by-n
matrix A

• ZGETF2 - computes an LU factorization of a general m-by-n matrix A using partial
pivoting with row interchanges

• ZGETRF - computes an LU factorization of a general M-by-N matrix A using
partial pivoting with row interchanges

• ZGETRI - computes the inverse of a matrix using the LU factorization computed
by ZGETRF

• ZGETRS - solves a system of linear equations with a general N-by-N matrix A
using the LU factorization computed by ZGETRF

• ZGGBAK - forms the right or left eigenvectors of a complex generalized eigenvalue
problem by backward transformation on the computed eigenvectors of the
balanced pair of matrices output by ZGGBAL

• ZGGBAL - balances a pair of general complex matrices (A,B)

• ZGGES - computes for a pair of N-by-N complex nonsymmetric matrices (A,B), the
generalized eigenvalues, the generalized complex Schur form (S, T), and
optionally left and/or right Schur vectors (VSL and VSR)

• ZGGESX - computes for a pair of N-by-N complex nonsymmetric matrices (A,B),
the generalized eigenvalues, the complex Schur form (S,T),

• ZGGEV - computes for a pair of N-by-N complex nonsymmetric matrices (A,B), the
generalized eigenvalues, and optionally, the left and/or right generalized
eigenvectors

• ZGGEVX - computes for a pair of N-by-N complex nonsymmetric matrices (A,B)
the generalized eigenvalues, and optionally, the left and/or right generalized
eigenvectors

• ZGGGLM - solves a general Gauss-Markov linear model (GLM) problem
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• ZGGHRD - reduces a pair of complex matrices (A,B) to generalized upper
Hessenberg form using unitary transformations, where A is a general matrix and
B is upper triangular

• ZGGLSE - solves the linear equality-constrained least squares (LSE) problem

• ZGGQRF - computes a generalized QR factorization of an N-by-M matrix A and an
N-by-P matrix B

• ZGGRQF - computes a generalized RQ factorization of an M-by-N matrix A and a
P-by-N matrix B

• ZGGSVD - computes the generalized singular value decomposition (GSVD) of an
M-by-N complex matrix A and P-by-N complex matrix B

• ZGGSVP - computes unitary matrices U, V and Q

• ZGTCON - estimates the reciprocal of the condition number of a complex
tridiagonal matrix A using the LU factorization as computed by ZGTTRF

• ZGTRFS - improves the computed solution to a system of linear equations when
the coefficient matrix is tridiagonal, and provides error bounds and backward
error estimates for the solution

• ZGTSV - solves the equation AX = B

• ZGTSVX - uses the LU factorization to compute the solution to a complex system
of linear equations

• ZGTTRF - computes an LU factorization of a complex tridiagonal matrix A using
elimination with partial pivoting and row interchanges

• ZGTTRS - solves one of the systems of equations

• ZGTTS2 - solves one of the systems of equations

• ZHBEV - computes all the eigenvalues and, optionally, eigenvectors of a complex
Hermitian band matrix A

• ZHBEVD - computes all the eigenvalues and, optionally, eigenvectors of a complex
Hermitian band matrix A

• ZHBEVX - computes selected eigenvalues and, optionally, eigenvectors of a
complex Hermitian band matrix A
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• ZHBGST - reduces a complex Hermitian-definite banded generalized eigenproblem
to standard form

• ZHBGV - computes all the eigenvalues, and optionally, the eigenvectors of a
complex generalized Hermitian-definite banded eigenproblem

• ZHBGVD - computes all the eigenvalues, and optionally, the eigenvectors of a
complex generalized Hermitian-definite banded eigenproblem

• ZHBGVX - computes all the eigenvalues, and optionally, the eigenvectors of a
complex generalized Hermitian-definite banded eigenproblem

• ZHBTRD - reduces a complex Hermitian band matrix A to real symmetric
tridiagonal form T by a unitary similarity transformation

• ZHECON - estimates the reciprocal of the condition number of a complex Hermitian
matrix A using the factorization computed by ZHETRF

• ZHEEV - computes all eigenvalues and, optionally, eigenvectors of a complex
Hermitian matrix A

• ZHEEVD - computes all eigenvalues and, optionally, eigenvectors of a complex
Hermitian matrix A

• ZHEEVR - computes selected eigenvalues and, optionally, eigenvectors of a
complex Hermitian matrix T

• ZHEEVX - computes selected eigenvalues and, optionally, eigenvectors of a
complex Hermitian matrix A

• ZHEGS2 - reduces a complex Hermitian-definite generalized eigenproblem to
standard form

• ZHEGST - reduces a complex Hermitian-definite generalized eigenproblem to
standard form

• ZHEGV - computes all the eigenvalues, and optionally, the eigenvectors of a
complex generalized Hermitian-definite eigenproblem

• ZHEGVD - computes all the eigenvalues, and optionally, the eigenvectors of a
complex generalized Hermitian-definite eigenproblem

• ZHEGVX - computes selected eigenvalues, and optionally, eigenvectors of a
complex generalized Hermitian-definite eigenproblem
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• ZHERFS - improves the computed solution to a system of linear equations when
the coefficient matrix is Hermitian indefinite, and provides error bounds and
backward error estimates for the solution

• ZHESV - computes the solution to a complex system of linear equations

• ZHESVX - uses the diagonal pivoting factorization to compute the solution to a
complex system of linear equations

• ZHETD2 - reduces a complex Hermitian matrix A to real symmetric tridiagonal
form T by a unitary similarity transformation

• ZHETF2 - computes the factorization of a complex Hermitian matrix A using the
Bunch-Kaufman diagonal pivoting method

• ZHETRD - reduces a complex Hermitian matrix A to real symmetric tridiagonal
form T by a unitary similarity transformation

• ZHETRF - computes the factorization of a complex Hermitian matrix A using the
Bunch-Kaufman diagonal pivoting method

• ZHETRI - computes the inverse of a complex Hermitian indefinite matrix A using
the factorization computed by ZHETRF

• ZHETRS - solves a system of linear equations with a complex Hermitian matrix A
using the factorization computed by ZHETRF

• ZHGEQZ - implements a single-shift version of the QZ method for finding
generalized eigenvalues

• ZHPCON - estimates the reciprocal of the condition number of a complex Hermitian
packed matrix A using the factorization computed by ZHPTRF

• ZHPEV - computes all the eigenvalues and, optionally, eigenvectors of a complex
Hermitian matrix in packed storage

• ZHPEVD - computes all the eigenvalues and, optionally, eigenvectors of a complex
Hermitian matrix A in packed storage

• ZHPEVX - computes selected eigenvalues and, optionally, eigenvectors of a
complex Hermitian matrix A in packed storage

• ZHPGST - reduces a complex Hermitian-definite generalized eigenproblem to
standard form, using packed storage
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• ZHPGV - computes all the eigenvalues and, optionally, the eigenvectors of a
complex generalized Hermitian-definite eigenproblem

• ZHPGVD - computes all the eigenvalues and, optionally, the eigenvectors of a
complex generalized Hermitian-definite eigenproblem

• ZHPGVX - computes selected eigenvalues and, optionally, eigenvectors of a
complex generalized Hermitian-definite eigenproblem

• ZHPRFS - improves the computed solution to a system of linear equations when
the coefficient matrix is Hermitian indefinite and packed, and provides error
bounds and backward error estimates for the solution

• ZHPSV - computes the solution to a complex system of linear equations

• ZHPSVX - uses the diagonal pivoting factorization to compute the solution to a
complex system of linear equations

• ZHPTRD - reduces a complex Hermitian matrix A stored in packed form to real
symmetric tridiagonal form T by a unitary similarity transformation

• ZHPTRF - computes the factorization of a complex Hermitian packed matrix A
using the Bunch-Kaufman diagonal pivoting method

• ZHPTRI - computes the inverse of a complex Hermitian indefinite matrix A in
packed storage using the factorization computed by ZHPTRF

• ZHPTRS - solves a system of linear equations with a complex Hermitian matrix A
stored in packed format using the factorization computed by ZHPTRF

• ZHSEIN - uses inverse iteration to find specified right and/or left eigenvectors of a
complex upper Hessenberg matrix H

• ZHSEQR - computes the eigenvalues of a complex upper Hessenberg matrix H,
and, optionally, the matrices T and Z from the Schur decomposition

• ZLABRD - reduces the first NB rows and columns of a complex general m by n
matrix A to upper or lower real bidiagonal form by a unitary transformation

• ZLACGV - conjugates a complex vector of length N

• ZLACON - estimatse the 1-norm of a square, complex matrix A

• ZLACP2 - copies all or part of a real two-dimensional matrix A to a complex
matrix B
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• ZLACPY - copies all or part of a two-dimensional matrix A to another matrix B

• ZLACRM - performs a very simple matrix-matrix multiplication

• ZLACRT - performs the operation ( c s )( x )==> ( x )( -s c )( y )( y )where c and s
are complex and the vectors x and y are complex

• ZLADIV - := X / Y, where X and Y are complex

• ZLAED0 - computes all eigenvalues of a symmetric tridiagonal matrix

• ZLAED7 - computes the updated eigensystem of a diagonal matrix after
modification by a rank-one symmetric matrix

• ZLAED8 - merges the two sets of eigenvalues together into a single sorted set

• ZLAEIN - uses inverse iteration to find a right or left eigenvector corresponding to
the eigenvalue W of a complex upper Hessenberg matrix H

• ZLAESY - computes the eigendecomposition of a 2-by-2 symmetric matrix

• ZLAEV2 - computes the eigendecomposition of a 2-by-2 Hermitian matrix

• ZLAGS2 - computes 2-by-2 unitary matrices U, V and Q

• ZLAGTM - performs a matrix-vector product

• ZLAHEF - computes a partial factorization of a complex Hermitian matrix A using
the Bunch-Kaufman diagonal pivoting method

• ZLAHQR - called by ZHSEQR to update the eigenvalues and Schur decomposition
already computed by ZHSEQR

• ZLAHRD - reduces the first NB columns of a complex general n-by-(n-k+1) matrix
A so that elements below the kth subdiagonal are zero

• ZLAIC1 - applies one step of incremental condition estimation in its simplest
version

• ZLALS0 - applies back the multiplying factors of either the left or the right
singular vector matrix of a diagonal matrix appended by a row to the right hand
side matrix B in solving the least squares problem using the divide-and-conquer
SVD approach

• ZLALSA - an itermediate step in solving the least squares problem by computing
the SVD of the coefficient matrix in compact form
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• ZLALSD - uses the singular value decomposition of A to solve the least squares
problem of finding X to minimize the Euclidean norm

• ZLANGB - returns the value of the one norm, or the Frobenius norm, or the infinity
norm, or the element of largest absolute value of an n by n band matrix A,

• ZLANGE - returns the value of the one norm, or the Frobenius norm, or the infinity
norm, or the element of largest absolute value of a complex matrix A

• ZLANGT - returns the value of the one norm, or the Frobenius norm, or the infinity
norm, or the element of largest absolute value of a complex tridiagonal matrix A

• ZLANHB - returns the value of the one norm, or the Frobenius norm, or the infinity
norm, or the element of largest absolute value of an n by n hermitian band matrix
A, with k super-diagonals

• ZLANHE - returns the value of the one norm, or the Frobenius norm, or the infinity
norm, or the element of largest absolute value of a complex hermitian matrix A

• ZLANHP - returns the value of the one norm, or the Frobenius norm, or the infinity
norm, or the element of largest absolute value of a complex hermitian matrix A,
supplied in packed form

• ZLANHS - returns the value of the one norm, or the Frobenius norm, or the infinity
norm, or the element of largest absolute value of a Hessenberg matrix A

• ZLANHT - returns the value of the one norm, or the Frobenius norm, or the infinity
norm, or the element of largest absolute value of a complex Hermitian tridiagonal
matrix A

• ZLANSB - returns the value of the one norm, or the Frobenius norm, or the infinity
norm, or the element of largest absolute value of an n by n symmetric band matrix
A, with k super-diagonals

• ZLANSP - returns the value of the one norm, or the Frobenius norm, or the infinity
norm, or the element of largest absolute value of a complex symmetric matrix A,
supplied in packed form

• ZLANSY - returns the value of the one norm, or the Frobenius norm, or the infinity
norm, or the element of largest absolute value of a complex symmetric matrix A

• ZLANTB - returns the value of the one norm, or the Frobenius norm, or the infinity
norm, or the element of largest absolute value of an n by n triangular band matrix
A, with ( k + 1 )diagonals
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• ZLANTP - returns the value of the one norm, or the Frobenius norm, or the infinity
norm, or the element of largest absolute value of a triangular matrix A, supplied
in packed form

• ZLANTR - returns the value of the one norm, or the Frobenius norm, or the infinity
norm, or the element of largest absolute value of a trapezoidal or triangular matrix
A

• ZLAPLL - computes the QR factorization of A=QR

• ZLAPMT - rearranges the columns of the M by N matrix X

• ZLAQGB - equilibrates a general M by N band matrix A with KL subdiagonals and
KU superdiagonals using the row and scaling factors in the vectors R and C

• ZLAQGE - equilibrates a general M by N matrix A using the row and scaling
factors in the vectors R and C

• ZLAQHB - equilibrates a symmetric band matrix A using the scaling factors in the
vector S

• ZLAQHE - equilibrates a Hermitian matrix A using the scaling factors in the vector S

• ZLAQHP - equilibrates a Hermitian matrix A using the scaling factors in the vector S

• ZLAQP2 - computes a QR factorization with column pivoting

• ZLAQPS - computes a step of QR factorization with column pivoting of a complex
M-by-N matrix A by using Blas-3

• ZLAQSB - equilibrates a symmetric band matrix A using the scaling factors in the
vector S

• ZLAQSP - equilibrates a symmetric matrix A using the scaling factors in the vector
S

• ZLAQSY - equilibrates a symmetric matrix A using the scaling factors in the vector
S

• ZLAR1V - computes the (scaled) rth column of the inverse of the sumbmatrix

• ZLAR2V - applies a vector of complex plane rotations with real cosines from both
sides to a sequence of 2-by-2 complex Hermitian matrices,

• ZLARCM - performs a very simple matrix-matrix multiplication
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• ZLARF - applies a complex elementary reflector H to a complex M-by-N matrix C,
from either the left or the right

• ZLARFB - applies a complex block reflector H or its transpose H’ to a complex
M-by-N matrix C, from either the left or the right

• ZLARFG - generates a complex elementary reflector H o

• ZLARFT - forms the triangular factor T of a complex block reflector H of order n,
which is defined as a product of k elementary reflectors

• ZLARFX - applies a complex elementary reflector H to a complex m by n matrix C,
from either the left or the right

• ZLARGV - generates a vector of complex plane rotations with real cosines,
determined by elements of the complex vectors x and y

• ZLARNV - returns a vector of n random complex numbers from a uniform or
normal distribution

• ZLARRV - computes the eigenvectors of a tridiagonal matrix

• ZLARTG - generates a plane rotation

• ZLARTV - applies a vector of complex plane rotations with real cosines to elements
of the complex vectors x and y

• ZLARZ - applies a complex elementary reflector H to a complex M-by-N matrix C,
from either the left or the right

• ZLARZB - applies a complex block reflector H or its transpose to a complex
distributed M-by-N C from the left or the right

• ZLARZT - forms the triangular factor T of a complex block reflector which is
defined as a product of k elementary reflectors

• ZLASCL - multiplies the M by N complex matrix A by the real scalar CTO/CFROM

• ZLASET - initializes a 2-D array A to BETA on the diagonal and ALPHA on the
offdiagonals

• ZLASR - performs a transformation where A is an m by n complex matrix and P is
an orthogonal matrix

• ZLASSQ - returns the values scl and ssq

• ZLASWP - performs a series of row interchanges on the matrix A
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• ZLASYF - computes a partial factorization of a complex symmetric matrix A using
the Bunch-Kaufman diagonal pivoting method

• ZLATBS - solves triangular systems

• ZLATDF - computes the contribution to the reciprocal Dif-estimate

• ZLATPS - solves triangular systems

• ZLATRD - reduces NB rows and columns of a complex Hermitian matrix A to
Hermitian tridiagonal form

• ZLATRS - solves triangular systems

• ZLATRZ - factors the M-by-(M+L) complex upper trapezoidal matrix

• ZLATZM - routine is deprecated and has been replaced by routine ZUNMRZ

• ZLAUU2 - computes the product U É U’ or L’ É L

• ZLAUUM - computes the product U É U’ or L’ É L

• ZPBCON - estimates the reciprocal of the condition number (in the 1-norm) of a
complex Hermitian positive definite band matrix

• ZPBEQU - computes row and column scalings intended to equilibrate a Hermitian
positive definite band matrix A

• ZPBRFS - improves the computed solution to a system of linear equations when
the coefficient matrix is Hermitian positive definite and banded

• ZPBSTF - computes a split Cholesky factorization of a complex Hermitian positive
definite band matrix A

• ZPBSV - computes the solution to a complex system of linear equations

• ZPBSVX - uses the Cholesky factorization to compute the solution to a complex
system of linear equations

• ZPBTF2 - computes the Cholesky factorization of a complex Hermitian positive
definite band matrix A

• ZPBTRF - computes the Cholesky factorization of a complex Hermitian positive
definite band matrix A

• ZPBTRS - solves a system of linear equations with a Hermitian positive definite
band matrix A using the Cholesky factorization computed by ZPBTRF
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• ZPOCON - estimates the reciprocal of the condition number (in the 1-norm) of a
complex Hermitian positive definite matrix using the Cholesky factorization
computed by ZPOTRF

• ZPOEQU - computes row and column scalings intended to equilibrate a Hermitian
positive definite matrix A and reduce its condition number (with respect to the
two-norm)

• ZPORFS - improves the computed solution to a system of linear equations when
the coefficient matrix is Hermitian positive definite,

• ZPOSV - computes the solution to a complex system of linear equations

• ZPOSVX - uses the Cholesky factorization to compute the solution to a complex
system of linear equations

• ZPOTF2 - computes the Cholesky factorization of a complex Hermitian positive
definite matrix A

• ZPOTRF - computes the Cholesky factorization of a complex Hermitian positive
definite matrix A

• ZPOTRI - computes the inverse of a complex Hermitian positive definite matrix A
using the Cholesky factorization computed by ZPOTRF

• ZPOTRS - solves a system of linear equations with a Hermitian positive definite
matrix A using the Cholesky factorization computed by ZPOTRF

• ZPPCON - estimates the reciprocal of the condition number (in the 1-norm) of a
complex Hermitian positive definite packed matrix using the Cholesky
factorization computed by ZPPTRF

• ZPPEQU - computes row and column scalings intended to equilibrate a Hermitian
positive definite matrix A in packed storage and reduce its condition number
(with respect to the two-norm)

• ZPPRFS - improves the computed solution to a system of linear equations when
the coefficient matrix is Hermitian positive definite and packed, and provides
error bounds and backward error estimates for the solution

• ZPPSV - computes the solution to a complex system of linear equations

• ZPPSVX - use the Cholesky factorization to compute the solution to a complex
system of linear equations
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• ZPPTRF - computes the Cholesky factorization of a complex Hermitian positive
definite matrix A stored in packed format

• ZPPTRI - computes the inverse of a complex Hermitian positive definite matrix A
using the Cholesky factorization computed by ZPPTRF

• ZPPTRS - solves a system of linear equations with a Hermitian positive definite
matrix A in packed storage using the Cholesky factorization computed by ZPPTRF

• ZPTCON - computes the reciprocal of the condition number (in the 1-norm) of a
complex Hermitian positive definite tridiagonal matrix using the factorization
computed by ZPTTRF

• ZPTEQR - computes all eigenvalues and, optionally, eigenvectors of a symmetric
positive definite tridiagonal matrix

• ZPTRFS - improves the computed solution to a system of linear equations when
the coefficient matrix is Hermitian positive definite and tridiagonal, and provides
error bounds and backward error estimates for the solution

• ZPTSV - computes the solution to a complex system of linear equations where A is
an N-by-N Hermitian positive definite tridiagonal matrix, and X and B are
N-by-NRHS matrices

• ZPTSVX - uses the factorization to compute the solution to a complex system of
linear equations where A is an N-by-N Hermitian positive definite tridiagonal
matrix and X and B are N-by-NRHS matrices

• ZPTTRF - computes the factorization of a complex Hermitian positive definite
tridiagonal matrix A

• ZPTTRS - solves a tridiagonal system of the form using the factorization computed
by ZPTTRF

• ZPTTS2 - solves a tridiagonal system of the form using the factorization computed
by ZPTTRF

• ZSPCON - estimates the reciprocal of the condition number (in the 1-norm) of a
complex symmetric packed matrix A using the factorization computed by ZSPTRF

• ZSPRFS - improves the computed solution to a system of linear equations when
the coefficient matrix is symmetric indefinite and packed, and provides error
bounds and backward error estimates for the solution

• ZSPSV - computes the solution to a complex system of linear equations
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• ZSPSVX - uses the diagonal pivoting factorization to compute the solution to a
complex system of linear equations

• ZSPTRF - computes the factorization of a complex symmetric matrix A stored in
packed format using the Bunch-Kaufman diagonal pivoting method

• ZSPTRI - computes the inverse of a complex symmetric indefinite matrix A in
packed storage using the factorization computed by ZSPTRF

• ZSPTRS - solves a system of linear equations with a complex symmetric matrix A
stored in packed format using the factorization computed by ZSPTRF

• ZSTEDC - computes all eigenvalues and, optionally, eigenvectors of a symmetric
tridiagonal matrix using the divide and conquer method

• ZSTEGR - computes selected eigenvalues and, optionally, eigenvectors of a real
symmetric tridiagonal matrix T

• ZSTEIN - computes the eigenvectors of a real symmetric tridiagonal matrix T
corresponding to specified eigenvalues, using inverse iteration

• ZSTEQR - computes all eigenvalues and, optionally, eigenvectors of a symmetric
tridiagonal matrix using the implicit QL or QR method

• ZSYCON - estimates the reciprocal of the condition number (in the 1-norm) of a
complex symmetric matrix A using the factorization computed by ZSYTRF

• ZSYRFS - improves the computed solution to a system of linear equations when
the coefficient matrix is symmetric indefinite, and provides error bounds and
backward error estimates for the solution

• ZSYSV - computes the solution to a complex system of linear equations

• ZSYSVX - uses the diagonal pivoting factorization to compute the solution to a
complex system of linear equations

• ZSYTF2 - computes the factorization of a complex symmetric matrix A using the
Bunch-Kaufman diagonal pivoting method

• ZSYTRF - computes the factorization of a complex symmetric matrix A using the
Bunch-Kaufman diagonal pivoting method

• ZSYTRI - computes the inverse of a complex symmetric indefinite matrix A using
the factorization computed by ZSYTRF
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• ZSYTRS - solves a system of linear equations with a complex symmetric matrix A
using the factorization computed by ZSYTRF

• ZTBCON - estimates the reciprocal of the condition number of a triangular band
matrix A, in either the 1-norm or the infinity-norm

• ZTBRFS - provides error bounds and backward error estimates for the solution to
a system of linear equations with a triangular band coefficient matrix

• ZTBTRS - solves a triangular system

• ZTGEVC - computes some or all of the right and/or left generalized eigenvectors
of a pair of complex upper triangular matrices (A,B)

• ZTGEX2 - swaps adjacent diagonal 1 by 1 blocks (A11,B11) and (A22,B22)

• ZTGEXC - reorders the generalized Schur decomposition of a complex matrix pair
(A,B)

• ZTGSEN - reorders the generalized Schur decomposition of a complex matrix pair
(A, B)

• ZTGSJA - computes the generalized singular value decomposition (GSVD) of two
complex upper triangular (or trapezoidal) matrices A and B

• ZTGSNA - estimates reciprocal condition numbers for specified eigenvalues and/or
eigenvectors of a matrix pair (A, B)

• ZTGSY2 - solves the generalized Sylvester equation

• ZTGSYL - solves the generalized Sylvester equation

• ZTPCON - estimates the reciprocal of the condition number of a packed triangular
matrix A, in either the 1-norm or the infinity-norm

• ZTPRFS - provides error bounds and backward error estimates for the solution to
a system of linear equations with a triangular packed coefficient matrix

• ZTPTRI - computes the inverse of a complex upper or lower triangular matrix A
stored in packed format

• ZTPTRS - solves a triangular system

• ZTRCON - estimates the reciprocal of the condition number of a triangular matrix
A, in either the 1-norm or the infinity-norm
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• ZTREVC - computes some or all of the right and/or left eigenvectors of a complex
upper triangular matrix T

• ZTREXC - reorders the Schur factorization of a complex matrix so that the diagonal
element of T with row index IFST is moved to row ILST

• ZTRID - computes the solution to a complex system of linear equations where A is
an N-by-N tridiagonal matrix, and x and b are vectors of length N

• ZTRRFS - provides error bounds and backward error estimates for the solution to
a system of linear equations with a triangular coefficient matrix

• ZTRSEN - reorders the Schur factorization of a complex matrix

• ZTRSNA - estimates reciprocal condition numbers for specified eigenvalues and/or
right eigenvectors of a complex upper triangular matrix T

• ZTRSYL - solves the complex Sylvester matrix equation

• ZTRTI2 - computes the inverse of a complex upper or lower triangular matrix

• ZTRTRI - computes the inverse of a complex upper or lower triangular matrix A

• ZTRTRS - solves a triangular system

• ZTZRQF - routine is deprecated and has been replaced by routine ZTZRZF

• ZTZRZF - reduces the M-by-N complex upper trapezoidal matrix A to upper
triangular form by means of unitary transformations

• ZUNG2L - generates an m by n complex matrix Q with orthonormal columns,

• ZUNG2R - generates an m by n complex matrix Q with orthonormal columns,

• ZUNGBR - generates one of the complex unitary matrices determined by ZGEBRD
when reducing a complex matrix A to bidiagonal form

• ZUNGHR - generates a complex unitary matrix Q

• ZUNGL2 - generates an m-by-n complex matrix Q with orthonormal rows,

• ZUNGLQ - generates an M-by-N complex matrix Q with orthonormal rows,

• ZUNGQL - generates an M-by-N complex matrix Q with orthonormal columns,

• ZUNGQR - generates an M-by-N complex matrix Q with orthonormal columns,

• ZUNGR2 - generates an m by n complex matrix Q with orthonormal rows,
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• ZUNGRQ - generates an M-by-N complex matrix Q with orthonormal rows,

• ZUNGTR - generates a complex unitary matrix Q which is defined as the product of
n-1 elementary reflectors of order N, as returned by ZHETRD

• ZUNM2L - overwrites the general complex m-by-n matrix C

• ZUNM2R - overwrites the general complex m-by-n matrix C

• ZUNMBR - overwrites the general complex M-by-N matrix C

• ZUNMHR - overwrites the general complex M-by-N matrix C

• ZUNML2 - overwrites the general complex m-by-n matrix C

• ZUNMLQ - overwrites the general complex M-by-N matrix C

• ZUNMQL - overwrites the general complex M-by-N matrix C

• ZUNMQR - overwrites the general complex M-by-N matrix C

• ZUNMR2 - overwrites the general complex m-by-n matrix C

• ZUNMR3 - overwrites the general complex m by n matrix C

• ZUNMRQ - overwrites the general complex M-by-N matrix C

• ZUNMRZ - overwrites the general complex M-by-N matrix C

• ZUPGTR - generates a complex unitary matrix Q

• ZUPMTR - overwrites the general complex M-by-N matrix C
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Basic Linear Algebra Subprogram

A set of commonly used algebraic equations defined by C. L. Lawson, and J. J.
Dongerra, in a series of papers (see bibliography of LAPACK User’s Guide, publication
TPD–0003, pp. 112–115, entries [16], [17], [18], [19], and [38].

BCG
See Bi-Conjugate Gradient Method.

Bi-Conjugate Gradient Method
One of the iterative methods provided through the DITERATIVE package of
optimized precondtioned iterative methods.

BLAS

See Basic Linear Algebra Subprogram.

CGM
See Conjugate Gradient Method.

CGS
See Bi-Conjugate Gradient Squared Method.

computational routines
Term used to define LAPACK routines that perform a distinct computational task.

Conjugate Gradient Method

One of the iterative methods provided through the DITERATIVE package of
optimized preconditioned iterative methods.

dedicated environment
A parallel processing environment in which the NCPUS environment variable is equal
to the number of available processors.
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direct solution methods
Direct solution methods for sparse linear systems transform the matrix A into a
product of several other operators so that each of the resulting operators is easy to
invert for a given right-hand side b.

driver routines
Term used to define LAPACK routines used for solving standard types of problems.

equilibration
The process of scaling a problem before computing its solution.

Fourier analysis
The mathematical process of resolving a given function, f(x), into its frequency
components, which means finding the sequence of constant amplitudes to plug into a
Fourier series to reconstruct the original function.

Hermitian matrix
A complex matrix which is equal to the conjugate of its transpose, with either the
lower or upper triangle being stored.

iterative solution methods
Iterative solution methods for sparse linear systems attempt to solve ÊBËiÌNÍ by
solving an equivalent system Î�Ï�Ð�ÊBËDÌLÎ�Ï�Ð�Í , where M is some approximation to A
which is inexpensive to construct and can be easily used to compute z. Unlike direct
methods, iterative methods are more special-purpose. There are no general, effective
iterative algorithms for an arbitrary sparse linear system.

LAPACK
A public domain library of subroutines for solving dense linear algebra problems,
including systems of linear equations, linear least squares problems, eigenvalue
problems, and singular value problems. It has been designed for efficiency on
high-performance computers.

linear system
A set of simultaneous linear algebraic equations.
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load balancing
The process of dividing work done by each available processor into approximately
equal amounts.

multiuser environment
A parallel processing environment in which users do not know how many processors
will be available to a job during run time.

out-of-core technique
A term that refers to algorithms that combine input and output with computation to
solve problems in which the data resides on disk or some other secondary
random-access storage device.

packed storage

A triangular or symmetric matrix in which the full matrix representation is retained
while storing only half the matrix elements.

parallel instruction execution
The execution of one instruction per clock period, even those instructions that take
several clock periods to complete execution.

Pipelining

A method of execution which allows each step of an operation to pass its result to the
next step after only one clock period.

single-threaded code segments
A section of a program that must use a single processor.

small parallel/vector problem
A class of problem size in which problems are large enough for vector and parallel
processing, but for which parallel processing degrades vector performance.
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sparse matrix
A linear system which can be described as ÑBÒDÓLÔ , where A is an n-by-n matrix, and x
and b are n dimensional vectors. A system of this kind is considered sparse if the
matrix A has a small percentage of nonzero terms (less than 10%, often less than 1%).

SPD
See Symmetric Positive Definite Matrix.

SPVP
See Small Paralell/Vector Problem.

Strassen’s algorithm
A recursive algorithm that is slightly faster than the ordinary inner product algorithm.
Strassen’s algorithm performs the floating-point operations for matrix multiplication
in an order differently from the vector method; this can cause round-off problems.

supernodes
A collection of columns that have the same nonzero pattern.

time slicing
A method of execution in which the system works on several jobs or processes
simultaneously.

vectorization

A form of parallel processing that uses instruction segmenting and vector registers.

virtual matrices

A virtual matrix is similar to a Fortran array, but it cannot be accessed directly from a
program. It can only be accessed with calls to specific subroutines. Users do not do
any explicit input or output to read from or write to a virtual matrix.

VP
See Vector Problem.
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well-conditioned matrix
The condition number of a matrix is defined as Õ5Ö;×BØ}Ù�Ú�×�ÚlÛ`ÜÜ ×�Ý�Þ�ÜÜ . A
well-conditioned matrix is one for which ÕHÖß×BØ is small. Although small is relative, ifÕAÖà×BØ�áwâTã�ä , A can be considered well-conditioned.
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B

banded matrix, 42
Basic Linear Algebra Subprogram (BLAS), 5
BLAS routines

array storage, 8
C interface, 6
C/C++ function prototypes, 7
casts, 7
data types, 5
increment arguments, 8
integer argument defaults, 6
Level 1, 8
Level 2, 10
Level 3, 12
levels, 5
list of, 57
man page names, 6
overview, 5
user-defined complex types, 7

C

C interface
in BLAS routines, 6

compiler options, 1
complex<double> data type, 6
computational routines, 16
computing a simple bound, 27
condition estimation, 26
condition number, 26
convolution routines, 54
correlation routines, 54

D

data types
BLAS routines, 5

diagonally dominant matrix, 42
direct solvers, 41

solution techniques, 43
DITERATIVE, 44
double precision complex data type, 6
double precision data type, 6
driver routines, 16, 25

E

EISPACK, 13
equilibration, 29
error bounds, 27
error bounds computations, 32
error codes, 24
error conditions, 24
examples

error conditions, 24
LU factorization, 21
orthogonal factorization, 35
roundoff errors, 26
symmetric indefinite matrix factorization, 22

explicit form, 20

F

factored form, 20
factoring a matrix, 20
factorization forms, 21
Fast Fourier Transforms, 47

casts, 49
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data types, 47
implementation details, 48

C/C++ function prototypes, 48
data types for variables, 48
integer argument defaults, 48
isys array, 53
scratch space, 53
work and table arrays, 51

include files, 48
supported routines, 49
user-defined complex types, 49

FFT routines, 47
list of, 61

Fortran type declarations
Level 1 BLAS, 9

H

Hilbert matrix, 31
Householder transformation, 37

I

ILAENV, 13, 14
increment arguments

BLAS routines, 8
introductory man pages, 57
inverse of dense matrix, 33
isys array

in FFT, 53
iterative refinement, 31
iterative solvers, 44

L

LAPACK
and tuning parameters, 13
computation types, 15
data types supported, 13

error codes, 24
factoring a matrix, 20
iterative refinement, 31
matrix types, 14
naming scheme, 14
orthogonal factorizations, 34
overview, 13
result comparisons, 39
simple driver routines, 26
solving from the factored form, 25
solving linear systems, 16
types of problems solved, 15
types of routines, 16

LAPACK routines
list of, 62

least squares problem, 15
least squares problems

solving, 34
Level 1 BLAS, 8

Fortran type declarations, 9
Level 2 BLAS, 10
Level 3 BLAS, 12
levels of BLAS routines, 5
linear system, 41
linear system solutions, 15
linkage defaults, 1
LINPACK, 13
list of supported routines, 57
LU factorization, 21

M

man pages
introductory, 57

matrix inversion, 33

N

naming
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LAPACK routines, 14

O

orthogonal factorizations, 34
orthogonal matrix

generating, 38
multiplying by, 37

overdetermined linear system, 15

P

parallel processing
benefits, 2
common problems, 2
costs/benefits discussion, 2
discussions of, 3
overhead, 3

Q

QR factorization, 35

R

reciprocal condition number, 26
roundoff errors, 26

S

scratch space
in FFT, 53

SCSL
compiler options, 1
linkage defaults, 1
overview, 1

scsl_zomplex data type, 6

signal processing routines, 47
convolution, 54
correlation, 54
FFT, 47

single precision complex data type, 5
single precision data type, 5
solution techniques

direct methods, 43, 140
direct solvers, 43
iterative methods, 45
sparse linear systems, 43

solving dense linear systems, 25
solving linear systems, 16
sparse linear solvers, 41
sparse linear systems

solution techniques, 43
direct methods, 43, 140
iterative methods, 45

sparse matrices
banded matrix, 42
diagonally dominant matrix, 42
overview, 41
structurally symmetric matrix, 42
Symmetric Positive Definite matrix, 41
tridiagonal matrix, 42
types of, 41

structurally symmetric matrix, 42
supported routines, 57

BLAS routines, 57
FFT routines, 61
LAPACK routines, 62

symmetric indefinite matrix factorization, 22
Symmetric Positive Definite matrix, 41

T

table array
FFT, 51

throughput, 2
tridiagonal matrix, 42
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Tuning parameters, 13

U

underdetermined linear system, 15, 34
user-defined complex types, 8, 49

W

work array

in FFT, 51

X

XERBLA, 24
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