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New Features in This Guide

This revision of the guide documents the following features of OpenGL Performer 2.5:

Image-Based rendering to replace a complex object with pre-rendered images of the
object as seen from different angles

Real-Time shadows to project an object’s true shadow upon any and all other
objects in the scene

Light shafts with cone attenuation and spot illumination of objects in the scene

Cull programs to optimize and combine multi-pass rendering effects by selection of
the OpenGL Performer draw bin based on user-defined attributes






Record of Revision

Version Description

001 1997
Original publication.

002 November 2000
Updated for the 2.4 version of OpenGL Performer.

003 November 2001
Updated for the 2.5 version of OpenGL Performer.
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About This Guide

Welcome to the OpenGL Performer application development environment.

OpenGL Performer provides a programming interface (with ANSI C and C++ bindings)
for creating real-time graphics applications and offers high-performance rendering in an
easy-to-use 3D graphics toolkit. OpenGL Performer interfaces with the OpenGL
graphics library; this library combined with the IRIX or Linux operating system forms
the foundation of a powerful suite of tools and features for creating real-time 3D graphics
applications.

Why Use OpenGL Performer?

007-1680-070

Use OpenGL Performer for building visual simulation applications and virtual reality
environments, for rapid rendering in on-air broadcast and virtual set applications, for
assembly viewing in large simulation-based design tasks, or to maximize the graphics
performance of any application. Applications that require real-time visuals, free-running
or fixed-frame-rate display, or high-performance rendering will benefit from using
OpenGL Performer.

OpenGL Performer drastically reduces the work required to tune your application’s
performance. General optimizations include the use of highly tuned routines for all
performance-critical operations and the reorganization of graphics data and operations
for faster rendering. OpenGL Performer also handles SGI architecture-specific tuning
issues for you by selecting the best rendering and multiprocessing modes at run time,
based on the system configuration.

OpenGL Performer is an integral part of the SGI visual simulation systems. It provides
the interface to advanced features available exclusively with the SGI product line, such
as the InfiniteReality, InfiniteReality2, Silicon Graphics Octane, Silicon Graphics O2, and
VPro graphics subsystems. OpenGL Performer teamed with InfiniteReality or Octane
provide a sophisticated image generation system in a powerful, flexible, and extensible
software environment. OpenGL Performer is also tuned to operate at peak efficiency on
each graphics platform produced by SGI; you do not need the hardware sophistication
of InfiniteReality graphics to benefit from OpenGL Performer.
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About This Guide

What You Should Know Before Reading This Guide

To use OpenGL Performer, you should be comfortable programming in ANSI C or C++.
You should also have a fairly good grasp of graphics programming concepts. Terms such
as “texture map” and “homogeneous coordinate” are not explained in this guide. It helps
if you are familiar with the OpenGL library. If you are a newcomer to these topics, see the
references listed under “Bibliography” at the end of this introduction and examine the
glossary for definitions of terms or usage unique to OpenGL Performer.

On the other hand, though you need to know a little about graphics, you do not have to
be a seasoned C (or C++) programmer, a graphics hardware guru, or a graphics-library
virtuoso to use OpenGL Performer. OpenGL Performer puts the engineering expertise
behind SGI hardware and software at your fingertips, so you can minimize your
application development time while maximizing the application’s performance and
visual impact.

For a concise description of OpenGL Performer basics, see the OpenGL Performer Getting
Started Guide.

How to Use This Guide

The best way to get started is to read the OpenGL Performer Getting Started Guide. If you
like learning from sample code, turn to Chapter 1, “Getting Acquainted With OpenGL
Performer,” which takes you on a tour of some demo programs. These programs let you
see for yourself what OpenGL Performer does. Even if you are not developing a visual
simulation application, you might want to look at the demos to see high-performance
rendering in action. At the end of Chapter 2 you will find suggestions pointing to
possible next steps; alternatively, you can browse through the summary below to find a
topic of interest.

What This Guide Contains

This guide is divided into the following chapters and appendixes:

¢ Chapter 1, “OpenGL Performer Programming Interface,” describes the
fundamental ideas behind the OpenGL Performer programming interface.

¢ Chapter 2, “Setting Up the Display Environment,” describes how to set up
rendering pipelines, windows, and channels (cameras).
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Chapter 3, “Nodes and Node Types,” describes the data structures used in
OpenGL Performer’s memory-based scene-definition databases.

Chapter 4, “Database Traversal,” explains how to manipulate and examine a scene
graph.

Chapter 5, “Frame and Load Control,” explains how to control frame rate,
synchronization, and dynamic load management. This chapter also discusses the
load management techniques of multiprocessing and level-of-detail.

Chapter 6, “Creating Visual Effects,” describes how to use environmental,
atmospheric, lighting, and other visual effects to enhance the realism of your
application.

Chapter 7, “Importing Databases,” describes database formats and sample
conversion utilities.

Chapter 8, “Geometry,” discusses the classes used to create geometry in
OpenGL Performer scenes.

Chapter 9, “Graphics State,” describes the graphics state, which contains all of the
fields that together define the appearance of geometry.

Chapter 10, “Shader,” describes the shader, a mechanism which allows complex
rendering equations to be applied to OpenGL Performer objects.

Chapter 11, “Using DPLEX and Hyperpipes,” describes how to use DPLEX, which
permits multiple InfiniteReality2 or InfiniteReality pipelines in an Onyx2 system to
work simultaneously on a single visual application.

Chapter 12, “ClipTextures,” describes how to work with large, high-resolution
textures.

Chapter 13, “Windows,” describes how to create, configure, manipulate, and
communicate with a window in OpenGL Performer.

Chapter 14, “pfPipeWindows and pfPipeVideoChannels,” describes the unified
window and video channel control and management provided by pfPipeWindows
and pfPipeVideoChannels.

Chapter 15, “Managing Nongraphic System Tasks,” describes clocks, memory
allocation, synchronous 1/0O, error handling and notification, and search paths.

Chapter 16, “Dynamic Data,” describes how to connect pfFlux, pfFCS, and
pfEngine nodes, which together can be used for animating geometries.

Chapter 17, “Active Surface Definition,” describes the Active Surface Definition
(ASD): a library that handles real-time surface meshing and morphing.
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Sample Applications

Conventions

xlii

¢ Chapter 18, “Light Points,” describes the calligraphic lights, which are intensely
bright lights.

¢ Chapter 19, “Math Routines,” details the comprehensive math support provided as
part of OpenGL Performer.

¢ Chapter 20, “Statistics,” discusses the various kinds of statistics you can collect and
display about the performance of your application.

e Chapter 21, “Performance Tuning and Debugging,” explains how to use
performance measurement and debugging tools and provides hints for getting
maximum performance.

e Chapter 22, “Programming with C++,” discusses the differences between using the
C and C++ programming interfaces.

You can find the sample code for all of the sample OpenGL Performer applications
installed under / usr/ shar e/ Per f or mer/ sr ¢/ pgui de.

This guide uses the following typographical conventions:

Bold Used for function names, with parentheses appended to the name. Also,
bold lowercase letters represent vectors, and bold uppercase letters
denote matrices.

Italics Indicates variables, book titles, and glossary items.

Fi xed-wi dth  Used for filenames, operating system command names, command-line
option flags, code examples, and system output.

Bol d Fi xed-wi dth
Indicates user input, items that you should type in from the keyboard.

Note that in some cases it is convenient to refer to a group of similarly named

OpenGL Performer functions by a single name; in such cases an asterisk is used to
indicate all the functions whose names start the same way. For instance, pfNew*() refers
to all functions whose names begin with “pfNew”: pfNewChan(), pfNewDCS(),
pfNewESky(), pfNewGeode(), and so on.
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Internet and Hardcopy Reading for the OpenGL Performer Series

Bibliography
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The OpenGL Performer series include the following in printed and online versions:
*  OpenGL Performer Programmer’s Guide (007-1680-nnn)
*  OpenGL Performer Getting Started Guide (007-3560-nnm)

To read these online books, point your browser at the following;:

e http://techpubs. sgi.com|ibrary/dynaweb_bi n/ 0620/ bi n/
nph- dynaweb. cgi / dynaweb/ SG@ _Devel oper/ Perf PG
@=neri c__BookVi ew

For general information about OpenGL Performer, point your browser at the following;:

e http://ww. sgi.cont software/performer

Electronic forum for discussions about OpenGL Performer:

¢ Thei nfo-perfornmer mailing list provides a forum for discussion of OpenGL
Performer including technical and nontechnical issues. Subscription requests
should be sent to i nf o- per f or mer - r equest @gi . com Much like the
conp. sys. sgi .* newsgroups on the Internet, it is not an official support channel
but is monitored by several interested SGI employees familiar with the toolkit.

For other related reading, see “Bibliography” on page xliii.

You should be familiar with most of the concepts presented in the first few books listed
here—notably Computer Graphics: Principles and Practice and OpenGL Programming
Guide—to make the best use of OpenGL Performer and this programming guide. Most
of the other books listed here, however, delve into more advanced topics and are listed
as further reading for those interested. Information is also provided on electronic access
to SGI’s files containing answers to frequently asked OpenGL Performer questions.

xliii
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Computer Graphics

For a general treatment of a wide variety of graphics-related topics, see the following:

Foley, ].D., van Dam, A., Feiner, S.K., and Hughes. ].E, Computer Graphics: Principles
and Practice, 2nd Ed. Reading, Mass.: Addison-Wesley Publishing Company, Inc.,
1990.

Newman, WM. and R.E. Sproull, Principles of Interactive Computer Graphics, 2nd Ed.
New York: McGraw-Hill, Inc., 1979.

For specific topics of interest to developers using OpenGL Performer, also see the
following:

Akeley, Kurt, "RealityEngine Graphics", Computer Graphics Annual Conference Series
(SIGGRAPH), 1993. pp. 309-318.

Jones, Michael; Clay, Sharon; Helman, James; Rohlf, John; Bigos, Andy; Tarbouriech,
Philippe; Hoffman, Wes; Johnston, Eric; Limber, Michael; and Watson,Scott,
"Designing Real-Time 3D Graphics for Entertainment," Course Notes of 1997
SIGGRAPH Course #6.

Willis, L.R., Jones, M.T., and Zhao, J., "A Method for Continuous Adaptive Terrain,"
Proceedings of the 1996 Image Conference. June 23-28, 1996, Scottsdale Arizona.

Montrym, John S.; Baum, Daniel R.; Dignam, David L.; Migdal, Christopher J.,
"InfiniteReality: A Real-Time Graphics System," Computer Graphics Annual
Conference Series (SIGGRAPH), 1997. pp. 293-302.

Rohlf, John and Helman, James, "IRIS Performer: A High Performance
Multiprocessing Toolkit for Real-Time 3D Graphics," Computer Graphics Proceedings,
Annual Conference Series (SIGGRAPH), 1994, pp. 381-394.

Shoemake, Ken. “Animating Rotation with Quaternion Curves,” SIGGRAPH ‘85
Conference Proceedings Vol 19, Number 3, 1985.

OpenGL Graphics Library

xliv

For information about OpenGL, see the following:

Neider, Jackie, Tom Davis, and Mason Woo, OpenGL Programming Guide. Reading,
Mass.: Addison-Wesley Publishing Company, Inc., 1993. A comprehensive guide to
learning OpenGL.
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*  OpenGL Architecture Review Board, OpenGL Reference Manual. Reading, Mass.:
Addison-Wesley Publishing Company, Inc., 1993. A compilation of OpenGL man
pages.

®  The OpenGL Porting Guide, a SGI publication shipped in IRIS InSight-viewable

online format. Provides information on updating IRIS GL-based software to use
OpenGL.

X, Xt, IRIS IM, and Window Systems
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In conjunction with OpenGL, you may wish to learn about the X Window System, the Xt
Toolkit Intrinsics library, and IRIS IM (though note that if you use OpenGL Performer’s
pfWindow routines, windows are handled for you; in that case you do not need to know
about any of these topics). For information on X, Xt, and Motif, see the O'Reilly X
Window System Series, Volumes 1, 2, 4, and 5 (usually referred to simply as “O’Reilly”
with a volume number):

* Nye, Adrian, Volume One: Xlib Programming Manual. Sebastopol, California:
O'Reilly & Associates, Inc., 1991.

*  Volume Two: Xlib Reference Manual, published by O’Reilly & Associates, Inc.,
Sebastopol, California.

* Nye, Adrian and O’Reilly, Tim, Volume Four: X Toolkit Intrinsics Programming
Manual, published by O'Reilly & Associates, Inc., Sebastopol, California.

*  Volume Five: X Toolkit Intrinsics Reference Manual, published by O'Reilly &
Associates, Inc., Sebastopol, California.

For information on IRIS IM, SGI’s port of OSF/Motif, and on making your application

interact well with the SGI desktop, see these SGI publications:

* RIS IM Programming Guide

*  [RIX Interactive Desktop User Interface Guidelines

®  [RIX Interactive Desktop Integration Guide

All three of these books are shipped in IRIS InSight-viewable online format.

xlv



About This Guide

Visual Simulation

For information about visual simulation and the use of simulation systems in training
and research, see the following:

Rolfe, ].M. and Staples, R.]., eds. Flight Simulation. Cambridge: Cambridge
University Press, 1986. Provides a comprehensive overview of visual simulation
from the basic equations of motion to the design of simulator cabs, optical and
display systems, motion bases, and instructor/operator stations. Also includes a
historical overview and an extensive bibliography of visual simulation and
aerodynamic simulation references.

Rougelot, Rodney S. “The General Electric Computer Color TV Display,” in Faiman,
M., and J. Nievergelt, eds. Pertinent Concepts in Computer Graphics. Urbana,
I11.:University of Illinois Press, 1969, pp. 261-281. This extensive report gives an
excellent overview of the origins of visual simulation. It shows many screen images
of the original systems developed for various NASA programs and includes the
first real-time textured image. This article provides the basis for understanding the
historical development of computer image generation and real-time graphics.

Schacter, Bruce J., ed. Computer Image Generation. New York: John Wiley & Sons, Inc.,
1983. Reviews the computer image generation process and provides a detailed
analysis of early approaches to system design and implementation. The
bibliography refers to early papers by the designers of the first image-generation
systems.

Mathematics of Flight Simulation

Virtual Reality

xlvi

Stevens, Brian L., and Lewis, Frank L. Aircraft Control and Simulation. New York: John
Wiley & Sons, Inc., 1992. This book describes the complete implementation of a
flight-dynamics model for the F-16 fighter aircraft. It provides the basic equations of
motion and explains how the more complex issues are handled in practice. Some source
code, in Fortran, is included.

The following books are excellent sources for information on virtual reality:

Kalawsky, Roy S. Science of Virtual Reality and Virtual Environments. Reading, Mass.:
Addison-Wesley Publishing Company, Inc., 1993.
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Geometric Reasoning

Moller, Tomas, and Haines, Eric. Real Time Rendering. A K Peters, Ltd, 1999. Explains
the concepts and algorithms used in computer-aided design, visual simulation,
virtual reality worlds, and games. Focuses on the graphics pipeline, with chapters
on transforms, optimization, visual appearance, polygon manipulation, collision
detection, and special effects. The ideal springboard to the techniques used in
OpenGL Performer.

These two books address geometric reasoning in general, rather than any topics
specifically related to computers or OpenGL Performer:

Abbott, Edwin A. Flatland: A Romance of Many Dimensions, 6th Ed. New York: Dover
Publications, Inc., 1952. The story of A. Square and his journeys among the
dimensions.

Polya, George. How to Solve It: A New Aspect of Mathematical Method, 2nd Ed.
Princeton, NJ: Princeton University Press, 1973.

Conference Proceedings
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The proceedings of the I/ITSEC (Interservice/Industry Training, Simulation, and
Education Conference) are a primary source of published visual simulation experience.
In the past this conference has been known as the National Training Equipment
Center/Industry Conference (NTEC/IC) and the Interservice/Industry Training
Equipment Conference (I/ITEC). Proceedings are available from the National Technical
Information Service (NTIS). Here are NTIS order numbers for several of the older
proceedings:

Seventh N/IC, November, 1974: AD-A000-970 NTEC
Eighth N/IC, November, 1975: AD-A028-885 NTEC
Ninth N/IC, November, 1976: AD-A031-447 NTEC
Tenth N/IC, November, 1977: AD-A047-905 NTEC
Eleventh N/IC, November, 1978: AD-A061-381 NTEC
First I/ITEC, November, 1979: AD-A077-656 NTEC
Third I/ITEC, November, 1981: AD-A109-443 NTEC

xlvii
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The IMAGE Society is dedicated solely to the advancement of visual simulation
technology and its applications. It holds conferences and workshops, the proceedings of
which are an excellent source of advice and guidance for visual simulation developers.
The society can be reached through e-mail at i mage@su. edu. Some of the IMAGE
proceedings published by the Air Force Human Resources Lab AFHRL at Williams AFB
prior to the formation of the IMAGE Society are also available from the NTIS. Order
numbers are:

e IMAGE, May, 1977: AD-A044-582 AFHRL

e IMAGEII (closing), July, 1981: AD-A104-676 AFHRL

e IMAGEII (proceedings), November, 1981: AD-A110-226 AFHRL

The Society of Photo-Optical Instrumentation Engineers (SPIE) also has articles of

interest to visual simulation developers in their conference proceedings. Some of the
interesting publications are:

*  Vol. 17, Photo-Optical Techniques in Simulators, April, 1969
e Vol. 59, Simulators & Simulation, March, 1975
* Vol. 162, Visual Simulation & Image Realism, August, 1978

Survey Articles in Magazines

e Aviation Week & Space Technology, January 17, 1983. Special issue on visual
simulation.

e Fischetti, Mark A., and Carol Truxal. “Simulating the Right Stuff.” IEEE Spectrum,
March, 1985, pp. 38-47.

® Schacter, Bruce. “Computer Image Generation for Flight Simulation.” IEEE
Computer Graphics & Applications, October, 1981, pp. 29-68.

® Schacter, Bruce, and Narendra Ahuja. “A History of Visual Flight Simulation.”
Computer Graphics World, May, 1980, pp. 16-31.

e Tucker, Jonathan B., “Visual Simulation Takes Flight.” High Technology Magazine,
December, 1984, pp. 34-47.
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Obtaining Publications

To obtain SGI documentation, go to the SGI Technical Publications Library:
http://techpubs. sgi.com

Reader Comments

If you have comments about the technical accuracy, content, or organization of this
document, please tell us. Be sure to include the title and document number of the manual
with your comments. (Online, the document number is located in the front matter of the
manual. In printed manuals, the document number can be found on the back cover.)

You can contact us in any of the following ways:
¢ Send e-mail to the following address:

t echpubs@gi . com

* Use the Feedback option on the Technical Publications Library World Wide Web
page:
http://techpubs. sgi.com

e Contact your customer service representative and ask that an incident be filed in the
SGI incident tracking system.

e Send mail to the following address:

Technical Publications

SGI

1600 Amphitheatre Pkwy., M/S 535
Mountain View, California 94043-1351

¢ Send a fax to the attention of Technical Publications:

+1 650 932 0801

We value your comments and will respond to them promptly.
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Chapter 1

OpenGL Performer Programming Interface

This chapter describes the fundamental ideas behind the OpenGL Performer
programming interface in the following sections:

¢ “General Naming Conventions” on page 1
* “Class API” on page 3

* “Base Classes” on page 6.

General Naming Conventions

Prefixes
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The OpenGL Performer application programming interface (API) uses naming
conventions to help you understand what a given command will do and even predict the
appropriate names of routines for desired functionality. Following similar naming
practices in the software that you develop will make it easier for you and others on your
team to understand and debug your code.

The APl is largely object-oriented; it contains classes of objects comprised of methods
that do the following:

¢ Configure their parent objects.

* Apply associated operations, based on the current configuration of the object.
Both C and C++ bindings are provided for OpenGL Performer. In addition, naming

conventions provide a consistent and predictable API and indicate the kind of operations
performed by a given command.

The prefix of the command tells you in which library a C command or C++ class is found.
All exposed OpenGL Performer base library C commands and C++ classes begin with
'pf’. The utility libraries use an additional prefix letter, such as ‘pfu’ for the | i bpf uti |



1: OpenGL Performer Programming Interface

Header Files

Naming in C and C++

general utility library, "pfi’ for the | i bpf ui input handling library, and "pfd’ for the
| i bpf du database utility library. | i bpr -level commands still have the "pf’ prefix as they
are still in the main | i bpf library

Each OpenGL Performer library contains a main header file in

/usr/incl ude/ Performner thatcontains type and class definitions, the C API for that
library, and global routines that are part of the C and C++ APL. | i bpf is broken into two
distinct pieces: the low-level rendering layer, | i bpr, and the application layer, | i bpf,
and each has its own main header file: pr . h and pf . h. Since | i bpf is considered to
include | i bpr, pf . h includes pr . h. C++ class header files are found under
[usr/include/ Perforner/{pf, pr, ...}. Eachclasshasitsown C++ header file
and that header must be included to use that class.

#i ncl ude <Perforner/ pf. h>
#i ncl ude <Perforner/ pf/pf G oup. h>

pf G oup *group;

All C++ class method names have an expanded C counterpart. Typically, the C routine
(function)will include the class name in the routine, whereas the C++ method will not.

C. pf Get Pi peScreen();
C++: pi pe->get Screen();

For some very general routines on the most abstract classes, the class name is omitted.
This is the case with the child API on pfNodes:

C. pf AddChi | d( node, child);
C++: node->addChil d(child);

Command and type names are mixed case where the first letter of a new word in a name
is capitalized. C++ method names always start with a lower case letter.

pf Texture *texture,;
texture->l oadFil e();
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Abbreviations

Type names do not use abbreviations. The C API acting on that type will often use
abbreviations for the type names, as will the associated tokens and enums.

In procedure names, a name will always be abbreviated or never, and the same
abbreviation will always be used and will be in the pfNew* C command. For example:
the pfTexture object uses ‘Tex” in its API, such as pfNewTex(). If a type name has multiple
words, the abbreviation will use the first letter of the first words and then the first syllable
of the last word.

pf Pi peW ndow *pwi n = pf NewPW n() ;
pf Pi peVi deoChannel *pvchan = pf NewPVChan();
pf TexLOD *tl od = pf NewlLOX);

Macros, Tokens, and Enums

Class API

Object Creation
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Macros, tokens, and enums all use full upper-case. Token names associated with a class
and methods of a class start with the abbreviated name for that class, such as texture to
“tex” in PFTEX_SHARPEN.

The API of a given class, such as pfTexture, is comprised of the following:
* API to create an instance of the object

e API to set parameters on the object

e API to get those parameter settings

e API to perform actions on the configured object

Objects are always created with the following:

C. pf Thing *thing = pfNewThi ng();
C++: pfThing *thing = new pf Thing;
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Set Routines

Get Routines

|'i bpf objects are automatically created out of the shared memory arena. | i bpr objects
take as an argument an arena pointer which, if NULL, will cause allocation off the heap.

A set routine has the following form:

C. pfThingParam(thing, ... )
C++: thing->setParam)

Note that there is no ‘Set” in the name in the C version.

Set routines are usually very fast and are not order dependent. Work required to process
the settings happens once when the object is first used after settings have changed. If
particularly expensive options must be done, there will be a pfConfigThing routine or
method to explicitly force this work that must be called before the object is to be used.

For every ‘set’ routine there is a matching ‘get’ routine to get back the value that was set.

C. pf Get Thi ngParam(thing, ... )
C++: thing->get Paran()

If the set/get is for a single value, that value is usually the return value of the routine. If
there are multiple values together, the ‘get’ routine will then take as arguments pointers
to result variables.

Getting Current In-Use Values

Get routines return values that have been previously set by the user, or default values if
no settings have been made. Sometimes a value other than the user-specified value is
currently in use and that is the value that you would like to get. For these cases, there is
a separate ‘GetCur’ routine to get the current in-use value.

C pf Get Cur Thi ngPar an()
C++: thing->getcurParam()

These ‘cur’ routines may only be able to give reasonable values in the process which
associated operations are happening. For example, to get the current texture
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Action Routines

(pfGetCurTex()), you need to be in the draw process since that is the only process that
has a current texture.

An action routine has the following form:

C. pfVerbThing(), such as pfApplyTex()
C++: thing->verb(), such as tex->apply()

Action routines can have parameter scope and apply only to that parameter. These
routines have the following form

C. pfVerbThi ngParan(), such as pfAppl yTexM nLOX)
C++: thing->verbParan(), such as tex->applyM nLODX()

Apply and Draw Routines

The Apply and Draw action routines do graphics operations and must happen either in
the draw process or in display list mode.

C. pf Appl ypf GSt at e()
pf Dr awGSet ()

C++: gstate->apply()
gset - >draw()

Enable and Disable of Modes
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Features that can be enabled and disabled are done so with pfEnable() and pfDisable(),
respectively.

pfGetEnable() takes PFEN_* tokens naming the graphics state operation to enable or
disable. A GetEnable() is used to query enable status and will return 1 or 0 if the given
mode is enabled or disabled, respectively.

ex: pfEnabl e( PFEN_TEXTURE), pf Di sabl e( PFEN_TEXTURE),
pf Get Enabl e( PFEN_TEXTURE) ;
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Mode, Attribute, or Value

Base Classes

Classes instances are configured by having their internal fields set. These fields may be
simple modes or complex attribute structures. Mode values are ints or tokens, attributes
are typically pointers to objects, and values are floats.

pf GSt at eMode( gst at e, PFSTATE_DECAL, PFDECAL_LAYER)
pf GSt at eAttr(gstate, PFSTATE_TEXTURE, texPtr)
pf GSt at eVal (gstate, PFSTATE_ALPHAREF, 0.5)

OpenGL Performer provides an object-oriented programming interface to most of its
data structures. Only OpenGL Performer functions can change the values of elements of
these data structures; for instance, you must call pfMtlColor() to set the color of a
pfMaterial structure rather than modifying the structure directly.

For a more transparent type of memory, OpenGL Performer provides pfMemory. All
object classes are derived from pfMemory. pfMemory instances must be explicitly
allocated with the new operator and cannot be allocated statically, on the stack, or
included directly in other object definitions. pfMemory is managed memory; it includes
special fields, such as size, arena, and ref count, that are initialized by the pfMemory
new() function.

Some very simple and unmanaged data types are not encapsulated for speed and easy
access. Examples include pfMatrix, pfSphere and pfVec3. These data types are referred
to as public structures and are inherited from pfStruct.

Unlike pfMemory, pfStructs can be handled as follows:

e Allocated statically

¢ Allocated on the stack

* Included directly in other structure and object definitions

pfStructs allocated off the stack or allocated statically are not in the shared memory arena
and thus are not safe for multiprocessed use. Also, pfStructs allocated off the stack in a

procedure do not exist after the procedure exits so they should not be given to persistent
objects, such as a pfVec3 array of vertices for a pfGeoSet.
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Inheritance Graph
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In order to allow some functions to apply to multiple data types, OpenGL Performer uses
the concept of class inheritance. Class inheritance takes advantage of the fact that
different data types (classes) often share attributes. For example, a pfGroup is a node that
can have children. A pfDCS (Dynamic Coordinate System) has the same basic structure
as a pfGroup, but also defines a transformation to apply to its children—in other words,
the pfDCS data type inherits the attributes of the pfGroup and adds new attributes of its
own. This means that all functions that accept a pfGroup* argument will alternatively
accept a pfDCS* argument.

For example, pfAddChild() takes a pfGroup* argument, but appends child to the list of
children belonging to dcs:

pf DCS *dcs = pf NewDCS() ;

pf AddChi | d(dcs, child);

Because the C language does not directly express the notion of classes and inheritance,
arguments to functions must be cast before being passed, as shown in this example:

pf AddChi | d( ( pf G oup*) dcs, (pfNode*)child);

In the example above, no such casting is required because OpenGL Performer provides
macros that perform the casting when compiling with ANSI C, as shown in this example:

#defi ne pf AddChild(g, c) pfAddChild((pfGoup*)g, (pfNode*)c)

Note: Using automatic casting eliminates type checking—the macros will cast anything
to the desired type. If you make a mistake and pass an unintended data type to a casting
macro, the results may be unexpected.

No such trickery is required when using the C++ API. Full type checking is always
available at compile time.

The relations between classes can be arranged in a directed acyclic inheritance graph in
which each child inherits all of its parent’s attributes, as illustrated in Figure 1-1. OpenGL
Performer does not use multiple inheritance, so each class has only one parent in the

graph.
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Note: It is important to remember that an inheritance graph is different from a scene
graph. The inheritance graph shows the inheritance of data elements and member
functions among user-defined data types; the scene graph shows the relationship among
instances of nodes in a hierarchical scene definition.
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Some classes
found in libpf

Some classes
found in libpr

Figure 1-1 Partial Inheritance Graph of OpenGL Performer Data Types
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OpenGL Performer objects are divided into two groups: those found in the | i bpf library
and those found in the | i bpr library. These two groups of objects have some common
attributes, but also differ in some respects.

While OpenGL Performer only uses single inheritance, some objects encapsulate others,
hiding the encapsulated object but also providing a functional interface that mimics its
original one. For example a pfChannel has a pfFrustum, a pfFrameStats has a pfStats, a
pfPipeWindow has a pfWindow, and a pfPipeVideoChannel has a pfVideoChannel. In
these cases, the first object in each pair provides functions corresponding to those of the
second. For example, pfFrustum has a routine:

pf MakeSi npl eFrust (frust, 45.0f);
pfChannel has a corresponding routine:

pf MakeSi npl eChan(channel , 45.0f);

l'i bpr and i bpf Objects

User Data

10

All of the major classes in OpenGL Performer are derived from the pfObject class. This
common, base class unifies the data types by providing common attributes and
functions. | i bpf objects are further derived from pfUpdatable. The pfUpdatable
abstract class provides support for automatic multibuffering for multiprocessing.
pfObjects have no special support for multiprocessing and so all processes share the
same copy of the pfObject in the shared arena. | i bpr objects allocated from the heap
are only visible in the process in which they are created or in child processes created after
the object. Changes made to such an object in one process are not visible in any other
process.

Explicit multibuffering of pfObjects is available through the pfFlux class. In general,
I'i bpr provides lightweight and low-level modular pieces of functionality that are then
enhanced by more powerful | i bpf objects.

The primary attribute defined by the pfObject class is the custom data a user gets to
define on any pfObject called “user data.” pfUserDataSlot attaches the user-supplied
data pointer to user data. pfUserData attaches the user-supplied data pointer to user data
slot. Example 1-1 shows how to use user data.
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Example 1-1 How to Use User Data

typedef struct
{

float coeffFriction;
float density;
fl oat *dat aPoi nts;

}
myMat eri al ;

nmyMat eri al *granite;

granite = (nmyMaterial *)pfMlloc(sizeof(myMaterial), NULL);
granite->coeffFriction = 0.5f;

granite->density = 3.0f;

grani te->dataPoints = (fl oat *)pfMlloc(sizeof(float)*8, NULL);
graniteM| = pfNewM | (NULL);

pf UserDat a(graniteM|, granite);

pfDelete() and Reference Counting

Most kinds of data objects in OpenGL Performer can be placed in a hierarchical scene
graph, using instancing when an object is referenced multiple times. Scene graphs can
become quite complex, which can cause problems if you are not careful. Deleting objects
can be a particularly dangerous operation, for example, if you delete an object that
another object still references.

Reference counting provides a bookkeeping mechanism that makes object deletion safe:
an object is never deleted if its reference count is greater than zero.

Alll i bpr objects (such as pfGeoState and pfMaterial) have a reference count that

specifies how many other objects refer to it. A reference is made whenever an object is
attached to another using the OpenGL Performer routines shown in Table 1-1.
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12

Table 1-1 Routines that Modify | i bpr Object Reference Counts

Routine Action

pfGSetGState() Attaches a pfGeoState to a pfGeoSet.
pfGStateAttr() Attaches a state structure (such as a pfMaterial) to a pfGeoState.
pfGSetHlight() Attaches a pfHighlight to a pfGeoSet.
pfTexDetail() Attaches a detail pfTexture to a base pfTexture.
pfGSetAttr() Attaches attribute and index arrays to a pfGeoSet.
pfTexImage() Attaches an image array to a pfTexture.
pfAddGSet(), Modify pfGeoSet/pfGeode association.
pfReplaceGSet(),

pfInsertGSet()

When object A is attached to object B, the reference count of A is incremented.
Additionally, if A replaces a previously referenced object C, then the reference count of
Cis decremented. Example 1-2 demonstrates how reference counts are incremented and
decremented.

Example 1-2 Objects and Reference Counts

pf CeoState *gstateA, *gstateC
pf GeoSet *gset B;

/* Attach gstateC to gsetB. Reference count of gstateC
* is incremented. */
pf GSet GSt at e( gset B, gstateC);

/* Attach gstateA to gsetB, replacing gstateC Reference
* count of gstateC is decrenented and that of gstateA
* is incremented. */
pf GSet GSt at e(gset B, gstateA);

This automatic reference counting done by OpenGL Performer routines is usually all you
will ever need. However, the routines pfRef(), pfUnref(), and pfGetRef() allow you to
increment, decrement, and retrieve the reference count of a | i bpr object should you
wish to do so. These routines also work with objects allocated by pfMalloc().
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An object whose reference count is equal to 0 can be deleted with pfDelete(). pfDelete()
works for all | i bpr objects and all pfNodes but not for other | i bpf objects like pfPipe
and pfChannel. pfDelete() first checks the reference count of an object. If the reference
count is nonpositive, pfDelete() decrements the reference count of all objects that the
current object references, then it deletes the current object. pfDelete() does not stop here
but continues down all reference chains, deleting objects until it finds one whose count
is greater than zero. Once all reference chains have been explored, pfDelete returns a
boolean indicating whether it successfully deleted the first object or not. Example 1-3
illustrates the use of pfDelete() with | i bpr.

Example 1-3 Using pfDelete() with | i bpr Objects

pf CeoState *gstateO, *gstatel;
pf Material *mtl;
pf GeoSet *gset;

gstate0 = pf NewGState(arena); /* initial ref count is 0 */
gset = pfNewGSet (arena); /* initial ref count is 0 */
ntl = pfNewM | (arena); /* initial ref count is 0 */

/* Attach mtl to gstate0. Reference count of ntl is
* increnmented. */
pf GSt at eAttr(gstat e0, PFSTATE _FRONTMIL, ntl);

/* Attach mtl to gstatel. Reference count of ntl is
* incremented. */
pf GSt at eAttr(gstatel, PFSTATE FRONTMIL, ntl);

/* Attach gstateO to gset. Reference count of gstateO is
* incremented. */
pf GSet GSt at e( gset, gstate0);

/* This del etes gset, gstateO, but not ntl since gstatel is

* still referencing it. */
pf Del et e( gset) ;

Example 1-4 illustrates the use of pfDelete() with | i bpf .

Example 1-4  Using pfDelete() with | i bpf Objects

pf G oup *group;
pf Geode *geode;
pf GeoSet *gset;

group = pfNewGoup(); /* initial parent count is 0 */

13
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geode = pfNewGeode(); /* initial parent count is 0 */
gset = pfNewGSet (arena); /* initial ref count is 0 */

/* Attach geode to group. Parent count of geode is
* incremented. */
pf AddChi | d( gr oup, geode);

/* Attach gset to geode. Reference count of gset is
* incremented. */
pf AddGSet (geode, gset);

/* This has no effect since the parent count of geode is 1.*/
pf Del et e( geode) ;

/* This del etes group, geode, and gset */
pf Del et e( group) ;

Some notes about reference counting and pfDelete():

e All reference count modifications are locked so that they guarantee mutual
exclusion when multiprocessing.

* Objects added to a pfDispList do not have their counts incremented due to
performance considerations.

¢ In the multiprocessing environment of | i bpf , the successful deletion of a pfNode
does not have immediate effect but is delayed one or more frames until all processes
in all processing pipelines are through with the node. This accounts for the fact that
pfDispLists do not reference-count their objects.

e pfUnrefDelete(obj) is shorthand for the following:

i f(pfUnref(obj) ==0)
pf Del et e(obj);

This is true when pfUnrefGetRef is atomic.

¢ Objects whose count reaches zero are not automatically deleted by OpenGL
Performer. You must specifically request that an object be deleted with pfDelete()
or pfUnrefDelete().
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Copying Objects with pfCopy()

pfCopy() is currently implemented for | i bpr (and pfMalloc()) objects only. Object
references are copied and reference counts are modified appropriately, as illustrated in
Example 1-5.

Example 1-5  Using pfCopy()

pf GeoState *gstateO, *gstatel;
pfMaterial *ml A *mtlB;

gstate0 = pf NewGSt at e(arena);
gstatel = pf NewGSt at e(arena);
nmlA = pfNewM I (arena); /* initial ref count is 0 */
nlB = pfNewM | (arena); /* initial ref count is 0 */

/* Attach ntl A to gstate0. Reference count of ntlAis
* incremented. */
pf GSt at eAttr (gst at e, PFSTATE_FRONTMIL, ntl A);

/* Attach mIB to gstatel. Reference count of nmIBis
* incremented. */
pf GSt at eAttr(gstatel, PFSTATE_FRONTMIL, ntl B);

/* gstatel = gstateO. The reference counts of ml|A and ntl|lB
* are 2 and O respectively. Note that nm|IB is NOT del eted
* even though its reference count is 0. */
pf Copy(gstatel, gstateO);

pfMalloc and the related routines provide a consistent method to allocate memory, either
from the user’s heap (using the C-library malloc() function) or from a shared memory
arena.

Printing Objects with pfPrint()
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pfPrint() can print many different kinds of objects to a file; for example, you can print
nodes and geosets. To do so, you specify in the argument of the function the object to
print, the level of verbosity, and the destination file. An additional argument, which,
specifies different data according to the type of object being printed.

The different levels of verbosity include the following:

¢ PFPRINT_VB_OFF—no printing

15
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e PFPRINT_VB_ON-—minimal printing (default)

e PFPRINT_VB_NOTICE—minimal printing (default)
e PFPRINT_VB_INFO—considerable printing

e PFPRINT_VB_DEBUG—exhaustive printing

If the object to print is a type of pfNode, which specifies whether the print traversal
should only traverse the current node (PFTRAV_SELF) or the entire scene graph where
the node specified in the argument is the root node (PFTRAV_SELF |
PFTRAV_DESCEND). For example, to print an entire scene graph, in which scene is the
root node, to the file, fp, with default verbosity, use the following line of code:

file = fopen (“scene.out”,”w");

pf Print (scene, PFTRAV_SELF | PFTRAV_DESCEND, PFPRINT_VB_ON, fp);
fclose(file);

If the object to print is a pfFrameStats, which should specify a bitmask of the frame
statistics classes that you want printed. The values for the bitmask include the following:
e PFSTATS_ON enables the specified classes.

e PFSTATS_OFF disables the specified classes.

e PFSTATS_DEFAULT sets the specified classes to their default values.

e PFSTATS_SET sets the class enable mask to enmask.

For example, to print select classes of a pfFrameStats structure, stats, to st der r, use the
following line of code:

pfPrint(stats, PFSTATS ENGFX | PFFSTATS ENDB |
PFFSTATS_ENCULL, PFSTATS_ON, NULL):

If the object to print is a pfGeoSet, which is ignored and information about that pfGeoSet
is printed according to the verbosity indicator. The output contains the types, names, and
bounding volumes of the nodes and pfGeoSets in the hierarchy. For example, to print the
contents of a pfGeoSet, gset, to st der r, use the following line of code:

pf Print(gset, NULL, PFPRINT VB _DEBUG NULL);

Note: When the last argument, file, is set to NULL, the object is printed to st derr.
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Determining Object Type
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Sometimes you have a pointer to a pfObject but you do not know what it really is—is it
a pfGeoSet, a pfChannel, or something else? pfGetType() returns a pfType which
specifies the type of a pfObject. This pfType can be used to determine the class ancestry
of the object. Another set of routines, one for each class, returns the pfType
corresponding to that class, for example, pfGetGroupClassType() returns the pfIype
corresponding to pfGroup.

pfIsOfType() tells whether an object is derived from a specified type, as opposed to
being the exact type.

With these functions you can test for class type as shown in Example 1-6.

Example 1-6 General-Purpose Scene Graph Traverser
voi d

travG aph( pf Node *node)

{

if (pflsOType(node, pfGetDCSC assType()))
doSoret hi ngTr ansf or mi ng(node) ;

/* 1f "node’ is derived from pfGoup then recursively
* traverse its children */
if (pflsOType(node, pfGetGoupd assType()))
for (i = 0; i < pfGetNuntChildren(node); i++)
travG aph(pf Get Chi | d(node, i));
}

Because OpenGL Performer allows subclassing of built-in types, when decisions are
made based on the type of an object, it is usually better to use pfIsOfType() to test the
type of an object rather than to test for the strict equality of the pfTypes. Otherwise, the
code will not have reasonable default behavior with file loaders or applications that use
subclassing.

The pfType returned from pfGetType() is useful for programs but it is not in a readable
form for you. Calling pfGetTypeName() on a pfIype returns a null-terminated ASCII
string that identifies an object’s type. For a pfDCS, for example, pfGetTypeName()
returns the string “pfDCS.” The type returned by pfGetType() can then be compared to
a class type using pfIsOfType(). Class types can be returned by methods such as
pfGetGroupClassType().
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Setting Up the Display Environment

|'i bpf is a visual-database processing and rendering system. The visual database has at
its root a pfScene (as described in Chapter 3 and Chapter 4). The chain of events
necessary to proceed from the scene graph to the display includes the following:

1.

2
3.
4

A pfScene is viewed by a pfChannel.
The pfChannel view of the pfScene is rendered by a pfPipe into a framebuffer.
A pfPipeWindow manages the framebuffer.

The images in the framebuffer are transmitted to a display system which is
managed by a pfPipeVideoChannel.

Figure 2-1 shows this chain of events.
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pfChannel 0 il pfChannel 1

PfPipeVVindO\N 1

pfScene

S

Scene graph

Display system

—

pfChannel 0 pfChannel 1

Figure 2-1 From Scene Graph to Visual Display

This chapter describes how to implement this chain of events using pfPipes,
pfPipeWindows, and pfChannels.
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Using Pipes

This section describes rendering pipelines (pfPipes) and their implementation in OpenGL
Performer. Each rendering pipeline draws into one or more windows (pfPipeWindows)
associated with a single geometry pipeline. A minimum of one rendering pipeline is
required, although it is possible to have more than one.

The Functional Stages of a Pipeline

This rendering pipeline comprises three primary functional stages:

APP Simulation processing, which includes reading input from control
devices, simulating the vehicle dynamics of moving models, updating
the visual database, and interacting with other networked simulation
stations.

CULL Traverses the visual database and determines which portions of it are
potentially visible (a procedure known as culling), selects a level of detail
(LOD) for each model, sorts objects and optimizes state management,
and generates a display list of objects to be rendered.

DRAW Traverses the display list and issues graphics library commands to a
Geometry Pipeline in order to create an image for subsequent display.

Figure 2-2 shows the process flow for a single-pipe system. The application constructs
and modifies the scene definition (a pfScene) associated with a channel. The traversal
process associated with that channel’s pfPipe then traverses the scene graph, building an
OpenGL Performer | i bpr display list. As shown in the figure, this display list is used
as input to the draw process that performs the actual graphics library actions required to
draw the image.
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Traversal/Cull Draw-  Frame Buffer-

Application}

Pipeline O

Figure 2-2 Single Graphics Pipeline

OpenGL Performer also provides additional processes for application processing tasks,
such as database loading and intersection traversals, but these processes are optinal and
are asynchronous to the software rendering pipeline(s).

An OpenGL Performer application renders images using one or more pfPipes. Each
pfPipe represents an independent software-rendering pipeline. Most IRIS systems
contain only one Geometry Pipeline; so, a single pfPipe is usually appropriate. This
single pipeline is often associated with a window that occupies the entire display surface.

Alternative configurations include Onyx3 systems with InfiniteReality3 graphics
(allowing up to 16 Geometry Pipelines). Applications can render into multiple windows,
each of which is connected to a single Geometry Pipeline through a pfPipe rendering
pipeline.

Figure 2-3 shows the process flow for a dual-pipe system. Notice both the differences and
similarities between these two figures. Each pipeline (pfPipe) is independent in
multiple-pipe configurations; the traversal and draw tasks are separate, as are the | i bpr
display lists that link them. In contrast, these pfPipes are controlled by the same
application process, and in many situations access the same shared scene definition.
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If Application Scene Pipeline 1 Traversal/Cull Frame Buffer-

Pipeline 0~ Traversal/Cull Draw Frame Buffer
Figure 2-3 Dual Graphics Pipeline

Each of these stages can be combined into a single process or split into multiple processes
(pfMultiprocess) for enhanced performance on multiple CPU systems. Multiprocessing
and multiple pipes are advanced topics that are discussed in “Successful
Multiprocessing with OpenGL Performer” in Chapter 5.

Creating and Configuring a pfPipe
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pfPipes and their associated processes are created when you call pfConfig(). They exist
for the duration of the application. After pfConfig(), the application can get handles to
the created pfPipes using pfGetPipe(). The argument to pfGetPipe() indicates which
pfPipe to return and is an integer between 0 and numPipes-1, inclusive. The pfPipe handle
is then used for further configuration of the pfPipe.

pfMultipipe() specifies the number of pfPipes desired; the default is one.
pfMultiprocess() specifies the multiprocessing mode used by all pfPipes. These two
routines are discussed further in “Successful Multiprocessing with OpenGL Performer”
in Chapter 5.
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A key part of pfPipe initialization is the determination of the graphics hardware pipeline
(or screen) and the creation of a window on that screen. The screen of a pfPipe can be set
explicitly using pfPipeScreen(). Under single pipe operation, pfPipes can also inherit the
screen of their first opened window. Under multipipe operation, the screen of all pfPipes
must be determined before the pipes are configured by pfConfigStage() or the first call
to pfFrame(). There may be other operations that require preset knowledge of the screen
even under single pipes, such as custom configuration of video channels, discussed in
“Creating and Configuring a pfChannel” on page 26.

Once the screen of a pfPipe has been set, it cannot be changed. All windows of a given
pfPipe must be opened on the same screen. A graphics window is associated with a
pfPipe through the pfPipeWindow mechanism. If you do not create a pfPipeWindow,
OpenGL Performer will automatically create and open a full screen window with a
default configuration for your pfPipe.

Once you create and initialize a pfPipe, you can query information about its
configuration parameters. pfGetPipeScreen() returns the index number of the hardware
pipeline for the pfPipe, starting from zero. On single-pipe systems the return value will
be zero. If no screen has been set, the return value will be (-1). pfGetPipeSize() returns
the full screen size, in pixels, of the rendering area associated with a pfPipe.

You may have application states associated with pfPipe stages and processes that need
special initialization. For this purpose, you may provide a stage configuration callback
for each pfPipe stage using pfStageConfigFunc(pipe, stageMask, configFunc) and
specify the pfPipe, the stage bitmask (including one or more of PFPROC_APP,
PFPROC_CULL, and PFPROC_DRAW), and your stage configuration callback routine.
At any time, you may call the function pfConfigStage() from the application process to
trigger the execution of your stage configuration callback in the process associated with
that pfPipe’s stage. The stage configuration callback will be invoked at the start of that
stage within the current frame (the current frame in the application process, and
subsequent frames through the cull and draw phases of the software rendering pipeline).
Use a pfStageConfigFunc() callback function to configure OpenGL Performer processes
not associated with pfPipes, such as the database process, PFPROC_DBASE, and the
intersection process, PFPROC_ISECT. A common process initialization task for real-time
applications is the selection and/or specification of a CPU on which to run.

Example of pfPipe Use

The sample source code shipped with OpenGL Performer includes several simple
examples of pfPipe use in both C and C++. Specifically, look at the following examples
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under the Cand C++ directoriesin/ usr/ shar e/ Perf ormer/ src/ pgui de/ i bpf/,
such as hel | 0. ¢, si npl e. ¢c,and nul ti pi pe. c.

Example 2-1 illustrates the basics of using pipes. The code in this example is adapted
from OpenGL Performer sample programs.

Example 2-1 pfPipes in Action

mai n()
{

int i;

/* Initialize Opend@ Perforner */
pflnit();
/* Set number of pfPipes desired -- TH S MUST BE DONE
* BEFORE CALLI NG pf Config().
*/
pf Mul ti pi pe( NunPi pes);
/* set multiprocessing node */
pf Mul ti process( PFMP_DEFAULT) ;

[* Configure OpenGL Perforner and fork extra processes if
* configured for multiprocessing.

*/

pf Config();

/* Optional custom nappi ng of pipes to screens.
* This is actually the reverse as the default.
*[1
for (i=0; i < NunPipes; i++)
pf Pi peScreen( pf Get Pi pe(i), NunPi pes-(i+1));

{
/* set up optional DRAW pi pe stage config call back */
pf St ageConfi gFunc(-1 /* selects all pipes */,
PFPROC DRAW /* stage bitmask */,
ConfigPi peDraw /* config call back */);
/* Config func should be done next pfFrane */
pf Confi gSt age(i, PFPROC_DRAW ;
}

I ni t Channel s();
/* trigger the configuration and openi ng of pfPipes

* and pf W ndows
*/
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pf Frame();

/* Application’s simulation |oop */
whi | e(! Si nDone())

{
}
}
/* CALLBACK FUNCTI ONS FOR PI PE STAGE | NI TI ALI ZATI ON */
voi d
Conf i gPi peDraw(i nt pipe, uint stage)
{

/* Application state for the draw process can be initialized
* here. This is also a good place to do real-tine

* configuration for the drawing process, if there is one.

* There is no graphics state or pfState at this point so no
* rendering calls or pfApply*() calls can be nade.

*/
pf Pi pe *p = pf Get Pi pe(pi pe);
pf Noti f y( PFNFY_I NFO, PFNFY_PRI NT,
“Initializing stage Ox% of pipe %d”, stage, pipe);
}

This section describes how to use pfChannels. A pfChannel is a view of a scene. A
pfChannel is a required element for an OpenGL Performer application because it
establishes the visual frame of reference for what is rendered in the drawing process.

Creating and Configuring a pfChannel

26

When you create a new pfChannel, it is attached to a pfPipe for the duration of the
application. The pfPipe renders the pfScene viewed by the pfChannel into a
pfPipeWindow that is managed by that pipe. Use pfNewChan() to create a new
pfChannel and assign it to a pfPipe. pfChannels are automatically assigned to the first
pfPipeWindow of the pfPipe. In the sample program, the following statement creates a
new channel and assigns it to pipe p.

chan = pf NewChan(p);
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Setting Up a Scene

The pfChannel is automatically placed in the first pfPipeWindow of the pfPipe. A
pfPipeWindow is created automatically if one is not explicitly created with
pfNewPWin().

The simplest configuration uses one pipe, one channel, and one window. You can use
multiple channels in a single pfPipeWindow on a pfPipe, thereby allowing channels to
share hardware resources. Using multiple channels is an advanced topic that is discussed
in the section of this chapter on “Using Multiple Channels.” For now, focus your
attention on understanding the concepts of setting up and using a single channel.

The primary function of a pfChannel is to define the view of a scene. A view is fully
characterized by a viewport, a viewing frustum, and a viewpoint. The following sections
describe how to set up the scene and view for a pfChannel.

A pfChannel draws the pfScene set by pfChanScene(). A channel can draw only one
scene per frame but can change scenes from frame to frame. Other pfChannel attributes
such as LOD modifications, described in “pfLOD Nodes” in Chapter 3, affect the scene.

A pfChannel also renders an environmental model known as pfEarthSky. A pfEarthSky
defines the method for clearing the channel viewport before rendering the pfScene and
also provides environmental effects, including ground and sky geometry and fog and
haze. A pfEarthSky is attached to a pfChannel by pfChanESky().

Setting Up a Viewport
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A pfChannel is rendered by a pfPipe into its pfPipeWindow. The screen area that displays
a pfChannel’s view is determined by the origin and size of the window and the channel
viewport specified by pfChanViewport. The channel viewport is relative to the lower left
corner of the window and ranges from 0 to 1. By default, a pfChannel viewport covers
the entire window.

Suppose that you want to establish a viewport that is one-quarter of the size of the
window, located in the lower left corner of the window. Use pfChanViewport(chan, 0.0,

0.25, 0.0, 0.25) to set up the one-quarter window viewport for the channel chan.

You can then set up other channels to render to the other three-quarters of the window.
For example, you can use four channels to create a four-way view for an architectural or
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CAD application. See “Using Multiple Channels” on page 35 to learn more about
multiple channels.

Setting Up a Viewing Frustum

28

A viewing frustum is a truncated pyramid that defines a viewing volume. Everything
outside this volume is clipped, while everything inside is projected onto the viewing
plane for display. A frustum is defined by the following:

¢ field-of-view (FOV) in the horizontal and vertical dimensions

* near and far clipping planes

A viewing frustum is created by the intersections of the near and far clipping planes with
the top, bottom, left, and right sides of the infinite viewing volume formed by the FOV

and aspect ratio settings. The aspect ratio is the ratio of the vertical and horizontal
dimensions of the FOV.

Figure 2-4 shows the parameters that define a symmetric viewing frustum. To establish
asymmetric frusta refer to the pf Channel ( 3pf) or pf Frust un( 3pf) man pages for
further details.
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Field-of-View
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Horizontal FOV
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Eyepoint
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Aspect Ratio X tan(horizontal FOV/2)
Figure 2-4 Symmetric Viewing Frustum

The viewing frustum is called symmetric when the vertical half-angles are equal and the
horizontal half-angles are equal.

The FOV is the angular width of view. Use pfChanFOV (chan, horiz, vert) to set up
viewing angles in OpenGL Performer. The quantities horiz and vert are the total
horizontal and vertical fields of view in degrees; usually you specify one and let OpenGL
Performer compute the other. If you are specifying one angle, pass any amount less than
or equal to zero, or greater than or equal to 180, as the other angle. OpenGL Performer
automatically computes the unspecified FOV angle to fit the pfChannel viewport using
the aspect-ratio preserving relationship

tan(vert/2) / tan(horiz/2) = aspect ratio
That is, the ratio of the tangents of the vertical and horizontal half-angles is equal to the

aspect ratio. For example, if horiz is 45 degrees and the channel viewport is twice as wide
as it is high (so the aspect ratio is 0.5), then the vertical field-of-view angle, vert, is
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Clipping Planes

computed to be 23.4018 degrees. If both angles are unspecified, pfChanFOV() assumes a
default value of 45 degrees for horiz and computes the value of vert as described.

Clipping planes define the near and far boundaries of the viewing volume. These
distances describe the extent of the visual range in the view, because geometry outside
these boundaries is clipped, meaning that it is not drawn.

Use pfChanNearFar(chan, near, far) to specify the distance along the line of sight from the
viewpoint to the near and far planes that bound the viewing volume. These clipping
planes are perpendicular to the line of sight. For the best visual acuity, choose these
distances so that near is as far away as possible from the viewpoint and far is as close as
possible to the viewpoint. Minimizing the range between near and far provides more
resolution for distance comparisons and fog computations.

Setting Up a Viewpoint

30

A viewpoint describes the position and orientation of the viewer. It is the origin of the
viewing location, the direction of the line of sight from the viewer to the scene being
viewed, and an up direction. The default viewpoint is at the origin (0, 0, 0) looking along
the +Y axis, with +Z up and +X to the right.

Use pfChanView(chan, point, dir) to define the viewpoint for the pfChannel identified by
chan. Specify the view origin for point in x, y, z world coordinates. Specify the view
direction for dir in degrees by giving the degree measures of the three Euler angles:
heading, pitch, and roll.

Heading is a rotation about the Z axis, pitch is a rotation about the X axis, and roll is a
rotation about the Y axis. The value of dir is the product of the rotations ROTy(roll) *
ROTx(pitch) * ROTz(heading), where ROTa(angle) is a rotation matrix about axis A of angle
degrees.

Angles have not only a degree value, but also a sense, + or —, indicating whether the
direction of rotation is clockwise or counterclockwise. Because different systems follow
different conventions, it is very important to understand the sense of the Euler angles as
they are defined by OpenGL Performer. OpenGL Performer follows the right-hand rule.
According to the right-hand rule, counterclockwise rotations are positive. This means
that a rotation about the X axis by +90 degrees shifts the +Y axis to the +Z axis, a rotation
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about the Y axis by +90 degrees shifts the +Z axis to the +X axis, and a rotation about the
Z axis by +90 degrees shifts the +X axis to the +Y axis.

Figure 2-5 shows a toy plane (somewhat reminiscent of the Ryan S-T) at the origin of a

coordinate system with the angles of rotation labeled for heading, pitch, and roll. The
arrows show the direction of positive rotation for each angle.

z
4

‘ + Heading

+ Pitch

Figure 2-5 Heading, Pitch, and Roll Angles

A roll motion tips the wings from side to side. A pitch motion tips the nose up or down.
Changing the heading, a yaw motion steers the plane. Accurate readings of these angles
are critical information for a pilot during a flight, and a thorough understanding of how
the angles function together is required for creation of an accurate flight simulation
visual with OpenGL Performer. The same is also true of marine and other vehicle
simulations.

Alternatively, you can use pfChanViewMat(chan, mat) to specify a 4x4 homogeneous
matrix mat that defines the view coordinate system for channel chan. The upper left 3x3
submatrix defines the coordinate system axes, and the bottom row vector defines the
origin of the coordinate system. The matrix must be orthonormal, or the results will be
undefined. You can construct matrices using tools in the | i bpr library.
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The origin and heading, pitch, and roll angles, or the view matrix, create a complete view
specification. The view specification can locate the eyepoint frame-of-reference origin at
any point in world coordinates. The gaze vector, the eye’s +Y axis, can point in any
direction. The up vector, the eye’s +Z axis, can point in any direction perpendicular to the
gaze vector.

You can query the system for the view and eyepoint-direction values with
pfGetChanView(), or obtain the view matrix directly with pfGetChanViewMat().

The view direction can be modified by one or more offsets, relative to the eyepoint
frame-of-reference. View offsets are useful in situations where several channels render
the same scene into adjacent displays for a wider field-of-view or higher resolution.
Offsets are also used for multiple viewer perspectives, such as pilot and copilot views.

Use pfChanViewOffsets(chan, xyz, hpr) to specify additional translation and rotation
offsets for the viewpoint and direction; xyz specifies a translation vector and hpr specifies
a heading/pitch/roll rotation vector. Viewing offsets are automatically added each
frame to the view direction specified by pfChanView() or pfChanViewMat().

For example, to create three different perspectives of the same scene as displayed by
three windows in an airplane cockpit, use azimuth offsets of 45, 0, and -45 for left,
middle, and right views. To create vertical view groups such as might be seen through
the windscreen of a helicopter, use both azimuth and elevation offsets. Once the view
offsets have been set up, you need only set the view once per frame. View offsets are
applied after the eyepoint position and gaze direction have been established. As with the
other angles, be aware that the conventions for measuring azimuth and elevation a