
SGI® OpenGL Vizserver™

Administrator’s Guide

007-4481-007

Version 3.4

CONTRIBUTORS
Written by Jenn McGee and Ken Jones
Illustrated by Chrystie Danzer
Production by Karen Jacobson
Engineering contributions by Younghee Lee and Yochai Shefi-Simchon

COPYRIGHT
© 2002–2004 Silicon Graphics, Inc. All rights reserved; provided portions may be copyright in third parties, as indicated elsewhere herein. No
permission is granted to copy, distribute, or create derivative works from the contents of this electronic documentation in any manner, in whole
or in part, without the prior written permission of Silicon Graphics, Inc.

LIMITED RIGHTS LEGEND
The software described in this document is “commercial computer software” provided with restricted rights (except as to included open/free
source) as specified in the FAR 52.227-19 and/or the DFAR 227.7202, or successive sections. Use beyond license provisions is a violation of
worldwide intellectual property laws, treaties and conventions. This document is provided with limited rights as defined in 52.227-14.

TRADEMARKS AND ATTRIBUTIONS
Silicon Graphics, SGI, the SGI logo, IRIX, InfiniteReality, Octane, Onyx, Onyx2, OpenGL and Tezro are registered trademarks and
InfinitePerformance, InfiniteReality2, InfiniteReality3, InfiniteReality4, Octane2, Onyx4, OpenGL Vizserver, Performance Co-Pilot, Silicon
Graphics Fuel, and UltimateVision are trademarks of Silicon Graphics, Inc., in the United States and/or other countries worldwide.

Linux is a registered trademark of Linus Torvalds, used with permission by Silicon Graphics, Inc. Microsoft, Windows, and Windows NT are
registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries. Netscape is a registered trademark
of Netscape Communications Corporation. Red Hat is a registered trademark of Red Hat, Inc. Solaris is a trademark of Sun Microsystems, Inc.
UNIX and the X device are registered trademarks of The Open Group in the United States and other countries. XFree86 is a trademark of The
XFree86 Project, Inc. All other trademarks mentioned herein are the property of their respective owners.

007-4481-007 iii

New Features in This Guide

In addition to miscellaneous corrections, this revision of the guide contains the following
changes:

• Changes to the following sections to support the ability to select the active screens,
screens OpenGL Vizserver will serve to the clients:

— “Allocating Graphics Pipes for OpenGL Vizserver” in Chapter 2

— “Graphics Pipe Allocation Guidelines” in Chapter 2

— “Hardware Readback” in Chapter 2

• A new section “Optimizing for High-Latency Networks” in Chapter 3

007-4481-007 v

Record of Revision

Version Description

001 September 2002
Original publication; supports OpenGL Vizserver 3.0.

002 November 2002
Supports OpenGL Vizserver 3.0.1.

003 March 2003
Supports OpenGL Vizserver 3.1.

004 August 2003
Supports OpenGL Vizserver 3.2.

005 October 2003
Supports OpenGL Vizserver 3.2.1.

006 January 2004
Supports OpenGL Vizserver 3.3.

007 July 2004
Supports OpenGL Vizserver 3.4.

007-4481-007 vii

Contents

Record of Revision . v

Figures . . xi

Tables . xiii

About This Guide. . xv
System Requirements . . xv
Related Publications . . xvi
Obtaining Publications . xvi
Conventions . xvii
Reader Comments . . xvii

1. Installation . . 1
Installing the Server . 1
Installing the Client . 3

IRIX. . 4
Solaris . . 5
Linux . 6
Windows . . 8

viii 007-4481-007

Contents

2. Configuration . . 9
Configuring the Server. . 9

Starting and Stopping the Server Using the GUI 10
Starting and Stopping the Server Using the Command Line Interface 11
Allocating Graphics Pipes for OpenGL Vizserver 12
Configuration Parameters 14
Managing Users . 16

Adding a User. . 16
Modifying a User . . 18
Deleting a User . 18

Configuring the Reservation Web Interface 19
Configuration Files . . 21

The /var/vizserver/users File 21
The /var/vizserver/config File 22
The /var/vizserver/reservation_client.conf File 27

User Authentication . 29
AUTH-PASSWORD . . 29
AUTH-PAM . . 29

Graphics Pipe Allocation Guidelines. 30
Relevant Configuration File Parameters 31
Static Pipe Allocation . . 31
Dynamic Pipe Allocation 31
Dynamic Pipe Allocation Policy 32
Hardware Readback . . 33

3. Tuning . . 35
Understanding the OpenGL Vizserver Pipeline 36

How It Operates . 37
Single-User Session . 37
Collaborative Session. 38

Main Components . . 40
Tuning Objectives . . 41

Contents

007-4481-007 ix

Understanding the Environment 42
Measuring the Application Performance Locally 42
Measuring Network Bandwidth and Latency 44

Monitoring OpenGL Vizserver Performance 45
Performance Co-Pilot. . 46
PCP OpenGL Vizserver PMDA 46
vsmonitor . 53

Estimating the Network Bandwidth Required by OpenGL Vizserver 55
Calculating Frames Per Second on a Given Network Bandwidth 55
Calculating Network Bandwidth Necessary for k Frames Per Second 56

Optimizing for High-Latency Networks 57

4. Troubleshooting and Known Problems 61
Looking at Log Files . 62

Server Log File . 62
Session Log File . 63
System Log File . 63
XFree86 Log File . . 64
Accounting Log Files . . 65

Shared Memory Input Queue (shmiq) Problem 65
What is shmiq? . 66
Why Does This Cause a Problem? 66
How To Resolve It . 66

No Appearance of OpenGL Vizserver Console Window in Windows 2000 67
Cleaning Up Shared Memory 67
Using Window Managers Other Than 4Dwm 68
Application Not Updated. . 68
Applications Masked as a Cross-Hatch Pattern Image 68
Back-to-Front Rendering . . 69
Using Customized XDM in Dynamic Pipe Allocation. 69

007-4481-007 xi

Figures

Figure 2-1 Configuration GUI 10
Figure 2-2 Starting the OpenGL Vizserver Server Manager 11
Figure 2-3 Graphics Pipes Panel 13
Figure 2-4 Configuration Values Panel 15
Figure 2-5 Add a User Panel 17
Figure 2-6 Modify a User Panel 18
Figure 2-7 Delete a User Panel. 19
Figure 2-8 Setting Reservation System Parameters 20
Figure 3-1 Overall Diagram of OpenGL Vizserver 36
Figure 3-2 OpenGL Vizserver PMDA. 47
Figure 3-3 pmchart Using OpenGL Vizserver PMDA 52
Figure 3-4 vsmonitor 54

007-4481-007 xiii

Tables

Table 1-1 Server File Subsystems. 1
Table 1-2 IRIX Client File Subsystems 4
Table 1-3 Solaris Client Modules 5
Table 1-4 Linux Client Modules 6

007-4481-007 xv

About This Guide

This document is intended for system administrators and gives information about
installing, configuring, tuning, and troubleshooting OpenGL Vizserver.

System Requirements

OpenGL Vizserver consists of client and server modules.

The OpenGL Vizserver server module requires one of the following system types:

• SGI Onyx 3000 series with InfiniteReality3 or InfiniteReality4 graphics

• SGI Onyx 3000 series with InfinitePerformance graphics

• SGI Onyx 300 systems with InfinitePerformance graphics

• SGI Onyx 300 systems with InfiniteReality3 or InfiniteReality4 graphics

• SGI Onyx 350 systems with InfinitePerformance graphics

• SGI Onyx 350 systems with InfiniteReality3 or InfiniteReality4 graphics

• Silicon Graphics Onyx2 systems with InfiniteReality2, InfiniteReality3, or
InfiniteReality4 graphics

• Silicon Graphics Octane or Octane2 systems

• Silicon Graphics Onyx4 UltimateVision systems

• Silicon Graphics Fuel systems

• Silicon Graphics Tezro systems

A server module must have the following software installed:

• IRIX 6.5.11 or later

xvi 007-4481-007

About This Guide

OpenGL Vizserver supports clients running the following software platforms:

• IRIX 6.5.11 or later

• Solaris 2.5.1 or later

• Red Hat Linux 6.2 or later with XFree86 v4

• Windows NT 4.0 with service pack 6a or later

• Windows 2000 with service pack 2 or later

• Windows XP

Related Publications

The following documents contain additional information that may be helpful:

• SGI OpenGL Vizserver User’s Guide

• Performance Co-Pilot User’s and Administrator’s Guide

• IRIX Admin: Networking and Mail

• IRIX Admin: Software Iinstallation and Licensing

Obtaining Publications

You can obtain SGI documentation in the following ways:

• See the SGI Technical Publications Library at http://docs.sgi.com. Various formats
are available. This library contains the most recent and most comprehensive set of
online books, release notes, man pages, and other information.

• If it is installed on your SGI system, you can use InfoSearch, an online tool that
provides a more limited set of online books, release notes, and man pages. With an
IRIX system, select Help from the Toolchest, and then select InfoSearch. Or you can
type infosearch on a command line.

• You can also view release notes by typing either grelnotes or relnotes on a
command line.

• You can also view man pages by typing man <title> on a command line.

About This Guide

007-4481-007 xvii

Conventions

The following conventions are used throughout this document:

Reader Comments

If you have comments about the technical accuracy, content, or organization of this
document, contact SGI. Be sure to include the title and document number of the manual
with your comments. (Online, the document number is located in the front matter of the
manual. In printed manuals, the document number is located at the bottom of each
page.)

You can contact SGI in any of the following ways:

• Send e-mail to the following address:

techpubs@sgi.com

Convention Meaning

command This fixed-space font denotes literal items such as commands, files,
routines, path names, signals, messages, and programming language
structures.

function This bold font indicates a function or method name. Parentheses are
also appended to the name.

variable Italic typeface denotes variable entries and words or concepts being
defined.

user input This bold, fixed-space font denotes literal items that the user enters
in interactive sessions. Output is shown in nonbold, fixed-space font.

[] Brackets enclose optional portions of a command or directive line.

... Ellipses indicate that a preceding element can be repeated.

manpage(x) Man page section identifiers appear in parentheses after man page
names.

GUI element This bold font denotes the names of graphical user interface (GUI)
elements, such as windows, screens, dialog boxes, menus, toolbars,
icons, buttons, boxes, and fields.

xviii 007-4481-007

About This Guide

• Use the Feedback option on the Technical Publications Library webpage:

http://docs.sgi.com

• Contact your customer service representative and ask that an incident be filed in the
SGI incident tracking system.

• Send mail to the following address:

Technical Publications
SGI
1500 Crittenden Lane, M/S 535
Mountain View, CA 94043-1351

SGI values your comments and will respond to them promptly.

007-4481-007 1

Chapter 1

1. Installation

This chapter explains how to install the OpenGL Vizserver server module and client
modules. The following topics are covered:

• “Installing the Server” on page 1

• “Installing the Client” on page 3

It is assumed that your operating system (OS) is already installed and configured before
installing OpenGL Vizserver. For OS installation and configuration information, refer to
your system installation and administration guide.

Once your operating system is properly configured, use the following sections for
installing OpenGL Vizserver over a network or from a CD.

You can also go to http://www.sgi.com/software/vizserver and click the Download
link.

Installing the Server

The OpenGL Vizserver 3.x server module consists of the file subsystems shown in
Table 1-1.

Table 1-1 Server File Subsystems

Subsystem Description

vizserver_server.sw.vizserver The OpenGL Vizserver server’s main software.

It contains session manager and server
manager executables, as well as libraries and
scripts needed for server systems.

vizserver_server.modules.auth Authentication module for the server.

2 007-4481-007

1: Installation

Note: Please note that the OpenGL Vizserver 3.x server software is not compatible with
a client running OpenGL Vizserver 2.0.1 or earlier and vice versa.

vizserver_server.modules.pam_auth Pluggable Authentication Modules (PAM) for
the server. It requires the installation of IRIX
6.5.22 or later, including eoe.sw.pam.

vizserver_server.modules.comp Compression module for the server.

vizserver_server.modules.perf Performance Co-Pilot module for the server.

It requires the installation ofpcp_eoe.sw.eoe
and pcp_eoe.sw.monitor.

vizserver_server.modules.readback Hardware readback module for the server. It
requires the installation of ml_sgc.sw.eoe
and can be installed only on Onyx4 systems.

vizserver_server.modules.resclient Reservation client module for the server.

vizserver_server.collab.client Collaborative session support.

It requires the installation of
vizserver_client.sw.client.

vizserver_server.books.Vizserver_AG OpenGL Vizserver Administrator’s Guide.

vizserver_server.man.relnotes Release notes.

vizserver_server.man.vizserver Man pages.

vizserver_server.web.res Web module for OpenGL Vizserver pipe
reservation.

It requires either Netscape or SGI Apache web
server to operate.

vizserver_server.web.doc OpenGL Vizserver online documentation.

It requires either Netscape or SGI Apache web
server to operate.

Table 1-1 Server File Subsystems (continued)

Subsystem Description

Installing the Client

007-4481-007 3

The following steps describe how you install OpenGL Vizserver.

1. Before installing the OpenGL Vizserver server, check if you have any previous
versions of it in your system by entering one of the following commands:

versions vizserver*

OR

showprods vizserver*

This will show all of the OpenGL Vizserver server software as well as the
OpenGL Vizserver clients, if any, on your system.

2. Log in as root and use inst or swmgr to install the OpenGL Vizserver server
software. For more details on installation software on IRIX, see the IRIX Admin:
Software Installation and Licensing manual.

3. If you are installing from a CD, enter the following command:

inst -f /CDROM/dist

OR

If you are installing over the network, enter a command similar to the following:

inst -f machine:distribution_directory

4. Resolve conflicts, if any, and continue the installation process. When done, verify
your installation by entering the following command:

versions vizserver*

While installing the OpenGL Vizserver server software, you may also want to install an
OpenGL Vizserver IRIX client because the installation process is the same and the
installable images are packaged in the same directory in the OpenGL Vizserver CD. Also,
if you want to run a collaborative session, you need to install
vizserver_server.collab.client, which requires the installation of the
vizserver_client.sw.client module.

Installing the Client

OpenGL Vizserver supports clients running IRIX, Solaris, Linux, and Windows
operating systems.

4 007-4481-007

1: Installation

Note: Please note that the OpenGL Vizserver 3.x clients are not compatible with a server
running OpenGL Vizserver 2.0.1 or earlier.

IRIX

The OpenGL Vizserver IRIX client module consists of the file subsystems shown in
Table 1-2.

Note: If you installed the OpenGL Vizserver IRIX client while installing OpenGL
Vizserver server software at the same time, skip the rest of this section.

Table 1-2 IRIX Client File Subsystems

Subsystem Description

vizserver_client.sw.client The OpenGL Vizserver client GUI program.

It also contains authentication and compression
libraries.

vizserver_client.books.Vizserver_UG The OpenGL Vizserver User’s Guide.

vizserver_client.man.relnotes Release notes.

vizserver_client.man.vizserver Man pages.

vizserver_dev.sw.base The OpenGL Vizserver compression,
authentication, and reservation APIs.

vizserver_dev.sw.examples Code examples of compression, authentication,
and reservation APIs.

Located in the/usr/share/vizserver/src
directory.

vizserver_dev.man.vizserver Man pages of APIs.

HTML pages are located in the
/usr/share/vizserver/doc/developer
directory.

Installing the Client

007-4481-007 5

1. Before installing the OpenGL Vizserver IRIX client, check if you have any previous
versions of it in your system by entering one of the following commands:

versions vizserver_client

OR

showprods vizserver_client

2. Log in as root and use inst or swmgr to install the OpenGL Vizserver client
software. For more details on installation software on IRIX, see the IRIX Admin:
Software Installation and Licensing manual.

3. If you are installing from a CD, enter the following command:

inst -f /CDROM/dist

OR

If you are installing over the network, enter a command similar to the following:

inst -f machine:distribution_directory

4. Resolve conflicts, if any, and continue the installation process. Verify your
installation by entering the following command:

versions vizserver*

Solaris

The OpenGL Vizserver Solaris client module consists of the subsystems shown in
Table 1-3.

Table 1-3 Solaris Client Modules

Subsystem Description

SGIvizsvr-solaris The OpenGL Vizserver client GUI program.

It also contains authentication and compression
libraries, man pages, release notes, a user’s guide, etc.

SGIvizdev-solaris The OpenGL Vizserver compression and
authentication development toolkit. (Optional)

6 007-4481-007

1: Installation

1. To check if there is a previous version of the OpenGL Vizserver client on your
system, enter the following command:

pkginfo | grep SGIviz

2. For a clean installation, you may want to remove any previous installation. Enter
the following command:

pkgrm SGIvizsvr

3. Log in as root and install the client modules using the following commands. The
product is installed in the /opt/SGIvizsvr directory by default.

pkgadd -d /CDROM/solaris/SGIvizsvr-solaris

4. To verify the installation, enter the following command:

pkginfo -i SGIvizsvr

For the installation of the optional subsystem SGIvizdev-solaris follow similar
procedures as those described above. For more details about installation and removal of
software in a Solaris system, see the pkginfo(1), pkgrm(1m), and pkgadd(1m) man
pages.

Linux

The OpenGL Vizserver Linux client module consists of the subsystems shown in
Table 1-4.

Table 1-4 Linux Client Modules

Subsystem Description

SGIvizsvr-linux.i386.rpm The OpenGL Vizserver client GUI program.

It also contains authentication and compression
libraries, man pages, release notes, a user’s
guide, etc.

SGIvizdev-linux.i386.rpm The OpenGL Vizserver compression and
authentication development toolkit. (Optional)

Installing the Client

007-4481-007 7

The following steps describe how you install OpenGL Vizserver.

1. Check if there is a previous installation of the OpenGL Vizserver client software in
your system by entering the following command:

rpm -qa | grep SGIviz

2. Log in as root and enter the following command:

rpm -Uvh /CDROM/linux/SGIvizsvr-linux.i386.rpm

3. To verify the installation, enter the following command:

rpm -qi SGIvizsvr

For the installation of the optional subsystem SGIvizdev-linux.i386.rpm follow
similar procedures to those described above. For more details about installation and
removal of software in a Linux system, see the rpm(8) man page.

8 007-4481-007

1: Installation

Windows

The OpenGL Vizserver Windows client module is packaged in a self-extracting
executable, SGIvizsvr-win32.exe. It contains the following optional components:

• Documentation: SGI OpenGL Vizserver User’s Guide

• SDK: The OpenGL Vizserver compression and authentication development options

• SDK Documentation: The OpenGL Vizserver compression and authentication
modules man pages

• SDK Example Code: The OpenGL Vizserver compression and authentication
modules example codes

Double clicking on the SGIvizsvr-win32.exe file leads you to the installation
procedure. Just follow the instructions on your screen.

007-4481-007 9

Chapter 2

2. Configuration

This chapter explains how to configure OpenGL Vizserver. The following topics are
covered:

• “Configuring the Server” on page 9

• “Configuring the Reservation Web Interface” on page 19

• “Configuration Files” on page 21

• “User Authentication” on page 29

• “Graphics Pipe Allocation Guidelines” on page 30

Configuring the Server

In most cases, no additional configuration needs to be done to the default configuration
of the OpenGL Vizserver server (vsserver(1m)) before using it. However, in some
cases, you might want to configure the server for your environment’s specific needs. This
section describes how to configure the server using vsconfig(1m).

Setting up the network between the OpenGL Vizserver client and server will not be
discussed here. For that information, see the IRIX Admin: Networking and Mail manual.

Configuring the OpenGL Vizserver server can be done manually or by using the
graphical configuration tool called vsconfig. In the following sample, we will use
vsconfig. The vsconfig tool provides an easy-to-use GUI for OpenGL Vizserver
server configuration.

To launch the vsconfig tool, enter the following command as a root user:

vsconfig

The vsconfig command shows in the first page the current status of the vsserver in
your system. If there is no vsserver running on your system, this configuration GUI
will appear as shown in Figure 2-1.

10 007-4481-007

2: Configuration

Figure 2-1 Configuration GUI

If you already started vsserver and have it running on the system, the result would be
as shown in Figure 2-2 on page 11.

Starting and Stopping the Server Using the GUI

You can start and stop the OpenGL Vizserver server by pressing the Start or Stop button
on the Start / Stop Server panel.

Pressing the Start button from the status shown in Figure 2-1 will give you a window as
shown in Figure 2-2.

Once the OpenGL Vizserver server manager is running, you can start to use
OpenGL Vizserver right away. For the instructions about how to use OpenGL Vizserver,
see the OpenGL Vizserver User’s Guide.

Configuring the Server

007-4481-007 11

Figure 2-2 Starting the OpenGL Vizserver Server Manager

Starting and Stopping the Server Using the Command Line Interface

You can also start and stop the OpenGL Vizserver server using the command line
interface.

To check whether the OpenGL Vizserver server manager is running, enter the following
command:

$ ps -ef | grep vsserver

To stop the OpenGL Vizserver server manager (vsserver), enter the following
command:

/etc/init.d/vizserver stop

To start vsserver, enter the following commands:

chkconfig vizserver on
/etc/init.d/vizserver start

12 007-4481-007

2: Configuration

Allocating Graphics Pipes for OpenGL Vizserver

When a user starts an OpenGL Vizserver session, one or more graphics pipes need to be
allocated for the session by the OpenGL Vizserver server manager. All graphics pipes
allocated for a session are used by the session’s X server, although it might be the case
that only a subset of these pipes are actually being served by OpenGL Vizserver. The
status of the Active Screens check boxes in the Session Start window of the client
determines which pipes/screens are served. See “Graphics Pipe Allocation Guidelines”
on page 30 for more details.

One case in which a graphics pipe does not need to be allocated for a session is when a
user with a local X server on the server machine starts a collaborative session. In this case,
OpenGL Vizserver uses the graphics pipes that are managed by a local X server.

At startup, vsconfig extracts the number of graphics pipes resident in the system, the
graphics type, the X server name, and the display size associated with each pipe. This
information is shown in the top half of the Graphics Pipes panel, as shown in Figure 2-3.

Configuring the Server

007-4481-007 13

Figure 2-3 Graphics Pipes Panel

A graphics pipe in a system can be in one of the following three states:

• Managed by X display manager (XDM). This means that an X server defined in the
DisplayManager.servers file of XDM’s configuration file (usually
/var/X11/xdm/xdm-config) is using the graphics pipe.

• Managed by OpenGL Vizserver. This means that the graphics pipe is not managed
by XDM and the value of the Pipes managed by OpenGL Vizserver radio buttons
is either All available or Specified.

• Managed by nobody. This means that neither XDM nor OpenGL Vizserver manages
the graphics pipe.

The system in Figure 2-3 has three graphics pipes. Pipe 1 is used by X server (:0), that
is, managed by XDM. And pipes 0 and 2 are not managed by XDM. So, OpenGL Vizserver
can use pipe 0 and pipe 2 for itself.

14 007-4481-007

2: Configuration

The bottom half of the panel shows the current configuration of XDM and
OpenGL Vizserver in the two-dimensional array format. Each row represents a graphics
pipe and each column represents OpenGL Vizserver or one of the X servers. If there are
k graphics pipes in your system, the system can have at most k X servers, assigning one
pipe to one X server. Of course, you can put all the pipes in one X server. X server
numbers usually start from 0.

The OpenGL Vizserver can use XDM managed pipes radio buttons are related to
dynamic pipe allocation. See “Graphics Pipe Allocation Guidelines” on page 30 for more
details.

The Pipes managed by OpenGL Vizserver radio buttons specify how the
OpenGL Vizserver managed pipes are determined. None means that no pipes are
managed by OpenGL Vizserver; All available means that every pipe that is not managed
by XDM is managed by OpenGL Vizserver; and Specified means that pipes that are
specifically selected are managed by OpenGL Vizserver. In the last case, the Vizserver
column in the bottom table is enabled for pipe selection.

To allocate or deallocate a graphics pipe, click the square corresponding to the graphics
pipe and the server that you want to set up. The allocated one becomes a red-colored
square. Press the Configure button. This will overwrite your current
/var/X11/xdm/Xservers file.

For details about the X server, see the xdm(1) and Xserver(1) man pages.

Configuration Parameters

The values in the Configuration Values panel, as shown in Figure 2-4 on page 15, are
from entries of the /var/vizserver/config file. If this file does not exist, vsconfig
will use its internal default values to set the fields in the panel. Usually you do not need
to change these values, but there are some entries that you might want to modify
depending on your system.

The Session Kill Notify edit box is enabled only if the Reservation System radio boxes
are in Active state.

Configuring the Server

007-4481-007 15

Figure 2-4 Configuration Values Panel

For a more detailed description of each entry, see “The /var/vizserver/config File” on
page 22.

16 007-4481-007

2: Configuration

Managing Users

Users on the machine where the OpenGL Vizserver server is running can use
OpenGL Vizserver by default, but if the entry Vizserver*UserDBStrictInterp in
/var/vizserver/config is set toTrue, they should be listed in the user database file.
See “The /var/vizserver/config File” on page 22 for more details.

This section describes how to add, delete, or modify a user in the user database file by
using vsconfig.

All the operations on Adding/Modifying/Deleting a user will not update the
/var/vizserver/users file until you save them by selecting File > Users >
Save users. They are updated on the internal database of vsconfig.

For more details about the /var/vizserver/users file, see “The
/var/vizserver/users File” on page 21.

Adding a User

Select Add a User to view that panel, as shown in Figure 2-5.

Configuring the Server

007-4481-007 17

Figure 2-5 Add a User Panel

To add a new user for OpenGL Vizserver, fill in the blanks and press the Add button.

The user’s login name should be the same as given in the /etc/passwd or NIS
password database if enabled.

The number of X servers is the number of active X servers allowed to this user. Since each
X server requires at least one graphics pipe, you cannot have more X servers than the
number of grahics pipes in your system.

The number of pipes are the maximum number of pipes assigned to this user. Again, the
user cannot have more pipes than the number of graphics pipes in the system. So a brief
line next to these fields (1 <= N <= k), where k is the number of graphics pipes in your
system and is automatically configured depending on the system) is helpful to help
decide which number to put into these fields.

To save your work, select File > Users > Save users.

18 007-4481-007

2: Configuration

Modifying a User

Select Modify a User to view that panel, as shown in Figure 2-6.

Figure 2-6 Modify a User Panel

To modify the number of X servers or pipes assigned to a user, choose the user’s login
name from the pulldown list by clicking a downward-pointing arrow. Change the values
in these fields as needed. Press the Modify button to save your work.

Deleting a User

Select Delete a User to view that panel, as shown in Figure 2-7.

Configuring the Reservation Web Interface

007-4481-007 19

Figure 2-7 Delete a User Panel

To delete a user from user database, select a user from the pulldown list by clicking a
downward-pointing arrow. Press the Delete button.

Configuring the Reservation Web Interface

OpenGL Vizserver provides a reservation mechanism that allows a user of the
OpenGL Vizserver system to reserve a pipe at a specific time slot. To use this mechanism,
you must have the vizserver_server.web module and either Netscape Fasttrack or
SGI Apache web server installed.

In the Configuration Values panel of vsconfig, select the Active radio button of the
Reservation System field. Then the Session Kill Notify (sec.) field becomes visible, as
shown in Figure 2-8.

20 007-4481-007

2: Configuration

Figure 2-8 Setting Reservation System Parameters

Making the Reservation System active means that a reservation is required for a user to
start a session. Session Kill Notify indicates how many seconds before the end of a
session a warning message is sent to the user.

The installed web interface is configured to work under the Netscape Fasttrack or SGI
Apache web servers. A sample reservation web interface can be started from the
following URL:

http://remote-host/vizserver/reservation

For remote-host, specify the OpenGL Vizserver server’s hostname. For more details about
how to use the reservation web interface, see the OpenGL Vizserver User’s Guide.

You can configure the web interface to work with other web servers. To do so, you must
ensure the following:

• All the CGI files must be in the same directory.

• The index.html file must redirect the web browser to welcome.cgi. If
welcome.cgi is moved, index.html should be edited accordingly.

• The Reservation*ImagePath entry in
/var/vizserver/reservation_client.conf must point to the directory that
holds the images.

For more details, see “The /var/vizserver/reservation_client.conf File” on page 27.

Configuration Files

007-4481-007 21

Configuration Files

There are three important files related to the OpenGL Vizserver server configuration, as
described in the following sections:

• “The /var/vizserver/users File” on page 21

• “The /var/vizserver/config File” on page 22

• “The /var/vizserver/reservation_client.conf File” on page 27

The vsadmin command can be used to load the server’s configuration files dynamically
after changing the values in them.

The /var/vizserver/users File

The /var/vizserver/users file contains a list of user login names that are allowed to
connect to the OpenGL Vizserver server. Each entry is listed in a separate line and has
three fields separated by colons, as follows:

name:servers:pipes

The default configuration of the OpenGL Vizserver server is to allow users who can log
in to the machine to use OpenGL Vizserver without any limitation on the number of
pipes. If you want to change this access scheme, set the value of
Vizserver*UserDBStrictInterp in the /var/vizserver/config file to True
and add users in this file. Then only the users listed in this file can use OpenGL Vizserver
with the number of pipes assigned to them.

name:

• This entry specifies the user’s login name as given in /etc/passwd or NIS
password database if enabled.

• User must have the access to use the system first.

servers:

• This entry specifies the number of active X servers allowed to the user. In practice, a
user cannot have more than one X server.

• Cannot be empty.

22 007-4481-007

2: Configuration

• Since an X server needs at least one graphics pipe, the number cannot be greater
than the number of graphics pipes that the server system has.

pipes:

• This entry specifies the maximum number of pipes assigned to the user.

• Cannot be empty.

• The number cannot be greater than the number of the graphics pipes on the server
system.

When you install a new version of the OpenGL Vizserver server module, the old
/var/vizserver/users file is kept, unchanged, and a new one is installed as
/var/vizserver/users.N.

The /var/vizserver/config File

The /var/vizserver/config file contains entries in the following format:

Vizserver*entry: value

Generally default values in this file are enough to start the OpenGL Vizserver server
manager and you do not need to modify entries in this file. But if you want to customize
your system for your specific needs, you can change them by using vsconfig or by
modifying this file manually. It is recommended that you use vsconfig.

Vizserver*UserDBPath:

• This entry specifies the location of the user database file.

• The default value is /var/vizserver/users.

Vizserver*UserDBStrictInterp:

• This entry specifies whether only users from the user database can use
OpenGL Vizserver.

• If True, a user should be listed in the user database file to use OpenGL Vizserver.
For information on how to add a user in the database file, see “Allocating Graphics
Pipes for OpenGL Vizserver” on page 12.

Configuration Files

007-4481-007 23

• Setting this to False means that if a user does not exist in the user database file,
that user is still allowed to use OpenGL Vizserver without any limit on the number
of servers and pipes.

• The default value is False.

Vizserver*AuthType:

• This is the user authentication mechanism to be used by the server.

• The authentication mechanisms provided with the server are AUTH-PASSWORD and
AUTH-PAM. See section “User Authentication” on page 29 for more details about
these two mechanisms.

• Depending on your specific needs, other authentication modules can be developed
using the OpenGL Vizserver authentication API.

• The default value is AUTH-PASSWORD.

Vizserver*AcctPath:

• This entry specifies an accounting log file in which vsserver writes when a
session starts and stops.

• This data can be dumped using vsacct(1m).

• The default value is /var/vizserver/acct.

Vizserver*SessionPath:

• This entry specifies the session startup shell script file.

• This is passed to the OpenGL Vizserver session manager.

• The default value is /usr/vizserver/bin/session.

Vizserver*SessionMgrPath:

• This entry specifies the OpenGL Vizserver session manager path.

• This is run by the OpenGL Vizserver server manager when a session is started.

• The default value is /usr/vizserver/bin/vssession.

Vizserver*XDMConfigPath:

• This entry specifies the XDM configuration file, which specifies resources to control
the behavior of XDM.

24 007-4481-007

2: Configuration

• OpenGL Vizserver gets a value from the DisplayManager*servers field in this
file because it is a system-wide default X server file, usually
/var/X11/xdm/Xservers, used by XDM.

• OpenGL Vizserver reads /var/X11/xdm/Xservers to determine which pipes are
managed and ready for use by OpenGL Vizserver.

• The default value is /var/X11/xdm/xdm-config.

Vizserver*UseXDMPipes:

• This entry specifies whether OpenGL Vizserver can use XDM-managed graphics
pipes for its sessions.

• If False, this activates static pipe allocation mode. See “Graphics Pipe Allocation
Guidelines” on page 30 for more details.

• This corresponds to the OpenGL Vizserver can use XDM managed pipes radio
buttons in the Graphics Pipes panel of vsconfig.

• The default value is True.

Vizserver*Boards:

• This entry defines the set of graphics pipes available to the OpenGL Vizserver
server manager.

• There are three possible scenarios:

– all indicates that any pipes not currently managed by XDM should be
managed by vsserver.

– none indicates that no pipe is managed by vsserver.

– b#, ..., b# indicates that the specified pipes not managed by XDM should be
managed by vsserver.

• The graphics board numbers can be determined by examining the report from
gfxinfo(1G).

• The default value is all.

Vizserver*DisplayOffset:

• This entry specifies the base display offset number for the X server started by an
OpenGL Vizserver session.

• X server issued by XDM starts its number from 0.

Configuration Files

007-4481-007 25

• The maximum number of graphics pipes in a system is 32. So the biggest number
for an XDM X server would be 31.

• The default value is 32.

Vizserver*ServerCommand:

• This entry specifies the command-line entry for the X server started by an
OpenGL Vizserver session.

• The default value differs between Onyx4 servers and other SGI servers.

Onyx4 servers use the XFree86 command line:

/usr/bin/X11/x <display> -devdir <input> -xf86config <config> -layout
<layout>

Other SGI servers use the Xsgi command line:

/usr/bin/X11/X <display> -boards <boards> -devdir <input> -bs
-nobitscale -depth 8 -class PseudoColor -c -solidroot sgiblue
-cursorFG red -cursorBG white

• The <display>, <boards>, <config>, <input>, and <layout> parameters are replaced by
OpenGL Vizserver in run time. Modify only the parts of the command line that does
not involve these parameters (from -bs onwards).

Vizserver*Admins:

• This entry specifies a comma-separated list of user login names that have
administrative access to the OpenGL Vizserver server manager.

• The user listed in this field can kill sessions on the server as well as update server
configuration changes in the /var/vizserver/config file or XDM
configuration.

• The default value is root.

• See the vsadmin(1) man page.

Vizserver*SessionPortBase:

• This entry specifies the base port that OpenGL Vizserver should use when starting a
session.

• Each session uses three ports (base + 3 x pipe, base + 3 x pipe + 1, and base + 3 x pipe +
2), where base is the value of this entry and pipe is the graphics pipe number that the
session is running on. For example, if the SessionPortBase is 0x2000 and a
session is running on pipe 0, the session uses ports 0x2000, 0x2001, and 0x2002.

26 007-4481-007

2: Configuration

• Total 3 x npipes number of ports should be opened in the server’s firewall to enable
access through firewalls, where npipes is the number of graphics pipes in the server.

• OpenGL Vizserver listens on port 7051 (0x1b8b) for initial connections.

• The default value is 0x2000.

Vizserver*ReservationPath:

• This entry specifies a mdbm database file path for reservation data.

• The default value is /var/vizserver/reservations.

Vizserver*ReservationActive:

• If True, a reservation is required for a user to start a session.

• If False, a user can start a session using any graphics pipes that are managed by
OpenGL Vizserver.

• The default value is False.

Vizserver*ReservationEndSessionNotify:

• This entry specifies how many seconds before the end of a session a warning is sent
to the user.

• If Vizserver*ReservationActive is set to False, this value is of no use.

• The default value is 60.

Vizserver*CompressionThreads:

• This entry specifies how many compression threads are available for compressors
that support multithreading.

• Currently, all compressors included in OpenGL Vizserver support multiple threads.
This will allow for performance scalability on machines with a large number of
CPUs.

• The default value for this setting is 2.

Vizserver*BaseXF86Config:

• This entry specifies which file should be used by OpenGL Vizserver as the basis for
generating the temporary XFree86 configuration files needed for starting X servers
on Onyx4 systems.

Configuration Files

007-4481-007 27

• This entry is applicable (and will be displayed in vsconfig) only on Onyx4
systems.

• Change this value if you want OpenGL Vizserver to use an XFree86 configuration
file that is customized to your needs.

• Default value is /etc/X11/XF86Config.

Vizserver*SGCFrameSkip:

• This entry specifies the frame-skip value when using an SGC-DVI-IN hardware
readback device.

• This entry is applicable (and will be displayed in vsconfig) only on Onyx4
systems with SGC-DVI-IN devices and when the subsystem
vizserver_server.modules.readback is installed.

• If set to –1, the OpenGL Vizserver session manager will determine the optimal
frame-skip value automatically.

• Change this parameter to get better performance or lower system resources usage.
This change will override the value automatically set by the OpenGL Vizserver
session manager.

• Default value is –1.

The /var/vizserver/reservation_client.conf File

The /var/vizserver/reservation_client.conf file contains the necessary
information to configure the reservation web interface shipped with OpenGL Vizserver.
This file contains entries in the following format:

Reservation*entry: value

The default values in this file are set for the reservation web interface shipped in the
OpenGL Vizserver reservation module. If you develop your own reservation web
interface using the OpenGL Vizserver reservation API, you may need to modify these
values.

Note: The reservation_client.conf file is used by the reservation web interface
that is shipped with OpenGL Vizserver. It is not used by the OpenGL Vizserver server
manager or by any other reservation program developed using the reservation API.

28 007-4481-007

2: Configuration

Reservation*Servers:

• This entry specifies the name of the OpenGL Vizserver server machine where the
reservation is made. Only one host is supported at this time.

• The host specified in this entry must have a running OpenGL Vizserver server
manager for the reservation interface to work.

• The default value is the local host.

Reservation*ImagePath:

• This entry specifies the directory in which the images used by the web interface are
kept.

• This path is relative to the web server’s HTML directory.

• The default value is /vizserver/images.

Reservation*ConnectionTimeout:

• This entry specifies the timeout (in minutes) for disconnecting a non-active user
from the reservation web interface.

• After this amount of time, a reservation session is closed, and the user should log in
again. Each operation of the user on the web interface resets the timer.

• The default value is 5.

Reservation*MinimalTimeslot:

• This entry specifies the minimal length (in minutes) of a reserved time slot.

• It must be at least 1 minute.

• The default value is 30.

Reservation*MaximalTimeslot:

• This entry specifies the maximum length (in minutes) of a reserved time slot.

• A value of 0 indicates that there is no maximum to the reservation length.

• The default value is 240.

See the vsreservation(1m) man pages for more details.

User Authentication

007-4481-007 29

User Authentication

Two authentication mechanisms are currently provided with OpenGL Vizserver:

AUTH-PASSWORD

AUTH-PAM

AUTH-PASSWORD

The defualt authentication scheme used by the server is AUTH-PASSWORD, an
unencrypted user/password mechanism based on the system’s passwd database.

AUTH-PAM

This mechanism uses the Pluggable Authentication Modules (PAM) mechanism
provided with IRIX 6.5.22 or later. When using the AUTH-PAM module, the
OpenGL Vizserver PAM configuration file (/etc/pam.d/vizserver) determines
how authentication is performed by the server.

Notes:

• In order to use the AUTH-PAM mechanism, you need to install the
vizserver_server.modules.pam_auth subsystem.

• When using the AUTH-PAM module in the server, no authentication module is
needed in the client.

For more information about PAM usage and configuration, see the following documents:

• Linux-PAM System Administrators’ Guide
(/usr/share/doc/pam/html/pam.html)

• PAM(8) man page

30 007-4481-007

2: Configuration

Graphics Pipe Allocation Guidelines

As mentioned in “Allocating Graphics Pipes for OpenGL Vizserver” on page 12, the
managed graphics pipes in the OpenGL Vizserver system are managed by either XDM
or OpenGL Vizserver.

When graphics pipes are allocated to the OpenGL Vizserver sessions by the
OpenGL Vizserver server manager, there are two types of allocation methods used: static
pipe allocation and dynamic pipe allocation. The terms static and dynamic refer to the
mobility of graphics pipes between XDM and OpenGL Vizserver.

As noted earlier, all graphics pipes allocated for a session are used by the session’s X
server, although it might be the case that only a subset of these pipes are actually being
served by OpenGL Vizserver. The status of the Active Screens check boxes in the Session
Start window of the client determines which pipes/screens are served. For example, a
user might request to start a four-pipe session, of which only screens 0 and 2 are specified
to be served. In this case, the following will happen:

• Four pipes will be allocated to the session by the server manager.

• The X server used by this session will include four screens: 0, 1, 2 and 3.

• Only screens 0 and 2 will be actually served by OpenGL Vizserver to the client.

This section describes the policy for allocating graphics pipes by the server manager and
the process for configuring with this policy in the following subsections:

• “Relevant Configuration File Parameters” on page 31

• “Static Pipe Allocation” on page 31

• “Dynamic Pipe Allocation” on page 31

• “Dynamic Pipe Allocation Policy” on page 32

• “Hardware Readback” on page 33

Graphics Pipe Allocation Guidelines

007-4481-007 31

Relevant Configuration File Parameters

The three parameters in the server’s configuration that affect graphics pipe allocation are
the following:

• Vizserver*Boards: Specifies which graphics pipes are managed by
OpenGL Vizserver.

• Vizserver*UseXDMPipes: Specifies whether OpenGL Vizserver can use
XDM-managed graphic pipes for its sessions.

• Vizserver*ReservationActive: Specifies whether a graphics pipe reservation
by the user is required in order to use the OpenGL Vizserver managed pipes.

For more details about these parameters, see “The /var/vizserver/config File” on
page 22.

Static Pipe Allocation

When the Vizserver*UseXDMPipes parameter’s value is False, the server operates
in a static pipe allocation mode. In this mode, OpenGL Vizserver can allocate only the
graphics pipes that it manages.

If the Vizserver*ReservationActive parameter’s value is False, a user can open
a session using any graphics pipes that are managed by OpenGL Vizserver (subject to
availability).

If the Vizserver*ReservationActive parameter’s value is True, a user cannot
have a session using more than the maximum number of graphics pipes reserved. If no
reservation was made by a user, the user cannot open a session at all.

Dynamic Pipe Allocation

When the Vizserver*UseXDMPipes parameter’s value is True, the server operates in
a dynamic pipe allocation mode. In this mode, OpenGL Vizserver can allocate the graphics
pipes that it manages, as well as the graphics pipes managed by XDM.

OpenGL Vizserver allocates XDM-managed pipes for a session’s use only if the X server
that currently uses the graphics pipes is not logged in. In other words, the X server is in
the login stage and the login screen is displayed.

32 007-4481-007

2: Configuration

In order for the server to know which X servers are logged in and which are not, three
scripts used by XDM need to be changed to record the X server’s state in the system’s
utmpx database. This change is made automatically when installing the server, by
installing the new scripts on the system (in /var/X11/xdm), and modifying the XDM
configuration file (/var/X11/xdm/xdm-config).

The following are the pertinent scripts:

Xlogin This script starts the login process of the X server. Upon installation of
OpenGL Vizserver, this script is replaced by Xlogin.vizserver.

Xstartup This script is run after a user has logged into the X server. Upon
installation of OpenGL Vizserver, this script is replaced by
Xstartup.vizserver.

Xreset This script is run after a user has logged out of the X server. Upon
installation of OpenGL Vizserver, this script is replaced by
Xreset.vizserver.

Note: The new *.vizserver scripts are based on the default scripts installed by IRIX.
If these scripts on the installed machine were changed, you will need to copy the relevant
lines from the *.vizserver scripts into your local scripts manually.

The server reads an XDM X server file (usually /var/X11/xdm/Xservers) to
understand the current state of the system graphics pipes. It also changes the file every
time XDM-managed graphics pipes are allocated dynamically or returned to XDM.
Therefore, it is strongly recommended not to modify the contents of the file externally
while X servers are dynamically allocated.

Note: Changing graphics pipes allocation configuration might cause active
OpenGL Vizserver sessions to terminate.

Dynamic Pipe Allocation Policy

When the server is in dynamic pipe allocation mode and the
Vizserver*ReservationActive parameter’s value is False, the graphic pipe
allocation policy is as follows:

Graphics Pipe Allocation Guidelines

007-4481-007 33

1. The server allocates as many of the OpenGL Vizserver managed graphics pipes as it
can.

2. If that is not enough to fullfill the session’s needs, the server tries to allocate
available graphic pipes that belong to X servers from which graphic pipes were
already allocated.

3. If that is not enough to fullfill the session’s needs, the server tries to allocate
XDM-managed pipes from X servers that are not logged in.

If the Vizserver*ReservationActive parameter’s value is True, the policy is
similar, with one difference: the server will not allocate graphics pipes from its own
managed pipes more than the number of pipes reserved by the user (that is, if no
reservation was done, only XDM-managed graphics pipes will be allocated).

When the server allocates an XDM-managed graphics pipe, the XDM X server using the
pipe is killed and the session’s own X server can use this pipe.

As mentioned previously, more than one session might use graphics pipes from the same
XDM X server. When all the graphics pipes used by the sessions are freed, after sessions
end, the XDM X server is restarted and returned to a login state.

Hardware Readback

OpenGL Vizserver supports the use of hardware readback using an SGC-DVI-IN device
in conjunction with the digital output from an Onyx4 graphics pipe. An SGC-DVI-IN
device is a digital video interactive (DVI) capture device. It connects to the server’s PCI-X
bus and is used to drastically improve the readback rate of OpenGL Vizserver from the
server-side X server by connecting the pipe’s DVI output to the SGC-DVI-IN device
input using a DVI cable.

OpenGL Vizserver will use SGC-DVI-IN devices to perform the readback needed for its
operation if the following conditions are true:

• The OpenGL Vizserver server host is an Onyx4 system.

• The OpenGL Vizserver server host has SGC-DVI-IN devices installed.

• All pipes belonging to the subset of “active screens”—that is, screens user-selected
for OpenGL Vizserver to serve to clients—are connected to SGC-DVI-IN devices.

34 007-4481-007

2: Configuration

Note that if any one of the session’s allocated pipes belonging to an active screen is not
connected to an SGC-DVI-IN device, readback from all pipes will revert to software.

Upon session startup, OpenGL Vizserver will automatically detect the connections
among the session’s allocated pipes and the SGC-DVI-IN devices and use the required
devices appropriately.

Pipe allocation by the OpenGL Vizserver server manager is independent of the
SGC-DVI-IN devices. That is, if some of the pipes on your system are connected to an
SGC-DVI-IN device and some are not, the only way to force the allocation of pipes
connected to SGC-DVI-IN devices is by changing the Vizserver*Boards value in the
server’s configuration file /var/vizserver/config to indicate which pipes are
connected to SGC-DVI-IN devices.

To provide a uniform user experience where all sessions run fast regardless of which
graphics pipes they are allocated, ensure that all graphics pipes used by
OpenGL Vizserver are connected to an SGC-DVI-IN device.

007-4481-007 35

Chapter 3

3. Tuning

This chapter explains the overall architecture of OpenGL Vizserver 3.x, how to measure
and monitor OpenGL Vizserver performance, and how to estimate the network
bandwidth required by OpenGL Vizserver. The following topics are covered:

• “Understanding the OpenGL Vizserver Pipeline” on page 36

• “Tuning Objectives” on page 41

• “Understanding the Environment” on page 42

• “Monitoring OpenGL Vizserver Performance” on page 45

• “Estimating the Network Bandwidth Required by OpenGL Vizserver” on page 55

• “Optimizing for High-Latency Networks” on page 57

Tuning generally implies matching the system capacity and your workload to get a better
performance from your system. You can change the system hardware or software to
match the workload or you can reduce the workload to match the system.

So why do we need tuning? Many answers are possible, but they can be summarized as
follows:

• Isolate and understand performance behavior

• Use resources more efficiently

• Understand performance bottlenecks

• Get a better performance

There are many components that you can tune, depending on your needs on the system.
This chapter discusses the tuning issues on OpenGL Vizserver only.

To extract top performance from a system, it is important to understand the architecture
of the system. The next section describes the architecture of the OpenGL Vizserver
system.

36 007-4481-007

3: Tuning

Understanding the OpenGL Vizserver Pipeline

The overall diagram of OpenGL Vizserver is shown in Figure 3-1.

Figure 3-1 Overall Diagram of OpenGL Vizserver

Application

X/OpenGL

Gfx pipes

Xserver

libvsx.so

Session manager
(vssesion)

Compression
modules

Authentication
modules

Server manager
(vsserver)

Performance
monitoring

module

Reservation
web

interface
vsadminvsconfig

Authentication
modules

Decompression
modules

Client process
(vizserver)

Client
display

Server side

Client side

Understanding the OpenGL Vizserver Pipeline

007-4481-007 37

The following steps describe how the OpenGL Vizserver components work from the
point that a user connects to OpenGL Vizserver to the point that the user logs out of the
OpenGL Vizserver server after running the application under OpenGL Vizserver.

For detailed instructions on how to use the OpenGL Vizserver client GUI, see the
OpenGL Vizserver User’s Guide.

How It Operates

OpenGL Vizserver provides two types of sessions: single-user sessions and collaborative
sessions. Single-user sessions involve one client user using graphics pipes on the
OpenGL Vizserver server. Collaborative sessions allow multiple distant users, one of
them being a master and the rest of them being nonmasters, to display and interact with
the same application in real time.

Single-User Session

The following steps describe running a single session:

1. The server manager (vsserver) is started as a daemon and listens for client’s
incoming connections.

2. The OpenGL Vizserver client program (vizserver) calls the server with a
hostname.

3. vsserver replies.

4. vizserver sends the authentication data (usually user’s login name and
password).

5. vssserver dynamically loads an authentication module and verifies the user.

6. If the user is authenticated to vsserver, the Start Session, Join Session, and
Log out buttons in the client GUI (vizserver) become active.

7. The user presses the Start Session button and chooses a Single-User session type in
a Session Start window. The user chooses other initial configuration options if
necessary.

8. vsserver allocates the requested number of graphics pipes and launches a session
process.

9. vssession initializes the allocated graphics pipes and calls a session script.

38 007-4481-007

3: Tuning

10. vizserver presents an OpenGL Vizserver Session Control window and an
OpenGL Vizserver Console window to the user.

11. The user launches applications on the OpenGL Vizserver Console window
displayed on the client. The component libvsx.so is loaded by the applications
and handles some X11, GL, and GLX calls by overriding them.

12. vssession captures the images rendered by the applications, compresses the
images, and transmits them to the remote client.

13. The user presses the Stop Session button to end the session after running
applications.

14. The user presses the Log out button to log out from the OpenGL Vizserver server.

Collaborative Session

There are two types of collaborative sessions: local and remote. A local collaborative
session is a session that involves a local client on the server running an X server and
multiple remote clients to work together on the same application. A remote collaborative
session is a session that involves a remote client starting a session and multiple remote
clients working together on the same application. Whoever starts a session becomes the
master of the session. In local collaborative sessions, only the local client can start a
session.

The following steps describe running a collaborative session. Steps 1 to 6 are the same as
running a single-user session:

1. The server manager (vsserver) is started as a daemon and listens for client’s
incoming connections.

2. The OpenGL Vizserver client program (vizserver) calls the server with a
hostname.

3. vsserver replies.

4. vizserver sends the authentication data (usually user’s login name and
password).

5. vssserver dynamically loads an authentication module and verifies the user.

6. If the user is authenticated to vsserver, the Start Session, Join Session, and
Log out buttons in the client GUI (vizserver) become active.

Understanding the OpenGL Vizserver Pipeline

007-4481-007 39

7. The user presses the Start Session button and chooses a Collaboration session type
and types the session’s name in a Session Start window. The user who starts the
session becomes the master of the session.

8. vsserver distinguishes whether the session is local or remote and allocates the
requested number of graphics pipes for a remote collaborative session and launches
a session process. For a local collaborative session, vsserver just uses the number
of graphics pipes that are already allocated to a currently running X server.

9. vssession initializes the allocated graphics pipes and calls a session script. For
local collaborative sessions, vssession does not initialize the graphics pipe.

10. vizserver presents an OpenGL Vizserver Session Control window and an
OpenGL Vizserver Console window to the master.

11. The master launches applications on the OpenGL Vizserver Console window or
waits for the other users to join the session. When the applications are launched,
libvsx.so is loaded and handles some X11, GL, and GLX calls by overriding
them.

12. vssession captures the images rendered by the applications, compresses the
images, and transmits them to all the clients in the session. For local collaborative
sessions, vssession does not compress the images and sends them to the local
client, that is, the master.

13. To join the session, a user completes steps 1 through 6 and then presses the Join
Session button and fills in the Session Name field in a Session Join window.

14. vsserver sends the message to the master of the requested session to ask whether
or not the master accepts the request.

15. If the request is approved by the master, vsserver sends the message to
vssession to accept the user (nonmaster) joining and also notifies all the clients
that participated in the session that a new user has joined.

16. The nonmaster presses the Leave Session button to leave the session and the
session continues. If the master leaves the session, the session is stopped.

17. Each user presses the Log out button to log out from the OpenGL Vizserver server.

40 007-4481-007

3: Tuning

Main Components

OpenGL Vizserver consists of client side components and server side components.

Client Process (vizserver):

• Basic GUI for the user.

• Initiates a connection to a server.

• Reads the compressed image from the server and decompresses it using a
decompression module.

• Displays the decompressed images.

Server manager (vsserver):

• A daemon process running on the server.

• Keeps configuration parameters and provides them to other components in the
system.

• Waits for an initial connection from clients.

• Responsible for launching vssession after user’s authentication.

• Allocates the number of graphics pipes the user requests.

• Responsible for handling different types of sessions and joining in collaborative
sessions.

Session manager (vssession):

• Captures the images rendered by the application.

• Compresses the images using a compression module.

• Transmits them to remote clients.

• Receives keyboard or mouse events from clients and transfers them to the
application.

libvsx.so:

• Transparent interface library.

• Loaded by the application and overrides some X11, GL, and GLX calls.

Tuning Objectives

007-4481-007 41

• Keeps track of the application windows’ creation and destroys and notifies
vsssession, which keeps track of the application window.

• Catches glFlush(), glFinish(), and glXSwapBuffers() to make vssession grab the
frame buffer contents.

vsconfig:

• A GUI for the OpenGL Vizserver server’s configuration.

• Starts and stops the vsserver process.

vsadmin:

• A simple command-line administration tool for checking and managing active
client connections.

Reservation web interface:

• A set of Common Gateway Interface (CGI) programs, which provides a web-based
interface to the reservation system.

Performance monitoring module:

• Performance Co-Pilot (PCP) OpenGL Vizserver Performance Metrics Domain
Agent (PMDA).

• Provides an interface to PCP monitoring tools.

Tuning Objectives

There are different tuning objectives, depending on your situation and various tuning
options.

Since OpenGL Vizserver reads the frame buffer images and sends them to the client,
there are several important factors that affect the OpenGL Vizserver performance.

• Capturing frame buffer image

• Compressing the image

• Transmitting the image to the client

• Decompressing the compressed image at the client side

42 007-4481-007

3: Tuning

So OpenGL Vizserver tuning objectives are the following:

• Maximum network bandwidth

• Maximum frame readback rate

• Minimum frame drop rate

• Minimum network latency

These objectives allow the user in a remote client to feel that the application is running
locally on a huge, powerful graphics machine.

Understanding the Environment

It is important to understand how your system is configured and what the system
capacity is, such as number of CPUs, memory size, number of graphics pipes, and so on,
when you measure the application or system performance.

Not all applications require the same amount of system resources. So determine the
application that you use most and how many applications will be used at the same time.
Also determine the acceptable response time for interactive users.

Measuring the Application Performance Locally

If an application itself, not running on OpenGL Vizserver, already oversaturates most of
the system resources and shows a poor performance, there would be no performance
improvement on measuring the application performance with OpenGL Vizserver.
Measure the application performance locally and try to get a better performance from the
application itself first, before running it with OpenGL Vizserver.

SGI provides a collection of monitoring tools that can be used with applications: top,
sar, osview, gr_osview, timex, Performance Co-Pilot (PCP), and so on. Each
monitoring tool provides different performance metrics and features. So it is also
important to choose the right tools for monitoring your application.

When measuring the application performance, you can launch the application and the
monitoring tools together or use cron to get the performance data over a period of time.

Understanding the Environment

007-4481-007 43

The timex utility is good at determining the source of the problem. It reports how a
particular application is using its CPU processing time. The following will show real,
user, and system time spent executing your application:

timex your_application

When used with the -s option, timex reports total system activity that occurred during
the execution interval of your application.

Theosview andgr_osviewutilities dynamically display various parts of the operating
system’s activity data. If you have a graphics workstation, you can use gr_osview. You
can configure gr_osview to display several different types of information about your
system’s current status.

The sar utility reports the system’s activity by category and essentially the same
information as osview, but it also represents a snapshot of the system status. This utility
is useful for monitoring system usage over a period of time to determine bottlenecks and
system resource limitations.

sar [options] [interval] [samples]

It has options that allow sampling of a different category, such as cpu utilization (-u
option) or graphics activity (-g option). Each option displays the data differently.

The command in the following example prints information about graphics activity 10
times at 5 second intervals.

$ sar -g 5 10
16:24:50 gcxsw/s ginpt/s gintr/s fintr/s swpbf/s
16:24:55 0 2 72 5 0
16:25:00 0 0 72 2 0
16:25:05 0 0 72 2 0
16:25:10 0 0 72 2 0
16:25:15 0 1 72 3 0
16:25:20 3 37 72 39 0
16:25:25 0 40 72 13 0
16:25:30 0 36 72 8 0
16:25:35 1 13 72 35 0
16:25:40 1 51 72 45 0
Average 1 18 72 15 0

44 007-4481-007

3: Tuning

It is also useful to take a snapshot of your system activity before and after an application,
as shown in the following example:

/usr/lib/sa/sadc 1 1 report_file
run your_application
/usr/lib/sa/sadc 1 1 report_file
sar -A -f report_file

For more information about these monitering tools, see their respective man pages.

Measuring Network Bandwidth and Latency

Network bandwidth between two systems can be measured easily by using ttcp. The
ttcp tool can be used to time the transmission and reception of data between two
systems using the TCP or UDP protocols.

For testing, the receiver should be started first, with -s and -r options, and the
transmitter later, with -t and -r options. The -t option means to start in transmit mode
and the -r option means to start in receive mode.

To test TCP, use the following commands:

• On the receiving host: /usr/etc/ttcp -r -s

• On the transmitting host: /usr/etc/ttcp -t -s receiving host

To test UDP, use the following commands:

• On the receiving host: /usr/etc/ttcp -r -s -u

• On the transmitting host: /usr/etc/ttcp -t -s -u receiving host

Example 3-1 shows the testing of TCP performance from a server (rampage) to a client
(o2-alto).

Example 3-1 Testing TCP Performance between Two Systems by Using ttcp

1. Enter the command from a receiving host (o2-alto).

o2-alto:~> /usr/etc/ttcp -r -s
ttcp-r: buflen=8192, nbuf=2048, align=16384/0, port=5001 tcp
ttcp-r: socket

Monitoring OpenGL Vizserver Performance

007-4481-007 45

2. Enter the command from a transmitting host (rampage).

rampage:~> /usr/etc/ttcp -t -s o2-alto
ttcp-t: buflen=8192, nbuf=2048, align=16384/0, port=5001 tcp ->
o2-alto
ttcp-t: socket

3. After pausing, the results, similar to the following, are displayed on each host:

In o2-alto:

ttcp-r: accept from 130.62.46.200
ttcp-r: 16777216 bytes in 1.58 real seconds = 10340.35 KB/sec +++
ttcp-r: 3775 I/O calls, msec/call = 0.43, calls/sec = 2382.50
ttcp-r: 0.0user 0.3sys 0:01real 23% 20maxrss 0+0pf 3583+326csw

In rampage:

ttcp-t: connect
ttcp-t: 16777216 bytes in 1.58 real seconds = 10373.98 KB/sec +++
ttcp-t: 2048 I/O calls, msec/call = 0.79, calls/sec = 1296.75
ttcp-t: 0.0user 0.2sys 0:01real 15% 936maxrss 0+0pf 1369+493csw

Here we can see that network bandwidth from rampage to o2-alto is 10,340 KB/s.

There are other tools to use for measuring the network traffic.

• ping : To test the network access layer

• netstat -s : To view the configuration

• ifconfig -a : To see the status for all interfaces on the machine

• traceroute : To test the Internet layer

Monitoring OpenGL Vizserver Performance

OpenGL Vizserver total performance is affected by many factors, including the graphics
frame buffer image readback rates, CPU speeds on both OpenGL Vizserver server and
client for compression/decompression and network bandwidth.

The main purpose of monitoring OpenGL Vizserver performance is to find performance
bottlenecks and ensure that an application running under OpenGL Vizserver gives the
same performance as the application running locally on a huge graphics machine
without using OpenGL Vizserver.

46 007-4481-007

3: Tuning

It is assumed that your application is already optimized and runs reasonably well in the
current system configuration. To monitor OpenGL Vizserver performance, you can use
various system tools, mentioned in “Measuring the Application Performance Locally”
on page 42. However, with the values from these tools, it is difficult to understand how
OpenGL Vizserver performs.

Starting with the OpenGL Vizserver 3.0 release, a Performance Co-Pilot (PCP)
OpenGL Vizserver Performance Metric Domain Agent (PMDA) module and a text-based
tool, vsmonitor(1m), are available. They are easy to use and useful to monitor the
performance of each stage in the OpenGL Vizserver pipeline.

Performance Co-Pilot

Performance Co-Pilot (PCP) is an SGI product designed for monitoring and managing
system-level performance. It provides a system-level suite of tools that cooperate to
deliver distributed and integrated performance management services.

To use PCP OpenGL Vizserver PMDA to monitor OpenGL Vizserver performance, you
need to install at least pcp_eoe.sw.eoe and pcp_eoe.sw.monitor in your system.
The base pcp_eoe product is included in your IRIX 6.5 CD set and can be run without
licenses. If you want more fully covered PCP services, you will need to install pcp, which
requires PCP licenses.

To learn more about Performance Co-Pilot, see the following URL:

http://www.sgi.com/software/co-pilot

PCP OpenGL Vizserver PMDA

PCP OpenGL Vizserver PMDA acts as a gateway between a collection of performance
data from the OpenGL Vizserver server and the Performance Metrics Collection Daemon
(PMCD). PMCD acts as a mediator between PCP monitoring tools and PCP
OpenGL Vizserver PMDA.

Monitoring OpenGL Vizserver Performance

007-4481-007 47

Figure 3-2 OpenGL Vizserver PMDA

Once OpenGL Vizserver PMDA is installed, the performance data from the PMDA
becomes available immediately to all monitoring tools that connect to the PMDA process
(pmcd). The PMDA can also be added or removed while pmcd continues operation.

To use OpenGL Vizserver PMDA, vizserver_server.modules.perf should be
installed on your system. OpenGL Vizserver PMDA files are located in the
/var/pcp/pmdas/vizserver directory and the executable image for
OpenGL Vizserver PMDA is /var/pcp/pmdas/vizserver/pmdavizserver, using
domain number 222.

Starting a pmcd process automates the start of OpenGL Vizserver PMDA. Start the pmcd
process by entering the following commands:

chkconfig pmcd on
/etc/init.d/pcp start

If pmcd is already running on your system, the above command will stop and restart the
pmcd process.

Monitoring
tools

Monitoring
tools

pmcd

PMDAPMDA
vizserver

PMDA

OS DBMS
OpenGL
Vizserver

server

......

......

48 007-4481-007

3: Tuning

If you have problems running pmcd, see the Performance Co-Pilot User’s and
Administrator’s Guide.

You can also start OpenGL Vizserver PMDA without restarting the pmcd process. Go to
the /var/vizserver/pmdas/vizserver directory and run the Install script.
Choose both the collector and the monitor installation configuration options.
Everything else is automated. If you still enounter problems, see the README file in the
directory.

cd /var/pcp/pmdas/vizserver
./Install

You will need to choose an appropriate configuration for installation
of the "vizserver" Performance Metrics Domain Agent (PMDA).

collector collect performance statistics on this system
monitor allow this system to monitor local and/or remote
systems
both collector and monitor configuration for this system

Please enter c(ollector) or m(onitor) or b(oth) [b] both

Updating the Performance Metrics Name Space (PMNS) ...
Compiled PMNS contains

357 hash table entries
1533 leaf nodes
239 non-leaf nodes
15974 bytes of symbol table

Installing pmchart view(s) ...
Terminate PMDA if already installed ...
Installing files ...
Updating the PMCD control file, and notifying PMCD ...
Check vizserver metrics have appeared ... 23 metrics and 47 values

After the successful installation, you can see that the PMCD configuration file
(pmcd.conf) has the OpenGL Vizserver PMDA as an entry.

$ cat /etc/pmcd.conf

Name Id IPC IPC Params File/Cmd
irix 1 dso irix_init libirixpmda.so
pmcd 2 dso pmcd_init pmda_pmcd.so
proc 3 dso proc_init pmda_proc.so
vizserver 222 pipe binary
/var/pcp/pmdas/vizserver/pmdavizserver -d 222

Monitoring OpenGL Vizserver Performance

007-4481-007 49

If pcp.sw.base is installed on your system, you can also use pcp to view the summary
of PCP installation.

$ pcp

Performance Co-Pilot configuration on alto.engr.sgi.com:
platform: IRIX64 alto 6.5 10100655 IP30 64
hardware: 1 R10000 cpu, 3 disks, 1 xbow, 256MB RAM
timezone: PST8PDT
licenses: Collector Monitor

pmcd: Version 2.2, 4 agents
pmda: irix pmcd proc vizserver

Once the OpenGL Vizserver PMDA has been successfully installed, you can monitor it
using any PCP monitoring tools, such as pminfo, pmval, pmchart, and so on.

The command pminfo displays various types of information about performance
metrics. With the -t option, it lists all of the exported metrics and one-line help
messages. The -T option shows more verbose help messages. With the -f option, it
fetches and prints the values for all instances. See the pminfo(1) man page for more
information.

50 007-4481-007

3: Tuning

$ pminfo -t vizserver
vizserver.nsession [number of ongoing sessions]
vizserver.npipe [number of pipes allocated to OpenGL Vizserver]
vizserver.period [sampling duration(sec)]
vizserver.all.readback.rate [average rate(KB/s) of readback]
vizserver.all.readback.time [average time(ms) spent on readback at each
frame]
vizserver.all.compress.rate [average rate(KB/s) on compression for all
sessions]
vizserver.all.compress.time [average time(ms) spent for compressing a
frame]
vizserver.all.network.rate [average rate(KB/s) on network transfer]
vizserver.all.network.time [average time(ms) spent on writing a frame
to network]
vizserver.all.frames.total [total number of frames per second]
vizserver.all.frames.spoiled [number of spoiled frames per second]
vizserver.session.readback.rate [data rate(KB/s) of readback per
session]
vizserver.session.readback.time [time(ms) spent on readback at each
frame per session]
vizserver.session.compress.rate [data rate(KB/s) on compression per
session]
vizserver.session.compress.time [time(ms) spent on compressing a frame
per session]
vizserver.session.network.rate [data rate(KB/s) on network transfer per
session]
vizserver.session.network.time [time(ms) spent on writing a frame to
network per session]
vizserver.session.frames.total [total number of frames per session]
vizserver.session.frames.spoiled [number of spoiled frames per session]
vizserver.pipe.readback.rate [data rate(KB/s) of readback per pipe]
vizserver.pipe.readback.time [time(ms) spent on readback at each frame
per pipe]
vizserver.pipe.frames.total [total number of frames per pipe]
vizserver.pipe.frames.spoiled [number of spoiled frames per pipe]

OpenGL Vizserver PMDA has 23 metrics as shown in the above example. They specify
the characteristics of each stage of the OpenGL Vizserver pipeline. The
vizserver.*.time metrics represent the average time spent processing a frame in
each stage and the vizserver.*.rate metrics represent the average number of
kilobytes per second that get into each stage of the pipeline.

Monitoring OpenGL Vizserver Performance

007-4481-007 51

The vizserver.all.* metrics represent the overall data, the vizserver.session.*
metrics represent the data per each session, and the vizserver.pipe.* metrics
represent the data per each graphics pipe.

To view a detailed description for each of the performance metrics, use the pminfo -T
metric command.

The following examples show the number of active sessions and the average data rate
and time of the image readback stage in the pipeline per session.

$ pminfo -ft vizserver.nsession
vizserver.nsession [number of ongoing sessions]

value 3
$ pminfo -ft vizserver.session.readback
vizserver.session.readback.rate [data rate(KB/s) of readback per
session]

inst [0 or "yolee:"] value 12836.378
inst [1 or "guest:"] value 11454.321
inst [2 or "joch:"] value 12372.332

vizserver.session.readback.time [time(ms) spent on readback at each
frame per session]

inst [0 or "yolee:"] value 12.499605
inst [1 or "guest:"] value 13.661285
inst [2 or "joch:"] value 14.156073

The pmchart tool shows the performance metrics against time. It displays the selected
metrics in a chart. You can select metrics from the New Plot option from the File menu
or predefined view from the Open View option from the File menu. A predefined view
for OpenGL Vizserver is the /var/pcp/config/pmchart/Vizserver file.

For more information about how to use pmchart, see the Performance Co-Pilot User’s and
Administrator’s Guide. Figure 3-3 shows an example of using pmchart with
OpenGL Vizserver PMDA.

52 007-4481-007

3: Tuning

Figure 3-3 pmchart Using OpenGL Vizserver PMDA

Note: The pmchart tool is in the pcp.sw.monitor package subsystem. This tool is not
available if you have only pcp_eoe.sw installed on your system.

The pmval command provides a text-based display of the values for one or more
instances of a selected performance metric. For example, the following command shows
the values of the performance metric vizserver.session.readback.rate at a 1
second interval.

Monitoring OpenGL Vizserver Performance

007-4481-007 53

$ pmval vizserver.session.readback.rate
metric: vizserver.session.readback.rate
host: localhost
semantics: instantaneous value
units: Kbyte / sec
samples: all
interval: 1.00 sec

guest: yolee: joch:
1.181E+04 1.597E+04 1.138E+04
1.137E+04 1.588E+04 1.128E+04
1.236E+04 1.625E+04 1.182E+04
1.059E+04 1.523E+04 1.315E+04
1.400E+04 1.449E+04 1.119E+04
1.095E+04 1.301E+04 1.208E+04
1.412E+04 1.542E+04 1.161E+04
1.148E+04 1.593E+04 1.128E+04

vsmonitor

The vsmonitor tool is text-based and is used to display various performance metrics all
together in a current shell window. It reports the current values of all the metrics from
the OpenGL Vizserver server every 5 seconds (by default). The period can be changed by
using the -f option.

The vsmonitor tool categorizes the performance metrics into three sections: server,
sessions, and pipes. A server section displays the average, or sum, of the performance
data of currently running sessions. A sessions section shows activity per session. And a
pipes section shows activity per pipe.

The read/conv/comp/output times in a server section are averaged values of the
currently running sessions and read/conv/comp/output rate and total/spoil
frame are the sum of the sessions data.

In Figure 3-4, it shows that the OpenGL Vizserver server rudolph has three sessions
running and each session uses one pipe. Session yolee shows the compression rate as 0
bytes and the number of spoiled frames per second at 17.0. This implies the session is
currently running with no compression and spoiling turned on and a lot of frames are
spoiled. Session joch shows the number of spoiled frame as 0, which means the spoiling
is turned off.

54 007-4481-007

3: Tuning

Figure 3-4 vsmonitor

See the vsmonitor(1m) man page for more detail description about each performance
metric.

Estimating the Network Bandwidth Required by OpenGL Vizserver

007-4481-007 55

Estimating the Network Bandwidth Required by OpenGL Vizserver

In most cases, the network bandwidth is a major factor of bottlenecks in the
OpenGL Vizserver pipeline. To alleviate this problem, OpenGL Vizserver provides
several compression types. However, there is a minimum network bandwidth size
needed to use OpenGL Vizserver with reasonably good performance. The application
window size and compression rate are also key factors to define the data size in a
network transfer.

This section discusses the formula for figuring out how many frames per second are on
a given network bandwidth and the formula for estimating how large of a network
bandwidth is necessary to get a certain number of frames per second. It is assumed that
an entire image is changed in each frame. This assumption is true in a worst case
scenario: since the compression modules shipped with OpenGL Vizserver are based on
frame-differences, the bandwidth requirement is expected to be lower in practice.

Calculating Frames Per Second on a Given Network Bandwidth

A frame is the period of time that it takes to update the display with the new image. For
example, a frame rate of 60 Hz means that the display is updated 60 times per second.

In OpenGL Vizserver, a frame size is represented as the size of an application’s window,
which is handled as an image. An image size is represented as the combination of width,
height, and the depth of pixels, as follows:

frame_size = width * height * depth_of_pixel

If you set the variables of the frame size, width, height, and depth of pixel as follows:

• frame_size = f

• width = w

• height = h

• depth_of_pixel = d

You get the following formula, because d is usually 24 bits (3 bytes):

f = d * w * h = 3 * w * h

56 007-4481-007

3: Tuning

Since the network bandwidth between two systems is usually given in units of MB or KB,
suppose that the network bandwidth is n KB.

n KB = 1024 * n (KB = 1024)

Then, the number of frames on a given network bandwidth is the result of network
bandwidth divided by a frame size. In other words,

(1024 * n) / f = (1024 * n) / (3 * w * h)

For c:1 compression, you can get c times more compression than no compression. The
number of frames per second on a given network bandwith with c:1 compression is:

(1024 * n * c) / (3 * w * h)

For no compression, c is 1.

For example, assume that the network bandwidth, image size, and compression ratio are
as follows:

network bandwidth: 10,340 KB/sec
image size: 1280 x 1024 pixels
4:1 CCC compression

The number of frames per second on a given network bandwidth that OpenGL Vizserver
can get is calculated as follows:

(1024 * 10340 * 4) / (3 * 1280 * 1024) ~= 10.77

In this example, you can get roughly 10 frames per second.

Calculating Network Bandwidth Necessary for k Frames Per Second

To estimate the network bandwidth (nKB) required by OpenGL Vizserver when you
want to get k number of frames per second, use the formula from the previous section as
follows:

k = (1024 * n * c) / (3 * w * h)

1024 * n = (3 * w * h * k) / c

That is,

n KB = (3 * w * h * k) / c

Optimizing for High-Latency Networks

007-4481-007 57

For example, if the image size and number of frames per second are given as below,
calculate how large a network bandwidth is required.

image size : 512 x 512 pixels
no compression
at least 10 frames per second

The amount of network bandwidth necessary for k frames per second is calculated as
follows:

1024 * n = (3 * 512 * 512 * 10) / 1
n = 7680.

This shows that you need to have at least 7,680 KB/s of network bandwidth.

Optimizing for High-Latency Networks

In order to keep the round-trip latency viewed by the client (for example, the time
between moving the mouse and seeing the result on the client side), OpenGL Vizserver
uses a frame acknowledgment mechanism at the application level. A client-side
environment variable, VS_LATENCY, determines how many frames are allowed to be “in
transit” from the session to the client over the network at the same time. This means that
if the session has sent VS_LATENCY frames to the client but has not received an
acknowledgment from the client that the first frame was received, the session does not
send the next frame until the session gets this first acknowledgment from the client.

By default, VS_LATENCY is set to 2. This value is optimal for very low-latency networks,
such as an Ethernet-based local area network (LAN). If the network’s latency is high, as
in a wide area network (WAN), this default value will cause OpenGL Vizserver to utilize
the network’s bandwidth poorly and to achieve a sub-optimal frame rate.

For example, consider the following case:

Network bandwidth 5 Mbyte/sec

Network round-trip latency 0.3 sec

Typical OpenGL Vizserver frame size 0.5 Mbyte

In this case, the best frame rate possible is 10 frames/sec:

5/0.5 = 10 frames/sec

58 007-4481-007

3: Tuning

However, in reality, the default VS_LATENCY value of 2 will reduce the frame rate to
approximately 6 frames/sec:

2/0.3 ~= 6 frames/sec

Setting VS_LATENCY to 3 will increase the frame rate to 10 frames/sec, thus, better
utilizing the network:

3/0.3 = 10 frames/sec

In general, the optimal VS_LATENCY is one that does the following:

• Fully utilizes the network bandwidth and the client’s capabilities (the least of the
two).

• Makes sure it does not send frames too fast for the client to process, thus creating
high latencies.

A little algebra yields the following formula for calculating the optimal VS_LATENCY
value:

VS_LATENCY = min{ ceil[(L+S/B)*C], ceil[1+L*B/S] }

The variable items in the formula are defined as follows:

L Round-trip latency (“ping time” in seconds)

S Frame size (bytes)

B Network bandwidth (bytes/seconds)

C Client processing speed (frames/second)

The following are some typical network environments:

• A 100-Mbit LAN

There is practically no latency (L = 0), and the optimal VS_LATENCY value is 1. The
default value of 2 might add one frame of latency in this case, but the default value
provides more robustness with respect to network bandwidth and latency
fluctuations.

• A WAN with medium latency, high network bandwidth, and deep compression

In this case, S/B is very small, and the optimal VS_LATENCY value is ceil(L*C). With
300 ms latency, and a client capable of drawing 15 frames/sec, the optimal
VS_LATENCY value is 5.

Optimizing for High-Latency Networks

007-4481-007 59

• A WAN with very high latency (L = 1000 ms), high network bandwidth, deep
compression

The default value of 2 will get you 2 frames/sec, regardless of your bandwidth. If
you have high bandwidth (45 Mbit/sec) and a fast client capable of 30 frames/sec,
setting VS_LATENCY to 31 will achieve the full 30 frames/sec. Note that there is an
inherent 30 frames of latency in such a network, which might make it very hard to
use for OpenGL Vizserver sessions.

To summarize, the default value of VS_LATENCY is optimized for LANs. If you run a
session over a high-latency network, adjusting the VS_LATENCY value (using the
formula just described) might provide considerably higher frame rates.

007-4481-007 61

Chapter 4

4. Troubleshooting and Known Problems

In most cases, when there are problems, error messages are shown in the console
window, application windows, or log files.

This chapter describes how to look at log files to track down the errors and what the
known problems are and how to resolve them. The following topics are covered:

• “Looking at Log Files” on page 62

• “Shared Memory Input Queue (shmiq) Problem” on page 65

• “No Appearance of OpenGL Vizserver Console Window in Windows 2000” on
page 67

• “Cleaning Up Shared Memory” on page 67

• “Using Window Managers Other Than 4Dwm” on page 68

• “Application Not Updated” on page 68

• “Applications Masked as a Cross-Hatch Pattern Image” on page 68

• “Back-to-Front Rendering” on page 69

• “Using Customized XDM in Dynamic Pipe Allocation” on page 69

62 007-4481-007

4: Troubleshooting and Known Problems

Looking at Log Files

OpenGL Vizserver uses the following log files:

• “Server Log File” on page 62

• “Session Log File” on page 63

• “System Log File” on page 63

• “XFree86 Log File” on page 64

• “Accounting Log Files” on page 65

If you have problems running OpenGL Vizserver, first look at the server and session log
files and then the system log file. If by looking at the server log file you find out that the
X server failed to start on your Onyx4 system, looking at its XFree86 log file can give you
a hint as to why the X server failed.

The accounting files can also be useful in establishing a chronology of user events. The
following subsections describe each type of log file.

Server Log File

The OpenGL Vizserver server manager writes its status messages in its server log file:

/var/vizserver/logs/vsserver.log

The server log contains the following entries:

• Server mananger start/stop notice

• Licenses that were found

• Licenses that checked out/in

• Clients logged in/out

• Number of pipes found

• Number of pipes used by XDM

• Number of pipes marked for OpenGL Vizserver use

• X server start notification

Looking at Log Files

007-4481-007 63

• Session start success/failure

• Error message from the server

Note: After each run, the server log is overwritten.

Session Log File

The OpenGL Vizserver session manager writes its status messages in its session log file:

/var/vizserver/logs/vssession.<username>.log

The <username> variable specifies the master user’s login name for the session.

The session log contains the following entries:

• Session manager start/stop notice

• Session name, server display, and master username

• Client join/leave

• Compressor change

• Spoiling change

• Control passing change

• Error messages from the session

Note: After each run, the session log is overwritten.

System Log File

The OpenGL Vizserver server processes also write critical error messages in the system
log file:

/var/adm/SYSLOG

64 007-4481-007

4: Troubleshooting and Known Problems

The processes use the following tags for the system log entries:

vsserver Entry posted by the OpenGL Vizserver server manager

vssession Entry posted by the OpenGL Vizserver session manager

If you are having problems while using the PAM authentication module with
OpenGL Vizserver, the /var/adm/SYSLOG file might include relevant information
about it. You should look for entries having module_name[pid] in them—for example,
pam_rhosts_auth[2112]:, where the module used is pam_rhosts_auth.so and
the PID of vsserver is 2112.

Since there are so many other processes on your system that write their messages to the
/var/adm/SYSLOG file, look carefully at lines between user connects to the
OpenGL Vizserver server and user disconnects from the OpenGL Vizserver server.
Check that the session was started and exited normally and look at the messsages related
to graphics processes between the user connect and user disconnect messages.

XFree86 Log File

When the OpenGL Vizserver server host is an Onyx4 system, the X server that is used on
the system is XFree86. When XFree86 is run, it generates a very detailed log file,
/var/log/XFree86.x.log, where x is the X server’s number (for example, if the X
server is :32, the log file is /var/log/XFree86.32.log).

Based on the file set in the server configuration parameter
Vizserver*BaseXF86Config (see “The /var/vizserver/config File” on page 22),
OpenGL Vizserver generates temporary XFree86 configuration files to be used by the X
servers it starts. In the XFree86 log file, you can also look for the line starting with the
following string:

Using config file:

This line will identify which XFree 86 configuration file was used when starting this X
server.

Something might be incorrect or inadequate for OpenGL Vizserver’s needs in this file
especially if you have customized this file. If you have customized the file, you might
resolve the issue by creating a new default XFree86 configuration file using
/etc/X11/gen-XF86Config and using it as the base XFree86 configuration file for
OpenGL Vizserver. Do not forget to back up your customized XFree86 configuration file.

Shared Memory Input Queue (shmiq) Problem

007-4481-007 65

Accounting Log Files

Looking at accounting log files can be useful to determine actual time, user, and session
type when an error happened.

OpenGL Vizserver records a client login and logout and a session start and stop into an
accounting log file (usually /var/vizserver/acct). This file can be viewed using
vsacct. See the vsacct(1m) man page for more details.

$ vsacct /var/vizserver/acct

Each OpenGL Vizserver session is also logged to the wtmpx database of the system
(typically /var/adm/wtmpx), for use with utmpx based utilities, such as last.

OpenGL Vizserver sessions appear in the file as the device vsspipe#, where pipe# is the
graphics pipe number used by a session. If the session uses more than one graphics pipe,
a line per each graphics pipe is used.

Since the last command also shows other records in /var/adm/wtmpx, use it with the
grep command to extract the information related only to OpenGL Vizserver sessions.
(Actual results on your system will be different.)

$ last | grep vss
yolee vss1 130.62.55.27 Tue Aug 13 16:39 - 16:49 (00:09)
guest vss0 130.62.53.103 Tue Aug 13 16:33 - 16:43 (00:10)
guest vss0 130.62.53.103 Tue Aug 13 15:27 - 15:56 (00:28)
root vss1 130.62.55.66 Mon Aug 12 12:46 - 13:07 (00:20)
yolee vss0 130.62.55.27 Mon Aug 12 13:42 - 13:53 (00:10)
yolee vss2 130.62.55.27 Mon Aug 12 13:42 - 13:53 (00:10)
root vss0 130.62.52.83 Mon Aug 12 12:46 - 13:07 (00:20)

See the last(1) and utmpx(4) man pages for more details.

Shared Memory Input Queue (shmiq) Problem

If OpenGL Vizserver cannot use all of the available graphics pipes in your system and
your system’s SYSLOG shows something similar to the following, it is a shmiq problem.

Dec 4 15:46:36 5B:ontario vizserver: Failed to open shmiq control
device.: No such file or directory
Dec 4 15:46:36 3D:ontario Xsgi35[17597]:
Dec 4 15:46:36 5B:ontario vizserver: Xsgi35[17597]:

66 007-4481-007

4: Troubleshooting and Known Problems

Dec 4 15:46:36 2D:ontario Xsgi35[17597]: Fatal server error:
Dec 4 15:46:36 5B:ontario vizserver: Xsgi35[17597]: Fatal server
error:
Dec 4 15:46:36 2D:ontario Xsgi35[17597]: Error Starting SHMIQ I/O!
Dec 4 15:46:36 5B:ontario vizserver: Xsgi35[17597]: Error Starting
SHMIQ I/O!
Dec 4 15:46:36 2D:ontario Xsgi35[17597]:
Dec 4 15:46:36 5B:ontario vizserver: Xsgi35[17597]:

What is shmiq?

A shmiq (pronounced shmick) is a fast way of receiving input device events by
eliminating the operating system overhead to receive data from input devices. Instead of
reading the input devices through UNIX file descriptors, the kernel deposits input events
directly into a region of the X server’s address space, organized as a ring buffer.

Why Does This Cause a Problem?

Associated with the shmiq driver, a character device called qcntl is needed for the X
server (Xsgi). The qcntl device allows Xsgi to process character input from the shmiq
driver. To use multiple X servers in a system, you need at least the same number of
/dev/qcntl nodes as that of Xsgi to be used. For example, if your system has only
qcntl0 and qcntl1 nodes, you can have at most two Xsgi servers running on your
system.

As of IRIX 6.5, the systems with graphics capabilities are preconfigured with 9 shmiq
drivers, 2 input directories (/dev/input0, /dev/input1), and 8 qcntl nodes
(/dev/qcntl0, /dev/qcntl1, ..., /dev/qcntl7): therefore, usually you do not
have to worry about these values. However, the preconfigured values are sometimes
wiped out when the system is rebooted.

How To Resolve It

Check how many qcntl nodes are in the /dev directory and create an additional number
of qcntl character devices by using mknod as follows. Create one qcntl node for each pipe
in your configuration.

No Appearance of OpenGL Vizserver Console Window in Windows 2000

007-4481-007 67

mknod qcntl2 c 55 2
mknod qcntl3 c 55 3
...
mknod qcntl7 c 55 7

The default /var/sysgen/master.d/shmiq file defines NSHMIQS as 9, so you can
have a maximum of 8 qcntl nodes.

Note: If your system has 16 pipes, you can change NSHMIQS to 17 and make 16 qcntl
nodes. In that case, you need to create a new kernel (autoconfig -fv) because you
modified the /var/sysgen/master.d/shmiq file.

No Appearance of OpenGL Vizserver Console Window in Windows 2000

As a normal procedure, after starting a session, the OpenGL Vizserver Session Control
window is shown first and then the OpenGL Vizserver Console window later. However,
if the OpenGL Vizserver Console window is not shown after the session control window
has appeared, make sure that your Windows 2000 system has service pack 2 or later
installed.

Cleaning Up Shared Memory

After running an OpenGL Vizserver sessions many times continuously, if the
performance of OpenGL Vizserver shows the slowdown considerably, check the shared
memory in an OpenGL Vizserver server system. This can be done by using an ipcs
command.

Usually, an OpenGL Vizserver session removes the shared memory for its use when the
session is exited. However, there might be cases where the shared memory is not deleted
when the session or applications do not exit normally. Then it is stacked up and occupied
as a long list of active shared memory. This might cause the problem in
OpenGL Vizserver performance. The shared memory can be removed by using an
ipcrm command. See the ipcs(1) and ipcrm(1) man pages for more details.

68 007-4481-007

4: Troubleshooting and Known Problems

An OpenGL Vizserver session uses a message queue and a shared memory segment with
keys 0x12340000 to 0x1234FFFF. These resources are necessary for the session and
applications to communicate. Ensure that they are not deleted while the session is
running.

Using Window Managers Other Than 4Dwm

In an OpenGL Vizserver client using a window manager other than 4Dwm, the
application windows running under the OpenGL Vizserver session accept user inputs,
such as key press/release and mouse button press/release, which are only conformant
to 4Dwm.

Application Not Updated

Sometimes an application window is updated on an expose event. When spoiling is on,
some of the updates are missed. So it appears as if the window on the client side never
got updated. Try to turn spoiling off and you will see the updates. The updated rates are
also dependent on your system configuration and network bandwidth.

Applications Masked as a Cross-Hatch Pattern Image

When an application is started by a user who does not have the privilege to run and the
user did not start the OpenGL Vizserver session, the application is masked as a
cross-hatch pattern image.

For example, an OpenGL Vizserver session is started by a guest user and the user is
switched to root later in the OpenGL Vizserver console window. Then if vsconfig is
issued, the application is masked as a cross-hatch pattern image in the console window.

In addition, in a local collaborative session, when the master’s other application
windows overlap the application windows running from OpenGL Vizserver, nonmaster
clients in the session see the cross-hatch pattern in their OpenGL Vizserver application
windows.

Back-to-Front Rendering

007-4481-007 69

For example, if the OpenGL Vizserver console window or application windows are
covered by other windows on the local master’s monitor, the OpenGL Vizserver
application window of nonmaster clients displays the overlapped region as a cross-hatch
pattern image. This is an expected behavior and it was implemented as a security feature
to prevent the local master’s private contents from being transmitted to the other clients.

Back-to-Front Rendering

OpenGL is not inheritently frame-based. Therefore, OpenGL Vizserver uses glFlush(),
glFinish(), or glXSwapBuffers() calls to trigger a framebuffer readback.

Applications that do the back-to-front rendering and do not make these calls often might
get less than optimal frame updates.

Using Customized XDM in Dynamic Pipe Allocation

As mentioned in the section “Dynamic Pipe Allocation” on page 31, OpenGL Vizserver
uses *.vizserver scripts and the xdm-config configuration file in the
/var/X11/xdm directory by default.

When using a customized XDM with a dynamic pipe allocation scheme, you must
inform OpenGL Vizserver server of its location and the configuration files related to the
XDM. This involves modifying some of the scripts and the XDM configuration path
(XDM Config File) in vsconfig. Otherwise, OpenGL Vizserver might have problems
allocating pipes even though there are available pipes on the server.

	Record of Revision
	Figures
	Tables
	About This Guide
	System Requirements
	Related Publications
	Obtaining Publications
	Conventions
	Reader Comments

	Installation
	Installing the Server
	Installing the Client
	IRIX
	Solaris
	Linux
	Windows

	Configuration
	Configuring the Server
	Starting and Stopping the Server Using the GUI
	Starting and Stopping the Server Using the Command Line Interface
	Allocating Graphics Pipes for OpenGL Vizserver
	Configuration Parameters
	Managing Users
	Adding a User
	Modifying a User
	Deleting a User

	Configuring the Reservation Web Interface
	Configuration Files
	The /var/vizserver/users File
	The /var/vizserver/config File
	The /var/vizserver/reservation_client.conf File

	User Authentication
	AUTH-PASSWORD
	AUTH-PAM

	Graphics Pipe Allocation Guidelines
	Relevant Configuration File Parameters
	Static Pipe Allocation
	Dynamic Pipe Allocation
	Dynamic Pipe Allocation Policy
	Hardware Readback

	Tuning
	Understanding the OpenGL Vizserver Pipeline
	How It Operates
	Single-User Session
	Collaborative Session

	Main Components

	Tuning Objectives
	Understanding the Environment
	Measuring the Application Performance Locally
	Measuring Network Bandwidth and Latency

	Monitoring OpenGL Vizserver Performance
	Performance Co-Pilot
	PCP OpenGL Vizserver PMDA
	vsmonitor

	Estimating the Network Bandwidth Required by OpenGL Vizserver
	Calculating Frames Per Second on a Given Network Bandwidth
	Calculating Network Bandwidth Necessary for k Frames Per Second

	Optimizing for High-Latency Networks

	Troubleshooting and Known Problems
	Looking at Log Files
	Server Log File
	Session Log File
	System Log File
	XFree86 Log File
	Accounting Log Files

	Shared Memory Input Queue (shmiq) Problem
	What is shmiq?
	Why Does This Cause a Problem?
	How To Resolve It

	No Appearance of OpenGL Vizserver Console Window in Windows 2000
	Cleaning Up Shared Memory
	Using Window Managers Other Than 4Dwm
	Application Not Updated
	Applications Masked as a Cross-Hatch Pattern Image
	Back-to-Front Rendering
	Using Customized XDM in Dynamic Pipe Allocation

