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New Features in This Guide

This revision of the guide documents OpenGL Performer 3.0, which has the following
features:

¢ New hardware support
- SGI Scalable Graphics Compositor
- InfiniteReality4

* New OS platforms
- Windows NT 4.0
- Windows 2000
- Windows XP

¢ Functional features
- Image-Based rendering using simplified 3D proxy geometry
- Other image-based rendering enhancements
- Occlusion culling using cull programs
- Cull helper processes (cull sidekick)
- New library | i bpf v, providing a feature-rich viewer

¢ Integration with other graphics toolkits
- OpenGL Multipipe SDK
- Direct integration with OpenGL Shader 3.0
- OpenGL Volumizer

¢ OpenFlight 15.7 support
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About This Guide

Welcome to the OpenGL Performer application development environment.

OpenGL Performer provides a programming interface (with ANSI C and C++ bindings)
for creating real-time graphics applications and offers high-performance, multiprocessed
rendering in an easy-to-use 3D graphics toolkit. OpenGL Performer interfaces with the
OpenGL graphics library; this library combined with the IRIX, Linux, or Microsoft
Windows (Windows 2000, Windows NT, and Windows XP) operating system forms the
foundation of a powerful suite of tools and features for creating real-time 3D graphics
applications.

Why Use OpenGL Performer?

007-1680-080

Use OpenGL Performer for building visual simulation applications and virtual reality
environments; for rapid rendering in on-air broadcast and virtual-set applications; for
assembly viewing in large, simulation-based design tasks; or to maximize the graphics
performance of any application. Applications that require real-time visuals, free-running
or fixed-frame-rate display, or high-performance rendering will benefit from using
OpenGL Performer.

OpenGL Performer drastically reduces the work required to tune your application’s
performance. General optimizations include the use of highly tuned routines for all
performance-critical operations and the reorganization of graphics data and operations
for faster rendering. OpenGL Performer also handles SGI architecture-specific tuning
issues for you by selecting the best rendering and multiprocessing modes at run time,
based on the system configuration.

OpenGL Performer is an integral part of SGI visual simulation systems. It provides the
interface to advanced features available exclusively with the SGI product line, such as the
InfiniteReality, InfiniteReality2, Silicon Graphics Octane, Silicon Graphics O2, and VPro
graphics subsystems. OpenGL Performer teamed with InfiniteReality or Octane provide
a sophisticated image generation system in a powerful, flexible, and extensible software
environment. OpenGL Performer is also tuned to operate efficiently on a variety of
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About This Guide

graphics platforms; you do not need the hardware sophistication of InfiniteReality
graphics to benefit from OpenGL Performer.

What You Should Know Before Reading This Guide

To use OpenGL Performer, you should be comfortable programming in ANSI C or C++.
You should also have a fairly good grasp of graphics programming concepts. Terms such
as “texture map” and “homogeneous coordinate” are not explained in this guide. It helps
if you are familiar with the OpenGL library.

On the other hand, though you need to know a little about graphics, you do not have to
be a seasoned C (or C++) programmer, a graphics hardware guru, or a graphics-library
virtuoso to use OpenGL Performer. OpenGL Performer puts the engineering expertise
behind SGI hardware and software at your fingertips, so you can minimize your
application development time while maximizing the application’s performance and
visual impact.

For a concise description of OpenGL Performer basics, see the OpenGL Performer Getting
Started Guide.

How to Use This Guide

The best way to get started is to read the OpenGL Performer Getting Started Guide. If you
like learning from sample code, turn to Chapter 1, “Getting Acquainted with OpenGL
Performer,” which takes you on a tour of some demo programs. These programs let you
see for yourself what OpenGL Performer does. Even if you are not developing a visual
simulation application, you might want to look at the demos to see high-performance
rendering in action. At the end of Chapter 2 in that guide, you will find suggestions
pointing to possible next steps; alternatively, you can browse through the summary
below to find a topic of interest.

What This Guide Contains

This guide is divided into the following chapters and appendixes:

e Chapter 1, “OpenGL Performer Programming Interface,” describes the
fundamental ideas behind the OpenGL Performer programming interface.
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Chapter 2, “Setting Up the Display Environment,” describes how to set up
rendering pipelines, windows, and channels (cameras).

Chapter 3, “Nodes and Node Types,” describes the data structures used in
OpenGL Performer’s memory-based, scene-definition databases.

Chapter 4, “Database Traversal,” explains how to manipulate and examine a scene
graph.

Chapter 5, “Frame and Load Control,” explains how to control frame rate,
synchronization, and dynamic load management. This chapter also discusses the
load management techniques of multiprocessing and level-of-detail.

Chapter 6, “Creating Visual Effects,” describes how to use environmental,
atmospheric, lighting, and other visual effects to enhance the realism of your
application.

Chapter 7, “Importing Databases,” describes database formats and sample
conversion utilities.

Chapter 8, “Geometry,” discusses the classes used to create geometry in
OpenGL Performer scenes.

Chapter 9, “Graphics State,” describes the graphics state, which contains all of the
fields that together define the appearance of geometry.

Chapter 10, “Shader,” describes the shader, a mechanism that allows complex
rendering equations to be applied to OpenGL Performer objects.

Chapter 11, “Using Scalable Graphics Hardware,” describes how to use OpenGL
Performer in conjunction with an SGI Video Digital Multiplexer (DPLEX) and an
SGI Scalable Graphics Compositor.

Chapter 12, “ClipTextures,” describes how to work with large, high-resolution
textures.

Chapter 13, “Windows,” describes how to create, configure, manipulate, and
communicate with a window in OpenGL Performer.

Chapter 14, “pfPipeWindows and pfPipeVideoChannels,” describes the unified
window and video channel control and management provided by pfPipeWindows
and pfPipeVideoChannels.

Chapter 15, “Managing Nongraphic System Tasks,” describes clocks, memory
allocation, synchronous 1/0O, error handling and notification, and search paths.

Chapter 16, “Dynamic Data,” describes how to connect pfFlux, pfFCS, and
pfEngine nodes, which together can be used for animating geometries.
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Sample Applications

Conventions

xlii

e Chapter 17, “Active Surface Definition,” describes the Active Surface Definition
(ASD): a library that handles real-time surface meshing and morphing.

¢ Chapter 18, “Light Points,” describes the calligraphic lights, which are intensely
bright lights.

¢ Chapter 19, “Math Routines,” details the comprehensive math support provided as
part of OpenGL Performer.

¢ Chapter 20, “Statistics,” discusses the various kinds of statistics you can collect and
display about the performance of your application.

e Chapter 21, “Performance Tuning and Debugging,” explains how to use
performance measurement and debugging tools and provides hints for getting
maximum performance.

¢ Chapter 22, “Building a Visual Simulation Application Using libpfv” describes a
modular approach to building an application using a graphical viewer.

e Chapter 23, “Programming with C++,” discusses the differences between using the
C and C++ programming interfaces.

You can find the sample code for all of the sample OpenGL Performer applications
installed under/ usr/ shar e/ Per f or mer/ sr ¢/ pgui de on IRIX and Linux and under
%PFROOTY% Sr ¢/ pgui de on Microsoft Windows.

This guide uses the following typographical conventions:

Bold Used for function names, with parentheses appended to the name and
also for the names of window menus and buttons. Also, bold lowercase
letters represent vectors, and bold uppercase letters denote matrices.

Italics Indicates variables, book titles, and glossary items.

Fi xed-wi dth  Used for filenames, operating system command names, command-line
option flags, code examples, and system output.

Bol d Fi xed-wi dth
Indicates user input, such as items that you type in from the keyboard.
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Note that in some cases it is convenient to refer to a group of similarly named

OpenGL Performer functions by a single name; in such cases an asterisk is used to
indicate all the functions whose names start the same way. For instance, pfNew*() refers
to all functions whose names begin with “pfNew”: pfNewChan(), pfNewDCS(),
pfNewESky(), pfNewGeode(), and so on.

Internet and Hardcopy Reading for the OpenGL Performer Series

The OpenGL Performer series include the followingmanuals in printed and online
formats:

*  OpenGL Performer Programmer’s Guide (this book)
*  OpenGL Performer Getting Started Guide

To read these online books, point your browser at the following:

e http://techpubs.sgi.com

For general information about OpenGL Performer, use the following URL:

e http://ww. sgi.coni software/performer

The i nf o- per f or mer mailing list provides a forum for discussion of OpenGL
Performer including technical and nontechnical issues. Subscription requests should be
sent to i nf o- per f or mer - r equest @gi . com Much like the conp. sys. sgi .*
newsgroups on the Internet, it is not an official support channel but is monitored by
several interested SGI employees familiar with the toolkit. The OpenGL Performer
mailing list archives are at the following URL:

* http://oss.sgi.com/projects/performer/mail /info-performer/

Reader Comments
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If you have comments about the technical accuracy, content, or organization of this
document, please tell us. Be sure to include the title and document number of the manual
with your comments. (Online, the document number is located in the front matter of the
manual. In printed manuals, the document number can be found on the back cover.)
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You can contact us in any of the following ways:
¢ Send e-mail to the following address:
t echpubs@gi . com

* Use the Feedback option on the Technical Publications Library World Wide Web
page:
http://techpubs. sgi.com

e Contact your customer service representative and ask that an incident be filed in the
SGI incident tracking system.

¢ Send mail to the following address:

Technical Publications

SGI

1600 Amphitheatre Pkwy., M/S 535
Mountain View, California 94043-1351

¢ Send a fax to the attention of Technical Publications:

+1 650 932 0801
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Chapter 1

OpenGL Performer Programming Interface

This chapter describes the fundamental ideas behind the OpenGL Performer
programming interface in the following sections:

¢ “General Naming Conventions” on page 1
* “Class API” on page 3

* “Base Classes” on page 6.

General Naming Conventions

Prefixes

007-1680-080

The OpenGL Performer application programming interface (API) uses naming
conventions to help you understand what a given command will do and even predict the
appropriate names of routines for desired functionality. Following similar naming
practices in the software that you develop will make it easier for you and others on your
team to understand and debug your code.

The APl is largely object-oriented; it contains classes of objects comprised of methods
that do the following:

¢ Configure their parent objects.

* Apply associated operations, based on the current configuration of the object.
Both C and C++ bindings are provided for OpenGL Performer. In addition, naming

conventions provide a consistent and predictable API and indicate the kind of operations
performed by a given command.

The prefix of the command tells you in which library a C command or C++ class is found.
All exposed OpenGL Performer base library C commands and C++ classes begin with
'pf’. The utility libraries use an additional prefix letter, such as ‘pfu’ for the | i bpf uti |
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Header Files

Naming in C and C++

general utility library, "pfi’ for the | i bpf ui input handling library, and "pfd’ for the
| i bpf du database utility library. | i bpr -level commands still have the "pf’ prefix as they
are still in the main | i bpf library

Each OpenGL Performer library contains a main header file in

/usr/include/ Performer onIRIX and Linux and in %4PFROOT% | ncl ude on
Microsoft Windows that contains type and class definitions, the C API for that library,
and global routines that are part of the C and C++ APL | i bpf is broken into two distinct
pieces: the low-level rendering layer, | i bpr, and the application layer, | i bpf, and each
has its own main header file: pr . h and pf . h. Since | i bpf is considered to include

I'i bpr, pf. hincludes pr. h. C++ class header files are found under the following
directories:

[usr/include/ Performer/{pf, pr, ...} (IRIXand Linux)
UPFROOTY% | ncl ude/ {pf, pr, ...} (Microsoft Windows)

Each class has its own C++ header file and that header must be included to use that class.

#i ncl ude <Perforner/ pf. h>
#i ncl ude <Perforner/ pf/pf G oup. h>

pf G oup *group;

All C++ class method names have an expanded C counterpart. Typically, the C routine
(function)will include the class name in the routine, whereas the C++ method will not.

C. pf Get Pi peScreen();
C++: pi pe->get Screen();

For some very general routines on the most abstract classes, the class name is omitted.
This is the case with the child API on pfNodes:

C. pf AddChi | d( node, child);
C++: node->addChil d(child);

Command and type names are mixed case where the first letter of a new word in a name
is capitalized. C++ method names always start with a lower case letter.
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Abbreviations

Macros, Tokens, and

Class API
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pf Texture *texture;
texture->l oadFil e();

Type names do not use abbreviations. The C API acting on that type will often use
abbreviations for the type names, as will the associated tokens and enums.

In procedure names, a name will always be abbreviated or never, and the same
abbreviation will always be used and will be in the pfNew* C command. For example:
the pfTexture object uses “Tex” in its API, such as pfNewTex(). If a type name has multiple
words, the abbreviation will use the first letter of the first words and then the first syllable
of the last word.

pf Pi peW ndow *pwi n = pf NewPW n();
pf Pi peVi deoChannel *pvchan = pf NewPVChan();
pf TexLOD *tl od = pfNewTLOX);

Enums

Macros, tokens, and enums all use full upper-case. Token names associated with a class
and methods of a class start with the abbreviated name for that class, such as texture to
“tex” in PFTEX_SHARPEN.

The API of a given class, such as pfTexture, is comprised of the following:
* APl to create an instance of the object

* API to set parameters on the object

e API to get those parameter settings

* API to perform actions on the configured object
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Object Creation

Set Routines

Get Routines

Objects are always created with the following;:

C. pfThing *thing = pf NewThi ng();
C++: pfThing *thing = new pf Thing;

|'i bpf objects are automatically created out of the shared memory arena. | i bpr objects
take as an argument an arena pointer which, if NULL, will cause allocation off the heap.

A set routine has the following form:

C. pfThingParam(thing, ... )
C++: thing->setParam)

Note that there is no ‘Set” in the name in the C version.

Set routines are usually very fast and are not order dependent. Work required to process
the settings happens once when the object is first used after settings have changed. If
particularly expensive options must be done, there will be a pfConfigThing routine or
method to explicitly force this work that must be called before the object is to be used.

For every ‘set’ routine there is a matching ‘get’ routine to get back the value that was set.

C. pf Get Thi ngParan(thing, ... )
C++: thing->get Parany()

If the set/get is for a single value, that value is usually the return value of the routine. If
there are multiple values together, the ‘get’ routine will then take as arguments pointers
to result variables.

Getting Current In-Use Values

Get routines return values that have been previously set by the user, or default values if
no settings have been made. Sometimes a value other than the user-specified value is
currently in use and that is the value that you would like to get. For these cases, there is
a separate ‘GetCur’ routine to get the current in-use value.
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Action Routines

C pf Get Cur Thi ngPar an()
C++: thing->getcurParam)

These ‘cur’ routines may only be able to give reasonable values in the process which
associated operations are happening. For example, to get the current texture
(pfGetCurTex()), you need to be in the draw process since that is the only process that
has a current texture.

An action routine has the following form:

C. pfVerbThing(), such as pfApplyTex()
C++: thing->verb(), such as tex->apply()

Action routines can have parameter scope and apply only to that parameter. These
routines have the following form

C. pfVerbThi ngParan(), such as pfApplyTexM nLOX()
C++: thing->verbParan(), such as tex->applyM nLODX()

Apply and Draw Routines

The Apply and Draw action routines do graphics operations and must happen either in
the draw process or in display list mode.

C. pf Appl ypf GSt at e()
pf Dr awGSet ()

C++: gstate->apply()
gset - >draw()

Enable and Disable of Modes
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Features that can be enabled and disabled are done so with pfEnable() and pfDisable(),
respectively.

pfGetEnable() takes PFEN_* tokens naming the graphics state operation to enable or
disable. A GetEnable() is used to query enable status and will return 1 or 0 if the given
mode is enabled or disabled, respectively.

ex: pf Enabl e( PFEN_TEXTURE), pf Di sabl e( PFEN_TEXTURE),
pf Get Enabl e( PFEN_TEXTURE) ;
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Mode, Attribute, or Value

Base Classes

Classes instances are configured by having their internal fields set. These fields may be
simple modes or complex attribute structures. Mode values are ints or tokens, attributes
are typically pointers to objects, and values are floats.

pf GSt at eMode( gst at e, PFSTATE_DECAL, PFDECAL_LAYER)
pf GSt at eAttr(gstate, PFSTATE_TEXTURE, texPtr)
pf GSt at eVal (gstate, PFSTATE_ALPHAREF, 0.5)

OpenGL Performer provides an object-oriented programming interface to most of its
data structures. Only OpenGL Performer functions can change the values of elements of
these data structures; for instance, you must call pfMtlColor() to set the color of a
pfMaterial structure rather than modifying the structure directly.

For a more transparent type of memory, OpenGL Performer provides pfMemory. All
object classes are derived from pfMemory. pfMemory instances must be explicitly
allocated with the new operator and cannot be allocated statically, on the stack, or
included directly in other object definitions. pfMemory is managed memory; it includes
special fields, such as size, arena, and ref count, that are initialized by the pfMemory
new() function.

Some very simple and unmanaged data types are not encapsulated for speed and easy
access. Examples include pfMatrix, pfSphere and pfVec3. These data types are referred
to as public structures and are inherited from pfStruct.

Unlike pfMemory, pfStructs can be handled as follows:

e Allocated statically

¢ Allocated on the stack

* Included directly in other structure and object definitions

pfStructs allocated off the stack or allocated statically are not in the shared memory arena
and thus are not safe for multiprocessed use. Also, pfStructs allocated off the stack in a

procedure do not exist after the procedure exits so they should not be given to persistent
objects, such as a pfVec3 array of vertices for a pfGeoSet.
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Inheritance Graph
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In order to allow some functions to apply to multiple data types, OpenGL Performer uses
the concept of class inheritance. Class inheritance takes advantage of the fact that
different data types (classes) often share attributes. For example, a pfGroup is a node that
can have children. A pfDCS (Dynamic Coordinate System) has the same basic structure
as a pfGroup, but also defines a transformation to apply to its children—in other words,
the pfDCS data type inherits the attributes of the pfGroup and adds new attributes of its
own. This means that all functions that accept a pfGroup* argument will alternatively
accept a pfDCS* argument.

For example, pfAddChild() takes a pfGroup* argument, but appends child to the list of
children belonging to dcs:

pf DCS *dcs = pf NewDCS() ;

pf AddChi | d(dcs, child);

Because the C language does not directly express the notion of classes and inheritance,
arguments to functions must be cast before being passed, as shown in this example:

pf AddChi | d( ( pf G oup*) dcs, (pfNode*)child);

In the example above, no such casting is required because OpenGL Performer provides
macros that perform the casting when compiling with ANSI C, as shown in this example:

#defi ne pf AddChild(g, c) pfAddChild((pfGoup*)g, (pfNode*)c)

Note: Using automatic casting eliminates type checking—the macros will cast anything
to the desired type. If you make a mistake and pass an unintended data type to a casting
macro, the results may be unexpected.

No such trickery is required when using the C++ API. Full type checking is always
available at compile time.

The relations between classes can be arranged in a directed acyclic inheritance graph in
which each child inherits all of its parent’s attributes, as illustrated in Figure 1-1. OpenGL
Performer does not use multiple inheritance, so each class has only one parent in the

graph.
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Note: It is important to remember that an inheritance graph is different from a scene
graph. The inheritance graph shows the inheritance of data elements and member
functions among user-defined data types; the scene graph shows the relationship among
instances of nodes in a hierarchical scene definition.
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Base Classes

Some classes
found in libpf

Some classes
found in libpr

Figure 1-1 Partial Inheritance Graph of OpenGL Performer Data Types
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OpenGL Performer objects are divided into two groups: those found in the | i bpf library
and those found in the | i bpr library. These two groups of objects have some common
attributes, but also differ in some respects.

While OpenGL Performer only uses single inheritance, some objects encapsulate others,
hiding the encapsulated object but also providing a functional interface that mimics its
original one. For example a pfChannel has a pfFrustum, a pfFrameStats has a pfStats, a
pfPipeWindow has a pfWindow, and a pfPipeVideoChannel has a pfVideoChannel. In
these cases, the first object in each pair provides functions corresponding to those of the
second. For example, pfFrustum has a routine:

pf MakeSi npl eFrust (frust, 45.0f);
pfChannel has a corresponding routine:

pf MakeSi npl eChan(channel , 45.0f);

l'i bpr and i bpf Objects

User Data

10

All of the major classes in OpenGL Performer are derived from the pfObject class. This
common, base class unifies the data types by providing common attributes and
functions. | i bpf objects are further derived from pfUpdatable. The pfUpdatable
abstract class provides support for automatic multibuffering for multiprocessing.
pfObjects have no special support for multiprocessing and so all processes share the
same copy of the pfObject in the shared arena. | i bpr objects allocated from the heap
are only visible in the process in which they are created or in child processes created after
the object. Changes made to such an object in one process are not visible in any other
process.

Explicit multibuffering of pfObjects is available through the pfFlux class. In general,
I'i bpr provides lightweight and low-level modular pieces of functionality that are then
enhanced by more powerful | i bpf objects.

The primary attribute defined by the pfObject class is the custom data a user gets to
define on any pfObject called “user data.” pfUserDataSlot attaches the user-supplied
data pointer to user data. pfUserData attaches the user-supplied data pointer to user data
slot. Example 1-1 shows how to use user data.
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Example 1-1 How to Use User Data

typedef struct
{

float coeffFriction;
float density;
fl oat *dat aPoi nts;

}
myMat eri al ;

nmyMat eri al *granite;

granite = (nmyMaterial *)pfMlloc(sizeof(myMaterial), NULL);
granite->coeffFriction = 0.5f;

granite->density = 3.0f;

grani te->dataPoints = (fl oat *)pfMlloc(sizeof(float)*8, NULL);
graniteM| = pfNewM | (NULL);

pf UserDat a(graniteM|, granite);

pfDelete() and Reference Counting

Most kinds of data objects in OpenGL Performer can be placed in a hierarchical scene
graph, using instancing when an object is referenced multiple times. Scene graphs can
become quite complex, which can cause problems if you are not careful. Deleting objects
can be a particularly dangerous operation, for example, if you delete an object that
another object still references.

Reference counting provides a bookkeeping mechanism that makes object deletion safe:
an object is never deleted if its reference count is greater than zero.

Alll i bpr objects (such as pfGeoState and pfMaterial) have a reference count that

specifies how many other objects refer to it. A reference is made whenever an object is
attached to another using the OpenGL Performer routines shown in Table 1-1.
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Table 1-1 Routines that Modify | i bpr Object Reference Counts

Routine Action

pfGSetGState() Attaches a pfGeoState to a pfGeoSet.
pfGStateAttr() Attaches a state structure (such as a pfMaterial) to a pfGeoState.
pfGSetHlight() Attaches a pfHighlight to a pfGeoSet.
pfTexDetail() Attaches a detail pfTexture to a base pfTexture.
pfGSetAttr() Attaches attribute and index arrays to a pfGeoSet.
pfTexImage() Attaches an image array to a pfTexture.
pfAddGSet(), Modify pfGeoSet/pfGeode association.
pfReplaceGSet(),

pfInsertGSet()

When object A is attached to object B, the reference count of A is incremented.
Additionally, if A replaces a previously referenced object C, then the reference count of
Cis decremented. Example 1-2 demonstrates how reference counts are incremented and
decremented.

Example 1-2 Objects and Reference Counts

pf CeoState *gstateA, *gstateC
pf GeoSet *gset B;

/* Attach gstateC to gsetB. Reference count of gstateC
* is incremented. */
pf GSet GSt at e( gset B, gstateC);

/* Attach gstateA to gsetB, replacing gstateC Reference
* count of gstateC is decrenented and that of gstateA
* is incremented. */
pf GSet GSt at e(gset B, gstateA);

This automatic reference counting done by OpenGL Performer routines is usually all you
will ever need. However, the routines pfRef(), pfUnref(), and pfGetRef() allow you to
increment, decrement, and retrieve the reference count of a | i bpr object should you
wish to do so. These routines also work with objects allocated by pfMalloc().
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An object whose reference count is equal to 0 can be deleted with pfDelete(). pfDelete()
works for all | i bpr objects and all pfNodes but not for other | i bpf objects like pfPipe
and pfChannel. pfDelete() first checks the reference count of an object. If the reference
count is nonpositive, pfDelete() decrements the reference count of all objects that the
current object references, then it deletes the current object. pfDelete() does not stop here
but continues down all reference chains, deleting objects until it finds one whose count
is greater than zero. Once all reference chains have been explored, pfDelete returns a
boolean indicating whether it successfully deleted the first object or not. Example 1-3
illustrates the use of pfDelete() with | i bpr.

Example 1-3 Using pfDelete() with | i bpr Objects

pf CeoState *gstateO, *gstatel;
pf Material *mtl;
pf GeoSet *gset;

gstate0 = pf NewGState(arena); /* initial ref count is 0 */
gset = pfNewGSet (arena); /* initial ref count is 0 */
ntl = pfNewM|I (arena); /* initial ref count is 0 */

/* Attach mtl| to gstateO. Reference count of ntl is
* incremented. */
pf GSt at eAttr(gstat e0, PFSTATE _FRONTMIL, ntl);

/* Attach mtl to gstatel. Reference count of ntl is
* incremented. */
pf GSt at eAttr(gstatel, PFSTATE FRONTMIL, ntl);

/* Attach gstateO to gset. Reference count of gstateO is
* incremented. */
pf GSet GSt at e( gset, gstate0);

/* This del etes gset, gstateO, but not ntl since gstatel is

* still referencing it. */
pf Del et e( gset) ;

Example 1-4 illustrates the use of pfDelete() with | i bpf .

Example 1-4  Using pfDelete() with | i bpf Objects

pf G oup *group;
pf Geode *geode;
pf GeoSet *gset;

group = pfNewGoup(); /* initial parent count is 0 */

13
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geode = pfNewGeode(); /* initial parent count is 0 */
gset = pfNewGSet (arena); /* initial ref count is 0 */

/* Attach geode to group. Parent count of geode is
* incremented. */
pf AddChi | d( gr oup, geode);

/* Attach gset to geode. Reference count of gset is
* incremented. */
pf AddGSet (geode, gset);

/* This has no effect since the parent count of geode is 1.*/
pf Del et e( geode) ;

/* This del etes group, geode, and gset */
pf Del et e( group) ;

Some notes about reference counting and pfDelete():

e All reference count modifications are locked so that they guarantee mutual
exclusion when multiprocessing.

* Objects added to a pfDispList do not have their counts incremented due to
performance considerations.

¢ In the multiprocessing environment of | i bpf , the successful deletion of a pfNode
does not have immediate effect but is delayed one or more frames until all processes
in all processing pipelines are through with the node. This accounts for the fact that
pfDispLists do not reference-count their objects.

e pfUnrefDelete(obj) is shorthand for the following:

i f(pfUnref(obj) ==0)
pf Del et e(obj);

This is true when pfUnrefGetRef is atomic.

¢ Objects whose count reaches zero are not automatically deleted by OpenGL
Performer. You must specifically request that an object be deleted with pfDelete()
or pfUnrefDelete().
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Copying Objects with pfCopy()

pfCopy() is currently implemented for | i bpr (and pfMalloc()) objects only. Object
references are copied and reference counts are modified appropriately, as illustrated in
Example 1-5.

Example 1-5  Using pfCopy()

pf GeoState *gstateO, *gstatel;
pfMaterial *ml A *mtlB;

gstate0 = pf NewGSt at e(arena);
gstatel = pf NewGSt at e(arena);
nmlA = pfNewM I (arena); /* initial ref count is 0 */
nlB = pfNewM | (arena); /* initial ref count is 0 */

/* Attach ntl A to gstate0. Reference count of ntlAis
* incremented. */
pf GSt at eAttr (gst at e, PFSTATE_FRONTMIL, ntl A);

/* Attach mIB to gstatel. Reference count of nmIBis
* incremented. */
pf GSt at eAttr(gstatel, PFSTATE_FRONTMIL, ntl B);

/* gstatel = gstateO. The reference counts of ml|A and ntl|lB
* are 2 and O respectively. Note that nm|IB is NOT del eted
* even though its reference count is 0. */
pf Copy(gstatel, gstateO);

pfMalloc and the related routines provide a consistent method to allocate memory, either
from the user’s heap (using the C-library malloc() function) or from a shared memory
arena.

Printing Objects with pfPrint()
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pfPrint() can print many different kinds of objects to a file; for example, you can print
nodes and geosets. To do so, you specify in the argument of the function the object to
print, the level of verbosity, and the destination file. An additional argument, which,
specifies different data according to the type of object being printed.

The different levels of verbosity include the following:

¢ PFPRINT_VB_OFF—no printing
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e PFPRINT_VB_ON-—minimal printing (default)

e PFPRINT_VB_NOTICE—minimal printing (default)
e PFPRINT_VB_INFO—considerable printing

e PFPRINT_VB_DEBUG—exhaustive printing

If the object to print is a type of pfNode, which specifies whether the print traversal
should only traverse the current node (PFTRAV_SELF) or the entire scene graph where
the node specified in the argument is the root node (PFTRAV_SELF |
PFTRAV_DESCEND). For example, to print an entire scene graph, in which scene is the
root node, to the file, fp, with default verbosity, use the following line of code:

file = fopen (“scene.out”,”w");

pf Print (scene, PFTRAV_SELF | PFTRAV_DESCEND, PFPRINT_VB_ON, fp);
fclose(file);

If the object to print is a pfFrameStats, which should specify a bitmask of the frame
statistics classes that you want printed. The values for the bitmask include the following:
e PFSTATS_ON enables the specified classes.

e PFSTATS_OFF disables the specified classes.

e PFSTATS_DEFAULT sets the specified classes to their default values.

e PFSTATS_SET sets the class enable mask to enmask.

For example, to print select classes of a pfFrameStats structure, stats, to st der r, use the
following line of code:

pfPrint(stats, PFSTATS ENGFX | PFFSTATS ENDB |
PFFSTATS_ENCULL, PFSTATS_ON, NULL):

If the object to print is a pfGeoSet, which is ignored and information about that pfGeoSet
is printed according to the verbosity indicator. The output contains the types, names, and
bounding volumes of the nodes and pfGeoSets in the hierarchy. For example, to print the
contents of a pfGeoSet, gset, to st der r, use the following line of code:

pf Print(gset, NULL, PFPRINT VB _DEBUG NULL);

Note: When the last argument, file, is set to NULL, the object is printed to st derr.
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Determining Object Type
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Sometimes you have a pointer to a pfObject but you do not know what it really is—is it
a pfGeoSet, a pfChannel, or something else? pfGetType() returns a pfType which
specifies the type of a pfObject. This pfType can be used to determine the class ancestry
of the object. Another set of routines, one for each class, returns the pfType
corresponding to that class, for example, pfGetGroupClassType() returns the pfIype
corresponding to pfGroup.

pfIsOfType() tells whether an object is derived from a specified type, as opposed to
being the exact type.

With these functions you can test for class type as shown in Example 1-6.

Example 1-6 General-Purpose Scene Graph Traverser
voi d

travG aph( pf Node *node)

{

if (pflsOType(node, pfGetDCSC assType()))
doSoret hi ngTr ansf or mi ng(node) ;

/* 1f "node’ is derived from pfGoup then recursively
* traverse its children */
if (pflsOType(node, pfGetGoupd assType()))
for (i = 0; i < pfGetNuntChildren(node); i++)
travG aph(pf Get Chi | d(node, i));
}

Because OpenGL Performer allows subclassing of built-in types, when decisions are
made based on the type of an object, it is usually better to use pfIsOfType() to test the
type of an object rather than to test for the strict equality of the pfTypes. Otherwise, the
code will not have reasonable default behavior with file loaders or applications that use
subclassing.

The pfType returned from pfGetType() is useful for programs but it is not in a readable
form for you. Calling pfGetTypeName() on a pfIype returns a null-terminated ASCII
string that identifies an object’s type. For a pfDCS, for example, pfGetTypeName()
returns the string “pfDCS.” The type returned by pfGetType() can then be compared to
a class type using pfIsOfType(). Class types can be returned by methods such as
pfGetGroupClassType().
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Setting Up the Display Environment

You can use the library | i bpf orl i bpf v as your base to build your application. For the
most part, this chapter (and guide) shows how to do so with | i bpf . For a more modular
approach using a graphical viewer, see Chapter 22, “Building a Visual Simulation
Application Using libpfv”.

The library | i bpf is a visual-database processing and rendering system. The visual
database has at its root a pfScene (as described in Chapter 3 and Chapter 4). The chain of
events necessary to proceed from the scene graph to the display includes the following:

1. A pfScene is viewed by a pfChannel.

2. The pfChannel view of the pfScene is rendered by a pfPipe into a framebuffer.

3. A pfPipeWindow manages the framebuffer.

4. The images in the framebuffer are transmitted to a display system that is managed

by a pfPipeVideoChannel.

Figure 2-1 shows this chain of events.
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pfChannel 0 il pfChannel 1

PfPipeVVindO‘N &

pfScene

\ PfPipeWindO‘N b

Scene graph

Display system

e —

pfChannel 0 pfChannel 1

Figure 2-1 From Scene Graph to Visual Display
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Using Pipes

The following sections describe how to implement this chain of events using pfPipes,
pfPipeWindows, and pfChannels directly or through the use of a configuration file:

e “Using Pipes” on page 21

e “Using Channels” on page 26

e “Controlling the Video Output” on page 34

e “Using Multiple Channels” on page 35

¢ “Using Channel Groups” on page 40

e “Importing OpenGL Multipipe SDK (MPK) Configuration Files” on page 44

This section describes rendering pipelines (pfPipes) and their implementation in OpenGL
Performer. Each rendering pipeline draws into one or more windows (pfPipeWindows)
associated with a single geometry pipeline. A minimum of one rendering pipeline is
required, although it is possible to have more than one.

The Functional Stages of a Pipeline
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This rendering pipeline comprises three primary functional stages:

APP Simulation processing, which includes reading input from control
devices, simulating the vehicle dynamics of moving models, updating
the visual database, and interacting with other networked simulation
stations.

CULL Traverses the visual database and determines which portions of it are
potentially visible (a procedure known as culling), selects a level of detail
(LOD) for each model, sorts objects and optimizes state management,
and generates a display list of objects to be rendered.

DRAW Traverses the display list and issues graphics library commands to a
Geometry Pipeline in order to create an image for subsequent display.

Figure 2-2 shows the process flow for a single-pipe system. The application constructs
and modifies the scene definition (a pfScene) associated with a channel. The traversal
process associated with that channel’s pfPipe then traverses the scene graph, building an
OpenGL Performer | i bpr display list. As shown in the figure, this display list is used as
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input to the draw process that performs the actual graphics library actions required to
draw the image.

Traversal/Cull Draw-  Frame Buffer-

Application}

Pipeline 0‘
Figure 2-2 Single Graphics Pipeline

OpenGL Performer also provides additional processes for application processing tasks,
such as database loading and intersection traversals, but these processes are optinal and
are asynchronous to the software rendering pipeline(s).

An OpenGL Performer application renders images using one or more pfPipes. Each
pfPipe represents an independent software-rendering pipeline. Most IRIS systems
contain only one Geometry Pipeline; so, a single pfPipe is usually appropriate. This
single pipeline is often associated with a window that occupies the entire display surface.

Alternative configurations include Onyx3 systems with InfiniteReality3 graphics
(allowing up to 16 Geometry Pipelines). Applications can render into multiple windows,
each of which is connected to a single Geometry Pipeline through a pfPipe rendering
pipeline.

Figure 2-3 shows the process flow for a dual-pipe system. Notice both the differences and
similarities between these two figures. Each pipeline (pfPipe) is independent in
multiple-pipe configurations; the traversal and draw tasks are separate, as are the | i bpr
display lists that link them. In contrast, these pfPipes are controlled by the same
application process, and in many situations access the same shared scene definition.
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If Application Scene Pipeline 1 Traversal/Cull Frame Buffer-

Pipeline 0~ Traversal/Cull Draw Frame Buffer
Figure 2-3 Dual Graphics Pipeline

Each of these stages can be combined into a single process or split into multiple processes
(pfMultiprocess) for enhanced performance on multiple CPU systems. Multiprocessing
and multiple pipes are advanced topics that are discussed in “Successful
Multiprocessing with OpenGL Performer” in Chapter 5.

Creating and Configuring a pfPipe
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pfPipes and their associated processes are created when you call pfConfig(). They exist
for the duration of the application. After pfConfig(), the application can get handles to
the created pfPipes using pfGetPipe(). The argument to pfGetPipe() indicates which
pfPipe to return and is an integer between 0 and numPipes-1, inclusive. The pfPipe handle
is then used for further configuration of the pfPipe.

pfMultipipe() specifies the number of pfPipes desired; the default is one.
pfMultiprocess() specifies the multiprocessing mode used by all pfPipes. These two
routines are discussed further in “Successful Multiprocessing with OpenGL Performer”
in Chapter 5.
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A key part of pfPipe initialization is the determination of the graphics hardware pipeline
(or screen) and the creation of a window on that screen. The screen of a pfPipe can be set
explicitly using pfPipeScreen(). Under single pipe operation, pfPipes can also inherit the
screen of their first opened window. Under multipipe operation, the screen of all pfPipes
must be determined before the pipes are configured by pfConfigStage() or the first call
to pfFrame(). There may be other operations that require preset knowledge of the screen
even under single pipes, such as custom configuration of video channels, discussed in
“Creating and Configuring a pfChannel” on page 26.

Once the screen of a pfPipe has been set, it cannot be changed. All windows of a given
pfPipe must be opened on the same screen. A graphics window is associated with a
pfPipe through the pfPipeWindow mechanism. If you do not create a pfPipeWindow,
OpenGL Performer will automatically create and open a full screen window with a
default configuration for your pfPipe.

Once you create and initialize a pfPipe, you can query information about its
configuration parameters. pfGetPipeScreen() returns the index number of the hardware
pipeline for the pfPipe, starting from zero. On single-pipe systems the return value will
be zero. If no screen has been set, the return value will be (-1). pfGetPipeSize() returns
the full screen size, in pixels, of the rendering area associated with a pfPipe.

You may have application states associated with pfPipe stages and processes that need
special initialization. For this purpose, you may provide a stage configuration callback
for each pfPipe stage using pfStageConfigFunc(pipe, stageMask, configFunc) and
specify the pfPipe, the stage bitmask (including one or more of PFPROC_APP,
PFPROC_CULL, and PFPROC_DRAW), and your stage configuration callback routine.
At any time, you may call the function pfConfigStage() from the application process to
trigger the execution of your stage configuration callback in the process associated with
that pfPipe’s stage. The stage configuration callback will be invoked at the start of that
stage within the current frame (the current frame in the application process, and
subsequent frames through the cull and draw phases of the software rendering pipeline).
Use a pfStageConfigFunc() callback function to configure OpenGL Performer processes
not associated with pfPipes, such as the database process, PFPROC_DBASE, and the
intersection process, PFPROC_ISECT. A common process initialization task for real-time
applications is the selection and/or specification of a CPU on which to run.
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Example of pfPipe Use
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The sample source code shipped with OpenGL Performer includes several simple
examples of pfPipe use in both C and C++. Specifically, look at the following examples
under the Cand C++ directories in/ usr/ shar e/ Per f or mer/ src/ pgui de/ | i bpf
for IRIX and Linux and in %°FROOT% Sr ¢/ pgui de/ | i bpf ¢ for Microsoft Windows,
such as hel | 0. ¢, si npl e. c,and mul ti pi pe. c.

Example 2-1 illustrates the basics of using pipes. The code in this example is adapted
from OpenGL Performer sample programs.

Example 2-1 pfPipes in Action

mai n()
{

int i;

/* Initialize Open@ Performer */
pflnit();
/* Set nunmber of pfPipes desired -- THI S MUST BE DONE
* BEFORE CALLI NG pf Config().
*/
pf Mul ti pi pe( NunPi pes) ;
/* set multiprocessing node */
pf Mul ti process( PFMP_DEFAULT) ;

[* Configure QpenGL Perforner and fork extra processes if
* configured for multiprocessing.

*/

pf Config();

/* Optional custom nappi ng of pipes to screens.
* This is actually the reverse as the default.
*[]
for (i=0; i < NunPipes; i++)
pf Pi peScreen( pf Get Pi pe(i), NunPi pes-(i+1));

/* set up optional DRAW pi pe stage config call back */
pf St ageConfi gFunc(-1 /* selects all pipes */,
PFPROC_DRAW /* stage bitmask */,
Confi gPi peDraw /* config call back */);
/* Config func should be done next pfFranme */
pf Confi gSt age(i, PFPROC_DRAW ;
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}

I ni t Channel s();

/* trigger the configuration and openi ng of pfPipes
* and pf W ndows
*/

pf Frame();

/* Application’s sinmulation |oop */
whi | e(! Si nDone())
{

}

/* CALLBACK FUNCTI ONS FOR PI PE STAGE | NI TI ALI ZATI ON */
voi d
Confi gPi peDraw(i nt pi pe, uint stage)
{
/* Application state for the draw process can be initialized
* here. This is also a good place to do real-tine
* configuration for the drawing process, if there is one.
* There is no graphics state or pfState at this point so no
* rendering calls or pfApply*() calls can be nade.
*/
pf Pi pe *p = pf Get Pi pe(pi pe);
pf Noti fy( PFNFY_I NFO, PFNFY_PRI NT,
“Initializing stage Ox% of pipe %", stage, pipe);

This section describes how to use pfChannels. A pfChannel is a view of a scene. A
pfChannel is a required element for an OpenGL Performer application because it
establishes the visual frame of reference for what is rendered in the drawing process.

Creating and Configuring a pfChannel

26

When you create a new pfChannel, it is attached to a pfPipe for the duration of the
application. The pfPipe renders the pfScene viewed by the pfChannel into a
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Setting Up a Scene

pfPipeWindow that is managed by that pipe. Use pfNewChan() to create a new
pfChannel and assign it to a pfPipe. pfChannels are automatically assigned to the first
pfPipeWindow of the pfPipe. In the sample program, the following statement creates a
new channel and assigns it to pipe p.

chan = pf NewChan(p);

The pfChannel is automatically placed in the first pfPipeWindow of the pfPipe. A
pfPipeWindow is created automatically if one is not explicitly created with
pfNewPWin().

The simplest configuration uses one pipe, one channel, and one window. You can use
multiple channels in a single pfPipeWindow on a pfPipe, thereby allowing channels to
share hardware resources. Using multiple channels is an advanced topic that is discussed
in the section of this chapter on “Using Multiple Channels.” For now, focus your
attention on understanding the concepts of setting up and using a single channel.

The primary function of a pfChannel is to define the view of a scene. A view is fully
characterized by a viewport, a viewing frustum, and a viewpoint. The following sections
describe how to set up the scene and view for a pfChannel.

A pfChannel draws the pfScene set by pfChanScene(). A channel can draw only one
scene per frame but can change scenes from frame to frame. Other pfChannel attributes
such as LOD modifications, described in “pfLOD Nodes” in Chapter 3, affect the scene.

A pfChannel also renders an environmental model known as pfEarthSky. A pfEarthSky
defines the method for clearing the channel viewport before rendering the pfScene and
also provides environmental effects, including ground and sky geometry and fog and
haze. A pfEarthSky is attached to a pfChannel by pfChanESky().

Setting Up a Viewport
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A pfChannel is rendered by a pfPipe into its pfPipeWindow. The screen area that displays
a pfChannel’s view is determined by the origin and size of the window and the channel
viewport specified by pfChanViewport. The channel viewport is relative to the lower left
corner of the window and ranges from 0 to 1. By default, a pfChannel viewport covers
the entire window.
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Suppose that you want to establish a viewport that is one-quarter of the size of the
window, located in the lower left corner of the window. Use pfChanViewport(chan, 0.0,
0.25, 0.0, 0.25) to set up the one-quarter window viewport for the channel chan.

You can then set up other channels to render to the other three-quarters of the window.
For example, you can use four channels to create a four-way view for an architectural or
CAD application. See “Using Multiple Channels” on page 35 to learn more about
multiple channels.

Setting Up a Viewing Frustum

28

A viewing frustum is a truncated pyramid that defines a viewing volume. Everything
outside this volume is clipped, while everything inside is projected onto the viewing
plane for display. A frustum is defined by the following:

¢ field-of-view (FOV) in the horizontal and vertical dimensions

* near and far clipping planes

A viewing frustum is created by the intersections of the near and far clipping planes with
the top, bottom, left, and right sides of the infinite viewing volume formed by the FOV

and aspect ratio settings. The aspect ratio is the ratio of the vertical and horizontal
dimensions of the FOV.

Figure 2-4 shows the parameters that define a symmetric viewing frustum. To establish

asymmetric frusta refer to the pf Channel ( 3pf) or pf Frust un( 3pf) man pages for
further details.
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Horizontal FOV

~——_

Vertical FOV
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Eyepoint
. _ _y _ _tan(vertical FOV/2)
Aspect Ratio X tan(horizontal FOV/2)
Figure 2-4 Symmetric Viewing Frustum

The viewing frustum is called symmetric when the vertical half-angles are equal and the
horizontal half-angles are equal.

The FOV is the angular width of view. Use pfChanFOV (chan, horiz, vert) to set up
viewing angles in OpenGL Performer. The quantities horiz and vert are the total
horizontal and vertical fields of view in degrees; usually you specify one and let OpenGL
Performer compute the other. If you are specifying one angle, pass any amount less than
or equal to zero, or greater than or equal to 180, as the other angle. OpenGL Performer
automatically computes the unspecified FOV angle to fit the pfChannel viewport using
the aspect-ratio preserving relationship

tan(vert/2) / tan(horiz/2) = aspect ratio
That is, the ratio of the tangents of the vertical and horizontal half-angles is equal to the

aspect ratio. For example, if horiz is 45 degrees and the channel viewport is twice as wide
as it is high (so the aspect ratio is 0.5), then the vertical field-of-view angle, vert, is
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Clipping Planes

computed to be 23.4018 degrees. If both angles are unspecified, pfChanFOV() assumes a
default value of 45 degrees for horiz and computes the value of vert as described.

Clipping planes define the near and far boundaries of the viewing volume. These
distances describe the extent of the visual range in the view, because geometry outside
these boundaries is clipped, meaning that it is not drawn.

Use pfChanNearFar(chan, near, far) to specify the distance along the line of sight from the
viewpoint to the near and far planes that bound the viewing volume. These clipping
planes are perpendicular to the line of sight. For the best visual acuity, choose these
distances so that near is as far away as possible from the viewpoint and far is as close as
possible to the viewpoint. Minimizing the range between near and far provides more
resolution for distance comparisons and fog computations.

Setting Up a Viewpoint

30

A viewpoint describes the position and orientation of the viewer. It is the origin of the
viewing location, the direction of the line of sight from the viewer to the scene being
viewed, and an up direction. The default viewpoint is at the origin (0, 0, 0) looking along
the +Y axis, with +Z up and +X to the right.

Use pfChanView(chan, point, dir) to define the viewpoint for the pfChannel identified by
chan. Specify the view origin for point in x, y, z world coordinates. Specify the view
direction for dir in degrees by giving the degree measures of the three Euler angles:
heading, pitch, and roll.

Heading is a rotation about the Z axis, pitch is a rotation about the X axis, and roll is a
rotation about the Y axis. The value of dir is the product of the rotations ROTy(roll) *
ROTx(pitch) * ROTz(heading), where ROTa(angle) is a rotation matrix about axis A of angle
degrees.

Angles have not only a degree value, but also a sense, + or —, indicating whether the
direction of rotation is clockwise or counterclockwise. Because different systems follow
different conventions, it is very important to understand the sense of the Euler angles as
they are defined by OpenGL Performer. OpenGL Performer follows the right-hand rule.
According to the right-hand rule, counterclockwise rotations are positive. This means
that a rotation about the X axis by +90 degrees shifts the +Y axis to the +Z axis, a rotation
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about the Y axis by +90 degrees shifts the +Z axis to the +X axis, and a rotation about the
Z axis by +90 degrees shifts the +X axis to the +Y axis.

Figure 2-5 shows a toy plane (somewhat reminiscent of the Ryan S-T) at the origin of a

coordinate system with the angles of rotation labeled for heading, pitch, and roll. The
arrows show the direction of positive rotation for each angle.

z
4

‘ + Heading

+ Pitch

Figure 2-5 Heading, Pitch, and Roll Angles

A roll motion tips the wings from side to side. A pitch motion tips the nose up or down.
Changing the heading, a yaw motion steers the plane. Accurate readings of these angles
are critical information for a pilot during a flight, and a thorough understanding of how
the angles function together is required for creation of an accurate flight simulation
visual with OpenGL Performer. The same is also true of marine and other vehicle
simulations.

Alternatively, you can use pfChanViewMat(chan, mat) to specify a 4x4 homogeneous
matrix mat that defines the view coordinate system for channel chan. The upper left 3x3
submatrix defines the coordinate system axes, and the bottom row vector defines the
origin of the coordinate system. The matrix must be orthonormal, or the results will be
undefined. You can construct matrices using tools in the | i bpr library.
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The origin and heading, pitch, and roll angles, or the view matrix, create a complete view
specification. The view specification can locate the eyepoint frame-of-reference origin at
any point in world coordinates. The gaze vector, the eye’s +Y axis, can point in any
direction. The up vector, the eye’s +Z axis, can point in any direction perpendicular to the
gaze vector.

You can query the system for the view and eyepoint-direction values with
pfGetChanView(), or obtain the view matrix directly with pfGetChanViewMat().

The view direction can be modified by one or more offsets, relative to the eyepoint
frame-of-reference. View offsets are useful in situations where several channels render
the same scene into adjacent displays for a wider field-of-view or higher resolution.
Offsets are also used for multiple viewer perspectives, such as pilot and copilot views.

Use pfChanViewOffsets(chan, xyz, hpr) to specify additional translation and rotation
offsets for the viewpoint and direction; xyz specifies a translation vector and hpr specifies
a heading/pitch/roll rotation vector. Viewing offsets are automatically added each
frame to the view direction specified by pfChanView() or pfChanViewMat().

For example, to create three different perspectives of the same scene as displayed by
three windows in an airplane cockpit, use azimuth offsets of 45, 0, and -45 for left,
middle, and right views. To create vertical view groups such as might be seen through
the windscreen of a helicopter, use both azimuth and elevation offsets. Once the view
offsets have been set up, you need only set the view once per frame. View offsets are
applied after the eyepoint position and gaze direction have been established. As with the
other angles, be aware that the conventions for measuring azimuth and elevation angles
vary between graphics systems; so, you should verify that the sense of the angles is
correct.

Example of Channel Use
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Example 2-2 shows how to use various pfChannel-related functions. The code is derived
from OpenGL Performer sample programs.

Example 2-2 Using pfChannels

mai n()
{
pflnit();
pf Confi g() ;
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}

voi d

{

}

I nitScene();
I nitPipe();
I ni t Channel ();

/* Application main |oop */
whi | e(! Si rDone())
{

}

I ni t Channel (voi d)

pf Channel *chan;
chan = pf NewChan( pf Get Pi pe(0));

/* Set the callback routines for the pfChannel */
pf ChanTr avFunc(chan, PFTRAV_CULL, Cull Func);
pf ChanTr avFunc(chan, PFTRAV_DRAW Drawrunc);

/* Attach the visual database to the channel */
pf ChanScene(chan, Vi ewSt at e->scene);

/* Attach the EarthSky nodel to the channel */
pf ChanESky(chan, Vi ewSt at e- >eSky) ;

/* Initialize the near and far clipping planes */
pf ChanNear Far (chan, Vi ewState->near, ViewState->far);

/* Vertical FOV is matched to wi ndow aspect ratio. */
pf ChanFOV(chan, 45. 0f/ NuntChans, -1.0f);

/* Initialize the viewi ng position and direction */
pf ChanVi em chan, Vi ewState->initView xyz,
Vi ewSt at e->i ni t Vi ew. hpr);

/* CULL PROCESS CALLBACK FOR CHANNEL*/
/* The cull function callback. Any work that needs to be

* d
*/
voi d
Cul |

{

one in the cull process should happen in this function.

Func(pf Channel * chan, void *data)
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static long first = 1;

if (first)
{
if ((pfGetMultiprocess() & PFMP_FORK CULL) &&
(Vi ewSt at e- >procLock & PFMP_FORK _CULL))
pf uLockDownCul | ( pf Get ChanPi pe(chan));
first = 0;
}
PreCul | (chan, data);

pfCul | (); /* Cull to the viewing frustum?*/

Post Cul | (chan, data);
}

/* DRAW PROCESS CALLBACK FOR CHANNEL*/
/* The draw function cal |l back. Any graphics functionality
* outside QpenGL Perforner nmust be done here.

*/

voi d

Dr awFunc( pf Channel *chan, void *data)

{
PreDr aw( chan, data); /* Clear the viewiort, etc. */
pf Draw() ; /* Render the frame */
/* draw HUD, or whatever el se needs
* to be done post-draw.
*/
Post Dr aw( chan, data);

}

Controlling the Video Output

Note: This is an advanced topic.

You use pfPipeVideoChannel to query and control the configuration of a hardware video
channel. The methods allow you to, for example, query or specify the origin and size of
the video output and scale the display.
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By default, all pfVideoChannels on a pfPipe use the first entire video channel on the
screen selected by the pfPipe. Each pfPipeWindow initially has a default
pfPipeVideoChannel already assigned to it. When pfChannels are added to
pfPipeWindows, they will be using, by default, this first pfPipeVideoChannel. You can
get a pfPipeVideoChannel of a pfPipeWindow with pfGetPWinPVChan() and
specifying the index of the pfPipeVideoChannel on the pfPipeWindow; the initial default
one will be at index 0. You can then reconfigure this pfPipeVideoChannel to select a
different video channel or change the attributes of the selected video channel. You can
create a pfPipeVideoChannel with pfNewPVChan(). To use this for a given pfChannel,
you must add it to a pfPipeWindow that will cover the screen area of the desired video
channel. When a pfPipeVideoChannel is added to a pfPipeWindow with
pfAddPWinPVChan(), the index into the pfPipeWindow list of video channels is
returned and by default the pfPipeVideoChannel will get the next active hardware video
channel after the previous pfPipeVideoChannel on that pfPipeWindow. You can
explicitly select the hardware video channel with pfPVChanld(). The pfChannel will
then reference this pfPipeVideoChannel through the index that you got back from
pfAddPWinPVChan() and assign to the pfChannel with pfChanPWinPVChanIndex().

pvc = pf NewPVChan(p);
pvcl ndex = pf AddPW nPVChan(pw, pvc);
pf ChanPW nPVChanl ndex(chan, pvcl ndex);

Note that the screen of the pfPipe must be known to fully specify the desired video
channel. Queries on the pfPipeVideoChannel will return values indicating unknown
configuration until the screen is known. The screen can be determined by OpenGL
Performer when the window is opened in the DRAW process but you can also explicitly
set the screen of the pfPipe with pfPipeScreen().

You can also get to the hardware video channel structure, pfVideoChannelInfo(), for
more configuration options, such as reading gamma data or even a specific video format.
For more information on pfPipeWindows and pfPipeVideoChannels, see Chapter 14,
“ptPipeWindows and pfPipeVideoChannels.”

Using Multiple Channels
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Each rendering pipeline can render multiple channels with multiple
pfPipeVideoChannels to a single pfPipeWindows. Multiple pfPipeWindows can also be
used but at the cost of some additional processing overhead. The pfChannel is assigned
to the proper pfPipeWindow and selects its pfPipeVideoChannel from that
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pfPipeWindow. The pfChannel must also have a viewport, set with pfChanViewport(),
that covers the proper window area to match that of the desired pfPipeVideoChannel.

Each channel represents an independent viewpoint into either a shared or an
independent visual database. Different types of applications can have vastly different
pipeline-window-channel configurations. This section describes two extremes: visual
simulation applications, where there is typically one window per pipeline, and highly
interactive uses that require dynamic window and channel configuration.

One Window per Pipe, Multiple Channels per Window

36

Often there is a single channel associated with each pipeline, as shown in the top half of
Figure 2-6. This section describes two important uses for multiple-channel support—
multiple pipelines per system and multiple windows per pipeline—the second of which
is illustrated in the bottom half of Figure 2-6.
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Figure 2-6 Single-Channel and Multiple-Channel Display
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One situation that requires multiple channels occurs when inset views must appear
within an image. A simple example of this application is a driving simulator in which the
screen image represents the view out the windshield. If a rear-view mirror is to be drawn,
it must overlay the main forward view to provide a separate view of the same database
within the borders of the simulated mirror’s frame.

Channels are rendered in the order that they are assigned to a pfPipeWindow on their
parent pfPipe. Channels, upon creation, are assigned to the end of the channel list of the
first window of their pfPipe. In the driving simulator example, creating pipes and
channels with the following structure creates two channels on a single shared pipeline:
pi pel i ne = pf Get Pi pe(0);

front Vi ew = pf NewChan( pi pel i ne);

rear Vi ew = pf NewChan( pi pel i ne);

In this case, OpenGL Performer’s actual drawing order becomes the following:
1. Clear frontView.
2. Draw frontView.
3. Clear rearView.
4

Draw rearView.

This default ordering results in the rear-view mirror image always overlaying the
front-view image, as desired. You can control and reorder the drawing of channels within
a pfPipeWindow with the pfInsertChan(pwin, where, chan) and pfMoveChan(pwin,
where, chan) routines. More details about multiple channels and multiple window are
discussed in the next section.

When the host has multiple Geometry Pipelines, as supported on Onyx RealityEngine2
and InfiniteReality systems, you can create a pfPipe and pfChannel pair for each
hardware pipeline. The following code fragment illustrates a two-channel, two-pipeline
configuration:

| ef t Pi pe pf Get Pi pe(0);

| eft View = pf NewChan(| ef t Pi pe) ;
ri ght Pi pe = pf Get Pi pe(1);

ri ght Vi ew = pf NewChan(ri ght Pi pe);

This configuration forms the basis for a high-performance stereo display system, since
there is a hardware pipeline dedicated to each eye and rendering occurs in parallel.
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The two-channel stereo-view application described in this example and the inset-view
application described in the previous example can be combined to provide stereo views
for a driving simulator with an inset rear-view mirror. The correct management of each
eye’s viewpoint and the mirror reflection helps provide a convincing sense of physical
presence within the vehicle.

The third and most common multiple-channel situation involves support for multiple
video outputs per pipeline. To do this, first associate each pipeline with a set of
nonoverlapping channels, one for each desired view. Next, use one of the following
video-splitting methods:

¢ Use the multi-channel hardware options, available from SGI, for systems such as
the 8-channel Display Generator (DG) for InfiniteReality graphics, where you can
create up to eight independent video outputs from a single Graphics Pipeline, with
each video output corresponding to one of the tiled channels. The Octane video
option supports four video outputs and the RealityEngine2 MultiChannel Option
supports six video channels per Graphics Pipeline.

¢ Connect multiple video monitors in series to a single pipeline’s video output.
Because each monitor receives the same display image, a masking bezel is used to
obscure all but the relevant portion of each display surface.

The three multiple-channel concepts described here can be used in combination. For
example, use of three InfiniteReality pipelines, each equipped with the 8-channel DG,
allows creation of up to 24 independent video displays. The channel-tiling method can
also be used for some or all of these displays.

Example 2-3 shows how to use multiple channels on separate pipes.

Example 2-3 Multiple Channels, One Channel per Pipe
pf Channel *Chan[ MAX_CHANS] ;

voi d | nitcChannel (i nt NunChans)
{
/* Initialize each channel on a separate pipe */
for (i=0; i< NunChans; i++)
Chan[i] = pfNewChan(pf GetPipe(i));

/* Make channel n/2 the nmaster channel (can be any
* channel ).
*/
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Vi ewSt at e- >mast er Chan = Chan[ NuntChans/ 2] ;

{

| ong share;

/* CGet the default channel -sharing mask */
share = pf Get ChanShar e( Vi ewSt at e- >nast er Chan) ;

/* Add in the viewport share bit */
share | = PFCHAN_VI EWPORT;

i f (GangDraw)
{
/* add GangDraw to channel share nmask */
share | = PFCHAN_SWAPBUFFERS_HW
}
pf ChanShar e( Vi ewSt at e- >mast er Chan, share);
}

/* Attach channels */
for (i=0; i< NunChans; i++)
if (Chan[i] != Viewstate->master Chan)
pf At t achChan( Vi ewsSt at e- >mast er Chan, Chan[i]);

/* Continue with channel initialization */

Using Channel Groups
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In many multiple-channel situations, including the examples described in the previous
section, it is useful for channels to share certain attributes. For the three-channel cockpit
scenario, each pfChannel shares the same eyepoint while the left and right views are
offset using pfChanViewOffsets(). OpenGL Performer supports the notion of channel
groups, which facilitate attribute sharing between channels.

pfChannels can be gathered into channel groups that share like attributes. A channel

group is created by attaching one pfChannel to another, or to an existing channel group.
Use pfAttachChan() to create a channel group from two channels or to add a channel to
an existing channel group. Use pfDetachChan() to remove a pfChannel from a channel

group.
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A channel share mask defines shared attributes for a channel group. The attribute tokens
listed in Table 2-1 are bitwise OR-ed to create the share mask.

Table 2-1 Attributes in the Share Mask of a Channel Group

Token Shared Attributes

PFCHAN_FOV Horizontal and vertical fields of view
PFCHAN_VIEW View position and orientation
PFCHAN_VIEW_OFFSETS (x, y, z) and (heading, pitch, roll) offsets of the view direction
PFCHAN_NEARFAR Near and far clipping planes

PFCHAN_SCENE All channels display the same scene.
PFCHAN_EARTHSKY All channels display the same earth/sky model.
PFCHAN_STRESS All channels use the same stress filter.
PFCHAN_LOD All channels use the same LOD modifiers.
PFCHAN_SWAPBUFFERS All channels swap buffers at the same time.

PFCHAN_SWAPBUFFERS_HW Synchronize swap buffers for channels on different graphics
pipelines.

Use pfChanShare() to set the share mask for a channel group. By default, channels share
all attributes except PFCHAN_VIEW_OFFSETS. When you add a pfChannel to a channel
group, it inherits the share mask of that group.

A change to any shared attribute is applied to all channels in a group. For example, if you
change the viewpoint of a pfChannel that shares PECHAN_VIEW with its group, all
other pfChannels in the group will acquire the same viewpoint.

Two attributes are particularly important to share in adjacent-display multiple-channel
simulations: PECHAN_SWAPBUFFERS and PFCHAN_LOD. PEFCHAN_LOD ensures
that geometry that straddles displays is drawn the same way in each channel. In this case,
all channels will use the same LOD modifier when rendering their scenes so that LOD
behavior is consistent across channels. PECHAN_SWAPBUFFERS ensures that channels
refresh the display with a new frame at the same time. pfChannels in different pfPipes
that share PFECHAN_SWAPBUFFERS_HW will frame-lock the graphics pipelines
together.
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Example 2-4 illustrates the use of multiple channels and channel sharing.

Example 2-4 Channel Sharing
pf Channel *Chan[ MAX_CHANS] ;

mai n()

{

}

pflnit();

};‘-Set nurmber of pfPipes desired. TH S MJUST BE DONE
* BEFORE CALLI NG pf Confi g().
pf{vul ti pi pe( NunPi pes);

pf Conf i ()

i n| t Scene();

I ni t Channel s();

pf Frane();

/* Application main | oop */
whi | e(! Si rDone())

{

}

voi d | nitcChannel (i nt NunChans)

{

/* Initialize all channels on pipe 0 */
for (i=0; i< NunChans; i++)
Chan[i] = pf NewChan(pf Get Pi pe(0));

/* Make channel n/2 the nmaster channel (can be any
* channel ).

*/

Vi ewSt at e- >nmast er Chan = Chan[ NunChans/ 2] ;
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/* Attach all Channels as slaves to the master channel */
for (i=0; i< NumChans; i++)
if (Chan[i] != Viewstate->master Chan)
pf At t achChan( Vi ewSt at e- >mast er Chan, Chan[i]);

pf Set Vec3(xyz, 0.0f, 0.0f, 0.0f);

/* Set each channel’s viewing offset. In this case use
* many channels to create one multichannel contiguous
* frustumwith a 45° field of view

*/
for (i=0; i < NunChans; i++)
{
float fov = 45.0f/ NunChans;
pf Set Vec3(hpr, (((NuntChans - 1) * 0.5f) - i) * fov,
0.0f, 0.0f);
pf ChanVi ewX f set s(Chan[i], xyz, hpr);
}

/* Now, just configure the master channel and all of the
* other channels will share those attributes.
*/

chan = Vi ewSt at e- >nast er Chan;
pf ChanTr avFunc(chan, PFTRAV_CULL, Cull Func);
pf ChanTr avFunc(chan, PFTRAV_DRAW DrawFunc);
pf ChanScene(chan, Vi ewSt at e->scene);
pf ChanESky(chan, Vi ewSt at e- >eSky) ;
pf ChanNear Far (chan, Vi ewState->near, ViewState->far);
pf ChanFOV(chan, 45. 0f/ NuntChans, -1.0f);
pf ChanVi em chan, ViewState->initView xyz,
Vi ewSt at e- >i ni t Vi ew. hpr) ;

Multiple Channels and Multiple Windows
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For some interactive applications, you may want to be able to dynamically control the
configuration of channels and windows. OpenGL Performer allows you to dynamically
create, open, and close windows. You can also move channels among the windows of the
shared parent pfPipe, and reorder channels within a pfPipeWindow. Channels can be
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appended to the end of a pfPipeWindow channel list with pfAddChan() and removed
with pfRemoveChan(). A channel can only be attached to one pfPipeWindow — no
instancing of pfChannels is allowed. When a pfChannel is put on a pfPipeWindow, it is
automatically deleted from its previous pfPipeWindow. A channel that is not assigned to
a pfPipeWindow is not drawn (though it may still be culled).

You can control and reorder the drawing of channels within a pfPipeWindow with the
pfInsertChan(pwin, where, chan) and pfMoveChan(pwin, where, chan) routines. Both of
these routines do a type of insertion: pfInsertChan() will add chan to the pwin channel
list in front of the channel in the list at location where. pfMoveChan() will delete chan
from its old location and move it to where in the pwin channel list.

On IRIX systems, if you have pfChannels in different pfPipeWindows or pfPipes that are
supposed to combine to form a continuous scene, you will want to ensure that both the
vertical retrace and double buffering of these windows is synchronized. This is required
for both reasonable performance and visual quality. Use the genl ock(7) system video
feature to ensure that the vertical retraces of different graphics pipelines are
synchronized. To synchronize double buffering, you want to either specify
PFCHAN_SWAPBUFFERS_HW in the share mask of the pfChannels and put the
pfChannels in a share group, or else create a pfPipeWindow swap group, discussed in
Chapter 14, “pfPipeWindows and pfPipeVideoChannels.”

Importing OpenGL Multipipe SDK (MPK) Configuration Files

44

OpenGL Multipipe SDK (MPK) is a software package for managing a multipipe
rendering environment. MPK uses a configuration file to describe the layout and
hierarchy of pipes, windows, and channels used by an application. The manual

SGI OpenGL Multipipe SDK User’s Guide describes the format of the configuration file.

An OpenGL Performer application can import MPK configuration files and skip the
explicit generation of pipes, windows, and channels. The library | i bpf npk contains
functions for importing and configuring pipes, windows, and channels from an MPK
configuration file. The functions in | i bpf npk store the display configuration
information in a pfvDisplayMngr class for easy access by the application. The
pfvDisplayMngr class is part of the pfvViewer implementation, which is described in
Chapter 22, “Building a Visual Simulation Application Using libpfv”.

The pfMPKImportFile() function takes an MPK configuration filename and generates
OpenGL Performer objects (pfPipes, pfPipeWindows, and pfChannels) accordingly. The
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function pfMPKImportConfig() is very similar. Instead of accepting a filename, it
accepts an MPK configuration class MPKConfig. The result of both these functions is
two-fold:

*  OpenGL Performer is configured with pipes, windows, and channels as specified in
the MPK configuration file.

¢ The pfvDisplayMngr class contains a description of the configured display
topology (what pipe has what windows and what channels). It also contains
pointers to all the newly generated OpenGL Performer classes (pfPipe,
pfPipeWindow, and pfChannel).

The following is a code sample section for using the pfMPKImportFile() function:

/1l Initialize Performer
pflnit();

/1 Initialize the MiltipipeSDK inport library.
/1 No need to initialize MPK directly.

pf mpklnit();

/1 Inport a MultipipeSDK file. This function calls pfConfig
/1l so we don’t have to.
pf MPKI nport Fi | e(config_fil enane);

/1 Load a nodel file for display.
pf Node *root = pfdLoadFil| e(nodel _fil enane);

/1 Attach loaded file to a new pf Scene
pf Scene *scene = new pf Scene;
scene->addChi | d(root);

/1l Create a pfLightSource and attach it to scene
scene- >addChi | d( new pf Li ght Sour ce);

/1 CGet access to the results of the Miltipi peSDK inport.

/1 pfvDisplayMWgr contains pointers to all the

/'l pipes/w ndows/ channels that the Multipi peSDK file specified.
pfvDi spl ayMhgr *dm = pfvDi spl ayMhgr:: get Mgr();

/1 Al configured channels share the scene graph so we only
/1 have to assign one channel.

pf Channel *chan = dm -> get Chan(0) -> getHandl e();

chan- >set Scene(scene);
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pfmpkimportFile()

Note: Since the pfvDisplayMngr class has no C API, you can only use | i bpf npk from
C++ programes.

Figure 2-1 contains a diagram of the various objects participating in any | i bpf mpk
import operation.

g pfPipe % gpripeWindow% g pfChannel %
\ A /

(pvaispIayMngr *dm>
A

dm — getPipe(i) — getHandle()
dm — getPWin(i) - getHandle()
dm — getChan(i) - getHandle()

Pointers to
pfPipe, pfPipeWindow,
pfChannel

Figure 2-7 The | i bpf npk Import Operation

Both functions pfMPKImportFile() and pfMPKImportConfig() encapsulate the entire
OpenGL Performer configuration stage including the call to function pfConfig(). This
may be too inflexible for some applications. An additional set of functions in| i bpf npk
provides lower-level access.

The following code sample shows the internal structure of function
pfMPKImportConfig(). All calls that pfMPKImportConfig() makes are publicly
accessible and an application can call them directly:

voi d pf MPKI nport Confi g( MPKConfi g *cfg)

{
pf vDi spl ayMhgr *dm = pfvDi spl ayihgr:: get Mhgr();
pf MPKI nport | nfo i nfo;

/] Prepare tenporary storage for pipe information.
info . nunPi pes = npkConfi gNPi pes(cfq);

007-1680-080



Importing OpenGL Multipipe SDK (MPK) Configuration Files

007-1680-080

info . pipelnfo = (pf MPKI nportPipelnfo *)
mal | oc (i nfo.nunPipes * sizeof (pfMPKInportPipelnfo));

/1 Translate contents of MPKConfig into pfvDi splayMhgr terns.
pf MPKPr eConfi g(cfg, & nfo);

/1 Let pfvDisplayMhgr run all its pre-pfConfig processing.
dm -> preConfig();

/1 Performer configuration: After this point, we can start
/1 creating Perfornmer wi ndows and channel s.
pf Config();

/'l Inquire pipe sizes, and configure all pfvDi splayMhgr
/1 objects that depend on them
pf MPKPost Confi g(cfg, & nfo);

/'l Ask pfDisplayMhgr to create all the wi ndows/channels.
dm -> post Config();

/1 I nvoke any pfPi pe/ pf Pi peW ndow pf Channel calls that
/1 pfDisplayWngr doesn’t encapsul ate.

pf MPKPost DMConfi g(cfg, & nfo);
}

For completeness, the following is the source code for pfMPKImportFile():

voi d pf MPKI nport Fil e(char *fil ename)

{
/1 Ask MPK to | oad the configuration file and pass to

/'] pf MPKI nport Config
pf MPKI npor t Confi g( npkConfi gLoad(fil enane));

}

The function pfMPKPreConfig() traverses the MPKConfig class and creates its
pfvDisplayMngr equivalent. The function pfMPKPostConfig() patches the previous
pfvDisplayMngr configuration using pipe size information. This information becomes
available only after the call to pfConfig(); hence, patching cannot happen in
pfMPKPreConfig().

The function pfMPKPostDMConfig() traverses the pfvDisplayMngr hierarchy one last

time. This time pfvDisplayMngr already contains valid pointers to the
OpenGL Performer classes it creates. The function pfMPKPostDMConfig() makes
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OpenGL Performer calls on the pfPipe, pfPipeWindow, and pfChannel pointers. Since
pfvDisplayMngr does not encapsulate all configuration details, pfMPKPostDMConfig()
makes these configuration calls directly on the new OpenGL Performer classes.
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Nodes and Node Types

A scene graph holds the data that defines a virtual world. The scene graph includes
low-level descriptions of object geometry and their appearance, as well as higher-level,
spatial information, such as specifying the positions, animations, and transformations of
objects, as well as additional application-specific data.

Scene graph data is encapsulated in many different types of nodes. One node might
contain the geometric data of an object; another node might contain the transformation
for that object to orient and position it in the virtual world. The nodes are associated in a
hierarchy that is an adirected, acyclic graph. OpenGL Performer and your application
can act on the scene graph to perform various complex operations efficiently, such as
database intersection and rendering scenes.

This chapter focuses on the data types themselves rather than instances of those types.
Chapter 4, “Database Traversal,” discusses traversing sample scene graphs in terms of
actual objects rather than abstract data types.

A scene is represented by a graph of nodes. A node is a subclass of pfNode. Only nodes
can be in scene graphs and have child nodes. In general, nodes either contain descriptive
information about scene graph geometry, or they create groups and hierarchies of nodes.
Many classes, such as pfEngine and pfFlux, that are not nodes can interact with nodes.

The basic element of a scene hierarchy is the node. While OpenGL Performer supplies
many specific types of nodes, it also uses a concept called class inheritance, which allows
different node types to share attributes. An attribute is a descriptive element of geometry
or its appearance.
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pfNode

OpenGL Performer’s node hierarchy begins with the pfNode class, as shown in

Figure 3-1.

pfNode
pfGeode prex pfGroup pfASD | |prightSource

pfBillboard

pfScene| |pfPartition| |pfLayer pfLOD pfSCS pfSWitch| |pfSequence

pfFCS pfDCS

Figure 3-1 Nodes in the OpenGL Performer Hierarchy

All node types are derived from pfNode; they inherit pfNode’s attributes and the | i bpf
routines for setting and getting attributes. In general, a node type inherits the attributes
and routines of all its parent nodes in the type hierarchy.
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Table 3-1 lists the basic node class and gives a simple description for each node type.

Table 3-1 OpenGL Performer Node Types

Node Type Node Class Description

pfNode Abstract Basic node type.

pfGroup Branch Groups zero or more children..

pfScene Root Parent of the visual database.

pfSCS Branch Static coordinate system.

pfDCS Branch Dynamic coordinate system.

pfFCS Branch Flux coordinate system.

pfDoubleSCS Branch Double-precision static coordinate system.
pfDoubleDCS ~ Branch Double-precision dynamic coordinate system.
pfDoubleFCS Branch Double-precision flux coordinate system.
pfSwitch Branch Selects among multiple children.
pfSequence Branch Sequences through its children.

pfLOD Branch Level-of-detail node.

pfLayer Branch Renders coplanar geometry.
pfLightSource  Leaf Contains specifications for a light source.
pfGeode Leaf Contains geometric specifications.
pfBillboard Leaf Rotates geometry to face the eyepoint.
pfPartition Branch Partitions geometry for efficient intersections.
pfText Leaf Renders 2D and 3D text.

pfASD Leaf Controls transition between LOD levels.

As shown in Figure 3-1, all | i bpf nodes are arranged in a type hierarchy, which defines
the inheritance of functionality. A pfNode is an abstract class, meaning that a pfNode can
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pfNode Attributes

pfNode Operations
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never be explicitly created by an application, and all other nodes inherit the functionality
of pfNode. Its purpose is to provide a root to the type hierarchy and to define the
attributes that are common to all node types.

The following pfNode attributes are inherited by all other | i bpf node types:
¢ Node name

e Parent list

¢ Bounding geometry

e Intersection and traversal masks

e Callback functions and data

e User data

Bounding geometry, intersection masks, user data, and callbacks are advanced topics
that are discussed in Chapter 4, “Database Traversal.”

The routines that set, get, and otherwise manipulate these attributes can be used by all
| i bpf node types, as indicated by the keyword ‘Node’ in the routine names. Nodes used
as arguments to pfNode routines must be cast to pfNode* to match parameter
prototypes, as shown in this example:

pf NodeName( ( pf Node*) dcs, "rotor_rotation");

However, you usually do not need to do this casting explicitly. When you use the C API
and compile with the —ansi flag (which is the usual way to compile OpenGL Performer
applications), | i bpf provides macro wrappers around pfNode routines that
automatically perform argument casting for you. When you use the C++ API, such type
casting is not necessary.

In addition to sharing attributes, certain basic operations are provided for all node types.
They include the following:

New Create and return a handle to a new node.
Get Get node attributes.
Set Set node attributes.
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Find Find a node based on its name.
Print Print node data.

Copy Copy node data.

Delete Delete a node.

The Set operation is implied in the node attribute name. The names of the
attribute-getting functions contain the string “Get.”

An Example of Scene Creation

pfGroup
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Example 3-1 illustrates the creation of a scene that includes two different kinds of
pfNodes. (For information about pfScene nodes, see “pfScene Nodes” on page 61; for
information about pfDCS nodes, see “pfDCS Nodes” on page 62.)

Example 3-1 Making a Scene

pf Scene *scene;
pf DCS *dcsl, *dcs2;

scene = pf NewScene(); /* Create a new scene node */

dcsl = pf NewDCS() ; /* Create a new DCS node */

dcs2 = pf NewDCS() ; /* Create a new DCS node */

pf Copy(dcs2, dcsl); [* Copy all node attributes */
/* fromdcsl to dcs2 */

pf NodeNane(scene, "Scene_Graph_Root"); /* Nanme scene node */

pf NodeNane(dcs1, "DCS_1"); /* Name dcsl */

pf NodeNanme(dcs2, "DCS_2"); /* Name dcs2 */

[* Use a pfGet*() routine to determ ne node nanme */
printf("Nane of first DCS node is %.", pfGetNodeNane(dcsl));

/* Recursively free this node if it’s no |onger referenced */
pf Del et e(scene);

In addition to inheriting the pfNode attributes described in the “pfNode” section of this
chapter, a pfGroup also maintains a list of zero or more child nodes that are accessed and
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manipulated using group operators. Children of a pfGroup can be either branch or leaf
nodes. Traversals process the children of a pfGroup in left-to-right order.

Table 3-2 lists the pfGroup functions, with a description and a visual interpretation of
each.

Table 3-2 pfGroup Functions

Function Name Description Diagram

pfAddChild(group, child) Appends child to the list for group.
¢ I i el
2

pfInsertChild(group, index, child)  Inserts child before the child whose index =
place in the list is index. HLI_LeX N
o

pfRemoveChild(group, child) Detaches child from the list and
shifts the list to fill the vacant spot.
Returns 1 if child was removed.
Returns 0 if child was not found in
the list. Note that the “removed”
node is only detached, not deleted. &—

n
ey

group. Y

pfGetNumChildren(group) Returns the number of children in
l_le_i 4

The pfGroup nodes can organize a database hierarchy either logically or spatially. For
example, if your database contains a model of a town, a logical organization might be to
group all house models under a single pfGroup. However, this kind of organization is
less efficient than a spatial organization, which arranges geometry by location. A spatial
organization improves culling and intersection performance; in the example of the town,
spatial organization would consist of grouping houses with their local terrain geometry
instead of with each other. Chapter 4 describes how to spatially organize your database
for best performance.
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The code fragment in Example 3-2 illustrates building a hierarchy using pfGroup nodes.

Example 3-2 Hierarchy Construction Using Group Nodes
scene = pf NewScene();

/* The follow ng | oop constructs a sanple hierarchy by

* adding children to several different types of group

* nodes. Notice that in this case the terrain was broken
*

up spatially into a 4x4 grid, and a switch node is used
* to cause only one vehicle per terrain node to be

* traversed.

*/

for(j =0; j < 4; j++)
for(i =0; i < 4; i++4)

{
pf G oup *spatial _terrain_block = pf NewG oup();
pf SCS *house_offset = pf NewSCS();
pf SCS *terrai n_bl ock_offset = pf NewSCS();
pf DCS *car _position = pf NewDCS() ;
pf DCS *tank_position = pf NewDCS() ;
pf DCS *hel i _position = pf NewDCS();
pf Swi tch *current _vehicl e_type;
pf Geode *heli, *car, *tank;
pf AddChi | d(scene, spatial _terrain_bl ock);
pf AddChi | d(spati al _terrain_bl ock,
terrain_bl ock_of fset);
pf AddChi | d(spatial _terrain_bl ock, house_offset);
pf AddChi | d(spati al _terrain_bl ock,
current _vehicle_type);
pf AddChi | d(current _vehi cl e_type, car_position);
pf AddChi | d(current _vehicl e_type, tank_position);
pf AddChi | d(current _vehicl e_type, heli_position);
pf AddChi | d(car _position, car);
pf AddChi | d(t ank_position, tank);
pf AddChi | d(hel i _position, heli);
}

/* The follow ng shows how one m ght use QpenGL Perforner to
* mani pul ate the scene graph at run tinme by adding and
* renoving children frombranch nodes in the scene graph.
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*/

for(j =0; j <4; j++)
for(i =0; i < 4; i++4)

{
pf Group *this_terrain;
this_terrain = pfGetChild(scene, j*4 + i);
i f (pfGetNumChildren(this_terrain) > 2)
this_tank = pfGetChild(this_terrain, 2);
if (is_tank_disable(this_tank))
{
pf RemoveChil d(this_terrain, this_tank);
pf AddChi | d(di sabl ed_t anks, this_tank);
}
}

Working with Nodes

Instancing

Shared Instancing

56

This section describes the basic concepts involved in working with nodes. It explains
how shared instancing can be used to create multiple copies of an object, and how changes
made to a parent node propagate down to its children. A sample program that illustrates
these concepts is presented at the end of the chapter.

A scene graph is typically constructed at application initialization time by creating and
adding new nodes to the graph. If a node is added to two or more parents it is termed
instanced and is shared by all its parents. Instancing is a powerful mechanism that saves
memory and makes modeling easier. | i bpf supports two kinds of instancing, shared
instancing and cloned instancing, which are described in the following sections.

Shared instancing is the result of simply adding a node to multiple parents. If an
instanced node has children, then the entire subgraph rooted by the node is considered
to be instanced. Each parent shares the node; thus, modifications to the instanced node
or its subgraph are experienced by all parents. Shared instances can be nested—that is,
an instance can itself instance other nodes.
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In the following sample code, group0 and groupl share a node:

pf AddChi | d(gr oupO, node);
pf AddChi | d(groupl, node);

Figure 3-2 shows the structure created by this code. Before the instancing operation, the
two groups and the node to be shared all exist independently, as shown in the left portion
of the figure. After the two function calls shown above, the two groups both reference the
same shared hierarchy. (If the original groups referenced other nodes, those nodes would
remain unchanged.) Note that each of the group nodes considers the shared hierarchy to
be its own child.

Group 1
Group 0 Group 1

O Group 0

< <)

Figure 3-2 Shared Instances

In many situations shared instancing is not desirable. Consider a subgraph that
represents a model of an airplane with articulations for ailerons, elevator, rudder, and
landing gear. Shared instances of the model result in multiple planes that share the same
articulations. Consequently, it is impossible for one plane to be flying with its landing
gear retracted while another is on a runway with its landing gear down.

Cloned instancing provides the solution to this problem by cloning—creating new copies
of variable nodes in the subgraph. Leaf nodes containing geometry are not cloned and
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are shared to save memory. Cloning the airplane model generates new articulation
nodes, which can be modified independently of any other cloned instance. The cloning
operation, pfClone(), is actually a traversal and is described in detail in Chapter 4.

Figure 3-3 shows the result of cloned instancing. As in the previous figure, the left half of

the drawing represents the situation before the operation, and the right half shows the
result of the operation.

Root

Xi Dynamic
coordinate
system

Figure 3-3 Cloned Instancing

The cloned instancing operation constructs new copies of each internal node of the
shared hierarchy, but uses the same shared instance of all the leaf nodes. In use, this is an
important distinction, because the number of internal nodes may be relatively few, while
the number and content of geometry-containing leaf nodes is often quite extensive.

Nodes G1 and G2 in Figure 3-3 are the groups that form the root nodes after the cloned
instancing operation is complete. Node P is the parent or root node of the instanced
object, and D is a dynamic coordinate system contained within it. Nodes A, B, and C are
the leaf geometry nodes; they are shared rather than copied.

The code in Example 3-3 shows how to create cloned instances.
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Example 3-3 Creating Cloned Instances

pf G oup *gl, *g2, *p;
pf DCS *d;
pf Geode *a, *b, *c;

/* Create initial instance of scene hierarchy of p under
* group gl: add a DCS to p, then add three pfCeode nodes
* under the DCS.

*/

pf AddChi I d( g1, p);
pf AddChi | d(p, d);
pf AddChi I d(d, a);
pf AddChi | d(d, b);
pf AddChi I d(d, c);

/* Create cloned instance version of p under g2 */

pf AddChi | d(g2, pfd one(p,0));

/* Notice that pfCGeodes are cloned by instancing rather than
* copying. Also notice that the second argunent to

* pfCone() is O; that argunent is currently required by

* OpenG. Perforner to be zero.

*/

The | i bpf library uses bounding volumes for culling and to improve intersection
performance. | i bpf computes bounding volumes for all nodes in a database hierarchy
unless the bound is explicitly set by the application. The bounding volume of a branch
node encompasses the spatial extent of all its children. | i bpf automatically recomputes
bounds when children are modified.

By default, bounding volumes are dynamic; that is, | i bpf automatically recomputes
them when children are modified. For instance, in Example 3-4 when the DCS is rotated,
nothing more needs to be done to update the bounding volume for g1.

Example 3-4 Automatically Updating a Bounding Volume

pf AddChi | d( g1, dcs);
pf AddChi | d(dcs, helicopter);
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pf DCSRot (dcs, headi ng+10. 0f, pitch,roll);
pf DCSRot (dcs, heading, pitch - 5.0f, roll + 2.0f);

In some cases, you may not want bounding volumes to be recomputed automatically. For
example, in a merry-go-round with horses moving up and down, you know that the
horses stay within a certain volume. Using pfNodeBSphere(), you can specify a
bounding sphere within which the horse always remains and tell OpenGL Performer
that the bounding volume is “static”—mnot to be updated no matter what happens to the
node’s children. You can always force an update by setting the bounding volume to
NULL with pfNodeBSphere(), as follows:

pf NodeBSpher e(node, NULL, NULL, PFBOUND_STATI C);

At the lowest level, within pfGeoSets, bounding volumes are maintained as
axially-aligned boxes. When you add a pfGeoSet to a pfGeode or directly invoke
pfGetGSetBBox() on the pfGeoSet, a bounding box is created for the pfGeoSet. Neither
the bounding box of the pfGeoSet nor the bounding volume of the pfGeode is updated
if the geometry changes inside the pfGeoSet. You can force an update by setting the
pfGeoSet bounding box and then the pfGeode bounding volume to a NULL bounding
box, as follows:

* Recompute the pfGeoSet bounding box from the internal geometry:
pf GSet BBox(gset, NULL);

* Recompute the pfGeode bounding volume from the bounding boxes of its
pfGeoSets:

pf NodeBSpher e(geode, NULL, PFBOUND_DYNAM C);
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pfScene Nodes

This section describes the node types and the functions for working with each node type.

A pfScene is a root node that is the parent of a visual database. Use pfNewScene() to
create a new scene node. Before the scene can be drawn, you must call
pfChanScene(channel, scene) to attach it to a pfChannel.

Any nodes that are within the graph that is parented by a pfScene are culled and drawn
once the pfScene is attached to a pfChannel. Because pfScene is a group, it uses pfGroup
routines; however, a pfScene cannot be the child of any other node. The following
statement adds a pfGroup to a scene:

pf AddChi | d(scene, root);

In the simplest case, the pfScene is the only node you need to add. Once you have a
pfPipe, pfChannel, and pfScene, you have all the necessary elements for generating
graphics using OpenGL Performer.

pfScene Default Rendering State
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The pfScene nodes may specify a global pfGeoState that all other pfGeoStates in nodes
below the pfScene will inherit from. Specification of this scene pfGeoState is done via the
function pfSceneGState(). This functionality allows for the subtle optimization of
pushing the most frequently used pfGeoState attributes for a particular scene graph into
a global state and having the individual states inherit these attributes rather than specify
them. This can save OpenGL Performer work during culling (by having to ‘unwrap’
fewer pfGeoStates) and thus possibly increase frame rate.

There are several database utility functions in | i bpf du designed to help with this
optimization. pfdMakeSceneGState() returns an ‘optimal’ pfGeoState based on a list of
pfGeoStates. pfdOptimizeGStateList() takes an existing global pfGeoState, a new global
pfGeoState, and a list of pfGeoStates that should be optimized and cause all attributes of
pfGeoStates in the list of pfGeoStates to be inherited if they are the same as the attribute
in the new global pfGeoState. Lastly, pfdMakeSharedScene() causes this optimization to
happen for all of the pfGeoStates under the pfScene that was passed into the function.
For more information on pfGeoStates see Chapter 8, “Geometry,” which discusses

|'i bpr in more detail. For more information on the creation and optimization of
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databases, see Chapter 7, “Importing Databases,” which discusses building database
converters and | i bpf du.

A pfSCS is a branch node that represents a static coordinate system. A pfSCS node
contains a fixed modeling transformation matrix that cannot be changed once it is
created. pfSCS nodes are useful for positioning models within a database. For example,
a house that is modeled at the origin should be placed in the world with a pfSCS because
houses rarely move during program execution.

Use pfNewSCS(matrix) to create a new pfSCS using the transformation defined by matrix.
To find out what matrix was used to create a given pfSCS, call pfGetSCSMat().

For best graphics performance, matrices passed to pfSCS nodes (and the pfDCS node
type described in the next section) should be orthonormal (translations, rotations, and
uniform scales). Nonuniform scaling requires renormalization of normals in the graphics
pipe. Projections and other non-affine transformations are not supported.

While pfSCS nodes are useful in modeling, using too many of them can reduce culling,
rendering, and intersection performance. For this reason, | i bpf provides the pfFlatten()
traversal. pfFlatten() will traverse a scene graph and apply static transformations
directly to geometry to eliminate the overhead associated with managing the
transformations. pfFlatten() is described in detail in Chapter 4, “Database Traversal.”

A pfDCS is a branch node that represents a dynamic coordinate system. Use a pfDCS
when you want to apply an initial transformation to a node and also change the
transformation during the application. Use a pfDCS to articulate moving parts and to
show object motion.

Use pfNewDCS() to create a new pfDCS. The initial transformation of a pfDCS is the
identity matrix. Subsequent transformations are set by specifying a new transformation
matrix, or by replacing the rotation, scale, or translation in the current transformation
matrix. The pfDCS transforms each child C(i) to C(i)(Bcale[Rotation[Translation.
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Table 3-3 lists functions for manipulating a pfDCS, including rotating, scaling, and
translating the children of the pfDCS.

Table 3-3 pfDCS Transformations

Function Name Description

pfNewDCS() Create a new pfDCS node.

pfDCSTrans() Set the translation coordinates to x, y, z.
pfDCSRot() Set the rotation transformation to 1, p, r.
pfDCSCoord() Rotate and translate by coord.

pfDCSScale() Scale by a uniform scale factor.

pfDCSMat() Use a matrix for transformations.
pfGetDCSMat() Retrieve the current matrix for a given pfDCS.

A pfFCS is a branch node that represents a flux coordinate system. The transformation
matrix of a pfFCS is contained in the pfFlux which is linked to it. This linkage allows a
pfEngine to animate the matrix of a pfFCS. The linkage also allows multiple pfFCSs to
share the same transformation.

Use pfNewFCS(flux) to create a new pfFCS linked to flux.

Table 3-4 lists functions for manipulating a pfFCS. pfFCS, pfFlux, and pfEngine are fully
described in Chapter 16, “Dynamic Data.”

Table 3-4 pfFCS Functions

Function Description

pfNewFCS() Create a new pfFCS node.

pfFCSFlux() Link a flux to a given pfFCS.

pfGetFCSFlux() Get a pointer to the flux linked to a given pfFCS.
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Table 3-4 pfFCS Functions (continued)

Function Description

pfGetFCSMat() Retrieve the current matrix for a given pfFCS.

pfGetFCSMatPtr() Get a pointer to the current matrix for a given pfFCS.

The pfDoubleSCS nodes are double-precision versions of pfSCS nodes. Instead of storing
a pfMatrix, they store a pfMatrix4d, a 4x4 matrix of double-precision numbers.

See the section “pfDoubleDCS Nodes” for a discussion on using double-precision matrix
nodes.

pfDoubleDCS nodes are double-precision versions of pfDCS nodes. Instead of a
pfMatrix, they maintain a pfMatrix4d, a 4x4 matrix of double-precision numbers.

Double-precision nodes are useful for modeling and rendering objects very far from the
origin of the database. The following example demonstrates how double-precision nodes
help. Consider a model of the entire Earth and visualize a model of a car moving on the
surface of the Earth. Placing the origin of the Earth model in the center of the Earth makes
the car object on the surface of the Earth very far from the origin. In Figure 3-4, the
distance from the center of the Earth to the car or to the camera is larger than D, and the
distance from the viewer to the car is d. D is very large; therefore, single-precision floating
point numbers cannot express small changes in the car position. The motion of the car
will be shaky and unsmooth.

One potential solution for the shaky car motion is to use double-precision matrices in
OpenGL. Unfortunately, the underlying hardware implementation does not support
double-precision values. All values are converted to single-precision floating point
numbers and OpenGL Performer cannot eliminate the shaky motion.
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Origin (0,0,0)

Figure 3-4 A Scenario for Using Double-Precision Nodes

In order to solve the shaky motion problem, we observe the following: we usually want
to see small translations of an object when the camera is fairly close to that object. If we
look at the car from 200 miles away, we do not care to see a 10-inch translation in its
position. Therefore, if we could dynamically drag the origin with the camera, then any
object will be close enough to the origin when the camera is near it, which is exactly when
we want to see its motion smoothly.

Double-precision matrix nodes (pfDoubleSCS, pfDoubleDCS, and pfDoubleFCS) allow
modeling with a dynamic origin. We start by setting the pfChannel viewing matrix to the
identity matrix. This puts the channel eyepoint in the origin. We create a scene graph as
in Figure 3-5. Each pfGeode represents a tile of the Earth surface. We model each tile with
a local origin somewhere within the tile.

Each of the pfDoubleDCS nodes above the pfGeode nodes contains a transformation that
sends the node under it to its correct position around the globe. We set the transformation
in the pfDoubleDCS node marked EYE to the inverse of the matrix taking an object to the
true camera position. This transforms all nodes under EYE to a coordinate system with
the eyepoint in the origin.
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Figure 3-5 pfDoubleDCS Nodes in a Scene Graph

In more practical terms, we set the channel camera position to the origin with the
following call:

pf ChanVi ewivat (chan, pfldentMat);

The following code fragment loads the EYE pfDoubleDCS node with the correct matrix.
We call the function with EYE as the first parameter and the camera position in the
second parameter:

voi d
| oadVi ewi ngMat ri xOnDoubl eDCS ( pf Doubl eDCS *ddcs, pf Coordd *coord)

{
pf Mat ri x4d mat, i nvivat;

pf MakeCoor ddvat 4d (rmat, coord);

pflnvert Ot hoNvat4d (invhMat, mat);
pf Doubl eDCSMat (ddcs, invMat);
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A pfDoubleFCS node is similar to a pfFCS node. Instead of a single-precision matrix, it
maintains a pfFlux with a double-precision matrix. See “pfDoubleDCS Nodes” for
information on using pfDoubleFCS nodes.

A pfSwitch is a branch node that selects one, all, or none of its children. Use
pfNewSwitch() to return a handle to a new pfSwitch. To select all the children, use the
PFSWITCH_ON argument to pfSwitchVal(). Deselect all the children (turning the
switch off) using PESWITCH_OFF. To select a single child, give the index of the child
from the child list. To find out the current value of a given switch, call pfGetSwitchVal().
Example 3-5 (in the “pfSequence Nodes” section) illustrates a use of pfSwitch nodes to
control pfSequence nodes.

A pfSequence is a pfGroup that sequences through a range of its children, drawing each
child for a specified duration. Each child in a sequence can be thought of as a frame in an
animation. A sequence can consist of any number of children, and each child has its own
duration. You can control whether an entire sequence repeats from start to end, repeats
from end to start, or terminates.

Use pfNewSeq() to create and return a handle to a new pfSequence. Once the
pfSequence has been created, use the group function pfAddChild() to add the children

that you want to animate.

Table 3-5 describes the functions for working with pfSequences.

Table 3-5 pfSequence Functions

Function Description

pfNewSeq() Create a new pfSequence node.
pfSeqTime() Set the length of time to display a frame.
pfGetSeqTime() Find out the time allotted for a given frame.
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Table 3-5 pfSequence Functions (continued)
Function Description
pfSeqInterval() Set the range of frames and sequence type.

pfGetSeqlInterval()  Find out interval parameters.

pfSeqDuration() Control the speed and number of repetitions of the entire sequence.
pfGetSeqDuration() Retrieve speed and repetition information for the sequence.
pfSeqMode() Start, stop, pause, and resume the sequence.

pfGetSeqMode() Find out the sequence’s current mode.

pfGetSeqFrame() Get the current frame.

Example 3-5 demonstrates a possible use of both switches and sequences. First,
sequences are set up to contain animation sequences for explosions, fire, and smoke; then
a switch is used to control which sequences are currently active.

Example 3-5 Using pfSwitch and pfSequence Nodes

pfSwitch *s;
pf Sequence *expl osi onl_seq, *expl osion2_seq, *fire_seq,
*snoke_seq;

s = pfNewSwitch();

expl osi onl_seq = pf NewSeq();
expl osi on2_seq = pf NewSeq();
fire_seq = pfNewSeq();
snmoke_seq = pf NewSeq();

pf AddChi | d(s, expl osionl_seq);
pf AddChi | d(s, expl osion2_seq);
pf AddChi I d(s, fire_seq);

pf AddChi | d(s, snoke_seq);

pf Swi t chval (s, PFSW TCH_OFF) ;

if (direct_hit)
{
pfSwi tchVval (s, PFSWTCH ON); /* Select all sequences */

/* Set first explosion sequence to go doubl e normal
* gspeed and repeat 3 tines. */
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pf SeqMbde( expl osi onl_seq, PFSEQ START);
pf SeqDur ati on(expl osi onl_seq, 2.0f, 3);

/* Set second expl osi on sequence to display first child
* of sequence for 2 seconds before continuing. */

pf SeqMode( expl osi on2_seq, PFSEQ START);

pf SeqTi me( expl osi on2, 0.0f, 2.0f);

/* Set fire to wait on first frane of sequence until .3
* seconds after second expl osion. */

pf SegMbde(fire_seq, PFSEQ START);

pf SeqTi ne(fire_seq, 0.0f, 2.3f);

/* Set snpbke to wait until .1 seconds after fire. */
pf SeqMbde( smoke_seq, PFSEQ START);
pf SeqTi me(snmoke_seq, 0.0f, 2.4f);

else if (explosion & (expl_type == 0))

{
pf SegMbde( expl osi onl_seq, PFSEQ START);
pf Swi t chVval (s, 0);

}

else if (explosion && (expl_type == 1))

{
pf SeqMbde( expl osi on2_seq, PFSEQ START);
pf Swi tchVval (s, 1);

}

else if (fire_is_burning)

{

pf SeqMbde(fire_seq, PFSEQ START);
pf Swi tchVval (s, 2);

el se if (snoking)

{
pf SeqMbde( smoke_seq, PFSEQ START);
pf Swi tchval (s, 3);

}

el se

pf Swi t chVval (s, PFSW TCH_OFF) ;
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A pfLOD is a level-of-detail node. Level-of-detail switching is an advanced concept that
is discussed in Chapter 5, “Frame and Load Control.” A level-of-detail node specifies
how its children are to be displayed, based on the visual range from the channel’s
viewpoint. Each child has a defined range, and the entire pfLOD has a defined center.

Table 3-6 describes the functions for working with pfLODs.

Table 3-6 pfLOD Functions

Function Description

pfNewLOD() Create a level of detail node.

pfLODRange() Set a range at which to use a specified child node.

pfGetLODRange() Find out the range for a given node.
pfLODCenter() Set the pfLOD center.
pfGetLODCenter() Retrieve the pfLOD center.
pfLODTransition() Set the width of a specified transition.

pfGetLODTransition() Get the width of a specified transition.

The pfASD nodes handle dynamic generation and morphing of the visible part of a
surface based on multiple LODs. pfASD nodes allow for the smooth LOD transition of
large and complex surfaces, such as large area terrain. For information on pfASD nodes,
see Chapter 17, “Active Surface Definition.”

A pfLayer is a leaf node that resolves the visual priority of coplanar geometry. A pfLayer
allows the application to define a set of base geometry and a set of layer geometry
(sometimes called decal geometry). The base geometry and the decal geometry should be
coplanar, and the decal geometry must lie within the extent of the base polygons.
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Table 3-7 describes the functions for working with pfLayers.

Table 3-7 pfLayer Functions

Function Description

pfNewLayer() Create a pfLayer node.

pfLayerMode() Specify a hardware mode to use in drawing decals.

pfGetLayerMode()  Get the current mode.

pfLayerBase() Specify the child containing base geometry.
pfGetLayerBase() Find out which child contains base geometry.
pfLayerDecal() Specify the child containing decal geometry.

pfGetLayerDecal()  Find out which child contains decal geometry.

The pfLayer nodes can be used to overlay any sort of markings on a given polygon and
are important to avoid flimmering. Example 3-6 demonstrates how to display runway
markings as a decal above a coplanar runway. This example uses the performance mode
PFDECAL_BASE_FAST for layering; as described in the pf Layer and pf Decal man
pages, other available modes are PFDECAL_BASE_HIGH_QUALITY,
PFDECAL_BASE_DISPLACE, and PFDECAL_BASE_STENCIL.

Example 3-6 Marking a Runway with a pfLayer Node

pf Layer *I|ayer;
pf Geode *runway, *runway_narKki ngs;

/* avoid flinmering of runway and runway_narKki ngs */
| ayer = pfNewLayer ();

pf Layer Base(l ayer, runway);

pf Layer Decal (| ayer, runway_nmar ki ngs) ;

pf Layer Mode( | ayer, PFDECAL_BASE FAST);

The pfGeode node is short for geometry node and is the primary node for defining
geometry in | i bpf . A pfGeode contains a list of geometry structures called pfGeoSets,
which are part of the OpenGL Performer | i bpr library. pfGeoSets encapsulate graphics
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state and geometry and are described in the section, “Geometry Sets” in Chapter 8. It is
important to understand that pfGeoSets are not nodes but are simply elements of a

pfGeode.
Table 3-8 describes the functions for working with pfGeodes.

Table 3-8 pfGeode Functions

Function Description
pfNewGeode() Create a pfGeode.
pfAddGSet() Add a pfGeoSet.

pfRemoveGSet() Remove a pfGeoSet.

pfInsertGSet() Insert a pfGeoSet.

pfReplaceGSet() Replace a pfGeoSet.

pfGetGSet() Supply a pointer to the specified pfGeoSet.

pfGetNumGSets()  Determine how many pfGeoSets are in the given pfGeode.

Example 3-7 shows how to attach several pfGeoSets to a pfGeode.

Example 3-7 Adding pfGeoSets to a pfGeode

pf Geode *car1;
pf GeoSet *nmuffler, *frame, *w ndows, *seats, *tires;

muffler = read_i n_nuffler_geonetry();

frame = read_in_frane_geonetry();
seats = read_i n_seat_geonetry();
tires = read_in_tire_geonetry();

pf AddGSet (carl, muffler);
pf AddGSet (car1, frane);
pf AddGSet (car 1, seats);
pf AddGSet (carl, tires);
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A pfTextnodeisal i bpf leaf node that contains a set of | i bpr pfStrings that should be
rendered based on the | i bpf cull and draw traversals. In this sense, a pfText is similar
to a pfGeode except that it renders 3D text through the | i bpr pfString and pfFont
mechanisms rather than rendering standard 3D geometry via | i bpr pfGeoSet and
pfGeoState functionality. pfText nodes are useful for displaying 3D text and other
collections of geometry from a fixed index list. Table 3-9 lists the major pfText functions.

Table 3-9 pfText Functions
Function Description
pfNewText() Create a pfText.
pfAddString() Add a pfString.

pfRemoveString()  Remove a pfString.

pfInsertString() Insert a pfString.

pfReplaceString()  Replace a pfString.

pfGetString() Supply a pointer to the specified pfString.

pfGetNumStrings() Determine how many pfStrings are in the given pfText.

Using the pfText facility is easy. Example 3-8 shows how a pfFont is defined, how
pfStrings are created that reference that font, and then how those pfStrings are added to
a pfText node for display. See the description of pfStrings and pfFonts in Chapter 8§,
“Geometry,” for information on setting up individual strings to input into a pfText node.

Example 3-8 Adding pfStrings to a pfText

int nStrings,i;

char tnmpBuf[8192];

char font Nanme[ 128] ;

pf Font *fnt = NULL;

/* Create a new text node
pf Text *txt = pfNewText();

/* Read in font using libpfdu utility function */

scanf (“9%", f ont Nane) ;
fnt = pfdLoadFont (“typel”, f ont Name, PFDFONT_EXTRUDED) ;
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/* Cant render pfText or libpr pfString w thout a pfFont */
if (fnt == NULL)
pf Not i f y( PFNFY_WARN, PFNFY_PRI NT,
"No Such Font - %\n”,fontNane);

/* Read nStrings text strings fromstandard i nput and */
/* Attach themto a pfText */
scanf (“%l”, &St rings);
for(i=0;i<nStrings;i++)
{
char c;
int j=0;
int done = O;
pfString *curStr = NULL;

whil e(done < 2) /* READ STRING - END on ‘||’ */
{
c = getchar();
if (c=="]")
done++;
el se
done = O;

tnpBuf[j ++] = c;
}
t mpBuf [ PF_MAX2(j-2,0)] = “\0";

/* Create new |libpr pfString structure to attach to pfText */
curStr = pfNewString(pfGet SharedArena());

/* Set the font for the libpr pfString */
pf StringFont (curStr, fnt);

/* Assign the char string to the pfString */
pfStringString(curStr, tnpBuf);

/* Add this libpr pfString to the pfText node */
/* Like adding a libpr pfGeoSet to a pfCGeode */
pf AddString(txt, curStr);

}
pf AddChi | d( SceneG oup, txt);
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A pfBillboard is a pfGeode that rotates its children’s geometry to follow the view
direction or the eyepoint. Billboards are useful for portraying complex objects that are
roughly symmetrical in one or more axes. The billboard rotates to always present the
same image to the viewer using far fewer polygons than a solid model uses. In this way,
billboards reduce both transformation and pixel fill demands on the graphics subsystem
at the expense of some additional host processing. A classic example is a textured
billboard of a single quadrilateral representing a tree.

Because a pfBillboard is also a pfGeode, you can pass a pfBillboard argument to any
pfGeode routine. To add geometry, call pfAddGSet() (see “pfGeode Nodes” on page 71).
Each pfGeoSet in the pfBillboard is treated as a separate piece of billboard geometry; each
one turns so that it always faces the eyepoint.

The pfBillboards can be either constrained to rotate about an axis, as is done for a tree or
a lamp post, or constrained only by a point, as when simulating a cloud or a puff of
smoke. Specify the rotation mode by calling pfBboardMode(); specify the rotational axis
by calling pfBboard Axis(). Since rotating the geometry to the eyepoint does not fully
constrain the orientation of a point-rotating billboard, modes are available to use the
additional degree of freedom to align the billboard in eye space or world space. Usually
the normals of billboards are specified to be parallel to the rotational axis to avoid
lighting anomalies.

The pfFlatten() function is highly recommended for billboards. If a billboard lies beneath
a pfSCS or pfDCS, an additional transformation is done for each billboard. This can have
a substantial performance impact on the cull process, where billboards are transformed.

Table 3-10 describes the functions for working with pfBillboards.

Table 3-10 pfBillboard Functions

Function Description

pfNewBboard() Create a pfBillboard node.
pfBboardPos() Set a billboard’s position.
pfGetBboardPos() Find out a billboard’s position.
pfBboardAxis() Specify the rotation or alignment axis.
pfGetBboardAxis() Find out the rotation or alignment axis.
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Table 3-10 pfBillboard Functions (continued)

Function Description
pfBboardMode() Specify a billboard’s rotation type.
pfGetBboardMode() Find out a billboard’s rotation type.

Example 3-9 demonstrates the construction of a pfBillboard node. The code can be found
in/ usr/ share/ Performer/src/pguide/libpf/C billboard. c for IRIX and
Linux and in %PFROOT% Sr ¢/ pgui de/ | i bpf/ T bi | | boar d. ¢ for Microsoft

Windows.

Example 3-9 Setting Up a pfBillboard

static pfVec2 BBTexCoords[] ={{0.0f, 0.0f},
{1.0f, 0.0f},
{1.0f, 1.0f},
{0.0f, 1.0f}};
static pfVec3 BBVertCoords[4] = /* XZ plane for pt bboards */
{{-0.5f, 0.0f, 0.0f},
{ 0.5f, 0.0f, 0.0f},
{ 0.5f, 0.0f, 1.0f},
{-0.5f, 0.0f, 1.0f}};
static pfVec3 BBAxes[4] = {{1.0f, 0.0f, 0.0f}, /* X */
{0.0f, 1.0f, 0.0f}, /* Y */
{o.of, o0.0f, 1.0f}, /* Z */
{o.of, o0.0f, 1.0f}}; /*world Zup*/

static int BBPrinlLens[] ={ 4 };
static pfVec4 BBColors[] = {{1.0, 1.0, 1.0, 1.0}};
/* Convert static data to pfMalloc’ ed data */

static void*
mendup(void *nem size_ t bytes, void *arena)

{
voi d *data = pfMlloc(bytes, arena);
mencpy(data, nem bytes);
return data;

}
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/* For pedagogi cal use only. Reasonabl e perfornmance
* requires nore then one pfGeoSet per pfBillboard.
*/

pf Bi | | boar d*
MakeABi | | (pf Vec3 pos, pfGeoState *gst, |ong bbType)
{

pf GeoSet *gset;

pf CeoSt ate *gst ate;

pfBill board *bill;

voi d *arena = pf Get SharedArena();

gset

= pf NewGSet (ar ena) ;
gstate =

pf NewGSt at e( ar ena) ;

pf GSt at eMbde( gst at e, PFSTATE_ENLI GHTI NG PF_COFF);
pf GSt at eMbde( gst at e, PFSTATE_ENTEXTURE, PF_ON);
/*.... Create/load texture map for billboard... */
pf GSt at eAttr(gstate, PFSTATE_TEXTURE, texture);

pf GSet GSt at e(gset, gstate);

pf GSet Attr(gset, PFGS_COORD3, PFGS_PER _VERTEX,
mendup( BBVer t Coor ds, si zeof (BBVert Coords), arena),
NULL) ;

pf GSet Attr(gset, PFGS_TEXCOORD2, PFGS_PER_VERTEX,
mendup( BBTexCoor ds, si zeof (BBTexCoords), arena),
NULL) ;

pf GSet Attr(gset, PFGS_COLOR4, PFGS_OVERALL,
mendup( BBCol ors, sizeof (BBCol ors), arena),
NULL) ;

pf GSet Pri mLengt hs( gset,
(i nt*)menmdup(BBPrinLens, sizeof(BBPrimnmLens), arena));
pf GSet Pri nType(gset, PFGS_QUADS);
pf GSet NunPri ns(gset, 1);
pf GSet GSt at e( gset, gst);

bill = pfNewBboard();
switch (bbType)
{
case PF_ X: /* axial rotate */
case PF_Y:
case PF_Z:
pf Bboar dAxi s(bill, BBAxes[bbType]);
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pf Bboar dMbde(bi | |, PFBB_ROT, PFBB_AXI AL_ROT);
br eak;
case 3: /* point rotate */
pf Bboar dAxi s(bill, BBAxes[bbType]);
pf Bboar dMbde(bi | |, PFBB_ROT, PFBB_PO NT_ROT_WORLD);
br eak;
}
pf AddGSet (bi I |, gset);
pf BboardPos(bill, 0, pos);
return bill;

A pfPartition is a pfGroup that organizes the scene graphs of its children into a static data
structure that can be more efficient for intersections. Currently, partitions are only useful
for data that lies more or less on an XY plane, such as terrain. Therefore, a pfPartition

would be inappropriate for a skyscraper model.

Partition construction comes in two phases. After a piece of the scene graph has been
placed under the pfPartition, pfBuildPart() examines the spatial arrangement of
geometry beneath the pfPartition and determines an appropriate origin and spacing for
the grid. Because the search is exhaustive, this examination can be time-consuming the
first time through. Once a good partitioning is determined, the search space can be

restricted for future database loads using the partition attributes.

The second phase is invoked by pfUpdatePart(), which distributes the pfGeoSets under
the pfPartition into cells in the spatial partition created by pfBuildPart(). pfUpdatePart()

needs to be called if any geometry under the pfPartition node changes.

During intersection traversal, the segments in a pfSegSet (see “Intersection Requests:

pfSegSets” in Chapter 4) are scan-converted onto the grid, yielding faster access to those
pfGeoSets that potentially intersect the segment. A pfPartition can be made to function
as a normal pfGroup during intersection traversal by ORing PFTRAV_IS_NO_PART into

the intersection traversal mode in the pfSegSet.
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Table 3-11 describes the functions for working with pfPartitions.

Table 3-11 pfPartition Functions

Function Description

pfNewPart() Create a pfPartition.

pfPartVal() Set the desired pfPartition value.

pfGetPartVal() Find out the attributes of the specified value.

pfPartAttr() Set the desired pfPartition attribute.

pfGetPartAttr() Find out the attributes of specified the attribute.
pfBuildPart() Construct a spatial partitioning based on the attributes.
pfUpdatePart() Traverse the partition’s children and incorporate changes.

pfGetPartType() Determine what kind of partition is being used.

Example 3-10 demonstrates setting up and using a pfPartition node.

Example 3-10  Setting Up a pfPartition

pf G oup *terrain;
pfPartition *partition;
pf Scene *scene;

terrain = read_in_grid_aligned_terrain();

/* create a default partitioning of a terrain grid */
partition = pfNewPart();

pf AddChi | d(scene, partition);

pf AddChi I d(partition, terrain);

pf Bui | dPart (partition);

/* use the partitions to performefficient intersections
* of sets of segnents with the terrain */
for(i = 0; i < nunVehicles; i++)
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pf Nodel sect Segs(partition, vehicle_segnment_set[i],

hit_struct);

The sample program shown in Example 3-11 demonstrates scene graph construction,
shared instancing, and transformation inheritance. The program uses OpenGL

Performer objects and functions that are described fully in later chapters.

This program reads the names of two objects from the command line, although defaults
are supplied if file names are not given. These files are loaded and a second instance of
each object is created. In each case, this instance is made to orbit the original object, and
the second pair are also placed in orbit around the first. This programisi nherit. c and
is part of the suite of OpenGL Performer Programmer’s Guide example programs.

Example 3-11  Inheritance Demonstration Program

/*
* inherit.c - transforminheritance exanple
*/

#i ncl ude <math. h>
#i ncl ude <Perforner/pf.h>
#i ncl ude <Perf orner/pfdu. h>

int
mai n(int argc, char *argv[])
{
pf Pi pe *pi pe;
pf Pi peW ndow * pw;
pf Scene *scene;
pf Channel *chan;
pf Coord vi ew;
float z, s, c;
pf Node *nodel 1, *nodel 2;
pf DCS *nodel, *node2;
pf DCS *dcsl, *dcs2, *dcs3, *dcs4;
pf Spher e sphere;
char *filel, *file2;

/* choose default objects of none specified

*/
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filel
file2

(argc > 1) ? argv[1]
(argc > 1) ? argv[1]

/* Initialize Performer */
pflnit();

pf Fi | ePat hv(
“./data”,
“..ldata”,
“../../ldata”,
.l..l../ldata”,
ool .. /data”,
“/usr/share/ Performer/data”,
NULL) ;

“bl ob. nff";
“torus.nff”;

/[* Single thread for sinplicity */

pf Mul ti process( PFMP_DEFAULT) ;

/* Load all |oader DSO s before pfConfig() forks */

pfdlnitConverter(filel);
pfdlnitConverter(file2);

/* Configure */
pf Config();

/* Load the files */

if ((model1 = pfdLoadFile(filel)) == NULL)

{
pfEXi t();
exit(-1);
}
if ((nodel 2 = pfdLoadFile(file2)) == NULL)
{
pfEXi t();
exit(-1);
}

/* scale nodels to unit size */

nodel = pf NewDCS();
pf AddChi | d(nodel, nodel 1);

pf Get NodeBSpher e( nodel 1, &sphere);

if (sphere.radius > 0.0f)

pf DCSScal e(nodel, 1.0f/sphere.radius);
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node2 = pf NewDCS() ;
pf AddChi | d(node2, nodel 2);
pf Get NodeBSpher e( nodel 2, &sphere);
if (sphere.radius > 0.0f)
pf DCSScal e(node2, 1.0f/sphere.radius);

/* Create the hierarchy */
dcs4 = pf NewDCS() ;

pf AddChi | d(dcs4, nodel);
pf DCSScal e(dcs4, 0.5f);

dcs3 = pf NewDCS() ;
pf AddChi | d(dcs3, nodel);
pf AddChi | d(dcs3, dcs4);

dcsl = pf NewDCS();
pf AddChi | d(dcs1, node2);

dcs2 = pf NewDCS() ;

pf AddChi | d(dcs2, node2);
pf DCSScal e(dcs2, 0.5f);
pf AddChi | d(dcs1, dcs2);

scene = pf NewScene();

pf AddChi | d(scene, dcsl);

pf AddChi | d(scene, dcs3);

pf AddChi | d(scene, pfNewLSource());

/* Configure and open GL wi ndow */

pi pe = pf Get Pi pe(0);

pw = pf NewPW n( pi pe);

pf PW nType(pw, PFPW N_TYPE_X);

pf PW nName(pw, “OpenGL Performer”);
pf PWnOri gi nSi ze(pw, 0, 0, 500, 500);
pf CpenPW n( pw) ;

chan = pf NewChan( pi pe);
pf ChanScene(chan, scene);

pf Set Vec3(vi ew. xyz, 0.0f, 0.0f, 15.0f);
pf Set Vec3(vi ew. hpr, 0.0f, -90.0f, 0.0f);
pf ChanVi ew( chan, view. xyz, view hpr);

/* Loop through various transformati ons of the DCS' s */
for (z = 0.0f; z < 1084; z += 4.0f)
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{
pf DCSRot (dcs1,
(z <360) ? (int) z %360 : 0.0f,
(z > 360 & z < 720) ? (int) z %360 : 0.0f,
(z > 720) ? (int) z %360 : 0.0f);
pf SinCos(z, &s, &c);
pf DCSTrans(dcs2, 1.0f * ¢, 1.0f * s, 0.0f);
pf DCSRot (dcs3, z, 0, 0);
pf DCSTrans(dcs3, 4.0f * ¢, 4.0f * s, 4.0f * s);
pf DCSRot (dcs4, 0, 0, z);
pf DCSTrans(dcs4, 1.0f * ¢, 1.0f * s, 0.0f);
pf Frame();

}

/* show objects static for three seconds */

sl eep(3);

pfEXi t();

exit(0);
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Database Traversal

Chapter 3, “Nodes and Node Types,” described the node types used by | i bpf . This
chapter describes the operations that can be performed on the run-time database defined
by a scene graph. These operations typically work with part or all of a scene graph and
are known as traversals because they traverse the database hierarchy. OpenGL Performer
supports four major kinds of database traversals:

* Application

e Cull

¢ Draw

¢ Intersection

The application traversal updates the active elements in the scene graph for the next

frame. This includes processing active nodes and invoking user supplied callbacks for
animations or other embedded behaviors.

Visual processing consists of two basic traversals: culling and drawing. The cull traversal
selects the visible portions of the database and puts them into a display list. The draw
traversal then runs through that display list and sends rendering commands to the
Geometry Pipeline. Once you have set up all the necessary elements, culling and
drawing are automatic, although you can customize each traversal for special purposes.

The intersection traversal computes the intersection of one or more line segments with
the database. The intersection traversal is user-directed. Intersections are used to
determine the following:

* Height above terrain
¢ Line-of-sight visibility
¢ Collisions with database objects

Like other traversals, intersection traversals can be directed by the application through
identification masks and function callbacks. Table 4-1 lists the routines and data types
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relevant to each of the major traversals; more information about the listed traversal
attributes can be found later in this chapter and in the appropriate man pages.

Table 4-1 Traversal Attributes for the Major Traversals
Traversal Application Cull Draw Intersection
Attribute PFTRAV_APP PFTRAV_CULL PFTRAV_DRAW PFTRAV_ISECT
Controllers pfChannel pfChannel pfChannel pfSegSet
Global pfFrame() pfFrame() pfFrame() pfFrame()
Activation pfSync() pfNodelsect-
pfAppFrame() Segs(), pfChan-
NodelsectSegs()
Global pfChanTrav- pfChanTrav- pfChanTrav- pflsectFunc()
Callbacks Func() Func() Func()
Activation pfApp( pfCull() pfDraw() pfFrame()
within pfNodelsect-
Callback Segs(), pfChan-
NodelsectSegs()
Path N/A pfCullPath() N/A N/A
Activation
Modes pfChanTrav- pfChanTrav- pfChanTrav- pfSegSet (also
Mode() Mode() Mode() discriminator
callback)
Node pfNodeTrav- pfNodeTrav- pfNodeTrav- pfNodeTrav-
Callbacks Funcs() Funcs() Funcs() Funcs()
Traverser pfChanTrav- pfChanTrav- pfChanTrav- pfSegSet mask
Masks Mask() Mask() Mask()
Traversee pfNodeTrav- pfNodeTrav- pfNodeTrav- pfNodeTrav-
Masks Mask() Mask() Mask() Mask()
pfGSetlsect-
Mask()
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A visual database, also known as a scene, contains state information and geometry. A
scene is organized into a hierarchical structure known as a graph. The graph is composed
of connected database units called nodes. Nodes that are attached below other nodes in
the tree are called children. Children belong to their parent node. Nodes with the same
parent are called siblings.

The scene hierarchy supplies definitions of how items in the database relate to one
another. It contains information about the logical and spatial organization of the
database. The scene hierarchy is processed by visiting the nodes in depth-first order and
operating on them. The process of visiting, or touching, the nodes is called traversing the
hierarchy. The tree is traversed from top to bottom and from left to right. OpenGL
Performer implements several types of database traversals, including application, clone,
cull, delete, draw, flatten, and intersect. These traversals are described in more detail later
in this chapter.

The principal traversals (application, cull, draw and intersect) all use a similar traversal
mechanism that employs traversal masks and callbacks to control the traversal. When a
node is visited during the traversal, processing is performed in the following order:

1. Prune the node based on the bitwise AND of the traversal masks of the node and
the pfChannel (or pfSegSet). If pruned, traversal continues with the node’s siblings.

2. Invoke the node’s pre-traversal callback, if any, and either prune, continue, or
terminate the traversal, depending on the callback’s return value.

3. Traverse, beginning again at step 1, the node’s children or geometry (pfGeoSets). If
the node is a pfSwitch, a pfSequence, or a pfLOD, the state of the node affects which
children are traversed.

4. Invoke the node’s post-traversal callback, if any.

In addition to imposing a logical and spatial ordering of the database, the hierarchy also
defines how state is inherited between parent and child nodes during scene graph
traversals. For example, a parent node that represents a transformation causes the
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subsequent transformation of each of its children when it and they are traversed. In other
words, the children inherit state, which includes the current coordinate transformation,
from their parent node during database traversal.

A transformation is a 4x4 homogeneous matrix that defines a 3D transformation of
geometry, which typically consist of scaling, rotation, and translation. The node types
pfSCS and pfDCS both represent transformations. Transformations are inherited through
the scene graph with each new transformation being concatenated onto the ones above
it in the scene graph. This allows chained articulations and complex modeling
hierarchies.

The effects of state are propagated downward only, not from left to right nor upward.
This means that only parents can affect their children—siblings have no effect on each
other nor on their parents. This behavior results in an easy-to-understand hierarchy that
is well suited for high-performance traversals.

Graphics states such as textures and materials are not inherited by way of the scene
graph but are encapsulated in leaf geometry nodes called pfGeode nodes, which are
described in the section “Node Types” in Chapter 3.

Database Organization

OpenGL Performer uses the spatial organization of the database to increase the
performance of certain operations such as drawing and intersections. It is therefore
recommended that you consider the spatial arrangement of your database. What you
might think of as a logical arrangement of items in the database may not match the
spatial arrangement of those items in the visual environment, which can reduce OpenGL
Performer’s ability to optimize operations on the database. See “Organizing a Database
for Efficient Culling” on page 94 for more information about spatial organization in a
visual database and the efficiency of database operations.

Application Traversal

88

The application traversal is the first traversal that occurs during the processing of the
scene graph in preparation for rendering a frame. It is initiated by calling pfAppFrame().
If pfAppFrame() is not explicitly called, the traversal is automatically invoked by
pfSync() or pfFrame(). An application traversal can be invoked for each channel, but
usually channels share the same application traversal (see pfChanShare()).

007-1680-080



Application Traversal

007-1680-080

The application traversal updates dynamic elements in the scene graph, such as
geometric morphing. The application traversal is also often used for implementing
animations or other custom processing when it is desirable to have those behaviors
embedded in the scene graph and invoked by OpenGL Performer rather than requiring
application code to invoke them every frame.

The traversal proceeds as described in “Database Traversals.” The selection of which
children to traverse is also affected by the application traversal mode of the channel, in
particular the choice of all, none, or one of the children of pfLOD, pfSequence and
pfSwitch nodes is possible. By default, the traversal obeys the current selection dictated
by these nodes.

The following example (this loader reads both Open Inventor and VRML files) shows a
simple callback changing the transformation on a pfDCS every frame.

Example 4-1 Application Callback to Make a Pendulum

i nt

At t achPendul um( pf DCS *dcs, Pendul unbData *pd)

{
pf NodeTr avFuncs(dcs, PFTRAV_APP, Pendul unfunc, NULL);
pf NodeTr avDat a(dcs, PFTRAV_APP, pd);

}

i nt
Pendul unfFunc(pf Traverser *trav, void *userData)
{
Pendul unData *pd = (Pendul unDat a*) user Dat a;
pf DCS *dcs = (pf DCS*) pf Get TravNode(trav);

i f (pd->o0n)

{
pfMatri x mat;
doubl e now = pf Get FranmeTi neSt anp() ;
float frac, dummy;

pd- >l ast Angl e += (now - pd- >l ast Ti nme) *360. Of * pd- >f r equency;
if (pd->lastAngle > 360.0f)
pd- >l ast Angl e -= 360. 0f;

/'l using sinusoidally generated angle

pf Si nCos( pd- >l ast Angl e, &frac, &dJumy);

frac = 0.5f + 0.5f * frac;

frac = (1.0f - frac)*pd->angl e0 + frac*pd->angl el;
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pf MakeRot Mat ( nat ,

frac, pd->axis[0], pd->axis[1], pd->axis[2]);
pf DCSMat (dcs, mat);
pd- >l ast Ti ne = now;

}

return PFTRAV_CONT;
}

The cull traversal occurs in the cull phase of the | i bpf rendering pipeline and is initiated
by calling pfFrame(). A cull traversal is performed for each pfChannel and determines
the portion of the scene to be rendered. The traversal processes the subgraphs of the
scene that are both visible and selected by nodes in the scene graph that control traversal
(that is, pfLOD, pfSequence, pfSwitch). The visibility culling itself is performed by
testing bounding volumes in the scene graph against the channel’s viewing frustum.

For customizing the cull traversal, | i bpf provides traversal masks and function
callbacks for each node in the database, as well as a function callback in which the
application can do its own culling of custom data structures.

The cull is a depth-first, left-to-right traversal of the database hierarchy beginning at a
pfScene, which is the hierarchy’s root node. For each node, a series of tests is made to
determine whether the traversal should prune the node—that is, eliminate it from further
consideration—or continue on to that node’s children. The cull traversal processing is
much as described earlier; in particular, the draw traversal masks are compared and the
node is checked for visibility before the traversal continues on to the node’s children.
Processing proceeds in the following order:

1. Prune the node, based on the channel’s draw traversal mask and the node’s draw
mask.

2. Invoke the node’s pre-cull callback and either prune, continue, or terminate the
traversal, depending on callback’s return value.

3. Prune the node if its bounding volume is completely outside the viewing frustum.
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Visibility Culling

4. Traverse, beginning again at step 1, the node’s children or geometry (pfGeoSets) if
the node is completely or partially in the viewing frustum. If the node is a pfSwitch,
a pfSequence, or a pfLOD, the state of the node affects which children are traversed.

5. Invoke the node’s post-cull callback.

The following sections discuss these steps in more detail.

Culling determines whether a node is within a pfChannel’s viewing frustum for the
current frame. Nodes that are not visible are pruned—omitted from the list of objects to
be drawn—so that the Geometry Pipeline does not waste time processing primitives that
couldn’t possibly appear in the final image.

Hierarchical Bounding Volumes
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Testing a node for visibility compares the bounding volume of each object in the scene
against a viewing frustum that is bounded by the near and far clip planes and the four
sides of the viewing pyramid. Both nodes (see Chapter 3, “Nodes and Node Types”) and
pfGeoSets (see Chapter 8, “Geometry”) have bounding volumes that surround the
geometry that they contain. Bounding volumes are simple geometric shapes whose
centers and edges are easy to locate. Bounding volumes are organized hierarchically so
that the bounding volume of a parent encloses the bounding volumes of all its children.
You can specify bounding volumes or let OpenGL Performer generate them for you (see
“Bounding Volumes” in Chapter 3).

Figure 4-1 shows a frustum and three objects surrounded by bounding boxes. Two of the
objects are outside the frustum; one is within it. One of the objects outside the frustum
has a bounding box whose edges intersect the frustum, as shown by the shaded area. The
visibility test for this object returns TRUE, because its bounding box does intersect the
view frustum even though the object itself does not.
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PFIS_FALSE

PFIS_ALL_IN

Figure 4-1 Culling to the Frustum
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Visibility Testing

The cull traversal begins at the root node of a channel’s scene graph (the pfScene node)
and continues downward, directed by the results of the cull test at each node. At each
node the cull test determines the relationship of the node’s bounding volume to the
viewing frustum. Possible results are that the bounding volume is entirely outside, is
entirely within, is partially within, or completely contains the viewing frustum.

If the intersection test indicates that the bounding volume is entirely outside the frustum,
the traversal prunes that node—that is, it does not consider the children of that node and
continues with the node’s next sibling.

If the intersection test indicates that the bounding volume is entirely inside the frustum,
the node’s children are not cull-tested because the hierarchical nature of bounding
volumes implies that the children must also be entirely within the frustum.

If the intersection test indicates that the bounding volume is partially within the frustum,
or that the bounding volume completely contains the frustum, the testing process
continues with the children of that node. Because a bounding volume is larger than the
object it surrounds, it is possible for a bounding volume to be partially within a frustum
even when none of its enclosed geometry is visible.

By default, OpenGL Performer tests bounding volumes all the way down to the pfGeoSet
level (see Chapter 8, “Geometry”) to provide fine-grained culling. However, if your
application is spending too much time culling, you can stop culling at the pfGeode level
by calling pfChanTravMode(). Then if part of a pfGeode is potentially visible, all
geometry in that pfGeode is drawn without cull-testing it first.

Visibility Culling Example

Figure 4-2 portrays a simple database that contains a toy block, train, and car. The block
is outside the frustum, the bounding volume of the car is partially inside the frustum,
and the train is completely inside the frustum.
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Figure 4-2 Sample Database Objects and Bounding Volumes

Organizing a Database for Efficient Culling

Efficient culling depends on having a database whose hierarchy is organized spatially. A
good technique is to partition the database into regions, called tiles. Tiling is also required
for database paging. Instead of culling the entire database, only the tiles that are within the
view frustum need to be traversed.
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The worst case for the cull traversal performance is to have a very flat hierarchy—that is,
a pfScene with all the pfGeodes directly under it and many pfGeoSets in each pfGeode—
or a hierarchy that is organized by object type (for example, having all trees in the
database grouped under one pine tree node, rather than arranged spatially).

Figure 4-3 shows a sample database represented by cubes, cones, pyramids, and spheres.
Organizing this database spatially, rather than by object type, promotes efficient culling.
This type of spatial organization is the most effective control you have over efficient
traversal.
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Figure 4-3 How to Partition a Database for Maximum Efficiency
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When modeling a database, you should consider other trade-offs as well. Small amounts
of geometry in each culling unit, whether pfGeode or pfGeoSet, provide better culling
resolution and result in sending less nonvisible geometry to the pipeline. Small pieces
also improve the performance of line-segment intersection inquiries (see “Database
Concerns” in Chapter 21). However, using many small pieces of geometry can increase
the traversal time and can also reduce drawing performance. The optimal amount of
geometry to place in each pfGeoSet depends on the application, database, system CPU,
and graphics hardware.

Existence within the frustum is not the only criterion that determines an object’s
visibility. The item may be too distant to be seen from the viewpoint, or it may be
obscured by other objects between it and the viewer, such as a wall or a hill. Atmospheric
conditions can also affect object visibility. An object that is normally visible at a certain
distance may not be visible at that same distance in dense fog.

Implementing more sophisticated culling requires knowledge of visibility conditions
and control over the cull traversal. The cull traversal can be controlled through traversal
masks, which are described in the section titled “Controlling and Customizing
Traversals” on page 102.

Knowing whether an object is visible requires either prior information about the spatial
organization of a database, such as cell-to-cell visibilities, or run-time testing such as
computing line-of-sight visibility (LOS). You can compute simple LOS visibility by
intersecting line segments that start at the eyepoint with the database. See the
“Intersection Traversal” on page 120.

During the cull traversal, a pfChannel can rearrange the order in which pfGeoSets are
rendered for improved performance and image quality. It does this by binning and
sorting. Binning is the act of placing pfGeoSets into specific bins, which are rendered in a
specific order. OpenGL Performer provides two default bins: one for opaque geometry
and one for blended, transparent geometry. The opaque bin is drawn before the
transparent bin so transparent surfaces are properly blended with the background scene.
Applications are free to add new bins and specify arbitrary bin orderings.

Bins are often used to group geometry with certain desired characteristics. Sometimes it
may be desirable for a pfGeoSet to be in several bins. For this purpose you can create a
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sub-bin of two existing bins using the function pfChanFindSubBin(bin1,bin2,int). The
parameters are the two parent bins and an integer value indicating whether the sub-bin
should be created if it does not exist. The function returns a value of -1 if the bin does not
exist (and it was not supposed to be created) or if any of the parent bins do not exist. If
you need to create a sub-bin of more than two bins, call this function several times. For
example, to create a sub-bin of bin 5, 6, and 7, you call pfChanFindSubBin() with
parameters 5 and 6. Let us assume that sub-bin of bin 5 and 6 is bin 8. Then you call
pfChanFindSubBin() again with parameters 8 and 7 to obtain a sub-bin of bins 5, 6, and
7. It does not matter in what order you call it because all sub-bins are directly linked to
their parent root bins (and vice versa); there is no tree hierarchy. See the section “Cull
Programs” on page 103 for an example of using sub-bins.

The function pfChanFindBinParent(bin,int) returns the first parent of bin bin that is
bigger than the value specified as the second parameter. Thus, by calling this method
several times (until it returns —1), you can determine all parents of a bin.

Sorting is done on a per-bin basis. pfGeoSets within a given bin are sorted by a specific
criterion. Two useful criteria provided by OpenGL Performer are sorting by graphics
state and sorting by range. When sorting by state, pfGeoSets are sorted first by their
pfGeoState, then by an application-specified hierarchy of state modes, values, and
attributes which are identified by PESTATE_* tokens and are described in Chapter 9,
“Graphics State”. State sorting can offer a huge performance advantage since it greatly
reduces the number of mode changes carried out by the Geometry Pipeline. State sorting
is the default sorting configuration for the opaque bin. If a bin has sub-bins, pfGeoSets
are ordered in each sub-bin separately, as are pfGeoSets that do not belong to any sub-bin
of the bin.

Range sorting is required for proper rendering of blended, transparent surfaces, which
must be rendered in back-to-front order so that each surface is properly blended with the
current background color. Front-to-back sorting is also supported. The default sorting for
the transparent bin is back-to-front sorting. Note that the sorting granularity is
per-pfGeoSet, not per-triangle so transparency sorting is not perfect.

In case of the transparent bin, the order in which pfGeoSets are drawn (back-to-front) is
important to avoid visible artifacts. Sub-bins, even if their pfGeoSets were ordered
back-to-front, may break that order. For this purpose, you can mark selected bins as
non-exclusive. If a pfGeoSet belongs to a sub-bin of a non-exclusive bin, it is added both
to the sub-bin and directly to the list of pfGeoSets of the non-exclusive bin. Thus, when
pfGeoSets of a non-exclusive bin are sorted, they are all in one list. Any root bin can be
marked non-exclusive by setting flag PFBIN_NONEXCLUSIVE_BIN using the function
pfChanBinFlags(). The transparent bin is by default non-exclusive.
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The pfChannel bins are given a rendering order and a sorting configuration with
pfChanBinOrder() and pfChanBinSort(), respectively. A sub-bin inherits sorting
configuration from a parent with the highest sort priority, set by
pfChanBinSortPriority(). Sorting configuration of sub-bins cannot be changed using
pfChanBinOrder().

A bin’s order is simply an integer identifying its place in the list of bins. An order less
than 0 or PFSORT_NO_ORDER means that pfGeoSets that fall into the bin are drawn
immediately without any ordering or sorting. Multiple bins may have the same order but
the rendering precedence among these bins is undefined. The rendering order of
sub-bins is determined by the child-order mask of their parents. This mask can be set by
pfChanBinChildOrderMask(). When a sub-bin is created, the mask of all its parents is
combined (using a binary OR) and set as a rendering order of the sub-bin.

A bin’s sorting configuration is given as a token identifying the major sorting criterion
and then an optional list of tokens, terminated with the PESORT_END token, that defines
a state sorting hierarchy. The following tokens control the sort:

PFSORT_BY_STATE
pfGeoSets are sorted first by pfGeoState then by the state elements
found between the PFSORT_STATE_BGN and PFSORT_STATE_END
tokens, for example.

PFSORT_FRONT_TO_BACK
pfGeoSets are sorted by nearest to farthest range from the eyepoint.
Range is computed from eyepoint to the center of the pfGeoSet’s
bounding volume.

PFSORT_BACK_TO_FRONT
pfGeoSets are sorted by farthest to nearest range from the eyepoint.
Range is computed from eyepoint to the center of the pfGeoSet’s
bounding volume.

PFSORT_QUICK
A special, low-cost sorting technique. pfGeoSets must fall into a bin
whose order is 0 in which case they will be sorted by pfGeoState and
drawn immediately. This is the default sorting mode for the
PFSORT_OPAQUE_BIN bin.

For example, the following specification will sort the opaque bin by pfGeoState, then by
pfTexture, then by pfMaterial:
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static int sort[] = {PFSORT_STATE BG\,
PFSTATE_TEXTURE, PFSTATE_FRONTMIL,
PFSORT_STATE_END, PFSORT_END};
pf ChanBi nSor t (chan, PFSORT_OPAQUE_BI N, PFSORT_BY_STATE,
sort);

A pfGeoSet’s draw bin may be set directly by the application with pfGSetDrawBinJ().
Otherwise, OpenGL Performer automatically determines if the pfGeoSet belongs in the
default opaque or transparent bins. Based on the position of a pfGeoSet in the scene, cull
programes, if they are enabled, can determine the draw bin of the pfGeoSet. See section
“Cull Programs” on page 103 for more details.

Paths through the Scene Graph

Draw Traversal
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You can define a chain, or path, of nodes in a scene graph using the pfPath data structure.
(Note that a pfPath has nothing to do with filesystem paths as specified with the PFPATH
environment variable or with specifying a path for a user to travel through a scene.) Once
you have specified a pfPath with a call to pfNewPath(), you can traverse and cull that
path as a subset of the entire scene graph using pfCullPath(). The function pfCullPath()
must only be called from the cull callback function set by pfChanTravFunc()—see
“Process Callbacks” on page 115 for details. For more information about the pfPath
structure, see the pf Pat h(3pf) and pf Li st (3pf) man pages.

When OpenGL Performer looks for intersections, it can return a pfPath to the node
containing the intersection. This feature is particularly useful when you are using
instancing, in which case you cannot use pfGetParent() to find out where in the scene
graph the given node is. Finding out the pfPath to a given node is also useful in
implementing picking.

For each bin the cull traversal generates a | i bpr display list of geometry and state
commands (see “Display Lists” in Chapter 9), which describes the bin's geometry that is
visible from a pfChannel. The draw traversal parses all root bins (bins without a parent
bin) in the order given by their rendering order value. For each root bin, it simply
traverses the display list and sends commands to the Geometry Pipeline to generate the
image. If a bin has sub-bins, objects that are not in any sub-bin of the bin are rendered
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first and are followed by objects of each sub-bin. The order in which sub-bins of the bin
are drawn is determined by their rendering order value.

Optimizing the Drawing of Sub-bins

Bin Draw Callbacks
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To avoid drawing sub-bins multiple times (for each of its parents), set the flag
PFBIN_DONT_DRAW_BY_DEFAULT for those root bins that share sub-bins with the
default opaque or transparent bin. The bin flags can be set using the function
pfChanBinFlags().

Individual bins, including sub-bins, may be rendered with the function pfDrawBin()
called from the draw callback of pfChannel (see pfChanTravFunc()). The bin -1 is a
special pfDrawBin() argument that lets you render the default scene display list, which
contains all the objects that did not fall in any defined bin. Note that this default scene
display list exists only in PEMP_CULL_DL_DRAW multiprocessing mode. In the case of
drawing a sub-bin, all sub-bins that have the same parents as a given sub-bin will be
drawn. For example, consider root bins 5, 6, and 7 and sub-bins 8 (child of 5 and 6) and
9 (child of 5, 6, and 7). When pfDrawBin() is called with bin 8, bin 9 will be rendered as
well.

Traversing a pfDispList is much faster than traversing the database hierarchy because the
pfDispList flattens the hierarchy into a simple, efficient structure. In this way, the cull
traversal removes much of the processing burden from the draw traversal; throughput
greatly increases when both traversals are running in parallel.

Root bins can have draw callbacks associated with them. Draw callbacks are set by

calling function pfChanBinCallBack(). The parameters are the bin number, the type of a
callback (PFBIN_CALLBACK_PRE_DRAW or PFBIN_CALLBACK_POST_DRAW), and
the callback itself. The callback is a function that has only one parameter, a void pointer
that points to the user data. Each bin has one user-data pointer, shared between pre-draw
and post-draw callbacks. This pointer can be set using function pfChanBinUserData().

If the callbacks are costly, it makes sense to group sub-bins of a bin with costly callbacks

together. To achieve this, ensure that you set a high child-order mask for the bin (see the
section “Sorting the Scene” on page 97).
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Controlling and Customizing Traversals

The result of the cull traversal is a display list of geometry to be rendered by the draw
traversal. What gets placed in the display list is determined by both visibility and by
other user-specified modes and tests.

pfChannel Traversal Modes
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The PFTRAV_CULL argument to pfChanTravMode() modifies the culling traversal. The
cull mode is a bitmask that specifies the modes to enable; it is formed by the logical OR
of one or more of these tokens:

e PFCULL_VIEW

e PFCULL_GSET

e PFCULL_SORT

e PFCULL_IGNORE_LSOURCES
e PFCULL_PROGRAM

Culling to the view frustum is enabled by the PFECULL_VIEW token. Culling to the
pfGeoSet-level is enabled by the PECULL_GSET token and can produce a tighter cull
that improves rendering performance at the expense of culling time.

PFCULL_SORT causes the cull to sort geometry by state—for example, by texture or by
material, in order to optimize rendering performance. It also causes transparent
geometry to be drawn after opaque geometry for proper transparency effects.

By default, the enabled culling modes are PECULL_VIEW | PFCULL_GSET |
PFCULL_SORT. It is recommended that these modes be enabled unless the cull traversal
becomes a significant bottleneck in the processing pipeline. In this case, try disabling
PFCULL_GSET first, then PFECULL_SORT.

Normally, a pfChannel’s cull traversal pre-traverses the scene, following all paths from
the scene to all pfLightSources in the scene so that light sources can be set up before the
normal scene traversal. If you want to disable this pre-traversal, set the
PFCULL_IGNORE_LSOURCES cull-enable bit but your pfLightSources will not
illuminate the scene.
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When the PECULL_PROGRAM token is set, a cull program attached to the channel is
executed for each pfGeoSet during the cull traversal. See the following section “Cull
Programs” for more details.

The PFTRAV_DRAW argument to pfChanTravMode() modifies the draw traversal. A
mode of PFEDRAW_ON is the default and will cause the pfChannel to be rendered. A
mode of PFDRAW_OFF indicates that the pfChannel should not be drawn and
essentially turns off the pfChannel.

Cull Programs

A pfCullProgram is a class that is used to set up a cull program, a sequence of
instructions that are executed for each scene graph node and each pfGeoSet during the
cull traversal. There can be two separate cull programs, one for scene graph nodes and
one for pfGeosets. The node cull program uses a set of polytopes. Based on the position
of the node with respect to each polytope (inside, outside, intersects), it can determine
whether the node is culled out (good for occlusion culling) or whether all pfGeoSets
under this node are assigned to a specific bin. The pfGeoSet cull program also uses a set
of polytopes and assigns each pfGeoSet to a different bin based on the position of the
pfGeoSet with respect to each polytope or it culls out the pfGeoSet. The best use of cull
programs is for occlusion culling (see section “Occlusion Culling Using Cull Programs”
on page 110) or in multipass rendering when in some passes only parts of the scene have
to be rendered. Being able to assign these parts to a bin can reduce the rendering time.

There is always a default cull program present on a pfChannel. To access it, you can call
pfGetChanCullProgram(). Then you can set the program's instructions and the
polytopes and can enable the cull program by setting token PECULL_PROGRAM using
the function pfChanTravMode(). See the previous section “pfChannel Traversal Modes”
for more details.
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Polytopes
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The following code sequence illustrates the use of a cull program:
pf Cul | Program *cul | Pgm = pf Get ChanCul | Progr an( channel ) ;

pf Cul | ProgranmReset Pgn{ cul | Pgm PFCULLPG_GECSET_PROGRAM ;
pf Cul | Progr amAddPgnOpcode( cul | Pgm opcodel, datal);

pf Cul | Progr amAddPgnOpcode(cul | Pgm opcodeN, dataN);

pf Cul | ProgranReset Pgn{ cul | Pgm PFCULLPG_NCDE_PROCGRAM) ;
pf Cul | Progr amAddPgnmOpcode(cul | Pgm opcodel, datal);

pf Cul | Progr amAddPgnmOpcode( cul | Pgm opcodeM dataM;

pf Cul | Progr amNunPol yt opes(cul | Pgm 2);
pf Cul | Progr anPol yt ope(cul | Pgm pt opel);
pf Cul | Progr anPol yt ope(cul | Pgm pt ope2);

You can define both a node and a pfGeoSet cull program at once by setting the token in
pfCullProgramResetPgm() to PFCULLPG_GEOSET_PROGRAM |
PFCULLPG_NODE_PROGRAM.

Cull program polytopes are standard pfPolytopes. They can be used to define various
areas: the area could be some subset of a view frustum in which the geometry is drawn
using special attributes, it could be a bounding box around some area of interest, and so
on.

To initialize cull program polytopes, you set the number of polytopes that are used by
the cull programs using pfCullProgramNumPolytopes(). Then create a new pfPolytope
in the shared arena and set it using pfCullProgramPolytope(). The polytopes are
indexed from 0. Polytopes are shared between the node and the pfGeoset cull program
even if the programs are different.

To modify a polytope of a certain index during the simulation, you get a pointer to the

polytope using pfGetCullProgramPolytope(), modify it, and then call
pfCullProgramPolytope().
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Predefined Cull Program Instructions
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A cull program is a set of instructions that operate on bins and predefined polytopes. You
define instructions one-by-one in the order of their desired execution. First, you use the
function pfCullProgramResetPgm() to reset the default program, which consists of a
return instruction only. Then you specify each instruction by its opcode (predefined
instruction specified with the function pfCullProgramAddPgmOpcode()) or directly by
specifying a user-defined instruction using pfCullProgramAddPgmInstruction(). For
the details of user-defined instructions, see the later section “User-Defined Cull Program
Instructions” on page 108. Each instruction has an associated integer value that is used
as a parameter for the instruction.

The cull program starts with the bin that is associated with the pfGeoSet. As the cull
program executes, it modifies the pfGeoSet. The output is a new bin assignment.
The following categories of predefined instructions are available:

¢ Test instructions

* Assign instructions

* Add-bin instructions

¢ Jump instructions

e Return instruction
Test Instructions

Table 4-2 describes the test instructions.

Table 4-2 Test Instructions

Instruction Description

PFCULLPG_TEST_POLYTOPE n Tests the bounding box of the pfGeoSet or the
bounding sphere of the node against the polytope
with index 7. The result is one of PFIS_FALSE (all
out), PFIS_MAYBE (possible intersection), or
PFIS_MAYBE | PFIS_TRUE (all in).

PFCULLPG_TEST_IS_SUBBIN_OF b Tests whether the bin that has been determined up to

this point is a sub-bin of bin b. The result is 1 or 0.
Note that bin b is considered a sub-bin of itself.
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Table 4-2 Test Instructions (continued)

Instruction

Description

PFCULLPG_TEST_IS_TRANSPARENT

PFCULLPG_TEST_IS_LIGHT_POINT

Tests whether the pfGeoSet is transparent. The
parameter is ignored. The resultis 1 or 0.

Tests whether the pfGeoSet belongs to a light point
bin. The parameter is ignored. The resultis 1 or 0.

Assign Instructions

Table 4-3 describes the assign instructions.

Table 4-3 Assign Instructions

Instruction

Description

PFCULLPG_ASSIGN_BIN_MAYBE b

PFCULLPG_ASSIGN_BIN_TRUE b

PFCULLPG_ASSIGN_BIN_ALL_IN b

PFCULLPG_ASSIGN_BIN_ALL_OUT b

PFCULLPG_ASSIGN_BIN_FALSE b

PFCULLPG_ASSIGN_BIN b

Assigns bin b to the pfGeoSet if the result of the last
polytope test was PFIS_MAYBE.

Assigns bin b to the pfGeoSet if the result of the last
binary test was 1.

Assigns bin b to the pfGeoSet if the result of the last
polytope test was PFIS_MAYBE | PFIS_TRUE.

Assigns bin b to the pfGeoSet if the result of the last
polytope test was PFIS_FALSE.

Assigns bin b to the pfGeoSet if the result of the last
polytope test was 0.

Assigns bin b to the pfGeoSet.

Add-Bin Instructions

For each PECULLPG_ASSIGN* instruction, there is an equivalent
PFCULLPG_ADD_BIN* instruction, in which the pfGeoSet is assigned a sub-bin of bin
b and the existing bin. If the existing bin is -1, the instruction operates as an assign
instruction. If the sub-bin does not exist, it is dynamically created.
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The following are the add-bin instructions:
e PFCULLPG_ADD_BIN_MAYBE b

e PFCULLPG_ADD_BIN_TRUE b

* PFCULLPG_ADD_BIN_ALL_IN b

e PFCULLPG_ADD_BIN_ALL_OUT b

e PFCULLPG_ADD_BIN_FALSE b

* PFCULLPG_ADD_BIN b

Jump Instructions

Table 4-4 describes the jump instructions.

Table 4-4 Jump Instructions

Instruction Description

PFCULLPG_JUMP_MAYBE ¢ Skips next ¢ instructions if the result of the last polytope
test was PFIS_MAYBE. If ¢ is negative, go back Ic|-1
instructions.

PFCULLPG_JUMP_TRUE ¢ Skips next ¢ instructions if the result of the last binary test
was 1.

PFCULLPG_JUMP_ALL_IN ¢ Skips next ¢ instructions if the result of the last polytope

test was PFIS_MAYBE | PFIS_TRUE.

PFCULLPG_JUMP_ALL_OUT ¢ Skips next ¢ instructions if the result of the last polytope
test was PFIS_FALSE.

PFCULLPG_JUMP_FALSE ¢ Skips next ¢ instructions if the result of the last polytope
test was 0.
PFCULLPG_JUMP ¢ Skips next ¢ instructions.
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Return Instruction

Each cull program must be terminated by a return instruction. You specify the return
instruction with PECULLPG_RETURN flags. The PECULLPG_RETURN parameter is a
combination of the following binary flags:

e PFCULLPG_CULL
PFCULLPG_CULL_ON_ALL_IN

e PFCULLPG_CULL_ON_ALL_OUT

e PFCULLPG_DONT_TEST_TRANSPARENCY
e PFCULLPG_TEST_LPOINTS

e PFCULLPG_DONT_TEST_LPOINTS

The first three flags determine whether the node or the pfGeoSet is culled out, optionally
based on the result of the last polytope test. In that case, any bin assignment made by the
cull program is ignored.

The last three flags control whether an additional test for the pfGeoSet being transparent
or being a light point is performed. These flags affect only the pfGeoset cull program. If
the pfGeoSet is transparent or is a light point, the pfGeoSet is assigned the bin resulting
from the cull program and either a sub-bin of the transparent bin or the light point bin.

If initially the pfGeoSet has no bin assigned to it, both the transparency and light point

tests are performed (to follow the operation of a regular cull traversal). If those tests are
not needed, you can use the two DONT_TEST flags. If the pfGeoSet has initially assigned
a bin, the tests are not performed unless the binary flags specify so.

If you need to perform any of these two tests earlier—for example, to differentiate bin

assignment based on transparency—you can use the instructions
PFCULLPG_TEST_IS_TRANSPARENT and PFCULLPG_TEST_IS_LIGHT_POINT.

User-Defined Cull Program Instructions
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You may provide your own cull program instructions. Each instruction must be a
function that takes two parameters: a pointer to pfCullProgram and an integer value (the
instruction parameter). The instruction has to return a value by which the instruction
counter is increased. This value is 1 for all instructions, except jump instructions.
Actually, it is possible to write whole cull programs as a single, user-defined instruction.
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There are two variables that a user-defined instruction can access during the execution
of a cull program and there are several useful methods they may use. The following are
the two variables:

current Result  Result of the last polytope test or a binary test

bbox Bounding box for the pfGeoSet

Table 4-5 describes the four functions that can be used in instructions.

Table 4-5 Functions Available for User-Defined Cull Program Instructions
Function Description
pfCullProgramTestPolytope(pgmi,n) Tests polytope 71 using bbox, the bounding box of the

pfGeoSet or the bounding sphere of the node. Use
this function rather than doing the test directly
because the result is often already known by testing
the nodes above the current pfGeoSet or the current
node and the test can be avoided.

pfCullProgramAddBinParent(pgm,b) Adds a new parent b, which could also be a sub-bin.
The cull program keeps the list of parents that
identify the current bin (to avoid creating many
sub-bins that may not be needed). This function adds
anew parent b, which can be a sub-bin also.

pfCullProgramIsSubbinOf(pgm,b) Tests whether the current bin is a sub-bin of bin b.

pfCullProgramResetBinParents(pg1) Resets the list of parents of the current bin.

For example, the predefined instruction PECULLPG_ASSIGN_BIN_MAYBE can be
implemented as shown in the following code:

i nt MyAssi gnBi nMaybe( pf Cul | Program *pgm int data)

{
i f(pgm >currentResult & PFI S_MAYBE)
pf Cul | Progr anReset Bi nPar ent s( pgm ;
pf Cul | Progr amAddBi nPar ent (pgm dat a) ;
}
return 1;
}
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Cull Traversal

To reduce the amount of testing performed for each pfGeoSet, each node of the tree is
tested against all cull program polytopes when cull programs are enabled. If the test is
conclusive—that is, the bounding sphere of the node is inside or outside of a polytope—
children of the node are not tested against the given polytope. Use the node cull program
to determine culling and use the pfGeoset cull program to assign bins at the pfGeoset
level.

If culling to the view frustum is enabled (token PECULL_VIEW set by
pfChanTravMode()), it is done before the cull program is executed. In this case, nodes
and pfGeoSets that are not intersecting the view frustum are culled out and the cull
program is not executed for them.

Sample code illustrating the use of cull programs can be found in the following files in
the directory / usr/ shar e/ Per f or mer/ sr c/ pgui de/ | i bpf/ C++ onIRIX and Linux
and in Y%PFROOT% Sr ¢/ pgui de/ | i bpf/ C++ on Microsoft Windows:

e cull Pgnti npl e
e cull Pgmvul ti pass

Occlusion Culling Using Cull Programs
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In order to use cull programs for occlusion culling you must choose the occluders in the
scene—for example, walls in a room or the walls of the nearest buldings in a city. Then
you must create a polytope around each occluder. If the occluder is a rectangle, the
polytope must have one face for the rectangle and four faces for the edges, four planes
each defined by the edge and the eye. You must update the polytope or polytopes every
time the eye or the occluder moves.

For an example of occlusion culling, see the following program:

[ usr/ share/ Performer/src/pguide/libpf/C++t/occlusionCull.C
(IRIX and Linux)

UPFROOTY% Sr c/ pgui de/ | i bpf/ C++/ occl usi onCul | . cxx

(Microsoft Windows)

The sample program also includes a function that creates a polytope for a polygon
defined by four vertices.
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pfNode Draw Mask
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At present the polytopes must be convex. Consequently, in the case that two occluders
are touching but their common shape is concave, they must be defined as two polytopes.
In this case, the geometry that is occluded by both occluders and that spans their
common boundary is not culled out. To avoid this problem, you can define a convex
polytope that contains both shapes (a convex hull) and then define convex cut areas that
are not part of the occluders. In this way, you can also add holes in occluders. As long as
you start with a convex polytope, you can subtract as many convex polytopes as you
need.

The following code sequence illustrates the use of a convex hull and cut-out areas:

PFCULLPG TEST_PCLYTCOPE, 0 // convex hul |
PFCULLPG JUWP_ALL_IN, 1
PFCULLPG RETURN, O /1 no cull

PFCULLPG TEST POLYTOPE, 1 // first cutout area
PFCULLPG JUMP_ALL_QUT, 1
PFCULLPG_RETURN, O /1 no cull

PFCULLPG TEST POLYTOPE, N // n-th cutout area
PFCULLPG JUMP_ALL_OQUT, 1
PFCULLPG_RETURN, O /1 no cull

PFCULLPG_RETURN, PFCULLPG _CULL
For a complete example, see the following program:

[ usr/ shar e/ Performer/src/pguide/libpf/C++/ occl usi onCul | Concave. C
(IRIX and Linux)

%PFROOTY Sr ¢/ pgui de/ | i bpf/ C++/ occl usi onCul | Concave. cxx

(Microsoft Windows)

Each node in the database hierarchy can be assigned a mask that dictates whether the
node is added to the display list and thereby whether it is drawn. This mask is called the
draw mask (even though it is evaluated in the cull traversal) because it tells the cull
process whether the node is drawable or not.
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The draw mask of a node is set with pfNodeTravMask(). The channel also has a draw
mask, which you set with pfChanTravMask(). By default, the masks are all 1’s or
OxfEEEEEES.

Before testing a node for visibility, the cull traversal ANDs the two masks together. If the
result is zero, the cull prunes the node. If the result is nonzero, the cull proceeds normally.
Mask testing occurs before all visibility testing and function callbacks.

Masks allow you to draw different subgraphs of the scene on different channels, to turn
portions of the scene graph on and off, or to ignore hidden portions of the scene graph
while drawing but make them active during intersection testing.

pfNode Cull and Draw Callbacks
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One of the primary mechanisms for extending OpenGL Performer is through the use of
function callbacks, which can be specified on a per-node basis. OpenGL Performer
allows separate cull and draw callbacks, which are invoked both before and after node
processing. Node callbacks are set with pfNodeTravFuncs().

Cull callbacks can direct the cull traversal, while draw callbacks are added to the display
list and later executed in the draw traversal for custom rendering. There are pre-cull and
pre-draw callbacks, invoked before a node is processed, and post-cull and post-draw
callbacks, invoked after the node is processed.

The cull callbacks return a value indicating how the cull traversal should proceed, as
shown in Table 4-6.

Table 4-6 Cull Callback Return Values
Value Action
PFTRAV_CONT Continue and traverse the children of this node.

PFTRAV_PRUNE Skip the subgraph rooted at this node and continue.

PFTRAV_TERM Terminate the entire traversal.
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Callbacks are processed by the cull traversal in the following order:

1.

8.

If a pre-cull callback is defined, then call the pre-cull callback to get a cull result and
find out whether traversal should continue. Possible return values are listed in
Table 4-6.

If the pre-cull callback returns PFTRAV_PRUNE, the traversal returns to the parent
and continues with the node’s siblings, if any. If the callback returns
PFTRAV_TERM, the traversal terminates immediately. Otherwise, cull processing
continues.

If the pre-cull callback does not set the cull result using pfCullResult(), and
view-frustum culling is enabled, then perform the standard node-within-frustum
test and set the cull result accordingly.

If the cull result is PFIS_FALSE, skip the traversal of children. The post-cull callback
is invoked and traversal returns so that the parent node can traverse any siblings.

If a pre-draw callback is defined, then place al i bpr display-list packet in the
display list so that the node’s pre-draw callback will be called by the draw process.
If running a combined CULLDRAW traversal, invoke the pre-draw callback directly
instead.

Process the node, continuing the cull traversal with each of the node’s children or
adding the node’s geometry to a display list (for pfGeodes). If the cull result was
PFIS_ALL_IN, view-frustum culling is disabled during the traversal of the children.

If a post-draw callback is defined, then place a | i bpr display-list packet in the
display list so that the node’s post-draw callback will be called by the draw process.
If running a combined CULLDRAW traversal, invoke the post-draw callback
directly instead.

If a post-cull callback is defined, then call the post-cull callback.

Draw callbacks are commonly used to place tags or change state while a subgraph is
rendered. Note that if the pre-draw callback is called, the post-draw callback is
guaranteed to be invoked. This way the callback can restore any state modified by the
pre-draw callback. This is useful for state changes such as pfPushMatrix() and
pfPopMatrix(), as shown in the environment-mapping code that is part of Example 4-2.

For doing customized culling, the pre-cull callback can determine whether a
PFIS_ALL_IN has already turned off view-frustum culling using
pfGetParentCullResult(), in which case it may not wish to do its own cull testing. It can
also find out the result of the standard cull test by calling pfGetCullResult().
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Cull callbacks can also be used to render geometry (pfGeoSets) or change graphics state.
Any | i bpr drawing commands are captured in a display list and are later executed
during the draw traversal (see “Display Lists” in Chapter 9). However, direct graphics
library calls can be made safely only in draw function callbacks, because only the draw
process of multiprocess OpenGL Performer configurations is known to be associated
with a window.

Example 4-2 shows some sample node callbacks.

Example 4-2 pfNode Draw Callbacks

voi d

LoadScene(char *fil enane)

{
pf Scene *scene = pf NewScene();
pf G oup *root = pf NewG oup();
pf G oup *refl ecti veGeodes = NULL;

root = pfdLoadFile(filenane);

refl ecti veGeodes =
Ret ur nLi st of GeodesW t hRef | ecti veMateri al s(root);

Use a node cal | back in the Draw process to turn on
and of f graphics library environment mapping before
and after drawing all of the pfCGeodes that have

* pfGeoStates with reflective naterials.

*/

pf NodeTr avFuncs(refl ecti veGeodes, PFTRAV_DRAW

pf dPr eDr awRef | Map, pfdPost Dr awRef | Map) ;

* * X

}

/* This callback turns on graphics library environnent
* mappi ng. Because it changes graphics state it nust be a
* Draw process node cal | back. */
| * ARGSUSED* /
i nt
pf dPr eDr awRef | Map( pf Traverser *trav, void *data)
{
gl TexGenf (GL_S, GL_TEXTURE_GEN MODE, GL_SPHERE_MAP) ;
gl TexGenf (GL_T, G._TEXTURE_GEN MODE, G._SPHERE MAP);
gl Enabl e( GL_TEXTURE_GEN_S) ;
gl Enabl e(GL_TEXTURE_GEN T) ;
return NULL;
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This cal | back turns off graphics library environnent
mappi ng. Because it al so changes graphics state it also
nmust be a Draw process node cal |l back. Al so notice that
it isinmportant to return the graphics library's state to
the state at which it was in before the preNode call back
* was even made.

*/

| * ARGSUSED* /

i nt

pf dPost Dr awRef | Map( pf Traverser *trav, void *data)

{

* 0% X X X

gl Di sabl e(GL_TEXTURE_GEN_S);
gl Di sabl e(GL_TEXTURE_GEN_T);
return NULL;

Process Callbacks
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The | i bpf library processes a visual database with a software-rendering pipeline
composed of application, cull, and draw stages. The system of process callbacks allows you
to insert your own custom culling and drawing functions into the rendering pipeline.
Furthermore, these callbacks are invoked by the proper process when your OpenGL
Performer application is configured for multiprocessing.

By default, OpenGL Performer culls and draws all active pfChannels when pfFrame() is
called. However, you can specify cull and draw function callbacks so that pfFrame() will
cause OpenGL Performer to call your custom functions instead. These functions have the
option of using the default OpenGL Performer processing in addition to their own
custom processing.

When multiprocessing is used, the rendering pipeline works on multiple frames at once.
For example, when the draw process is rendering frame 7, the cull process is working on
frame n+1, and the application process is working on frame n+2. This situation requires
careful management of data so that data generated by the application is propagated to
the cull process and then to the draw process at the right time. OpenGL Performer
manages data that is passed to the process callbacks to ensure that the data is
frame-coherent and is not corrupted.

Example 4-3 illustrates the use of a cull-process callback.
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Example 4-3 Cull-Process Callbacks
I ni t Channel s()

{
/* create and configure all channel s*/
/* define callbacks for cull and draw processes */
pf ChanTr avFunc(chan, PFTRAV_CULL, Cull Func);
pf ChanTr avFunc(chan, PFTRAV_DRAW DrawFunc);
}

/* The Cull callback. Any work that needs to be done in the
* Cull process should happen in this function.

*/
voi d
Cul I Func( pf Channel * chan, void *data)
{
static long first = 1;
/* Lock down whatever processor the cull is using when
* the cull callback is first called
*/
if (first)
{

if ((pfGetMultiprocess() & PFMP_FORK_CULL) &&
(Vi ewst at e- >procLock & PFMP_FORK_CULL))
pf uLockDownCul | ( pf Get ChanPi pe(chan));
first = 0;
}

/* User-defined pre-cull processing. Application-
* gpecific cull know edge might be used to provide
* things like |ine-of-sight culling.

*/
PreCul | (chan, data);

/* standard Performer culling to the view ng frustum */
pfCul | ();

/* User-defined post-cull processing; this routine night
* be used to do things like record cull state fromthis
* cull to be used in future culls.

*/
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Post Cul | (chan, data);
}

/* The draw function call back.
* Any graphics library functionality outside
* OpenG Performer nust be done here.

*/

voi d

Dr awFunc( pf Channel *chan, void *data)

{
[* pre-Draw tasks |ike clearing the viewport */
PreDr aw( chan, data);
pf Draw() ; /* render the frame */
/* draw HUD and so on */
Post Dr aw( chan, data);

}

Process Callbacks and Passthrough Data
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Cull and draw callbacks are specified on a per-pfChannel basis using the functions
pfChanTravFunc() with PFTRAV_CULL and PFTRAV_DRAW, respectively.
pfAllocChanData() allocates passthrough data, data which is passed down the rendering
pipeline to the callbacks.

In the cull phase of the rendering pipeline, OpenGL Performer invokes the cull callback
with a pointer to the pfChannel that is being culled and a pointer to the pfChannel’s
passthrough data buffer. The cull callback may modify data in the buffer. The potentially
modified buffer is then copied and passed to the user’s draw callback.

Default OpenGL Performer processing is triggered by pfCull() and pfDraw(). By
default, pfFrame() calls pfCull() first, then calls pfDraw(). If process callbacks are
defined, however, pfCull() and pfDraw() are not invoked automatically and must be
called by the callbacks to use OpenGL Performer’s default processing. pfCull() should
be called only in the cull callback; it causes OpenGL Performer to cull the current channel
and to generate a display list suitable for rendering.

Channels culled by pfCull() may be drawn in the draw callback by pfDraw(). It is valid
for the draw callback to call pfDraw() more than once. Multipass renderings performed
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with multiple calls to pfDraw() are typical when you use accumulation buffer
techniques.

When the draw callback is invoked, the window will have already been properly
configured for drawing the pfChannel. Specifically, the viewport, perspective, and
viewing matrices are set to their correct values. User modifications of these values are not
reset by pfDraw(). If a draw callback is specified, OpenGL Performer does not
automatically clear the viewport; it leaves that responsibility to the application.
pfClearChan() can be called from the draw callback to clear the channel viewport. If chan
has a pfEarthSky(), then the pfEarthSky() is drawn. Otherwise, the viewport is cleared
to black and the z-buffer is cleared to its maximum value.

You should call pfPassChanData() to indicate that user data should be passed through
the rendering pipeline, which propagates the data downstream to cull and draw
callbacks. The next call to pfFrame() copies the channel buffer into internal buffers, so
that the application is then free to modify data in the buffer without fear of corruption.
The pfPassChanData() function should be called only when necessary, since calling it
imposes some buffer-copying overhead. In addition, passthrough data should be as
small as possible to reduce the time spent copying data.

The code fragment in Example 4-4 is an example of cull and draw callbacks and the
passthrough data that is used to communicate with them.

Example 4-4 Using Passthrough Data to Communicate with Callback Routines
typedef struct

{
| ong val ;
} PassDat a;

voi d cul | Func(pf Channel *chan, void *data);
voi d drawFunc( pf Channel *chan, void *data);

int main()

{
PassData  *pd;

/* allocate passthrough data */
pd = (PassDat a*) pf Al | ocChanDat a( chan, si zeof (PassDat a) ) ;

/* initialize channel callbacks */

pf ChanTr avFunc(chan, PFTRAV_CULL, cull Func);
pf ChanTr avFunc(chan, PFTRAV_DRAW dr awFunc);
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/* main simulation | oop */

while (1)
{
pf Sync();
pd- >val = 0;
pf PassChanDat a( chan) ;
pf Frane();
}
}
voi d
cul I Func( pf Channel *chan, void *data)
{
PassData *pd = (PassDat a*)dat a;
pd- >val ++;
pfCul | ();
}
voi d
dr awFunc( pf Channel *chan, void *data)
{
PassData *pd = (PassDat a*)dat a;
fprintf(stderr, "%d\n", pd->val);
pf d ear Chan(chan) ;
pf Draw() ;
}

This example would, regardless of the multiprocessing mode, have the values 0, 1, and 1
for pd->val at the points where pfFrame(), pfCull(), and pfDraw() are called. In this way,
control data can be sent down the pipeline from the application, through the cull, and on
to the draw process with frame synchronization without regard to the active
multiprocessing mode.

When configured as a process separate from the draw, the cull callback should not
attempt to send graphics commands to an OpenGL Performer window because only the
draw process is attached to the window. Callbacks should not modify the OpenGL
Performer database, but they can use pfGet() routines to inquire about database
information. The draw callback should not call gIXSwapBuffers() because OpenGL
Performer must control buffer swapping in order to manage the necessary frame and
channel synchronization. However, if you need special control over buffer swapping, use
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pfPipeSwapFunc() to register a function as the given pipe’s buffer-swapping function.
Once your function is registered, it will be called instead of gIXSwapBuffers().

Intersection Traversal

You can make spatial inquiries in OpenGL Performer by testing the intersection of line
segments with geometry in the database. For example, a single line segment pointing
straight down from the eyepoint can determine your height above terrain, four such
segments can simulate the four tires of a car, and segments swept out by points on a
moving object can determine collisions with other objects.

Testing Line Segment Intersections

The testing of each line segment or group of spatially grouped segments requires a
traversal of part or all of a scene graph. You make these inquiries using
pfNodelsectSegs(), which intersects the specified group of segments with the subgraph
rooted at the specified node. pfChanNodelsectSegs() functions similarly, but includes a
channel so that the traversal can make decisions based on the level-of-detail specified by
pfLOD nodes.

Intersection Requests: pfSegSets

A pfSegSet is a structure that embodies an intersection request.

typedef struct _pf SegSet

{

| ong node;

voi d* user Dat a;

pf Seg segs[PFI S_MAX_SEGS];

ul ong activeMask;

ul ong isect Mask;

voi d* bound,

| ong (*di scFunc) (pfHit*);
} pf SegSet;

The segs field is an array of line segments making up the query. You tell
pfNodelsectSegs() which segments to test with by setting the corresponding bit in the
activeMask field. If your pfSegSet contains many closely-grouped line segments, you can
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specify a bounding volume using the data structure’s bound field. pfNodelsectSegs() can
use that bounding volume to more quickly test the request against bounding volumes in
the scene graph. The userData field is a pointer with which you can point to other
information about the request that you might access in a callback. The other fields are
described in the following sections. The pfSegSet is not modified during the traversal.

Intersection Return Data: pfHit Objects
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Intersection information is returned in pfHit objects. These can be queried using
pfQueryHit() and pfMQueryHit(). Table 4-7 lists the items that can be queried from a
pfHit object.

Table 4-7 Intersection-Query Token Names

Query Token Description

PFQHIT_FLAGS Status and validity information
PFQHIT_SEGNUM Index of the segment in a pfSegSet request
PFQHIT_SEG Line segment as currently clipped
PFQHIT_POINT Intersection point in object coordinates
PFQHIT_NORM Geometric normal of an intersected triangle
PFQHIT_VERTS Vertices of an intersected triangle
PFQHIT_TRI Index of an intersected triangle
PFQHIT_PRIM Index of an intersected primitive in pfGeoSet
PFQHIT_GSET pfGeoSet of an intersection
PFQHIT_NODE pfGeode of an intersection
PFQHIT_NAME Name of pfGeode

PFQHIT_XFORM Current transformation matrix
PFQHIT_PATH Path in scene graph of intersection

The PFQHIT_FLAGS field is bit vector with bits that indicate whether an intersection
occurred and whether the point, normal, primitive and transformation information is
valid. For some types of intersections only some of the information has meaning; for
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Intersection Masks

instance, for a pfSegSet bounding volume intersecting a pfNode bounding sphere, the
point information may not be valid.

Queries can be performed singly by calling pfQueryHit() with a single query token, or
several at a time by using pfMQueryHit() with an array of tokens. In the latter case, the
return information is placed in the specified order into a return array.

Before using pfNodelsectSegs() to intersect the geometry in the scene graph, you must
set intersection masks for the nodes in the scene graph and correspondingly in your
search request.

Setting the Intersection Mask

The pfNodeTravMask() function sets the intersection masks in a subgraph of the scene
down through GeoSets. For example:

pf NodeTr avMask(root, PFTRAV_I SECT, 0x01,
PFTRAV_SELF | PFTRAV_DESCEND, PF_SET)

This function sets the intersection mask of all nodes and GeoSets in the scene graph to
0x01. A subsequent intersection request would then use 0x01 as the mask in
pfNodelsectSegs(). A description of how to use this mask follows.

Specifying Different Classes of Geometry
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Databases can contain different classes of objects, and only some of those may be relevant
for a particular intersection request. For example, the wheels on a truck follow the
ground, even through a small pond; therefore, you only want to test for intersection with
the ground and not with the water. For a boat, on the other hand, intersections with both
water and the lake bottom have significance.

To accommodate distinctions between classes of objects, each node and GeoSet in a scene
graph has an intersection mask. This mask allows traversals, such as intersections, to

either consider or ignore geometry by class.

For example, you could use four classes of geometry to control tests for collision
detection of a moving ship, collision detection for a falling bowling ball, and line-of-sight
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visibility. Table 4-8 matches database classes with the pfNodeTravMask() and
pfGSetlIsectMask() values used to support the traversal tests listed above.

Table 4-8 Database Classes and Corresponding Node Masks
Database Class Node Mask

Water 0x01

Ground 0x02

Pier 0x04

Clouds 0x08

Once the mask values at nodes in the database have been set, intersection traversals can
be directed by them. For example, the line segments for ship collision detection should
be sensitive to the water, ground, and pier, while those for a bowling ball would ignore
intersections with water and the clouds, testing only against the ground and pier.
Line-of-sight ranging should be sensitive to all the geometry in the scene. Table 4-9 lists
the traversal mask values and mask representations that would achieve the proper
intersection tests.

Table 4-9 Representing Traversal Mask Values

Intersection Class Mask Value Mask Representation

Ship 0x07 (Water | Ground | Pier)

Bowling ball 0x06 (Ground | Pier)

Line-of-sight ranging 0xO0f (Water | Ground | Pier | Clouds)

The intersection traversal prunes a node as soon as it gets a zero result from doing a
bitwise AND of the node intersection mask and the traversal mask specified by the
pfSegSet’s isectMask field. Thus, all nodes in the scene graph should normally be set to be
the bitwise OR of the masks of their children. After setting the class-specific masks for
different subgraphs of the scene, this can be accomplished by calling this function:

pf NodeTr avMask(root, PFSET_OR, PFTRAV_SET FROM CHI LD, 0x0);

This function sets each node’s mask by ORing 0x0 with the current mask and the masks
of the node’s children.
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Note that this traversal, like that used to update node bounding volumes, is unusual in
that it propagates information up the graph from leaf nodes to root.

Discriminator Callbacks

If you need to make a more sophisticated discrimination than node masks allow about
when an intersection is valid, OpenGL Performer can issue a callback on each successful
intersection and let you decide whether the intersection is valid in the current context.

If a callback is specified in pfNodelIsectSegs(), then at each level where an intersection
occurs—for example, with bounding volumes of | i bpf pfGeodes (mode
PFTRAV_IS_GEODE), | i bpr GeoSets (mode PFTRAV_IS_GSET), or individual
geometric primitives (mode PFTRAV_IS_PRIM)—OpenGL Performer invokes the
callback, giving it information about the candidate intersection. The value you return
from the callback determines whether the intersection should be ignored and how the
intersection traversal should proceed.

If the return value includes the bit PFTRAV_IS_IGNORE, the intersection is ignored. The
intersection traversal itself can also be influenced by the callback. The traversal is subject
to three possible fates, as detailed in Table 4-10.

Table 4-10 Possible Traversal Results

Set Bits Meaning

PFTRAV_CONT Continue the traversal inside this subgraph or GeoSet.
PFTRAV_PRUNE Continue the traversal but skip the rest of this subgraph or GeoSet.

PFTRAV_TERM Terminate the traversal here.

Line Segment Clipping

Usually, the intersection point of most interest is the one that is nearest to the beginning
of the segment. By default, after each successful intersection, the end of the segment is
clipped so that the segment now ends at the intersection point. Upon the final return
from the traversal, it contains the closest intersection point.

However, if you want to examine all intersections along a segment you can use a
discriminator callback to tell OpenGL Performer not to clip segments—simply leave out
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the PFTRAV_IS_CLIP_END bit in the return value. If you want the farthest intersection
point, you can use PFTRAV_IS_CLIP_START so that after each intersection the new
segment starts at the intersection point and extends outward.

Traversing Special Nodes

Picking

Performance
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Level-of-detail nodes are intersected against the model for range zero, which is typically
the highest level-of-detail (LOD). If you want to select a different model, you can turn off
the intersection mask for the LOD node and place a switch node in parallel (having the
same parent and children as the LOD) and set it to the desired model.

Sequences and switches intersect using the currently active child or children. Billboards
are not intersected, since no eyepoint is defined for intersection traversals.

The pfChanPick() function provides a simple interface for intersection testing by
enabling the user to move a mouse to select one or more geometries. The method uses
pfNodelsectSegs() and uses the high bit, PFIS_PICK_MASK, of the intersection mask in
the scene graph. Setting up picking with pfNodePickSetup() sets this bit in the
intersection mask throughout the specified subgraph but does not enable caching inside
pfGeoSets. See “Performance” on page 125.

The pfChanPick() function has an extra feature: it can either return the closest
intersection (PFPK_M_NEAREST) or return all pfHits along the picking ray
(PFPK_M_ALL).

The intersection traversal uses the hierarchical bounding volumes in the scene graph to
allow culling of the database and then processes candidate GeoSets by testing against
their internal geometry. For this reason, the hierarchy should reflect the spatial
organization of the database. High-performance culling has similar requirements (see
Chapter 21, “Performance Tuning and Debugging”).
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Performance Trade-offs

Front Face/Back Face

Enabling Caching

OpenGL Performer currently retains no information about spatial organization of data
within GeoSets; so, each triangle in the GeoSet must be tested. Although large GeoSets
are good for rendering performance in the absence of culling, spatially localized GeoSets
are best for culling (since a GeoSet is the smallest culling unit), and spatially localized
GeoSets with few primitives are best for intersections.

One way to speed up intersection testing is to turn on PFTRAV_IS_CULL_BACK. When
this flag is enabled, only front-facing geometry is tested.

Precomputing information about normals and projections speeds up intersections inside
GeoSets. For the best performance, you should enable caching in GeoSets when you set
the intersection masks with pfNodeTravMask().

If the geometry within a GeoSet is dynamic, such as waves on a lake, caching can cause
incorrect results. However, for geometry that changes only rarely, you can use
pfGSetIsectMask() to recompute the cache as needed.

Intersection Methods for Segments
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Normally, when intersecting down to the primitive level each line segment is separately
tested against each bounding volume in the scene graph, and after passing those tests is
intersected against the pfGeoSet bounding box. Segments that intersect the bounding
box are eventually tested against actual geometry.

When a pfSegSet has a spatially localized group of at least several line segments, you can
speed up the traversal by providing a bounding volume. You can use
pfCylAroundSegs() to create a bounding cylinder for the segments, place a pointer to the
resulting cylinder in the pfSegSet’s bound field, then OR the PFTRAV_IS_BCYL bit into
the pfSegSet’s mode field.

If only a rough volume-volume intersection is required, you can specify a bounding
cylinder in the pfSegSet without any line segments at all and request discriminator
callbacks at the PFTRAV_IS_NODE or PFTRAV_IS_GSET level.
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Figure 4-4 illustrates some aspects of this process. The portion of the figure labeled A
represents a single segment; B is a collection of nonparallel segments, not suitable for
tightly bounding with a cylinder; and C shows parallel segments surrounded by a
bounding cylinder. In the bottom portion of the figure, the bounding cylinder around the
segments intersects the bounding box around the object; each segment in the cylinder,
thus, must be tested individually to see if any of them intersect.

» \

Figure 4-4 Intersection Methods
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Chapter 5

Frame and Load Control

This chapter describes how to manage the display operations of a visual simulation
application to maintain the desired frame rate and visual performance level. In addition
this chapter covers advanced topics including multiprocessing and shared memory
management.

Frame Rate Management
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A frame is the period of time in which all processing must be completed before updating
the display with a new image, for example, a frame rate of 60 Hz means the display is
updated 60 times per second and the time extent of a frame is 16.7 milliseconds. The
ability to fit all processing within a frame depends on several variables, some of which
are the following:

¢ The number of pixels being filled
¢ The number of transformations and modal changes being made
* The amount of processing required to create a display list for a single frame

¢ The quantity of information being sent to the graphics subsystem

Through intelligent management of SGI CPU and graphics hardware, OpenGL
Performer minimizes the above variables in order to achieve the desired frame rate.
However, in some cases, peak frame rate is less important than a fixed frame rate. Fixed
frame rate means that the display is updated at a consistent, unvarying rate. While a
simple step toward achieving a fixed frame rate is to reduce the maximum frame rate to
an easily achievable level, we shall explore other (less Draconian) mechanisms in this
chapter that do not adversely impact frame rates.

As discussed in the following sections, OpenGL Performer lets you select the frame rate
and has built-in functionality to maintain that frame rate and control overload situations
when the draw time exceeds or grows uncomfortably close to a frame time. While these
methods can be effective, they do require some cooperation from the run-time database.
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In particular, databases should be modeled with levels-of-detail and be spatially
arranged.

Selecting the Frame Rate

Achieving the Frame
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OpenGL Performer is designed to run at the fixed frame rate as specified by
pfFrameRate(). Selecting a fixed frame rate does not in itself guarantee that each frame
can be completed within the desired time. It is possible that some frames might require
more computation time than is allotted by the frame rate. By taking too long, these
frames cause dropped or skipped frames. A situation in which frames are dropped is called
an overload or overrun situation. A system that is close to dropping frames is said to be in
stress.

Rate

The first step towards achieving a frame rate is to make sure that the scene can be
processed in less than a frame’s time—hopefully much less than a frame’s time.
Although minimizing the processing time of a frame is a huge effort, rife with tricks and
black magic, certain techniques stand out as OpenGL Performer’s main weapons against
slothful performance:

*  Multiprocessing. The use of multiple processes on multi-CPU systems can
drastically increase throughput.

* View culling. By trivially rejecting portions of the database outside the viewing
volume, performance can be increased by orders of magnitude.

e State sorting. Many graphics pipelines are sensitive to graphics mode changes.
Sorting a scene by graphics state greatly reduces mode changes, increasing the
efficiency of the hardware.

* Level-of-detail. Objects that are far away project to a relatively small area of the
display so fewer polygons can be used to render the object without substantial loss
of image quality. The overall result is fewer polygons to draw and improved
performance.

Multiprocessing and level-of-detail is discussed in this chapter while view culling and
state sorting are discussed in Chapter 4, “Database Traversal.” More information on
sorting in the context of performance tuning can be found in Chapter 21, “Performance
Tuning and Debugging.”
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Fixing the Frame Rate
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Frame intervals are fixed periods of time but frame processing is variable in nature.
Because things change in a scene, such as when objects come into the field of view, frame
processing cannot be fixed. In order to maintain a fixed frame rate, the average frame
processing time must be less than the frame time so that fluctuations do not exceed the
selected frame rate. Alternately, the scene complexity can be automatically reduced or
increased so that the frame rate stays within a user-defined “sweet spot.” This
mechanism requires that the scene be modeled with levels of detail (pfLOD nodes).

OpenGL Performer calculates the system load for each frame. Load is calculated as the
percentage of the frame period it took to process the frame. Then if the default
OpenGL Performer fixed frame rate mechanisms are enabled, load is used to calculate
system stress, which is in turn used to adjust the level of detail (LOD) of visible models.
LOD management is OpenGL Performer’s primary method of managing system load.

Table 5-1 shows the OpenGL Performer functions for controlling frame processing.

Table 5-1 Frame Control Functions

Function Description

pfFrameRate() Set the desired frame rate.

pfSync() Synchronize processing to frame boundaries.
pfFrame() Initiate frame processing.

pfPhase() Control frame boundaries.

pfChanStressFilter() Control how stress is applied to LOD ranges.

pfChanStress() Manually control the stress value.

pfGetChanLoad() Determine the current system load.

pfChanLODA ttr() Control how LOD is performed, including global LOD adjustment and
blending (fade).

Figure 5-1 shows a frame-timing diagram that illustrates what occurs when frame
computations are not completed within the required interval. The solid vertical lines in
Figure 5-1 represent frame-display intervals. The dashed vertical lines represent video
refresh intervals.
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Figure 5-1 Frame Rate and Phase Control

In this example, the video scan rate is 60 Hz and the frame rate is 20 Hz. With the video
hardware running at 60 Hz, each of the 20 Hz frames should be scanned to the video
display three times, and the system should wait for every third vertical retrace signal
before displaying the next image. The numbers across the top of the figure represent the
refresh count modulo three. New images are displayed on refreshes whose count modulo
three is zero, as shown by the solid lines.

In the first frame of this example, the new image is not yet completed when the third
vertical retrace signal occurs; therefore, the same image must be displayed again during
the next interval. This situation is known as frame overrun, because the frame
computation time extends past a refresh boundary.

Because of the overrun, the frame and refresh interval timing is no longer synchronized;
it is out of phase. A decision must be made either to display the same image for the
remaining two intervals, or to switch to the next image even though the refresh is not
aligned on a frame boundary. The frame-rate control mode, discussed in the next section,
determines which choice is selected.

Knowing that the situation illustrated in Figure 5-1 is a possibility, you can specify a

frame control mode to indicate what you would like the system to do when a frame
overrun occurs.
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To specify a method of frame-rate control, call pfPhase(). There are the following choices:

¢ Free run without phase control (PFPHASE_FREE_RUN) tells the application to run
as fast as possible—to display each new frame as soon as it is ready, without
attempting to maintain a constant frame rate.

¢ Free run without phase control but with a limit on the maximum frame rate
(PFPHASE_LIMIT) tells the application to run no faster than the rate specified by
pfFrameRate().

¢ Fixed frame rate with floating phase (PFPHASE_FLOAT) allows the drawing
process to display a new frame (using giXSwapBuffers() at any time, regardless of
frame boundaries).

¢ Fixed frame rate with locked phase (PFPHASE_LOCK) requires the draw process to
wait for a frame boundary before displaying a new frame.

¢ The draw by default will wait for a new cull result to execute its stage functions.
This behavior can be changed by including the token PFPHASE_SPIN_DRAW with
the desired mode token from the above choices. This will allow the draw to run
every frame, redrawing the previous cull result. This can allow you to make
changes of your own in draw callback functions. Objects such as viewing frustum,
pfLODs, pfDCSs, and anything else normally processed by the cull or application
processes will not be updated until the next full cull result is available.

Free-Running Frame-Rate Control
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The simplest form of frame-rate control, called free-running, is to have no control at all.
This uncontrolled mode draws frames as quickly as the hardware is able to process them.
In free-running mode, the frame rate may be 60 Hz in the areas of low database
complexity, but could drop to a slower rate in views that place greater demand on the
system. Use pfPhase(PFPHASE_FREE_RUN) to specify a free-running frame rate.

In applications in which real-time graphics provide the majority of visual cues to an
observer, the variable frame rates produced by the free-running mode may be
undesirable. The variable lag in image update associated with variable frame rate can
lead to motion sickness for the simulation participants, especially in motion
platform-based trainers or ingressive head-mounted displays. For these and other
reasons it is usually preferable to maintain a steady, consistent frame-update rate.
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Fixed Frame-Rate Control

Frame Skipping
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Assume that the overrun frame in Figure 5-1 completes processing during the next
refresh period, as shown. After the overrun frame, the simulation is still running at the
chosen 20-Hz rate and is updating at every third vertical retrace. If a new image is
displayed at the next refresh, its start time lags by 1/60th of a second, and therefore it is
out of phase by that much.

Subsequent images are displayed when the refresh count modulo three is one. As the
simulation continues and additional extended frames occur, the phase continues to drift.
This mode of operation is called floating phase, as shown by the frame in Figure 5-1
labeled "Floating." Use pfPhase(PFPHASE_FLOAT) to select floating-phase frame
control.

The alternative to displaying a new image out of phase is to display the old image for the
remainder of the current update period, then change to the new image at the normal
time. This locked phase extends each frame overrun to an integral multiple of the selected
frame time, making the overrun more evident but also maintaining phase throughout the
simulation. This timing is shown by the frame in Figure 5-1 labeled Locked. Although
this mode is the most restrictive, it is also the most desirable in many cases. Use
pfPhase(PFPHASE_LOCK) to select phase-locked frame control.

For example, a 20-Hz phase-locked frame rate is selected by specifying the following:

pf Phase( PFPHASE_LOCK) ;
pf Fr ameRat e( 20. 0f ) ;

These specifications prevent the system from switching to a newly computed image until
a display period of 1/20th second has passed from the time the previous image was
displayed. The frame rate remains fixed even when the Geometry Pipeline finishes its
work in less time. Fixed frame-rate display, therefore, involves setting the desired frame
rate and selecting one of the two fixed-frame-rate control modes.

When multiple frame times elapse during the rendering of a single frame, the system
must choose which frame to draw next. If the per-frame display lists are processed in
strict succession even after a frame overrun, the visual image slowly recedes in time and
the positional correlation between display and simulation is lost. To avoid this problem,
only the most recent frame definition received by the draw process is sent to the
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Geometry Pipeline, and all intervening frame definitions are abandoned. This is known
as dropping or skipping frames and is performed in both of the fixed frame-rate modes.

Because the effects of variable frame rates, phase variance, and frame dropping are
distracting, you should choose a frame rate with care. Steady frame rates are achieved
when the frame time allows the worst-case view to be computed without overload. The
structure of the visual database, particularly in terms of uniform “complexity density,”
can be important in maximizing the system frame rate. See “Organizing a Database for
Efficient Culling” in Chapter 4 and Figure 4-3 for examples of the importance of database
structure.

Maintaining a fixed frame rate involves managing future system load by adjusting
graphics display actions to compensate for varying past and present loads. The theory
behind load management and suggested methods for dealing with variable load
situations are discussed in the “Level-of-Detail Management” on page 136 of this
chapter.

Example 5-1 demonstrates a common approach to frame control. The code is based on
part of the mai n. ¢ source file used in the per f | y sample application.

Example 5-1 Frame Control Excerpt
/* Set the desired frane rate. */
pf Fr ameRat e( Vi ewSt at e- >f r aneRat e) ;

/* Set the MP synchronization phase. */
pf Phase( Vi ewsSt at e- >phase) ;

/* Application main | oop */
whil e (!SinDone())

{
[* Sleep until next frame */
pf Sync();
/* Should do all latency-critical processing between

* pfSync() and pfFrame(). Such processing usually
* invol ves changing the view ng position.
*
/
PreFrame();

/* Trigger cull and draw processing for this frame. */
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pf Frame();

/* Performnon-|atency-critical simulation updates. */
Post Frane() ;

Level-of-Detail Management

All graphics systems have finite capabilities that affect the number of geometric
primitives that can be displayed per frame at a specified frame rate. Because of these
limitations, maximizing visual cues while minimizing the polygon count in a database is
often an important aspect of database development. Level-of-detail (LOD) processing is
one of the most beneficial tools available for managing database complexity for the
purpose of improving display performance.

The basic premise of LOD processing is that objects that are barely visible, either because
they are located a great distance from the eyepoint or because atmospheric conditions
reduce visibility, do not need to be rendered in great detail in order to be recognizable.
This is in stark contrast to mandating that all polygons be rendered regardless of their
contribution to the visual scene. Both atmospheric effects and the visual effect of
perspective decrease the importance of details as range from the eyepoint increases. The
predominant visual effect of distance is the perspective foreshortening of objects, which
makes them appear to shrink in size as they recede into the distance.

To save rendering time, objects that are visually less important in a frame can be rendered
with less detail. The LOD approach to optimizing the display of complex objects is to
construct a number of progressively simpler versions of an object and to select one of
them for display as a function of range.

This requires you to create multiple models of an object with varying levels of detail. You
also must supply a rule to determine how much detail is appropriate for a given distance
to the eyepoint. The sections that follow describe how to create multiple LOD models
and how to control when the changeover to a different LOD occurs.

Level-of-Detail Models

136

Most objects comprise smaller objects that become visually insignificant at ranges where
the conglomerate object itself is still quite prominent. For example, a complex model of
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an automobile might have door handles, side- and rear-view mirrors, license plates, and
other small details.

A short distance away, these features may no longer be visible, even though the car itself
is still a visually significant element of the scene. It is important to realize that as a group,
these small features may contain as many polygons as the larger car itself, and thus have
a detrimental effect on rendering speed.

You can construct two LOD models simply by providing one model that contains all of
the detailed features and another model that contains only the car body itself and none
of the detailed features. A more sophisticated scheme uses multiple LOD models that are
grouped under an LOD node.

Figure 5-2 shows an LOD node with multiple children numbered 1 through 7. In this
case, the model named LOD 1 is the most detailed model and models LOD 2 through
LOD n represent progressively coarser models. Each of these LOD models might contain
children that also have LOD components. Associated with the LOD node is a list of
ranges that define the distance at which each model is appropriate to display. There is no
limit to the number of levels of detail that can be used.

Level
of Detail
ode

PP e

LoDl  LOD2 LoDn
Figure 5-2 Level-of-Detail Node Structure
The object can be transformed as needed. During the culling phase of frame processing,

the distance from the eyepoint to the object is computed and used (with other factors) to
select which LOD model to display.
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The OpenGL Performer pfLOD node contains a value known as the center of LOD
processing. The LOD center point is an x, y, z location that defines the point used in
conjunction with the eyepoint for LOD range-switching calculations, as described in the
section “Level-of-Detail Range Processing” on page 141 of this chapter.

Figure 5-3 shows an example in which multiple LOD models grouped under a parent
LOD node are used to represent a toy race car.
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Blend

zones ‘ |

Switch
ranges

Figure 5-3 Level-of-Detail Processing

Figure 5-3 demonstrates that each car in a row of identical cars placed at increasing range
from the eyepoint is drawn using a different child of the tree’s LOD node.
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Level-of-Detail States

140

The double-ended arrows indicate a switch range for each level of detail. When the car
is closer to the eyepoint than the first range, nothing is drawn. When the car is between
the first and second ranges, LOD 1 is drawn. When the car is between the second and
third ranges, LOD 2 is drawn.

This range bracketing continues until the final range is passed, at which point nothing is
drawn. The pfLOD node’s switch range list contains one more entry than the number of
child nodes to allow for this range bracketing.

OpenGL Performer provides the ability to specify a blend zone for each switch between
LOD models. These blend zones will be discussed in more detail in “Level-of-Detail
Transition Blending” on page 145.

In addition to standard LOD nodes, OpenGL Performer also supports LOD state—the
pfLODState. A pfLODState is in essence a way of creating classes or priorities among
LODs. A pfLODState contains eight parameters used to modify four different ways in
which OpenGL Performer calculates LOD switch ranges and LOD transition distances.
LOD states contain the following parameters:

® Scale for LODs switch ranges

e Offset for LODs switch ranges

® Scale for the effect of Stress of switch ranges

e Offset for the effect of Stress on switch ranges

® Scale for the transition distances per LOD switch

e Offset for the transition distances per LOD switch

® Scale for the effect of stress on transition distances

e Offset for the effect of stress on transition distances

These LOD states can then be attached to either single or multiple LOD nodes such that
the LOD behavior of groups or classes of objects can be different and be easily modified.

The man pages for pfLODLODState() and pfLODLODStateIndex() contain detailed
information on how to attach pfLODStates.
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LOD states are useful because in a particular scene there often exists an object of focus
such as a sign, a target, or some other object of particular visual significance that needs
to be treated specially with regard to visual importance and thus LOD behavior. It stands
to reason that this particular object (or small group of objects) should be at the highest
detail possible despite being farther away than other elements in the scene which might
not be as visually significant. In fact, it might be feasible to diminish the detail of less
important objects (like rocks and trees) in favor of the other more important objects
(despite these objects being more distant). In this case one would create two LOD states.
The first would be for the important objects and could disable the effect of stress on these
nodes as well as scale the switch ranges such that the object(s) would maintain more
detail for further ranges. The second LOD state would be used to make the objects of less
importance be more responsive to system stress and possibly scale their switch ranges
such that they would show even less detail than normal. In this way, LOD states allow
biasing among different LODs to maintain desirable rendering speeds while maintaining
the visual integrity of various objects depending on their subjective importance (rather
than solely on their current visual significance).

In some multichannel applications, LOD states are used to control the action of LODs in
different viewing channels that have different visual significance criteria—for instance
one channel might be a normal channel while a second might represent an infrared
display. Rather than simple use of LOD states, it is also possible to specify a list of LOD
states to a channel and use indexes from this list for particular LODs (with
pfChanLODStateList() and pfLODLODStateIndex()). In this way, in the normal
channel a car’s geometry might be particularly important while in the infrared channel,
the hot exhaust of the same car might be much more important to observe. This type of
channel-dependent LOD can be set up by using two distinct and different LOD states for
the same index in the lists of LOD states specified for unique channels.

Note that because OpenGL Performer performs LOD calculations in a range squared
space as much as possible for efficiency reasons, LOD computation becomes more costly
when LOD states contain scales that are not equal to 1.0 or offsets not equal to 0.0 for
transitions or switch ranges—these offsets force OpenGL Performer to perform
otherwise avoidable square root calculations in order to correctly calculate the effects of
scale and offset on the LOD.

Level-of-Detail Range Processing
The LOD switch ranges present in LOD nodes are processed before being used to make

the level of detail selection. The goal of range setting is to switch LODs as objects reach
certain levels of perceptibility. The size of a channel in pixels, the field of view used in
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viewing, and the distance from the observer to the display surface all affect object
perceptibility.

OpenGL Performer uses a channel size of 1024x1024 pixels and a 45-degree field of view
as the basis for calculating LOD switching ranges. The screen space size of a channel and
the current field of view are used to compute an LOD scale factor that is updated
whenever the channel size or the field of view changes.

There is an additional global LOD scale factor that can be used to adjust switch ranges
based on the relationship between the observer and the display surface. The default
global scale factor is 1.

Note that LOD switch ranges are also affected by LOD states that have been attached to
either a particular LOD or to a channel that contains the LOD. These LOD states provide
the mechanism to apply both a scale and an offset for an LODs switch ranges and to the
effect of system stress on those switch ranges. See “Level-of-Detail States” on page 140
for more information on pfLODStates.

Ultimately, an LOD’s switch range without regard to system stress can be computed as
follows:

switch_range[i] =
(range[i] *
LODSt at eRangeScal e *
Channel LODSt at eRangeScal e +
LODSt at eRangeOf f set  +
Channel LODSt at eRangeOF f set) *
Channel LODScal e *
Channel Si zeAndFOVFact or ;

If OpenGL Performer channel stress processing is active, the computed range is modified
as follows:

switch_range[i] *=
(Channel LODSt ress *
LODSt at eRangeStressScal e *
Channel LODSt at eRangeSt ressScal e +
LODSt at eRangeStressO f set +
Channel LODSt at eRangeSt ressOf f set) ;

Example 5-2 illustrates how to set LOD ranges.

007-1680-080



Level-of-Detail Management

007-1680-080

Example 5-2 Setting LOD Ranges

/* setLODRanges() -- sets the ranges for the LOD node. The
* ranges fromO to NunmLODs are equally spaced between mn
* and max. The last range, which determni nes how far you
* can get fromthe object and still see it, is set to
* vi sMax.

*/

voi d
set LODRanges(pfLOD *lod, float nmin, float max, float visMax)

{ . .

int i;
float range, rangelnc;

rangelnc = (max - min)/(ViewState->shel | LOD + 1);
for (range = mn, i =0; i < ViewState->shell LOD;, i++)
{

Vi ewSt at e- >range[i] = range;

pf LODRange(l od, i, range);

range += rangel nc;

}
Vi ewSt at e- >range[i] = visMax;
pf LODRange(l od, i, visMax);
}
/* generateShel | LODs() -- creates shell LOD nodes according

* to the paranmeters specified in the shared data structure.
*/

voi d
gener at eShel | LODs(voi d)
{ . .

int i;

pf Group *grp;

pf Vec4d clr;

| ong nunLOD = Vi ewSt at e- >shel | LOD;
| ong nunPnts = Vi ewSt at e->shel | Pnts;
| ong nunPcs = Vi ewSt at e- >shel | Pcs;

for (i =1; i <= nunLOD; i++)
{
if (ViewState->shell Col or == SHELL_COLOR_SI NG
pf Set Vec4(clr, 0.9f, 0.1f, 0.1f, 1.0f);
el se
/* set the color. highest |evel = RED,
* mddle LOD = GREEN, | owest LOD = BLUE
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*/
pf Set Vec4(cl r,
(i <= (long)floor((double)(nunOX2.0f)))"?

(-2.0f/nunLOD) * i + 1.0f + 2.0f/nunOD:

0. Of ,

(i <= (long)floor((double)(nunmdX2)))?
(2.0f /numL.OD) * (i - 1):
(-2.0f/nunLOD) * i + 2.0f,

(i <= (long)floor((double)(nunOd2)))?
0. Of :

(2.0f/num.CD) * i - 1.0f,
1.0f);

/* build a shell GeoSet */

grp = createShel |l (nunPcs, nunPnts,
Vi ewSt at e- >shel | Sweep, &clr,
Vi ewSt at e- >shel | Draw) ;

nor nal i zeNode( ( pf Node *)grp);

/* add geode as another |evel of detail node */
pf AddChi | d( Vi ewSt at e->LOD, grp);

[* sinmplify the geonetry, but don’t have | ess than
* 4 points per circle or less than 3 pieces */
nunPnts = (nunPnts > 7) ? nunPnts-4 : 4;

nunPcs = (nunPcs > 6) ? nunPcs-4 : 3;

Vi ewSt at e- >LOD = pf NewlLOD() ;
gener at eShel | LODs() ;

/* get the LOD s extents */
pf Get NodeBSpher e( Vi ewSt at e- >LOD, &( Vi ewSt at e- >bSphere)) ;
pf LODCent er (Vi ewSt at e- >LOD, Vi ewSt at e- >bSphere. center);
/* set ranges for LODs; there should be (numLODs + 1)
* range entries */
set LODRanges( Vi ewSt at e->LOD, Vi ewSt at e- >mi nRange,
Vi ewSt at e- >naxRange, Vi ewSt at e- >nax) ;
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An undesirable effect called popping occurs when the sudden transition from one LOD to
the next LOD is visually noticeable. This distracting image artifact can be ameliorated
with a slight modification to the normal LOD-switching process.

In this modified method, a transition per LOD switch is established rather than making
a sudden substitution of models at the indicated switch range. These transitions specify
distances over which to blend between the previous and next LOD. These zones are
considered to be centered at the specified LOD switch distance, as shown by the
horizontal shaded bars of Figure 7-3. Note that OpenGL Performer limits the transition
distances to be equal to the shortest distance between the switch range and the two
neighboring switch ranges. For more information, see the pfLODTransition() man page.

As the range from eyepoint to LOD center-point transitions the blend zone, each of the
neighboring LOD levels is drawn by using transparency-to-composite samples taken
from the present LOD model with samples taken from the next LOD model. For example,
at the near, center, and far points of the transition blend zone between LOD 1 and LOD
2, samples from both LOD 1 and LOD 2 are composited until the end of the transition
zone is reached, where all the samples are obtained from LOD 2.

Table 5-2 lists the transparency factors used for transitioning from one LOD range to
another LOD range.

Table 5-2 LOD Transition Zones

Distance LOD1 LOD 2

Near edge of blend zone 100% opaque 0% opaque
Center of blend zone 50% opaque 50% opaque

Far edge of blend zone 0% opaque 100% opaque

LOD transitions are made smoother and much less noticeable by applying a blending
technique rather than making a sudden transition. Blending allows LOD transitions to
look good at ranges closer to the eye than LOD popping allows. Decreasing switch
ranges in this way improves the ability of LOD processing to maximize the visual impact
of each polygon in the scene without creating distracting visual artifacts.

The benefits of smooth LOD transition have an associated cost. The expense lies in the
fact that when an object is within a blend zone, two versions of that object are drawn.
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This causes blended LOD transitions to increase the scene polygon complexity during
the time of transition. For this reason, the blend zone is best kept to the shortest distance
that avoids distracting LOD-popping artifacts. Currently, fade level of detail is
supported only on RealityEngine and InfiniteReality graphics systems.

Note that the actual ‘blend’ or ‘fade” distance used by OpenGL Performer can also be
adjusted by the LOD priority structures called pfLODStates. pfLODStates hold an offset
and scale for the size of transition zones as well as an offset and scale for how system
stress can affect the size of the transition zones. See “Level-of-Detail States” on page 140
for more information on pfLODStates.

Note also, that there exists a global LOD transition scale on a per channel basis that can
affect all transition distances uniformly.

Thus for an LOD with 5 switch ranges R0, R1, R2, R3, R4 to switch between four models
(MO0, M1, M2, M3), there are 5 transition zones T0 (fade in M0), T1 (blend between M0
and M1), T2 (blend between M1 and M2), T3 (blend between M2 and M3), T4 (fade out
M3). The actual fade distances (without regard to channel stress) are as follows:

fadeDi stance[i] =
(transition[i] *
LODSt at eTransiti onScal e *
Channel LODSt at eTransi ti onScal e +
LODSt at eTransiti onOf f set +
Channel LODSt at eTransiti onOf fset) *
Channel LODFadeScal e;

If OpenGL Performer management of channel stress is turned on then the above fade
distance is modified as follows:

fadeDi stance[i] /=
(Channel Stress *
LODSt at eTransi ti onStressScal e *
Channel LODSt at eTransi ti onStressScal e +
LODSt at eTransitionStressOf fset +
Channel LODSt at eTransi ti onStressO f set) ;

Run-Time User Control Over LOD Evaluation
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A pfLOD node provides one last resort for applications that have complex level-of-detail
calculations. For example, an application might wish to limit the speed at which different
LODs of an object switch. When switching depends on the range from the camera, a very
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fast-moving camera may result in rapid changes of LODs. The application may require
an artificial filter to take the simple range-based evaluation and ease it into the display
over time.

An application may take over the LOD evaluation function using the API
pfLODUserEvalFunc() on pfLOD. The user-supplied function must return a floating
point number. Similar to the result of pfEvaluateLOD(), this number picks either a single
child or a blend of two children of the pfLOD node.

Note that the performance of the cull process may decrease if the user function is too
slow to execute.

Terrain Level-of-Detail

In creating LOD models and transitions for objects, it is often safe to assume that the
entire model should transition at the same time. It is quite reasonable to make features
of an automobile such as door handles disappear from the scene at the same time even
when the passenger door is slightly closer than the driver’s door. It is much less clear that
this approach would work for very large objects such as an aircraft carrier or a space
station, and it is clearly not acceptable for objects that span a large extent, such as a
terrain surface.

Active Surface Definiton (ASD)
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Attempts to handle large-extent objects with discrete LOD tools focus on breaking the big
object into myriad small objects and treating each small object independently. This works
in some cases but often fails at the junction between two or more independent objects
where cracks or seams exist when different detail levels apply to the objects. Some terrain
processing systems have attempted to provide a hierarchy of crack-filling geometry that
is enabled based on the LOD selections of two neighboring terrain patches. This “digital
grout” becomes untenable when more than a few patches share a common vertex.

You can always make the transitions between LODs smooth by using active surface
definition. ASD treats the entire terrain as a single connected surface rather than multiple
patches that are loaded into memory as necessary. The surface is modeled with several
hierarchical LOD meshes in data structures that allow for the rapid evaluation of smooth
LOD transitions, load management on the evaluation itself, and efficient generation of a
meshed terrain surface of the visible triangles for the current frame. For more
information, refer to the Chapter 17, “Active Surface Definition.”
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Arbitrary Morphing

Terrain level of detail using an interpolative active surface definition is a restricted form
of the more general notion of object morphing. Morphing of models such as the car in a
previous example can simply involve scaling a small detail to a single point and then
removing it from the scene. Morphing is possible even when the topologies of
neighboring pairs do not match. Both models and terrain can have vertex, normal, color,
and appearance information interpolated between two or more representations. The
advantages of this approach include: reduced graphics complexity since blending is not
used, constant intersection truth for collision and similar tasks, and monotonic database
complexity that makes system load management much simpler. Such evaluation might
make use of the compute process and pfFlux objects to hold the vertex data and to
modify the scene graph control to chose the proper form of the object. pfSwitch nodes
can take a pfFlux for holding its value; see the pfSwitchValFlux() man page. pfLOD
nodes can take a flux for controlling range with pfLODRangeFlux(). See the pf LOD and
pf Engi ne man pages for more information on morphing.

Maintaining Frame Rate Using Dynamic Video Resolution
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When frame rate is not maintained, some frames display longer than others. If, for
example, when the frame rate is 30 frames per second, a frame takes longer than 1/30th
of a second to fill the frame bulffer, the frame is not displayed. Consequently, the current
frame is displayed for two instead of one 1/30ths of a second. The result of inconsistent
frame rates is jerky motion within the scene.

Note: You have some control over what happens when a frame rate is missed. You can
choose, for example, to begin the next frame in the next 1/60th of a second, or wait for
the start of the next 1/30th second. For more information about handling frame drawing
overruns, see pfPhase in “Free-Running Frame-Rate Control” on page 133.

The key to maintaining frame rate is limiting the amount of information to be rendered.
OpenGL Performer can take care of this problem automatically for you on InfiniteReality
systems when you use the PFPVC_DVR_AUTO token with pfPVChanDVRMode().

In PFPVC_DVR_AUTO mode, OpenGL Performer checks every rendered frame to see if

it took too long to render. If it did, OpenGL Performer reduces the size of the image, and
correspondingly, the number of pixels in it. Afterwards, the video hardware enlarges the

007-1680-080



Maintaining Frame Rate Using Dynamic Video Resolution

images to the same size as the pfChannel; in this way, the image is the correct size, but it
contains a reduced number of pixels, as suggested in Figure 5-4.

Figure 5-4 Real Size of Viewport Rendered Under Increasing Stress

Although the viewport is reduced as stress increases, the viewer never sees the image
grow smaller because bipolar filtering is used to enlarge the image to the size of the
channel.

The Channel in DVR

When using Dynamic Video Resolution (DVR), the origin and size of a channel are
dynamic. For example, a viewport whose lower-left corner is at the center of a pfPipe
(with coordinates 0.5, 0.5) would be changed to an origin of (0.25, 0.25) with respect to
the full pfPipe window if the DVR settings were scaled by a factors of 0.5 in both X and
Y dimensions.

If you are doing additional rendering into a pfChannel, you may need to know the size
and the actual rendered area of the pfChannel. Use pfGetChanOutputOrigin() and
pfGetChanOutputSize() to get the actual rendered origin and size, respectively, of a
pfChannel. pfGetChanOrigin() and pfGetChanSize() give the displayed origin and size
of the pfChannel and these functions should be used for mapping mouse positions or
other window-relative nonrendering positions to the pfChannel area.

Additionally, if DVR alters the rendered size of a pfChannel, a corresponding change
should be made to the width of points and lines. For example, when a channel is scaled
in size by one half, lines and points must be drawn half as wide as well so that when the
final image is enlarged, in this case by a factor of two, the lines and points scale correctly.
pfChanPixScale() sets the pixel scale factor. pfGetChanPixScale() returns this value for
a channel. pfChannels set this pixel scale automatically.
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DVR Scaling

Customizing DVR
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DVR scales linearly in response to the most common cause of draw overload: filling the
polygons. For example, if the DRAW stage process overran by 50%, to get back in under
the frame time, the new scene must draw 30% fewer pixels. We can do this with DVR by
rendering to a smaller viewport and letting the video hardware rescale the image to the
correct display size.

If pfPVChanMode() is set to PEFPVC_DVR_AUTO, OpenGL Performer automatically
scales each of the pfChannels. pfChannels automatically scale themselves according to
the scale set on the pfPipeVideoChannel they are using.

If the pfPVChanMode() is PFPVC_DVR_MANUAL, you control scaling according to
your own policy by setting the scale and size of the pfPipeVideoChannel in the
application process between pfSync() and pfFrame(), as shown in this example:

Total pixels drawn |ast frame = ChanQut X * ChanQutY * Depth Conplexity

To make the total pixels drawn 30% less, do the following;:

NewChanCQut X = NewChanQutY = .7 * (Chan QutX * ChanCut.)
New ChanQut X = sqrt (.7) * ChanCutX

New ChanQut X = sqrt (.7) * ChanQut X

NewChanQut = sqrt (.7) * ChanCut

Your application has full control over DVR behavior. You can either configure the
automatic mode or implement your own response control.

Automatic resizing can cause problems when an image has so much information in it the
viewport is reduced too drastically, perhaps to only a few hundred pixels, so that when
the image is enlarged, the image resolution is unacceptably blurry. To remedy this
problem, pfPipeVideoChannel includes the following methods to limit the reduction of
a video channel:

pfPVChanMaxDecScale()
Sets the maximum X and Y decrement scaling that can happen in a
single step of automatic dynamic video resizing. A scale value of (-1), the
default, removes the upper bound on decremental scales.
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pfPVChanMaxIncScale()
Sets the maximum X and Y increment scaling that can happen in a single
step of automatic dynamic video resizing. A scale value of (-1), the
default, removes the upper bound on incremental scales.

pfPVChanMinDecScale()
Sets the minimum X and Y decrement scaling that can happen in a single
step of automatic dynamic video resizing. The default value is 0.0.

pfPVChanMinIncScale()
Sets the minimum X and Y increment scaling that can happen in a single
step of automatic dynamic video resizing. The default value is 0.0.

pfPVChanStress()
Sets the stress of the pfPipeVideoChannel for the current frame. This call
should be made in the application process after pfSync() and before
pfFrame() to affect the next immediate draw process frame.

pfPVChanStressFilter()
Sets the parameters for computing stress if it is not explicitly set for the
current frame by pfPVChanStress().

Each of these methods have corresponding Get methods that return the values set by
these methods.

To resize the video channel manually, use pfPipeVideoChannel sizing methods, such as
pfPVChanOutputSize(), pfPVChanAreaScale(), and pfPVChanScale().

The pfPipeVideoChannel associated with a channel is returned by pfGetChanPVChan().
If there is more than one pfPipeVideoChannel associated with a pfPipeWindow, each one
is identified by an index number. In the case of multiple pfPipeVideoChannels, the
pfPipeVideoChannel index is set using pfChanPWinPVChanIndex() and returned by
pfGetChanPWinPVChanlIndex().

Understanding the Stress Filter
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The pfPVChanStressFilter() function sets the parameters for computing stress for a
pfPipeVideoChannel when the stress is not explicitly set for the current frame by
pfPVChanStress(), as shown in the following example:

voi d pf Pi peVi deoChannel ::setStressFilter(float *franeFrac,
float *lowLoad, float *highLoad, float *pipeLoadScal e,
float *stressScale, float *maxStress);
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The frameFrac argument is the fraction of a frame that pfPipeVideoChannel is expected
to take to render the frame; for example, if the rendering time is equal to the period of the
frame rate, frameFrac is 1.

If there is only one pfPipeVideoChannel, it is best if frameFrac is 1. If there are more than
one pfPipeVideoChannels on the pfPipe, by default frameFrac is divided among the
pfPipeVideoChannels. You can set frameFrac explicitly for each pfPipeVideoChannel
such that a channel rendering visually complex scenes is allocated more time than a
channel rendering simple scenes.

The pfGetPFChanStressFilter() function returns the stress filter parameters for
pfPipeVideoChannel. If stressScale is nonzero, stress is computed for the
pfPipeVideoChannel every frame. The parameters low and high define a hysteresis band
for system load. When the load is above lowLoad and below highLoad, stress is held
constant. When the load falls outside of the lowLoad and highLoad parameters,

OpenGL Performer reduces or increases stress respectively by dynamically resizing the
output area of the pfPipeVideoChannel until the load stabilizes between lowLoad and
highLoad.

If pipeStressScale is nonzero, the load of the pfPipe of the pfPipeVideoChannel are
considered in computing the stress. The parameter maxStress is the clamping value above
which the stress value cannot go. For more information about the stress filter, see the man
page for pf Pi peVi deoChannel .

Dynamic Load Management
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Because the effects of variable image update rates can be objectionable, many simulation
applications are designed to operate at a fixed frame rate. One approach to selecting this
fixed frame rate is to select an update rate constrained by the most complex portion of
the visual database. Although this conservative approach may be acceptable in some
cases, OpenGL Performer supports a more sophisticated approach using dynamic LOD
scaling.

Using multiple LOD models throughout a database provides the traversal system with a
parameter that can be used to control the polygonal complexity of models in the scene.
The complexity of database objects can be reduced or increased by adjusting a global
LOD range multiplier that determines which LOD level is drawn.
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Using this facility, a closed-loop control system can be constructed that adjusts the
LOD-switching criteria based on the system load, also called stress, in order to maintain
a selected frame rate.

Figure 5-5 illustrates a stress-processing control system.

Desired Frame Time

Actual Frame Time

Figure 5-5 Stress Processing

In Figure 5-5, the desired and actual frame times are compared by the stress filter. Based
on the user-supplied stress parameters, the stress filter adjusts the global LOD scale
factor by increasing it when the system is overloaded and decreasing it when the system
is underloaded. In this way, the system load is monitored and adjusted before each frame
is generated.

The degree of stability for the closed-loop control system is an important issue. The ideal
situation is to have a critically damped control system—that is, one in which just the right
amount of control is supplied to maintain the frame rate without introducing
undesirable effects. The effects of overdamped and underdamped systems are visually
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distracting. An underdamped system oscillates, causing the system to continuously
alternate between two different LOD models without reaching equilibrium.
Overdamped systems may fail to react within the time required to maintain the desired
frame rate. In practice, though, dynamic load management works well, and simple stress
functions can handle the slowly changing loads presented by many databases.

The default stress function is controlled with user-selectable parameters. These
parameters are set using the pfChanStressFilter() function.

The default stress function is implemented by the code fragment in Example 5-3.

Example 5-3 Default Stress Function

/* current |load */
curLoad = drawTinme * frameRate * franmeFrac;

/* integrated over tinme */
if (curLoad < | owlLoad)
stressLevel -= stressParam* stresslLevel;
el se
if (curLoad > hi ghLoad)
stressLevel += stressParam * stresslLevel;

/[* limted to desired range */
if (stressLevel < 1.0)

stressLevel = 1.0;

el se

if (stressLevel > maxStress)
stressLevel = maxStress;

The parameters lowLoad and highLoad define a comfort zone for the control system. The
first if-test in the code fragment demonstrates that this comfort zone acts as a dead band.
Instantaneous system load within the bounds of the dead band does not result in a
change in the system stress level. If the size of the comfort zone is too small, oscillatory
distress is the probable result. It is often necessary to keep the highLoad level below the
100% point so that blended LOD transitions do not drive the system into overload
situations.

For those applications in which the default stress function is either inappropriate or
insufficient, you can compute the system stress yourself and then set the stress load
factor. Your filter function can access the same system measures that the default stress
function uses, but it is also free to keep historical data and perform any feedback-transfer
processing that application-specific dynamic load management may require.
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The primary limitation of the default stress function is that it has a reactive rather than
predictive nature. One of the major advantages of user-written stress filters is their ability
to predict future stress levels before increased or decreased load situations reach the
pipeline. Often the simulation application knows, for example, when a large number of
moving models will soon enter the viewing frustum. If their presence is anticipated, then
stress can be artificially increased so that no sudden LOD changes are required as they
actually enter the field of view.

Successful Multiprocessing with OpenGL Performer

Note: This is an advanced topic.

This section does not apply to Microsoft Windows. OpenGL Performer 3.0 for Microsoft
Windows does not support more than a single processor.

This section describes an advanced topic that applies only to systems with more than one
CPU. If you do not have a multiple-CPU system, you may want to skip this section.

OpenGL Performer uses multiprocessing to increase throughput for both rendering and
intersection detection. Multiprocessing can also be used for tasks that run
asynchronously from the main application like database management. Although
OpenGL Performer hides much of the complexity involved, you need to know
something about how multiprocessing works in order to use multiple processors well.

Review of Rendering Stages
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The OpenGL Performer application renders images using one or more pfPipes as
independent software-rendering pipelines. The flow through the rendering pipeline can
be modeled using these functional stages:

Intersection ~ Test for intersections between segments and geometry to simulate
collision detection or line-of-sight for example.

Application Do requisite processing for the visual simulation application, including
reading input from control devices, simulating the vehicle dynamics of
moving models, updating the visual database, and interacting with
other networked simulation stations.
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Cull Traverse the visual database and determine which portions of it are
potentially visible, perform a level-of-detail selection for models with
multiple representations, and a build sorted, optimized display list for
the draw stage.

Draw Issue graphics library commands to a Geometry Pipeline in order to
create an image for subsequent display.

You can partition these stages into separate parallel processes in order to distribute the
work among multiple CPUs. Depending on your system type and configuration, you can
use any of several available multiprocessing models.

Choosing a Multiprocessing Model

Use pfMultiprocess() to specify which functional stages, if any, should be forked into
separate processes. The multiprocessing mode is actually a bitmask where each bit
indicates that a particular stage should be configured as a separate process. For example,
the bit PEMP_FORK_DRAW means the draw stage should be split into its own process.
Table 5-3 lists some convenient tokens that represent common multiprocessing modes.

Table 5-3 Multiprocessing Models

Model Name

Description

PFMP_APPCULLDRAW

PFMP_APP_CULLDRAW
or
PFMP_FORK_CULL

Combine the application, cull, and draw stages into a single
process. In this model, all of the stages execute within a single
frame period. This is the minimum-latency mode of operation.

Combine the cull and draw stages in a process that is separate from
the application process. This model provides a full frame period
for the application process, while culling and drawing share this
same interval. This mode is appropriate when the host’s
simulation tasks are extensive but graphic demands are light, as
might be the case when complex vehicle dynamics are performed
but only a simple dashboard gauge is drawn to indicate the results.
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Cull-Overlap-Draw Mode

Table 5-3 Multiprocessing Models (continued)

Model Name Description

PFMP_APPCULL_DRAW Combine the application and cull stages in a process that is
separate from the draw process. This mode is appropriate for
many simulation applications when application and culling
demands are light. It allocates a full CPU for drawing and has the
application and cull stages share a frame period. Like the
PFMP_APP_CULLDRAW mode, this mode has a single frame
period of pre-draw latency.

or
PFMP_FORK_DRAW

PFMP_APP_CULL_DRAW  Perform the application, cull, and draw stages as separate

or processes. This is the full maximum-throughput multiprocessing

PEMP_FORK_CULL | mode .of OpenGL Performer ope.ratlon. .In this mode, each pipeline
stage is allotted a full frame period for its processing. Two frame

PFMP_FORK_DRAW periods of latency exist when using this high degree of parallelism.

You can also use the pfMultiprocess() function to specify the method of communication
between the cull and draw stages, using the bitmasks PFMP_CULLoDRAW and
PFMP_CULL_DL_DRAW.

Setting PEMP_CULLoDRAW specifies that the cull and draw processes for a given frame
should overlap—that is, that they should run concurrently. For this to work, the cull and
draw stages must be separate processes (PFMP_FORK_DRAW must be true). In this
mode the two stages communicate in the classic producer-consumer model, by way of a
pfDispList that is configured as a ring (FIFO) buffer; the cull process puts commands on
the ring while the draw process simultaneously consumes these commands.

The main benefit of using PEMP_CULLoDRAW is reduced latency, since the number of
pipeline stages is reduced by one and the resulting latency is reduced by an entire frame
time. The main drawback is that the draw process must wait for the cull process to begin
filling the ring buffer.

Forcing Display List Generation
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When the cull and draw stages are in separate processes, they communicate through a
pfDispList; the cull process generates the display list, and the draw process traverses and
renders it. (The display list is configured as a ring buffer when using
PFMP_CULLoDRAW mode, as described in the “Cull-Overlap-Draw Mode” section).
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Intersection Pipeline

Compute Process
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However, when the cull and draw stages are in the same process (as occurs with the
PFMP_APPCULLDRAW or PFMP_APP_CULLDRAW multiprocessing models) a
display list is not required and by default one will not be used. Leaving out the
pfDispList eliminates overhead. When no display list is used, the cull trigger function
pfCull() has no effect; the cull traversal takes place when the draw trigger function
pfDraw() is invoked.

In some cases you may want an intermediate pfDispList between the cull and draw
stages even though those stages are in the same process. The most common situation that
calls for such a setup is multipass rendering when you want to cull only once but render
multiple times. With PEMP_CULL_DL_DRAW enabled, pfCull() generates a pfDispList
that can be rendered multiple times by multiple calls to pfDraw().

The intersection pipeline is a two-stage pipeline consisting of the application and the
intersection stages. The intersection stage may be configured as a separate process by
setting the PEMP_FORK_ISECT bit in the bitmask given to pfMultiprocess(). When
configured as such, the intersection process is triggered for the current frame when the
application process calls pfFrame(). Then in the special intersection callback set with
pfIsectFunc(), you can invoke any number of intersection requests with
pfNodelsectSegs(). To support this operation, the intersection process keeps a copy of
the scene graph pfNodes.

The intersection process is asynchronous so that if it does not finish within a frame time
it does not slow down the rendering pipeline(s).

The compute process is an asynchronous process provided for doing extensive
asynchronous computation. The compute stage is done as part of pfFrame() in the
application process unless it is configured to run as separate process by setting the
PFMP_FORK_COMPUTE bit in the pfMultiprocess() bitmask. The compute process is
asynchronous so that if it does not finish within a frame time, it will not slow down the
rendering pipeline. The compute process is intended to work with pfFlux objects by
placing the results of asynchronous computation in pfFluxes. pfFlux will automatically
manage the needed multibuffering and frame consistency requirements for the data. See
Chapter 16, “Dynamic Data,” for more information on pfFlux. Some OpenGL Performer
objects, such as pfASD, do their computation in the compute stage so pfCompute() must
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be called from any compute user callback if one has been specified with
pfComputeFunc().

Multiple Rendering Pipelines

Multithreading

CULL Sidekick Processes

007-1680-080

By default, OpenGL Performer uses a single pfPipe, which in turn draws one or more
pfChannels into one or more pfPipeWindows. If you want to use multiple rendering
pipelines, as on two- or three-Geometry Pipeline Onyx RealityEngine2 and
InfiniteReality systems, use pfMultipipe() to specify the number of pfPipes required.
When using multiple pipelines, the PFMP_APPCULLDRAW and
PFMP_APPCULL_DRAW modes are not supported and OpenGL Performer defaults to
the PEMP_APP_CULL_DRAW multiprocessing configuration. Regardless of the number
of pfPipes, there is always a single application process that triggers the rendering of all
pipes with pfFrame().

For additional multiprocessing and attendant increased throughput, the CULL stage of
the rendering pipeline may be multithreaded. Multithreading means that a single pipeline
stage is split into multiple processes, or threads which concurrently work on the same
frame. Use pfMultithread() to allocate a number of threads for the cull stage of a
particular rendering pipeline.

Cull multithreading takes place on a per-pfChannel basis; that is, each thread does all the
culling work for a given pfChannel. Thus, an application with only a single channel will
not benefit from multithreading the cull. An application with multiple, equally complex
channels will benefit most by allocating a number of cull threads equal to the number of
channels. However, it is valid to allocate fewer cull threads if you do not have enough
CPUs—in this case the threads are assigned to channels on a need basis.

The OpenGL Performer CULL process traverses a scene graph and culls out any invisible
geometry. Its result is a list of visible pfGeoSets. The OpenGL Performer CULL process
does not break pfGeoSets into their visible and invisible parts. This means that a
pfGeoSet whose bounding box intersects the viewing frustum will be sent to the graphics
pipe even if only one triangle in this pfGeoSet is visible.

One way to overcome this problem is to allocate extra processes for cleaning up the
pfGeoSet lists that the CULL processes produce. These extra processes are called CULL
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Order of Calls

sidekicks. By default, a CULL sidekick process checks all the primitives in all pfGeoSets
on the CULL output. It replaces original pfGeoSets with temporary pfGeoSets and
populates the temporary pfGeoSets with the visible parts of the original pfGeoSets. By
default, CULL sidekick processes test each primitive twice for the following;:

e For frustum visibility

A primitive outside the viewing frustum will be omitted from the temporary
pfGeoSet.

¢ For backface culling

A primitive facing away from the viewer will be omitted from the temporary
pfGeoSet. This test is skipped when a pfGeoSet is drawn without backface testing.

Each CULL process can have multiple CULL_SIDEKICK processes. You can use the
pfMultithread() call to specify the number of CULL_SIDEKICK processes for each
CULL process. The collection of CULL_SIDEKICK processes configured for each CULL
process traverse the pfGeoSet list that the CULL process produces in a round-robin
manner. The more CULL_SIDEKICK processes (each assigned to a separate CPU), the
faster they process the pfGeoSet list that the CULL process produces. For more
information about CULL_SIDEKICK processes in the context of CULL optimizations, see
section “Cull Sidekick Processes” on page 173.

The multiprocessing model set by pfMultiprocess() is used for each of the rendering
pipelines. In programs that configures the application stage as a separate process, all
OpenGL Performer calls must be made from the process that calls pfConfig() or the
results are undefined. Both pfMultiprocess(), pfMultithread(), and pfMultipipe() must
be called after pfInit() but before pfConfig(). pfConfig() configures OpenGL Performer
according to the required number of pipelines and the desired multiprocessing and
multithreading modes, forks the appropriate number of processes, and then returns
control to the application. pfConfig() should be called only once during each OpenGL
Performer application.

Comparative Structure of Models
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Figure 5-6 shows timing diagrams for each of the process models. The vertical lines are
frame boundaries. Five frames of the simulation are shown to allow the system to reach
steady-state operation. Only one of these models can be selected at a time, but they are
shown together so that you can compare their structures.
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Boxes represent the functional stages and are labeled as follows:

An Application process for the nth frame
Cn Cull process for the nth frame
Dn Draw process for the nth frame
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Notice that when a stage is split into its own process, the amount of time available for all
stages increases. For example, in the case where the application, cull, and draw stages are
three separate processes, it is possible for total system performance to be tripled over the
single process configuration.

Asynchronous Database Processing

DBASE Process

pfBuffer
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Many databases are too large to fit into main memory. A common solution to this
problem is called database paging where the database is divided into manageable chunks
on disk and loaded into main memory when needed. Usually chunks are paged in just
before they come into view and are deleted from the scene when they are comfortably
out of viewing range.

All this paging from disk and deleting from main memory takes a lot of time and is
certainly not amenable to maintaining a fixed frame rate. The solution supported by
OpenGL Performer is asynchronous database paging in which a process, completely
separate from the main processing pipeline(s), handles all disk I/O and memory
allocations and deletions. To facilitate asynchronous database paging, OpenGL
Performer provides the pfBuffer structure and the DBASE process.

The database (or DBASE) process is forked by pfConfig() if the PFMP_FORK_DBASE bit
was set in the mode given to pfMultiprocess(). The database process is triggered when
the application process calls pfFrame() and invokes the user-defined callback set with
pfDBaseFunc(). The database process is totally asynchronous. If it exceeds a frame time
it does not slow down any rendering or intersection pipelines.

The DBASE process is intended for asynchronous database management when used
with a pfBuffer.

A pfBuffer is a logical buffer that isolates database changes to a single process to avoid
memory collisions on data from multiple processes. In typical use, a pfBuffer is created
with pfNewBuffer(), made current with pfSelectBuffer(), and merged with the main
OpenGL Performer buffer with pfMergeBuffer(). While the DBASE process is intended
for pfBuffer use, other processes forked by the application may also use different
pfBuffers in parallel for multithreaded database management. By ensuring that only a
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pfAsyncDelete
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single process uses a given pfBuffer at a given time and following a few scoping rules
discussed in the following paragraphs, the application can safely and efficiently
implement asynchronous database paging

A pfNode is said to have buffer scope or be “in” a particular pfBuffer. This is an important
concept because it affects what you can do with a given node. A newly created node is
automatically “in” the currently active pfBuffer until that pfBuffer is merged using
pfMergeBuffer(). At that instant, the pfNode is moved into the main OpenGL Performer
buffer, otherwise known as the application buffer.

A rule in pfBuffer management is that a process may only access nodes that are in its
current pfBuffer. As a result, a database process may not directly add a newly created
subgraph of nodes to the main scene graph because all nodes in the main scene graph
have application buffer scope only—they are isolated from the database pfBuffer. This
may seem inconvenient at first but it eliminates catastrophic errors. For example, the
application process traverses a group at the same time you add a child; this changes its
child list and causes the traversal to chase a bad pointer.

Remedies to the inconveniences stated above are the pfBufferAddChild(),
pfBufferRemoveChild(), and pfBufferClone() functions. The first two functions are
identical to their non-buffer counterparts pfAddChild() and pfRemoveChild() except
the buffer versions do not happen immediately. Other functions, pfBufferAdd(),
pfBufferInsert(), pfBufferReplace(), and pfBufferRemove(), perform the
buffer-oriented delayed-action versions of the corresponding non-buffer pfList
functions. In all cases the add, insert, replace, or removal request is placed on a list in the
current pfBuffer and is processed later at pfMergeBuffer() time.

The pfBufferClone() function supports the notion of maintaining a library of common
objects like trees or houses in a special library pfBuffer. The main database process then
clones objects from the library pfBuffer into the database pfBuffer, possibly using the
pfFlatten() function for improved rendering performance. pfBufferClone() is identical
to pfClone() except the buffer version requires that the source pfBuffer be specified and
that all cloned nodes have scope in the source pfBuffer.

We have discussed how to create subgraphs for database paging: create and select a
current pfBuffer, create nodes and build the subgraph, call pfBufferAddChild() and
finally pfMergeBuffer() to incorporate the subgraph into the application’s scene. This
section describes how to use the function pfAsyncDelete() to free the memory of old,
unwanted subgraphs.
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The pfDelete() function is the normal mechanism for deleting objects and freeing their
associated memory. However,the function pfDelete() can be a very expensive since it
must traverse, unreference, and register a deletion request for every OpenGL Performer
object it encounters which has a 0 reference count. The function pfAsyncDelete() used in
conjunction with a forked DBASE process moves the burden of deletion to the
asynchronous database process so that all rendering and intersection pipelines are not
adversely affected.

The pfAsyncDelete() function may be called from any process and places an
asynchronous deletion request on a global list that is processed later by the DBASE stage
when its trigger function pfDBase() is called. A major difference from pfDelete() is that
pfAsyncDelete() does not immediately check the reference count of the object to be
deleted and, so, does not return a value indicating whether the deletion was successful.
At this time there is no way of querying the result of a pfAsyncDelete() request so care
should be taken that the object to be deleted has no reference counts or memory leaks will
result.

Placing Multiple OpenGL Performer Processes on a Single CPU
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When placing multiple OpenGL Performer processes on the same CPU, some
combinations of processes and priorities may have an effect on the APP process timing
even if the APP process runs on its own separate CPU. This happens because the APP
process often waits on other processes for completion of various tasks. If these other
processes share a CPU with high-priority processes, they may take a long time to finish
their task and release the APP process.

An application can request that OpenGL Performer upgrade the priority of processes
when the APP process waits on them by calling pfProcessPriorityUpgrade(). The APP
process upgrades the other process’ priority before it starts waiting for it, and the other
process resumes its previous priority as soon as it releases the APP process. In this way,
the original settings of priorities is maintained, except when the APP process waits for
another process. OpenGL Performer uses the priority 87 as the default priority for
upgrading processes. This priority is the default because it is close to the highest priority
that any application-level process should ever have (89). The application may change this
priority by using pfProcessHighestPriority().

The priority-upgrade mode is turned off by default. An OpenGL Performer application

that does not try to place multiple processes on the same processor or a non-realtime
application does not have to set this flag.
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Rules for Invoking Functions While Multiprocessing
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There are some restrictions on which functions can be called from an OpenGL Performer
process while multiple processes are running. Some specialized processes (such as the
process handling the draw stage) can call only a few specific OpenGL Performer
functions and cannot call any other kinds of functions. This section lists general and
specific rules concerning function invocation in the various OpenGL Performer and user
processes.

In this section, the phrase “the draw process” refers to whichever process is handling the
draw stage, regardless of whether that process is also handling other stages. Similarly,
“the cull process” and “the application process” refer to the processes handling the cull
and application stages, respectively.

This is a general list of the kinds of routines you can call from each process:

application Configuration routines, creation and deletion routines, set and get
routines, and trigger routines such as pfAppFrame(), pfSync(), and
pfFrame()

database Creation and deletion routines, set and get routines, pfDBase(), and
pfMergeBuffer()

cull pfCull(), pfCullPath(), OpenGL Performer graphics routines

draw pfClearChan(), pfDraw(), pfDrawChanStats(), OpenGL Performer

graphics routines, and graphics library routines

More specific elaborations:

*  You should call configuration routines only from the application process, and only
after pfInit() and before pfConfig(). pfInit() must be the first OpenGL Performer
call, except for those routines that configure shared memory (see “Memory
Allocation” in Chapter 15). Configuration routines do not take effect until
pfConfig() is called. These are the configuration routines:

- pfMultipipe()
— pfMultiprocess()
— pfMultithread()

- pfHyperpipe()
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You should call creation routines, such as pfNewChan(), pfNewScene(), and
pfAllocIsectData(), only in the application process after calling pfConfig() or in a
process that has an active pfBuffer. There is no restriction on creating | i bpr objects
like pfGeoSets and pfTextures.

The pfDelete() function should only be called from the application or database
processes while pfAsyncDelete() may be called from any process.

Read-only routines—that is, the pfGet*() functions—can be called from any
OpenGL Performer process. However, if a forked draw process queries a pfNode,
the data returned will not be frame-accurate. (See “Multiprocessing and Memory”
on page 168.)

Write routines—functions that set parameters—should be called only from the
application process or a process with an active pfBuffer. It is possible to call a write
routine from the cull process, but it is not recommended since any modifications to
the database will not be visible to the application process if it is separate from the
cull (as when using PEMP_APP_CULLDRAW or PFMP_APP_CULL_DRAW).
However, for transient modifications like custom level-of-detail switching, it is
reasonable for the cull process to modify the database. The draw process should
never modify any pfNode.

OpenGL Performer graphics routines should be called only from the cull or draw
processes. These routines may modify the hardware graphics state. They are the
routines that can be captured by an open pfDispList. (See “Display Lists” in
Chapter 9.) If invoked in the cull process, these routines are captured by an internal
pfDispList and later invoked in the draw process; but if they are invoked in the
draw process, they immediately affect the current window. These graphics routines
can be roughly partitioned into those that do the following;:

— Apply a graphics entity: pfApplyMtl(), pfApplyTex(), and pfLightOn().
— Enable or disable a graphics mode: pfEnable() and pfDisable().

— Set or a modify graphics state: pfTransparency(), pfPushState(), and
pfMultMatrix().

— Draw geometry or modify the screen: pfDrawGSet(), pfDrawString(), and
pfClear().

Graphics library routines should be called only from the draw process. Since there
is no open display list to capture these commands, an open window is required to
accept them.
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e “Trigger” routines should be called only from the appropriate processes (see
Table 5-4).

Table 5-4 Trigger Routines and Associated Processes
Trigger Routine Process/Context

pfAppFrame() APP /main loop

pfSync()

pfFrame()

pfPassChanDatal() APP/main loop
pfPassIsectData()

pfApp() APP/channel APP callback
pfCull() CULL/channel CULL callback
pfCullPath()

pfDraw() DRAW /channel DRAW callback
pfDrawBin()

pfNodelsectSegs() ISECT/callback or APP/main loop

pfChanNodelsectSegs()
pfDBase() DBASE/ callback

¢ User-spawned processes created with sproc() can trigger parallel intersection
traversals through multiple calls to pfNodelsectSegs() and
pfChanNodelsectSegs().

* Functions pfApp(), pfCull(), pfDraw(), and pfDBase() are only called from within
the corresponding callback specified by pfChanTravFunc() or pfDBaseFunc().

Multiprocessing and Memory

168

In OpenGL Performer, as is often true of multiprocessing systems, memory management
is the most difficult aspect of multiprocessing. Most data management problems in an
OpenGL Performer application can be partitioned into three categories:

* Memory visibility. OpenGL Performer uses fork(), which—unlike sproc()—
generates processes that do not share the same address space. The processes also
cannot share global variables that are modified after the fork() call. After calling
fork(), processes must communicate through explicit shared memory.
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¢ Memory exclusion. If multiple processes read or write the same chunk of data at the
same time, consequences can be dire. For example, one process might read the data
while in an inconsistent state and end up dumping core while dereferencing a
NULL pointer.

¢ Memory synchronization. OpenGL Performer is configured as a pipeline where
different processes are working on different frames at the same time. This pipelined
nature is illustrated in Figure 5-6 on page 162, which shows that, for instance, in the
PFMP_APP_CULL_DRAW configuration the application process is working on
frame n while the draw process is working on frame n-2. If, in this case, if we have
only a single memory location representing the viewpoint, then it is possible for the
application to set the viewpoint to that of frame #n and the draw process to
incorrectly use that same viewpoint for frame n—2. Properly synchronized data is
called frame accurate.

Fortunately, OpenGL Performer transparently solves all of the problems just described
for most OpenGL Performer data structures and also provides powerful tools and
mechanisms that the application can use to manage its own memory.

Shared Memory and pflnit()
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The pfInit() function creates a shared memory arena that is shared by all processes
spawned by OpenGL Performer and all user processes that are spawned from any
OpenGL Performer process. A handle to this arena is returned by pfGetShared Arena()
and should be used as the arena argument to routines that create data that must be visible
to all processes. Routines that accept an arena argument are the pfNew*() routines found
in the |l i bpr library and the OpenGL Performer memory allocator, pfMalloc(). In
practice, it is usually safest to create | i bpr objects like pfGeoSets and pfMaterials in
shared memory. | i bpf objects like pfNodes are always created in shared memory.

Allocating shared memory does not by itself solve the memory visibility problem
discussed above. You must also make sure that the pointer that references the memory is
visible to all processes. OpenGL Performer objects, once incorporated into the database
through routines like pfAddGSet(), pfAddChild(), and pfChanScene(), automatically
ensure that the object pointers are visible to all OpenGL Performer processes.

However, pointers to application data must be explicitly shared. A common way of

doing this is to allocate the shared memory after pfInit() but before pfConfig() and to
reference the memory with a global pointer. Since the pointer is set before pfConfig()
forks any processes, these processes will all share the pointer’s value and can thereby
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pfDataPools

Passthrough Data

170

access the same shared memory region. However, if this pointer value changes in a
process, its value will not change in any other process, since forked processes do not
share the same address space.

Even with data visible to all processes, data exclusion is still a problem. The usual
solution is to use hardware spin locks so that a process can lock the data segment while
reading or writing data. If all processes must acquire the lock before accessing the data,
then a process is guaranteed that no other processes will be accessing the data at the same
time. All processes must adhere to this locking protocol, however, or exclusion is not
guaranteed.

In addition to a shared memory arena, pfInit() creates a semaphore arena whose handle
is returned by pfGetSemaArena(). Locks can be allocated from this semaphore arena by
usnewlock() and can be set and unset by ussetlock() and usunsetlock(), respectively.

The pfDataPools—named shared memory arenas with named allocation blocks—
provide a complete solution to the memory visibility and memory exclusion problems,
thereby obviating the need to set global pointers between pfInit() and pfConfig(). For
more information about pfDataPools, see the pf Dat aPool s man page.

The techniques discussed thus far do not solve the memory synchronization problem.
OpenGL Performer’s | i bpf library provides a solution in the form of passthrough data.
When using pipelined multiprocessing, data must be passed through the processing
pipeline so that data modifications reach the appropriate pipeline stage at the
appropriate time.

Passthrough data is implemented by allocating a data buffer for each stage in the
processing pipeline. Then, at well-defined points in time, the passthrough data is copied
from its buffer into the next buffer along the pipeline. This copying guarantees memory
exclusion, but you should minimize the amount of passthrough data to reduce the time
spent copying.

Allocate a passthrough data buffer for the rendering pipeline using pfAllocChanData();

for data to be passed down the intersection pipeline, call pfAllocIsectData(). Data
returned from pfAllocChanData() is passed to the channel cull and draw callbacks that
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are set by pfChanTravFunc(). Data returned from pfAllocIsectData() is passed to the
intersection callback specified by pfIsectFunc().

Passthrough data is not automatically passed through the processing pipeline. You must
first call pfPassChanData() or pfPassIsectData() to indicate that the data should be
copied downstream. This requirement allows you to copy only when necessary—if your
data has not changed in a given frame, simply do not call a pfPass*() routine, and you
will avoid the copy overhead. When you do call a pfPass*() routine, the data is not
immediately copied but is delayed until the next call to pfFrame(). The data is then
copied into internal OpenGL Performer memory and you are free to modify your
passthrough data segment for the next frame.

Modifications to all | i bpf objects—such as pfNodes and pfChannels—are
automatically passed through the processing pipeline, so frame-accurate behavior is
guaranteed for these objects. However, in order to save substantial amounts of memory,
I'i bpr objects such as pfGeoSets and pfGeoStates do not have frame-accurate behavior;
modifications to such objects are immediately visible to all processes. If you want
frame-accurate modifications to | i bpr objects you must use the passthrough data
mechanism, use a frame-accurate pfSwitch to select among multiple copies of the objects
you want to change, or use the pfCycleBuffer memory type.

CULL Process Optimizations

The OpenGL Performer CULL process traverses a scene graph and culls out invisible
geometry. Its result is a list (pfDispList) of visible pfGeoSets. The OpenGL Performer
CULL process treats pfGeoSets as rendering atoms: It does not break them into their
visible and invisible parts. If the bounding box of a pfGeoSet intersects the viewing
frustum, OpenGL Performer draws the entire pfGeoSet even if only one of its triangles is
visible. Figure 5-7 demonstrates this problem using a triangle strip.
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Figure 5-7 Loose Culling of pfGeosets

The figure shows a triangle strip starting inside the viewing frustum, leaving the viewing
frustum, and then returning into the viewing frustum. Only the shaded triangles of the
strip are visible, but OpenGL Performer renders the entire strip. In this figure,

OpenGL Performer sends five superfluous vertices to the graphics pipe.

This problem is important in applications with one of the following bottlenecks:

* Geometry processing

Applications that render large numbers of relatively small triangles—for example,
CAD visualization or detailed terrain visualization.

* Host-Pipe interface bandwidth

Applications that saturate the interface between the host CPU and the graphics pipe
either by rendering too many triangles or by downloading too many texture maps
each frame.

This problem is not important in raster-limited applications that render very large
triangles (in screen space). These application saturate the raster portion of the graphics
pipe but leave the geometry portion idle. Therefore, speeding up the geometry portion
of the graphic pipe does not speed up the overall application frame rate.

172 007-1680-080



CULL Process Optimizations

Cull Sidekick Processes

You can overcome the loose-culling problem by allocating extra processes for cleaning up
the pfGeoSet lists that the CULL processes produce. These extra processes are called
CULL sidekicks. By default, a CULL sidekick process checks all the primitives in all
pfGeoSets on the CULL output. It replaces original pfGeoSets with temporary pfGeoSets
and populates the temporary pfGeoSets with the visible parts of the original pfGeoSets.
By default, CULL sidekick processes test each primitive twice for the following:

e For frustum visibility

A primitive outside the viewing frustum will be omitted from the temporary
pfGeoSet.

e For backface culling

A primitive facing away from the viewer will be omitted from the temporary
pfGeoSet. This test is especially powerful when rendering enclosed objects (for
example—vehicles, houses, or machine parts) because about half of the triangles in
such models face away from the viewer. This test is skipped when a pfGeoSet is
drawn without backface testing.

CULL sidekick processes run side-by-side with their CULL process. They do not interact
with the CULL process during its frame, but they merely patch the visible pfGeoSet list
as the CULL process populates it. This means that configuring CULL sidekick processes
does not add any latency to the application.

Figure 5-8 shows how CULL_SIDEKICK optimizes visible pfGeoSet lists while CULL is
writing them. The figure shows three CULL_SIDEKICK processes working on the visible
pfGeoSet list that a CULL process produces. Visible pfGeoSet#1 is replaced by
Temporary pfGeoSet#1. Visible pfGeoSet#2 contains no visible primitives and is skipped
entirely.
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Figure 5-8 CULL_SIDEKICK Processing

Configuring CULL_SIDEKICK Processes

Each CULL process can have multiple CULL_SIDEKICK processes. You can use the
pfMultithread() call to specify the number of CULL_SIDEKICK processes for each
CULL process. The collection of CULL_SIDEKICK processes configured for each CULL
process traverses in a round-robin manner the pfGeoSet list that the CULL process
produces. The more CULL_SIDEKICK processes (each assigned to a separate CPU), the
faster they process the pfGeoSet list that the CULL process produces.

CULL Sidekick Optimization Mask

174

Using the function pfMultithreadParami() and the parameter PFSK_OPTIMIZATION,
an application can specify a bit-wise OR of the constants PFSK_BACKFACE_CULL and
PFSK_FRUSTUM_CULL. Specifying the PFSK_BACKFACE_CULL flag instructs
CULL_SIDEKICK to run a backface test on each primitive and to remove backfacing
primitives. This mode is aware of the pfGeoState setting for each pfGeoSet and correctly
ignores pfGeoSets that do not require this test. Specifying the PFSK_FRUSTUM_CULL
flag instructs CULL_SIDEKICK to run a frustum test on each primitive and to remove
primitives outside the viewing frustum. Both of these tests break triangle strips, line
strips, and triangle fans if portions of these are invisible.
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Note: It is safe to change the CULL_SIDEKICK optimization mask on the fly.

CULL Sidekick Synchronization Policy
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Since traversing the visible pfGeoSet list that CULL produces may take longer than a
single frame, you can specify a policy for the behavior of CULL_SIDEKICK processes.

Using the function pfMultithreadParami() and the parameter PFSK_POLICY, you can
specify one of three options:

PFSK_CULL_DONE

All CULL_SIDEKICK processes stop processing pfGeoSet lists as soon as their
CULL process finishes its frame. This means that the CULL_SIDEKICK process is
likely to skip the optimization of many pfGeoSets on the visible pfGeoSet list.

PFSK_CULL_FRAME_DONE

All CULL_SIDEKICK processes continue processing until the end of the expected
CULL frame time. If the CULL process finishes its frame early in the
PFSK_CULL_DONE mode, the CULL_SIDEKICK processes cannot use the
remainder of the time to complete their own processing. The
PFSK_CULL_FRAME_DONE mode allows the CULL_SIDEKICK processes to use
all of the available frame time for processing. Use the parameter
PFSK_SAFETY_MARGIN to specify a floating number of seconds. This sets a
margin before the end of the frame where CULL_SIDEKICK stops processing. This
is a safety measure. If CULL_SIDEKICK does not complete early enough, it can
make CULL miss its frame. The default value is 1.0 millisecond. The more sensitive
to frame drops your application is, the larger this margin should be.

PFSK_CULL_SIDEKICK_DONE

All CULL_SIDEKICK processes finish processing all the visible pfGeoSet lists that
the CULL process produces. If this takes longer than the desired CULL frame rate,
the CULL process waits for its CULL_SIDEKICK helpers and may miss a frame.

Note: It is safe to change the CULL_SIDEKICK synchronization policy on the fly.
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CULL Sidekick User Functions

Use the function pfMultithreadParami() with parameters PFSK_USER_FUNC and
PFSK_USER_FUNC_DATA to register a callback function for the CULL_SIDEKICK
pfGeoSet optimization. When specified, a CULL_SIDEKICK calls the callback function
instead of running the default optimization. The CULL_SIDEKICK provides the callback
function with a target pfGeoSet. The callback function can clone the target pfGeoSet,
modify the cloned pfGeoSet, and return it as a replacement for the target pfGeoSet.

The callback function should return a pfGeoSet pointer. It can return one of the following
values:
¢ The original pfGeoSet pointer

CULL_SIDEKICK does not optimize this pfGeoSet and leaves it on the visible
pfGeoSet list.

* A new pfGeoSet pointer

CULL_SIDEKICK replaces the pfGeoSet in the visible pfGeoSet list with the
returned value.

e A NULL pointer

CULL_SIDEKICK removes this pfGeoSet from the visible pfGeoSet list.
The callback function receives as a parameter a pointer to a pfDispListOptimizer class.
The callback function can use this pointer in order to do the following:

® Retrieve the projection/modelview matrix that will be loaded when this pfGeoSet is
rendered.

¢ Allocate temporary pfGeoSets.

e Allocate temporary memory buffers.

¢ Clone a pfGeoSet onto a temporary pfGeoSet.

e Invoke the default optimization on a pfGeoSet.

* Get a pointer to the pfChannel in which this pfGeoSet was found visible.

*  Get the number of CULL_SIDEKICK processes working for the CULL process and
get the index of the calling CULL_SIDEKICK process.

*  Get the optimization mask of this CULL_SIDEKICK process.
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The following is a sample callback function. This function clones the incoming pfGeoSet,
jitters all its coordinates by a random amount, and replaces all its colors by random

colors:
pf GeoSet *
user Functi on( pf GeoSet *gset, pfDispListOptimn zer *op, void *userData)
{
pf GeoSet *new_gset ;
ushort *ilist;
int *| en;
fl oat *c;
fl oat *v;
int nunVerts, nunPrins, nunCol ors;
int i;

/* Modify geosets with line-strip/tri-strip primtives only. */
/* \When not nodifying a pfGeoSet, return its original pointer. */
if ((pfGetCSetPrinType(gset) != PFGS_LI NESTRIPS) &&

(pf Get GSet Pri nType(gset) != PFGS_TRI STRI PS))

return (gset);

/* Clone geoset. W can nodify the cloned geoset because it */
/* is tenporary for this CULL process for this frame. */
new_gset = pfDLOptini zerC oneGSet (op, gset,

PFSK_COORD3 | PFSK_NORMAL3 |

PFSK_TEXCOORD2 | PFSK_ATTR_LENGTHS) ;

/* Get pointers to cloned geoset attributes */

pf Get GSet AttrLi sts(new_gset, PFGS COLOR4, &c, &ilist);
if (ilist) return gset; /* ignore indexed gsets */

pf Get GSet At trLi sts(new_gset, PFGS _COORD3, &v, & list);
if (ilist) return gset; /* ignore indexed gsets */

| en = pf Get GSet Pri nLengt hs(new_gset);

nunPrinms = pf Get GSet NunPri ns(new_gset);

/* Count how many vertex entries in the COORD3 attribute. */
numverts = O;
for (i =0 ; i <nunmPrims ; i ++)

nunmVerts += lenf[i];

/* Count how many color entries in the COLOR4 attribute. */
switch (pfGetGSet AttrBind(gset, PFGS_COLOR4))

{
case PFGS_PER VERTEX:

nunCol ors = nunVerts;
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br eak;
case PFGS_PER PRI M
numCol ors = nunPri ns;
br eak;
case PFGS_OVERALL:
nunCol ors = 1;
br eak;
case PFGS_OFF:
numCol ors = 0;
br eak;
}
/* Pick a random col or for each color entry in the cloned */
/* color attribute array. */

for (i =0 ; i < nunColors ; i ++)

{
*(c++) = getRand(); *(c++) = getRand(); *(c++) = getRand();
*(c++) = 1.0;

}

/* Pick a random perturbation for each coordinate */

for (i =0 ; i < nunVerts ; i ++)

{
*(v++) += vertex_jitter_amount * getRand();
*(v++) += vertex_jitter_amount * getRand();
*(v++) += vertex_jitter_anount * getRand();

}

/* Send new geoset for default frustum backface culling. */
return pfDLOpti m zer Optim ze(op, new gset);

Modifying Attributes of Cloned pfGeoSets
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When cloning a pfGeoSet from within a CULL_SIDEKICK callback function, you may
wish to modify the pointers to the attribute arrays of the cloned pfGeoSet. Cloned
pfGeoSets are temporary and do not require reference counting. Use the following quick
methods on the pfGeoSet in order to manipulate its attributes:

pfQuickCopyGSet()

Copies the contents of one pfGeoSet onto another with no reference count
considerations.

pfGSetQuickAttr()
Sets an attribute of a pfGeoSet.
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¢ pfGSetQuickMultiAttr()

Sets a multi-value attribute of a pfGeoSet (for example, multitexture)
¢ pfGSetQuickPrimLengths()

Sets the primitive length array of a pfGeoSet.
e pfQuickResetGSet()

Sets all attribute arrays to NULL. No reference counting.

Note: If you wish to replace the attribute binding of cloned pfGeoSet attributes, you
must use the standard pfGeoSet API (as opposed to the quick API). Changing anything
other than the pointers to attribute arrays requires internal pfGeoSet state changes and,
therefore, cannot happen through the quick APL

Marking pfGeoSets for Optimization

Use the function pfGSetOptimize() to mark any single pfGeoSet for optimization by the
CULL_SIDEKICK process. By default, all pfGeoSets under a pfGeode node undergo
optimization. All pfGeoSetCBs are not optimized by default but can be optimized using
this function. No pfGeoSet under a pfBillboard node is ever optimized (regardless of the
optimization flag setting).
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Chapter 6

Creating Visual Effects

This chapter describes how to use environmental, atmospheric, lighting, and other visual
effects to enhance the realism of your application. The following sections appear:

¢ “Using pfEarthSky” on page 181

*  “Atmospheric Effects” on page 182

e “Patchy Fog and Layered Fog” on page 186
* “Real-Time Shadows” on page 198

* “Image-Based Rendering” on page 204

Using pfEarthSky
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A pfEarthSky is a special set of functions that clears a pfChannel’s viewport efficiently
and implements various atmospheric effects. A pfEarthSky is attached to a pfChannel
with pfChanESky(). Several pfEarthSky definitions can be created, but only one can be
in effect for any given channel at a time.

A pfEarthSky can be used to draw a sky and horizon, to draw sky, horizon, and ground,
or just to clear the entire screen to a specific color and depth. The colors of the sky,
horizon, and ground can be changed in real time to simulate a specific time of day. At the
horizon boundary, the ground and sky share a common color, so that there is a smooth
transition from sky to horizon color. The width of the horizon band can be defined in
degrees.

A pfChannel’s earth-sky model is automatically drawn by OpenGL Performer before the
scene is drawn unless the pfChannel has a draw callback set with pfChanTravFunc(). In
this case it is the application’s responsibility to clear the viewport. Within the callback
pfClearChan() draws the channel’s pfEarthSky.
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Example 6-1 shows how to set up a pfEarthSky().

Example 6-1 How to Configure a pfEarthSky

pf Eart hSky *esky;
pf Channel *chan;

sky = pf NewESky();

pf ESkyMbde( esky, PFES_BUFFER CLEAR, PFES_SKY_GRND);

pf ESkyAttr (esky, PFES_GRND HT, -1.0f);

pf ESkyCol or (esky, PFES_GRND_FAR, 0.3f, 0.1f, 0.0f, 1.0f);
pf ESkyCol or (esky, PFES_GRND _NEAR, 0.5f, 0.3f, 0.1f,1.0f);
pf ChanESky(chan, esky);

Atmospheric Effects

182

The complexities of atmospheric effects on visibility are approximated within OpenGL
Performer using a multiple-layer sky model, set up as part of the pfEarthSky function. In
this design, individual layers are used to represent the effects of ground fog, clear sky,
and clouds. Figure 6-1 shows the identity and arrangement of these layers.
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Figure 6-1 Layered Atmosphere Model

The lowest layer consists of ground fog, extending from the ground up to a user-selected
altitude. The fog thins out with increasing altitude, disappearing entirely at the bottom
of the general visibility layer. This layer extends from the top of the ground fog layer to
the bottom of the cloud layer’s lower transition zone, if such a zone exists. The transition
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184

zone provides a smooth transition between general visibility and the cloud layer. (If there
is no cloud layer, then general visibility extends upward forever.) The cloud layer is
defined as an opaque region of near-zero visibility; you can set its upper and lower
boundaries. You can also place another transition zone above the cloud layer to make the
clouds gradually thin out into clear air.

Set up the atmospheric simulation with the commands listed in Table 6-1

Table 6-1 pfEarthSky Functions

Function Action

pfNewESky() Create a pfEarthSky.

pfESkyMode() Set the render mode.

pfESkyAttr() Set the attributes of the earth and sky models.
pfESkyColor() Set the colors for earth and sky and clear.
pfESkyFog() Set the fog functions.

You can set any pfEarthSky attribute, mode, or color in real time. Selecting the active
pfFog definition can also be done in real time. However, changing the parameters of a
pfFog once they are set is not advised when in multiprocessing mode.

The default characteristics of a pfEarthSky are listed in Table 6-2.

Table 6-2 pfEarthSky Attributes

Attribute Default

Clear method PFES_FAST (full screen clear)
Clear color 0.00.00.0

Sky top color 0.0 0.0 0.44

Sky bottom color 0.0040.7

Ground near color 0.50.30.0

Ground far color 040.20.0

Horizon color 0.80.81.0
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Table 6-2 pfEarthSky Attributes (continued)

Attribute Default
Ground fog NULL (no fog)
General visibility NULL (no fog)
Cloud top 20000.0

Cloud bottom 20000.0

Cloud bottom color 0.80.80.8
Cloud top color 0.80.80.8
Transition zone bottom 15000.0
Transition zone top 25000.0
Ground height 0

Horizon angle 10 degrees

By default, an earth-sky model is not drawn. Instead, the channel is simply cleared to
black and the Z-buffer is set to its maximum value. This default action also disables all
other atmospheric attributes. To enable atmospheric effects, select PFES_SKY,
PFES_SKY_GRND, or PFES_SKY_CLEAR when turning on the earth-sky model.

Clouds are disabled when the cloud top is less than or equal to the cloud bottom. Cloud
transition zones are disabled when clouds are disabled.

Fog is enabled when either the general or ground fog is set to a valid pfFog. If ground fog
is not enabled, no ground fog layer will be present and fog will be used to support
general visibility. Setting a fog attribute to NULL disables it. See “ Atmospheric Effects”
on page 182 for further information on fog parameters and operation.

The earth-sky model is an attribute of the channel and thus accesses information about

the viewer’s position, current field of view, and other pertinent information directly from
pfChannel. To set the pfEarthSky in a channel, use pfChanESky().
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Patchy Fog and Layered Fog

A pfVolFog is a class that uses a multi-pass algorithm to draw the scene with a fog that
has different densities at different locations. It extends the basic layered fog provided by
pfEarthSky and introduces a new type of fog: a patchy fog. A patchy fog has a constant
density in a given area. The boundaries of this area can be defined by an arbitrary
three-dimensional object or by a set of objects.

A layered fog changes only with elevation; its density and color is uniform at a given
height. It is defined by a set of elevation points, each specifying a fog density and,
optionally, also a fog color at the point’s elevation. The density and the color between two
neighboring points is linearly interpolated.

Figure 6-2 illustrates the basic difference between patchy fog and layered fog.

P1
P2
color 2
P3
P4
P5
color 1 node 1
/ \\/ \ node 2
Layered fog Patchy fog

Figure 6-2 Patchy Fog Versus Layered Fog

Compared to a layered fog in pfEarthSky, a layered fog in pfVolFog has distinct
advantages:

* It can be specified by an arbitrary number of elevation points.

* Each elevation point can have a different color associated with it.

¢ A layered fog in pfVolFog is not dependent on an InfiniteReality-specific texgen. It
can also be drawn using only 2D textures to simulate the 3D texture. Thus, a layered
fog in pfVolFog can virtually be used on any machine.
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Creating Layered Fog

Creating Patchy Fog
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A pfVolFog is not part of the scene graph; it is created separately by the application
process. Once created, elevation points of a layered fog can be specified by calling
pfVolFogAddPoint() or pfVolFogAddColoredPoint() repeatedly. The fog initialization
is completed by calling pfApply VolFog().

Example 6-2 Fog initialization Using pfVolFogAddPoint()

pf Vol Fog *If og;

| fog = pf NewMol Fog(arena);

pf Vol FogAddPoi nt (| fog, el evl, densityl);
pf Vol FogAddPoi nt (| fog, el ev2, density2);
pf Vol FogAddPoi nt (I fog, el ev2, density?2);

pf Appl yVol Fog(I f og) ;

The boundary of a patchy fog is specified by pfVolFogAddNode(pfog,node), where node
contains the surfaces enclosing the foggy areas. It is possible to define several disjoint
areas in the same tree or by adding several different nodes. Note that each area has to be
completely enclosed, and the vertices of the surfaces have to be ordered so that the front
face of each surface faces outside the foggy area. The node has to be part of the scene
graph for the rendering to work properly.

Example 6-3 Specifying Patchy Fog Boundaries Using pfVolFogAddNode()

pf Vol Fog *pf og;

pf Node *f ogNode;

pf og = pf NewWol Fog(arena);

f ogNode = pfdLoadFil e(fil enane);
pf Vol FogAddNode( pf og, fogNode);
pf AddChi | d(scene, fogNode);

pf Appl yVol Fog( pf 0g) ;

Patchy and layered fog can be combined but only if layered fog has a uniform color; that
is, it is specified using pfVolFogAddPoint() only.
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Initializing a pfVolFog
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The function pfApplyVolFog() initializes a pfVolFog. If at least two elevation points were
defined, it initializes data structures necessary for rendering of a layered fog, including
a 3D texture. Any control points defined afterward are ignored. If a node containing
patchy fog boundaries has been added prior to calling pfApplyVolFog(), a patchy fog is
initialized. Since function pfVolFogAddNode() only marks the parts of the scene graph
that specifies the texture, it is possible to add additional patchy fog nodes, even after

pfApplyVolFog() has been called.

Table 6-3 summarizes routines for initialization and drawing of a pfVolFog.

Table 6-3 pfVolFog Functions

Function Action

pfNewVolFog() Create a pfVolFog.

pfVolFogAddChannel() Add a channel on which pfVolFog is used.
pfVolFogAddPoint() Add a point specifying fog density at a certain elevation.

pfVolFogAddColoredPoint()

Add a point specifying fog density and color at a certain elevation.

pfVolFogAddNode() Add a node defining the boundary of a patchy fog.
pfVolFogSetColor() Set color of a layered fog or patchy fog.
pfVolFogSetDensity() Set density of a patchy fog.

pfVolFogSetFlags() Set binary flags.

pfVolFogSetVal() Set a single attribute.

pfVolFogSetAttr() Set an array of attributes.

pfApplyVolFog() Initialize data structures necessary for rendering fog.
pfVolFogAddChannel() Add a channel on which pfVolFog is used.
pfVolFogUpdateView() Update the current view for all stored channels.
pfDrawVolFog() Draw the scene with fog.

pfGetVolFogTexture() Return the texture used by layered fog.
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The attributes of a pfVolFog are listed in Table 6-4.

Table 6-4 pfVolFog Attributes
Attribute Identifier Default
General
Color PFVFOG_COLOR 0.9, 0.9, 1
Density PFVFOG_DENSI TY 1.0
Density bias PFVFOG_DENSI TY_BI AS 0
Maximum distance PFVFOG_MAX_ DI STANCE 2000

Mode PFVFOG_MODE PFVFOG_LI NEAR
Layered fog
Layered fog mode  PFVFOG_LAYERED MCDE PFVFOG_LI NEAR
Texture size PFVFOG_3D_TEX_SI ZE 64 x 64 x 64
Patchy fog
Resolution PFVFOG_RESOLUTI ON 0.2
Patchy fog mode PFVFOG_PATCHY_MODE PFVFOG_LI NEAR
Texture bottom PFVFOG_PATCHY_TEXTURE_BOTTOM 0.3
Texture top PFVFOG_PATCHY_TEXTURE_TOP 0.1.5
Layered patchy fog
Rotation matrix PFVFOG_ROTATE_NODE Identity
Light shafts
Attenuation scale PFVFOG_LI GHT_SHAFT_ATTEN_SCALE 0.04

Attenuation shift

Darken factor

PFVFOG_LI GHT_SHAFT_ATTEN_TRANSLATE 6

PFVFOG_LI GHT_SHAFT_DARKEN_FACTOR

0.3
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The flags of a pfVolFog are listed in Table 6-5.

Table 6-5 pfVolFog Flags
Flag Identifier Default
General
Close surfaces PFVFOG_FLAG _CLOSE_SURFACES 1
Use 2D texture PFVFOG_FLAG FORCE_2D TEXTURE 0
Force patchy fog passes PFVFOG_FLAG_FORCE_PATCHY_PASS 0
Layered fog
Self-shadowing PFVFOG_FLAG_SELF_SHADON NG 0
Darken objects PFVFOG_FLAG DARKEN_OBJECTS 0
Filter color PFVFOG_FLAG FOG FI LTER 0
Patchy fog
Faster patchy fog PFVFOG_FLAG _FASTER_PATCHY_FOG 0
No object in fog PFVFOG_FLAG NO OBJECT_I N_FOG 0
1D texture on surface PFVFOG_FLAG PATCHY_FOG_1DTEXTURE 0
Separate node bins PFVFOG_FLAG_SEPARATE_NODE_BI NS 0
Screen-bounding rectangle PFVFOG_FLAG_SCREEN_BOUNDI NG_RECT 1
Draw nodes separately PFVFOG_FLAG_DRAW NODES_SEPARATELY 0
User-defined texture PFVFOG_FLAG USER PATCHY_FOG TEXTURE O
Use cull programs PFVFOG_FLAG USE CULL_PROGRAM 0
Layered patchy fog
Use layered patchy fog PFVFOG_FLAG _LAYERED PATCHY_FOG 0
Light shafts
Light shaft PFVFOG_FLAG LI GHT_SHAFT 0
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Updating the View

A pfVolFog needs information about the current eye position and view direction. Since
this information is not directly accessible in a draw process, it is necessary to call
pfVolFogAddChannel() for each channel at the beginning of the application. Whenever
the view changes, the application process has to call pfVolFogUpdateView(). See
programs in /usr/ shar e/ Per f or mer/ src/ sanpl e/ apps/ C fogf |l y or

/usr/ shar e/ Performer/src/sanpl e/ apps/ C++/ vol f og on IRIX and Linux or
UPFROOTY Sr ¢/ sanpl e/ apps/ T fogfly or

YPFROOTY Sr c/ sanpl e/ apps/ C++/ vol f og on Microsoft Windows for an example.
If you do not update the view, the fog will not be rendered.

If the application changes the position of the patchy fog boundaries (for example, by
inserting a pfSCS, pfDCS, or pfFCS node above the fog node) or the orientation of the
whole scene with respect to the up vector (for example, the use of a trackball in Perfly),
the fog may not be drawn correctly.

Drawing a Scene with Fog

Deleting a pfVolFog
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To draw the scene with a fog, the draw process has to call pfDrawVolFog() instead of
pfDraw(). This function takes care of drawing the whole scene graph with the specified
fog. Expect the draw time to increase because the scene is drawn twice (three times if
both patchy and layered fog are specified). In case of a patchy fog there may also be
several full-screen polygons being drawn. You can easily disable the fog by not calling
pfDrawVolFog().

Since boundaries of patchy fog are in the scene graph, do not use pfDraw() to draw the
scene without fog; instead, use pfDrawBin() with PESORT_DEFAULT_BIN,
PFSORT_OPAQUE_BIN, and PFSORT_TRANSP_BIN.

A patchy fog needs as deep a color buffer as possible (optimally 12 bits per color
component) and a stencil buffer. Use at least a 4-bit stencil buffer (1-bit is sufficient only
for very simple fog objects). It may be necessary to modify your application so that it asks
for such a visual.

A pfVolFog can be deleted using pfDelete(). In case of a layered fog it is necessary to
delete the texture handle in a draw process. The texture is returned by
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pfGetVolFogTexture(). See the example in
/usr/ shar e/ Performer/src/sanpl e/ apps/ C fogf |y onIRIX and Linux and in
UPFROOTY Sr ¢/ sanpl e/ apps/ T f ogf | y on Microsoft Windows.

Specifying Fog Parameters

This section describes how to manage the various parameters for both layered and
patchy fog.

Layered Fog

As mentioned earlier, a layered fog of a uniform color is specified by function
pfVolFogAddPoint(), which sets the fog density at a given elevation. The density is
scaled so that if the fog has a density of 1, the nearest object inside the fog that has full
fog color is at a distance equal to 1/10 of the diagonal of the scene bounding box. The
layered fog color is set by function pfVolFogSetColor() or by calling pfVolFogSetAttr()
with parameter PFEVFOG_COLOR and a pointer to an array of three floats.

A layered fog of nonuniform color is specified by function pfVolFogAddColoredPoint(),
which sets the fog density and the fog color at a given elevation. The color set by
pfVolFogSetColor() is then ignored.

The layered fog mode is set by function pfVolFogSetVal() with parameter
PFVFOG_LAYERED_MODE and one of PEVFOG_LINEAR, PEVFOG_EXP, or
PFVFOG_EXP2.

It is also possible to set the mode both for a layered and patchy fog at once by using
parameter PEVFOG_MODE. The default mode is PEVFOG_LINEAR. The function of the
mode parameter is equivalent to the function of the fog mode parameter of the OpenGL
function glFog().

The size of a 3D texture used by a layered fog can be modified by calling
pfVolFogSetAttr() with parameter PEVFOG_3D_TEX_SIZE and an array of three integer
values. The default texture size is 64x64x64, but reasonable results can be achieved with
even smaller sizes. The sizes are automatically rounded up to the closest power of 2. The
second value should be equal to or greater than the third value. If 3D textures are not
supported, a set of 2D textures is used instead of a 3D texture (the number of 2D textures
is equal to the third dimension of the 3D texture). Every time the r coordinate changes
more than 0.1, a new texture is computed by interpolating between two neighboring
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Patchy Fog

slices, and the texture is reloaded. The use of 2D textures can be forced by calling:
pfVolFogSetFlags() with flag PFVFOG_FLAG_FORCE_2D_TEXTURE set to 1.

Note: Once a layered fog is initialized by calling the pfApplyVolFog(), changing any of
the parameters described here will not affect rendering of the layered fog.

The density of a patchy fog is controlled by function pfVolFogSetDensity() or by using
pfVolFogSetVal() with parameter PFVFOG_FOG_DENSITY. As in the case of a layered
fog, the density of a patchy fog is scaled by 1/10 of the diagonal of the scene bounding
box.

You can specify an additional density value that is added to every pixel inside or behind
a patchy fog boundary using the function pfVolFogSetVal() with parameter
PFVFOG_FOG_DENSITY_BIAS. This value makes a patchy fog appear denser but it
may create unrealistically sharp boundaries.

The patchy fog color is set by function pfVolFogSetColor() or by calling
pfVolFogSetAttr() with parameter PFEVFOG_COLOR and a pointer to an array of three
floats. If the blend_color extension is not available, patchy fog will be white.

The patchy fog mode is set by function pfVolFogSetVal() with parameter
PFVFOG_PATCHY_MODE and one of PEVFOG_LINEAR, PFVFOG_EXP, or
PFVFOG_EXP2.

It is also possible to set the mode both for a patchy and layered fog at once by using
parameter PEVFOG_MODE. The default mode is PFVFOG_LINEAR.

Note: The parameters of a patchy fog can be modified at any time and they will affect
the rendering of the subsequent frame.

Advanced Features of Layered Fog and Patchy Fog
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This section describes the following topics:

¢ “Enabling Self-Shadowing of a Layered Fog and Scene Darkening”
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* “Animating Patchy Fog”

¢ “Selecting a Different Type of Patchy Fog Algorithm”

e “Simulating Self-Shadowing in Patchy Fog”

e “Layered Patchy Fog”

e “Light Shafts”

The example in / usr/ shar e/ Per f or mer/ sr c/ sanpl e/ C++/ vol f og on IRIX and

Linux and in Y%°FROOT% Sr ¢/ sanpl e/ C++/ vol f 0og on Microsoft Windows illustrates
the use of all these advanced features.

Enabling Self-Shadowing of a Layered Fog and Scene Darkening

Animating Patchy Fog

A layered fog can be self-shadowed—that is, the lower parts of a dense fog appear
darker. Self-shadowing is enabled by setting the flag
PFVFOG_FLAG_SELF_SHADOWING to 1. The fog mode should be set to
PFVFOG_EXP.

When the fog has different colors at different elevations and the flag
PFVFOG_FLAG_FOG_FILTER is set to 1, a secondary scattering is approximated. In this
case, the color of a higher layer may affect the color of a lower layer.

If the flag PFVFOG_FLAG_DARKEN_OBJECTS is set, even the objects below a dense fog
become darker. The light is assumed to come from the top.

A patchy fog can be animated by modifying the geometry of the fog nodes. When
changing the content of geosets specifying the fog boundary, make sure that the geosets
are fluxed and that the bounding box of each geoset is updated. In addition, function
pfVolFogAddNode() has to be called every time the fog bounding box changes.

Selecting a Different Type of Patchy Fog Algorithm
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It is possible to use a different algorithm for rendering patchy fog that can handle
semi-transparent surfaces better. To use this algorithm, set the flag
PFVFOG_FASTER_PATCHY_FOG to 1. Some advanced features of patchy fog described
in the following subsections are supported only in one of the two algorithms. In such
cases, this limitation is noted.
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Simulating Self-Shadowing in Patchy Fog

Layered Patchy Fog
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If the flag PFVFOG_FASTER_PATCHY_FOG is set to 1, the algorithm also allows the
color of the patchy fog boundary to be modified using a texture. Either a built-in 1D
texture expressing the attenuation between two elevations is used or you can provide a
1D or a 3D texture for each volume object. This can be used to simulate self-shadowing
of dense gases, such as clouds.

The built-in 1D texture is enabled by setting the flag
PFVFOG_FLAG_PATCHY_FOG_1DTEXTURE. The texture is mapped to the range of
elevations between the bottom and top of the fog bounding box. The texture value at the
bottom (default of 0. 3) can be modified by calling pfVolFogSetVal() with parameter
PFVFOG_PATCHY_TEXTURE_BOTTOM and the value at the top (default of 1. 5) using
parameter PFVFOG_PATCHY_TEXTURE_TOP.

To use a different scale for objects of different sizes, you must specify the fog objects
separately. When the flag PFVFOG_FLAG_SEPARATE_NODE_BINS is set, all calls to
pfVolFogAddNode() define fog nodes that are drawn separately, and the predefined
texture is scaled according to the bounding box of each node.

If both the flag PFEVFOG_FLAG_PATCHY_FOG_1DTEXTURE and the flag
PFVFOG_FLAG_USER_PATCHY_FOG_TEXTURE are set, textures associated with the
fog nodes are used to modify the surface color of a patchy fog.

To avoid artifacts on overlapping colored patchy fog objects the flag
PFVFOG_FLAG_DRAW_NODES_SEPARATELY forces the algorithm to be applied to
each node separately in the back-to-front order with respect to the viewpoint. Currently,
this mode does not work well when scene objects intersect fog objects.

If the flag PFVFOG_FLAG_LAYERED_PATCHY_FOG is set, the layered fog is used to
define the density of a patchy fog. The layered fog is then present only in areas enclosed
by the patchy fog boundaries. Since layered fog is computed for the whole scene, it is
important to set fog parameter PFEVFOG_MAX_DISTANCE to a value that corresponds
to the size of the patchy fog area (for example, a diameter of its bounding sphere). Use
function pfVolFogSetVal() to modify the maximum distance parameter.

Layered patchy fog nodes can be moved and rotated by specifying a matrix for each fog

node, identified by its index (the order in which nodes were specified). The function
pfVolFogSetAttr() with three parameters specified can be used for this purpose. The first
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Light Shafts

parameter is PEVFOG_ROTATE_NODE, the second parameter specifies the node index,
and the last one is a pointer to a pfMatrix.

Light shafts are a special application of a layered patchy fog. The fog boundary specifies
a cone of light with decreasing intensity (density) along the cone axis. Additional
rendering passes darken the objects outside the cone of light and lighten the objects
inside the light shaft based on their distance from the light. To enable these additional
passes, set flag PEVFOG_FLAG_LIGHT_SHAFT to 1. To ensure that these passes are
applied even if the light shaft is not in the field of view, you must also set flag
PFVFOG_FLAG_FORCE_PATCHY_PASS to 1.

To control the additional passes, the parameter
PFVFOG_LIGHT_SHAFT_DARKEN_FACTOR (set using pfVolFogSetAttr()) can
change the factor by which all objects outside the light shaft are darkened. The default
value is 0. 3.

Parameters PEVFOG_LIGHT_SHAFT ATTEN_SCALE and
PFVFOG_LIGHT_SHAFT_ATTEN_TRANSLATE set the translate and scaling of a
built-in, one-dimensional texture that is used to reduce the color of objects lit by the light.
Set the translate to a small value—for example, 10 to 20% of the shaft length—and the
scale to the inverse of the shaft length.

Performance Considerations and Limitations
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The quality and speed of patchy fog rendering can be controlled by calling
pfVolFogSetVal() with the parameter PEVFOG_RESOLUTION. The resolution is a value
between 0 and 1. Higher values will reduce banding and speed up the drawing. On the
other hand, high values may cause corruption in areas of many overlapping fog surfaces.
The default value is 0.2, but you may use values higher than that if your fog boundaries
do not overlap much.

The following are other performance considerations:

* The multipass algorithms used for rendering layered and patchy fog may produce
incorrect results if the scene graph contains polygons that have equal depth values.
To avoid such problems, a stencil buffer is used during rendering of the second
pass. You can disable this function by setting the flag
PFVFOG_FLAG_CLOSE_SURFACES to 0.
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By default, the multipass algorithm is applied only when boundaries of a patchy
fog are visible. This may cause undesirable changes of semi-transparent edges of
scene objects when fog objects move into or away from the view. To force the use of
the multipass algorithm, set the flag PEVFOG_FLAG_FORCE_PATCHY_PASS to 1.

Cull programs (see “Cull Programs” in Chapter 4) can speed up rendering of patchy
fog because in some draw passes only the part of the scene intersecting the fog
boundary is rendered. To enable cull programs, set the flag
PFVFOG_FLAG_USE_CULL_PROGRAM to 1.

A layered fog is faster to render than a patchy fog; use a layered fog instead of a
patchy fog whenever possible. Rendering of both types of fog together is even
slower; so, you may try to define only one type.

Changing the fog mode does not affect the rendering speed in the case of a layered
fog but rendering of a patchy fog is slower for fog modes PEVFOG_EXP and
PFVFOG_EXP2. If you prefer using non-linear modes, try to use them only for
layered fog and not for patchy fog.

You can speed up drawing of a patchy fog by reducing the size of the fog
boundaries. In case of several disjoint fog areas, the size of a bounding box
containing all boundaries will affect the draw time and quality. Try to avoid
defining a patchy fog in two opposite parts of your scene. Try also to increase the
value of resolution (if there are not too many overlapping fog boundaries) or reduce
the patchy fog density.

If there is a lot of banding visible in the fog, try to choose a visual with as many bits
per color component as possible. Keep in mind that a patchy fog needs a stencil
buffer. You can also try to apply all techniques mentioned in the previous item—
reducing the size of patchy fog boundaries, increasing resolution, or decreasing
density.

If a patchy fog looks incorrect (the fog appears outside the specified boundaries)
make sure that the vertices of the fog boundaries are specified in the correct order so
that front faces always face outside the foggy area.

If you see a darker band in a layered fog at eye level, make sure the texture size is
set so that the second value is equal to or greater than the third value.

Since light shafts are using a combination of layered and patchy fog and the density
is decreasing to 0 at the end of the light cone, the quality of results is very sensitive
to the depth of color buffers. 12-bit visuals are required and the light shaft should
not be too large. Also, ensure that PEVFOG_MAX_DISTANCE is set as small as
possible.
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OpenGL Performer has the following limitations in regards to fog management:

Layered fog

¢ The values of a layered fog are determined at each vertex and interpolated across a
polygon. Consequently, an object located on top of a large ground polygon may be
fogged a bit more or less than the part of the polygon just under the object.

¢ A layered fog works fast with a 3D texture. Reloading of 2D textures during the
animation can be slow.

Patchy fog

¢ The method does not work well for semitransparent surfaces. If your scene contains
objects that are semitransparent or that have semitransparent edges, (for example,
tree billboards or mountains in Performer Town), these objects or edges may be cut
or may be fogged more than the neighboring pixels. Even if a semitransparent edge
of a billboard is outside the fog, it will not be smooth.

¢ A layered patchy fog is extremely sensitive to the size of the fog area and the
density of the layered fog. Specifically, the fog values accumulated along an
arbitrary line crossing the bounding box of the fog area should not reach 1.

¢ A patchy fog needs a stencil buffer and the deepest color buffers possible.The
rendering quality on a visual with less than 12 bits per color component is low
unless the fogged area is very small compared to the size of the whole scene.

¢ If the blend_color extension is not available, the patchy fog color will be white.

Real-Time Shadows
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You can create real-time shadows using the class pfShadow. You specify a set of light
sources and a set of objects that cast shadows on all other objects in the scene. The class
manages the drawing and renders shadows for each combination of a shadow caster and
a light source. Shadows are rendered by projecting the objects as seen from the light
source into a texture and projecting the texture onto a scene. To avoid computing the
texture for each frame, a set of textures is precomputed at the first frame, then for each
frame the best representative is chosen and warped to approximate the correct shadow.

The following sections further describe real-time shadows:
* “Creating a pfShadow”

e “Drawing a Scene with Shadows”
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Creating a pfShadow

007-1680-080

* “Specifying Shadow Parameters”
* “Assigning Data with Directions”

e “Limitations of Real-Time Shadows”

A pfShadow is not part of the scene graph; it is created separately by the application
process. Once the pfShadow is created, you can specify the number of shadow casters by
calling function pfShadowNumCasters() and then set each caster using the function
pfShadowShadowCasters(). Each shadow caster is specified by a scene graph node and
amatrix that contains the transformation of the node with respect to the scene graph root.
Shadow casters are indexed from 0 to the number of casters minus 1.

Similarly, the number of light sources is set by function pfShadowNumSources(). A light
source is defined by its position or direction, set by pfShadowSourcePos() or
pfShadowLight().

A pfShadow needs information about the current eye position and view direction. Since
this information is not directly accessible in a draw process, it is necessary to call
pfShadowAddChannel() for each channel at the beginning of the application. Whenever
the view changes, the application process has to call pfShadowUpdateView(). Even if
the view does not change, this function must be called at least once in single-process
mode or as many times as the number of buffers in a pfFlux in multiprocess mode.
Without updating the view, the shadow is not rendered correctly.

The class initialization is completed by calling the function pfShadowApply() as shown
in the following creation example:

pf Shadow *shd = pf NewShadow() ;

pf ShadowNuntCast ers(shd, 2);

pf ShadowshadowCast er (shd, 0, nodel, matrix1);
pf ShadowshadowCast er (shd, 1, node2, matrix2);

pf ShadowNunSour ces(shd, 1);
pf ShadowSour cePos(shd, 0, x1, yl1, zl1, wl);

pf ShadowAddChannel (channel ) ;

pf ShadowAppl y(shd);
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Table 6-6 summarizes the functions for the initialization and drawing of a pfShadow.

Table 6-6 pfShadow Functions

Function Action

pfNewShadow() Create a pfShadow.
pfShadowNumCasters() Set number of shadow casters.

pfShadowShadowCaster()
pfShadowAdjustCasterCenter()
pfShadowNumSources()
pfShadowSourcePos()
pfShadowLight()
pfShadowAmbientFactor()
pfShadowShadowTexture()

pfShadowTextureBlendFunc()
pfShadowAddChannel()
pfShadowUpdateView()
pfShadowUpdateCaster()
pfShadowFlags()
pfShadowVal()
pfGetShadowDirData()
pfShadowApply()
pfShadowDraw()

Set a shadow caster and its rotation matrix.
Specify the translation of caster's center.
Set number of light sources.

Specify light source position.

Specify light source.

Set ambient factor.

Set a user-defined shadow texture for a given caster
and light source.

Set a function used when blending closest shadows.
Add a channel on which pfShadow is used.

Update the current view for all stored channels.
Update rotation matrix of a caster.

Set binary flags.

Set a single attribute.

Get a pfDirData associated with the pfShadow.
Initialize a pfShadow.

Draw the scene and shadows.
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The attributes of a pfShadow are listed in Table 6-7.

Table 6-7 pfShadow Attributes

Attribute Identifier Default
Size of shadow texture PFSHD_PARAM_TEXTURE_SIZE 512 x 512
Number of shadow textures PFSHD_PARAM_NUM_TEXTURES 1

There is only one pfShadow flag, PESHD_BLEND_TEXTURES. This blend-textures flag
has a default of 0.

Drawing a Scene with Shadows

To draw a scene with real-time shadows, the draw process has to call the draw function
provided by the pfShadow class: pfShadowDraw(). Before the first frame is rendered, all
required shadow textures are precomputed. A warning is printed if the window size is
smaller than the texture dimensions. Ensure that the window is not obscured; otherwise,
the textures will not be correct.

By default, only the closest shadow texture is selected for any direction and it is skewed
so that it approximates the correct shadow. Optionally, the flag
PFSHD_BLEND_TEXTURES can be set using the function pfShadowFlags(). In this case,
the two closest textures are selected and blended together, resulting in smoother
transitions. Also, instead of a linear blend between the textures, you can define a blend
function, mapping values 0-1 to the interval 0-1. The blend function can be set using the
function pfShadowTextureBlendFunc().

Every time the caster changes its position or orientation with respect to the light source,
it is necessary to update its matrix using pfShadowUpdateCaster() (the caster is
identified by its index). When the caster's matrix changes, the shadow of the caster
changes as well. In this case, the set of precomputed shadow textures is searched to find
the one or two closest representatives.
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Specifying Shadow Parameters

The shadow texture is used to darken the scene pixels when the texture texel is set to 1.
The amount by which the scene pixel is darkened can be set by the function
pfShadowAmbientFactor(). The default value is 0. 6

As the caster is projected into a shadow texture, the center of the projection corresponds
with the center of the bounding box of the caster's node. When the shadow texture is
skewed to approximate shadows from a slightly different direction, it is best if the center
of the projection corresponds with the center of the object. The bounding box center may
not coincide with the center of the object (in the case of some long protruding parts) and
you can use the function pfShadowAdjustCasterCenter() to shift the bounding box
center toward the center of the object.

For each combination of a shadow caster and a light source, it is possible to specify the
number of shadow textures used, their sizes, and a set of directions for which the textures
are precomputed. The number of textures and their sizes can be set by the function
pfShadowVal(), where the first parameter is PFSHD_PARAM_TEXTURE_SIZE or
PFSHD_PARAM_NUM_TEXTURES.

The set of directions can be controlled by using the function pfGetShadowDirData() to
get the pointer to the corresponding pfDirData, a class that stores data associated with a
set of directions. Then you can either select the default mode or specify the directions
directly. See following section “Assigning Data with Directions” for more details. By
default, there is one texture of size 512 x 512 and the direction corresponds to the light
direction (or a vector from a point light source to the object's center). If there are more
textures, the original light direction is rotated around a horizontal direction, assuming
that the object will primarily keep its horizontal position (for example, a helicopter or a
plane).

A sample implementation of shadows is in the file
perf/sanpl es/ pgui de/ | i bpf/ C++/ shadowsNew
Assigning Data with Directions
The pfDirData class is used to store directional data—that is, data that depend on

direction. A pfDirData stores an array of directions and an array of (voi d *) pointers
representing the data associated with each direction.
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The directions and data can be set using the function pfDirDataData(). Optionally, you
can set only the directions using the function pfDirDataDirections() in the case that the
associated data are defined later or generated internally by another OpenGL Performer
class (such as pfShadow).

You can also generate directions automatically using the function
pfDirDataGenerateDirections(). The first parameter defines one of the default sets of
directions and the second parameter is used to specify additional values. At present only
type PFDD_2D_ROTATE_AROUND_UP is supported, in which case the second
parameter points to a 3D vector that is rotated around the up vector, creating a number
of directions.

The data can be queried using the pfDirDataFindData() or pfDirDataFindData2()
function. In the first case, the function finds the closest direction to the direction specified
as the first parameter, copies it to the second parameter, and returns the pointer to the
data associated with it. The input direction has to be normalized. The second function
finds the two closest directions to the specified direction. It copies the two directions to
the second parameter (which should point to an array of two vectors). The two pointers
to the data associated with the two directions are copied to the array of two (voi d *)
pointers specified as the third parameter. In addition, two weights associated with each
direction are copied to the array of two floats. These weights are determined based on the
distance of the end point of the input direction and each of the two closest directions.

Limitations of Real-Time Shadows
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The following are limitations of real-time shadows in OpenGL Performer:

*  When projecting a caster into a shadow texture, pfSwitch children are selected
according to switch value. In the case of pfLOD, the finest level is chosen. Also,
pfSequences are ignored—which can be useful in the case of helicopter rotors, for
example.

e The pfShadow class uses cull programs to cull out geometry that is not affected by
the shadow to make the multipass drawing more efficient. At present, though, the
cull program used by the pfShadow class overwrites any other cull program you
specify.

Note: Ensure that you do not overwrite TravMode in your application by setting it
to PFECULL_ALL. The mode is set by pfShadow when pfShadowApply() is called.
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¢ When projecting a caster into a shadow texture, pfSwitch and pfLOD may not be
handled properly. Also, pfSequences are ignored—which can be useful in case of
helicopter rotors, for example.

Image-Based Rendering

The image-based rendering approach is used for very complex objects. Such an object is
represented by a set of images taken from many directions around it. When the object is
rendered for each view direction, several closest views are blended together.

In OpenGL Performer, you can use the pfIBRnode class to represent complex objects.
Unlike a pfBillboard, a parent class of pfIBRnode, the texture on pfGeoSets of a
pfIBRnode is not static, but it changes based on the view direction for each pfGeoSet.
The following sections further describe image-based rendering:

* “Creating a pfIBRnode” on page 204

* “Creating a pfIBRnode Using a Proxy” on page 205

* “Creating a pfIBRtexture” on page 206

e “Parameters Controlling Drawing of a pfIBRnode” on page 208

* “The Simplify Application” on page 209

* “Creating Images of an Object with makeProxylmages” on page 215

* “Creating Images of an Object with makelBRimages” on page 219

e “Limitations” on page 220

Creating a pfIBRnode

204

A pfIBRnode is a child class of pfBillboard. You create a pfIRRnode in a fashion similar
to that of a pfBillboard. Compared to a pfBillboard, a pfIBRnode has two additional
parameters: a pfIBRtexture and an array of angles defining the initial rotation of the
objects.

Each pfIBRnode has associated with it a single pfIBRtexture, which stores a set of images
of the complex object as viewed from different directions. Each pfGeoSet is then rendered
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with a texture representing the view of the object from the given direction. A
pfIBRtexture is specified using the function pfIBRnodeIBRtexture().

Using the function pfIBRnodeAngles(), you control the initial orientation of the complex
object by specifying the rotation from the horizontal and vertical planes for each
pfGeoSet. These angles are very useful in case of trees, for example, because you can use
a different vertical angle for each instance of the tree. The trees then appear different,
although they all use the same pfIBRtexture. The first value is ignored in the case that
only one ring of views around the object is used.

You must set up a pfIBRnode so that the pfIBRtexture applied to it can modify properly
the image at each frame. You do so in the following manner:

1. Set the texture of the pfGeoState associated with each pfGeoSet of the pfIBRnode to
the texture returned by the function pfGetIBRtextureDefaultTexture().

2. If the pfIBRtexture has the flag PFIBR_USE_REG_COMBINERS set, enable
multitexturing and specify texture coordinates for additional texture units.

3. If the pfIBRtexture has the flag PFIBR_3D_VIEWS enabled, set the billboard rotation
(PFBB_ROT) to PFBB_AXIAL_ROT.

On IRIX and Linux, see the example in the following file:

[ usr/ shar e/ Performer/src/sanpl e/ pgui de/ C++/ | BRnode. C

On Microsoft Windows, see the example in the following file:
[ Y°FROOTY Sr c/ sanpl e/ pgui de/ C++/ | BRnode. C

Creating a pfIBRnode Using a Proxy
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By default, it is assumed that the geosets of the pfIBRnode specify rectangles that are
always facing the viewer (like billboards). This approach is very fast but it requires a
large number of views to limit the artifacts due to the differences between the
neighboring views.

To reduce the number of views required to obtain a reasonable image of the complex
object from any direction, we can use a shape that approximates the surface of the
complex object instead of a billboard. This shape is called a proxy. The closer the proxy
is to the original surface, the fewer views of the objects are required. Optimally, you
create a proxy that contains a relatively small number of primitives and that is very close
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to the original surface. The proxy can be created using the new tool Simply. See section
“The Simplify Application” on page 209 for the details.

Compared to default mapping of views on a billboard there are only minor changes.
Instead of a billboard, the node's geosets contain the proxy geometry. The pfIBRtexture
associated with the node has the flag PFIBR_USE_PROXY set. There is an array of texture
coordinates indexed by the view index and the geoset index. These texture coordinates
can be defined and queried by pfIBRnodeProxyTexCoords() and
pfGetIBRnodeProxyTexCoords(). Note that it is more efficient to store the proxy in one
geoset.

Optionally, it is possible to specify different geosets for each view (if the
PFIBR_NEAREST flag is set in the pfIBRtexture assigned to the pfIBRnode) or for each
group of views if the views are blended. In this case, you must set the flag
PFIBRN_VARY_PROXY_GEOSETS using pfIBRnodeFlags(). This can be useful for
removing the invisible parts of the proxy (invisible from the range of views in the group)
or for sorting the proxy triangles to avoid artifacts when edges of the proxy textures are
transparent. The array of texture coordinates is then organized as follows:

* The first index is the view index or the group index (if the views are blended).

* The second index is the geoset index multiplied by the number of views in a group
(1 for the nearest view).

¢ The coordinates are grouped by geosets.

Thus, there are texture coordinates for the geoset 0 for all views in the group, then for
geoset 1, and so on.

The geosets are organized as follows: if the proxy has n geosets and there are v views or
groups of views, the pfIBRnode has n*v geosets, and each group of n geosets belongs to
one view.

To create views of a complex object from various directions and to compute the texture
coordinates of its proxy, you can use the makePr oxyl mages tool described in section
“Creating Images of an Object with makeProxylmages” on page 215.

Creating a pfIBRtexture

206

A pfIBRtexture stores a set of images of a complex object as viewed from different
directions. The directions are specified using pfIBRtextureIBRdirections(). Internally,
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pfIBRtexture uses pfDirData to store the views. A pfDirData determines the type of view
distribution. It could be a set of views around the object with all views perpendicular to
the vertical axis, or the views can be from a set of rings and each ring contains an array
of evenly spaced views that have the same angle from the horizontal plane. Otherwise,
the views are assumed to be uniformly or randomly distributed around the sphere of
directions. You must specify the directions before the images are set.

Once you specify the directions, you set the images using pfIBRtextureIBRtextures().
The parameters are an array of pointers to the textures containing the views and the
number of the textures in this array.

If views are organized in rings, you can load the images directly from a set of files using
pfIBRtextureLoadIBRtexture() without the need to specify the directions first. The
parameter f or mat specifies the path where the images are stored as well as how they are
indexed—for example, i mages/ vi ew®3d. r gb. The other two parameters specify the
number of images and the increment between two loaded images. The increment
specification is useful when the texture memory is limited; for instance, specifying

St ep=2 causes every second image to be skipped. Optionally, you can specify the views
using the function pfIBRtextureIBRtextures(). The parameters are an array of pointers
to the textures containing the views and the number of the textures in this array.

If the views are organized in rings, the textures, by default, represent views around the
object, all perpendicular to the vertical axis. In this case, specified textures form a single
ring of views that are evenly spaced. If the flag PFIBR_3D_VIEWS is specified by the
function pfIBRtextureFlags(), the textures form a set of rings. Each ring contains an array
of evenly spaced views that have the same angle from the horizontal plane.

If the flag PFIBR_3D_VIEWS is not set, both functions pfIBRtextureLoadIBRtexture()
and pfIBRtextureIBRtextures() will set one ring with the specified number of textures
and a horizontal angle of 0. If the flag PFIBR_3D_VIEWS is set, the class checks whether
afilei nf o is present in the image directory. If it is, the information about rings is loaded
from that file. The file contains two values on each line: the horizontal angle and the
number of textures at each ring. If the file is not present in the image directory, you must
specify the rings before the images are loaded by calling the functions
pfIBRtextureNumRings() and pfIBRtextureRing(). Rings are indexed from 0 and
should be ordered by the horizontal angle, with the lowest angle at index 0. Each ring can
have a different number of textures associated with it.

When 3D views are used, the image files read by function
pfIBRtextureLoadIBRtexture() should be indexed by the ring index and the index of the
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image in a given ring. Specify the format string in the manner shown in the following
example:

i mages/ vi ews®2d_%03d. r gb

If you specify the textures using the function pfIBRtextureIBRtextures(), the texture
pointers are all stored in a single array, starting with textures of the first ring, followed
by textures of the second ring, and so on.

It is assumed that the views in each ring are uniformly spaced and they are ordered
clockwise with respect to the vertical axis. If the views are ordered in the opposite
direction, use the function pfIBRtextureDirection() to set the direction to 1.

When using pfIBRnodes and pfIBRtextures in Perfly, you need an alpha buffer. If the
pfIBRnode is rendered as an opaque rectangle, try the command-line parameter -9, in
which case Perfly requests a visual with an alpha bulffer.

For more details about associating a pfIBRtexture with a pfIBRnode, see the pf | BRnode
man page and the following program:

/ usr/ shar e/ Per f or mer/ sr ¢/ sanpl e/ pgui de/ C++/ | BRnode (IRIX and Linux)
| ¥9°FROOTY% Sr c/ sanpl e/ pgui de/ C++/ | BRnode (Microsoft Windows)

Parameters Controlling Drawing of a pfIBRnode

208

At present, the pfIBRtexture class is used only by the pfIBRnode class. The pfIBRtexture
class provides a draw function for pfGeoSets that belong to the pfIBRnode, but the draw
process is transparent to you. You can control the drawing by setting flags using the
function pfIBRtextureFlags(). If the flag PFIBR_NEAREST is set, the closest view from
the closest ring is selected and applied as a texture of the pfGeoSet. This approach is fast
on all platforms, but it results in visible jumps when the texture is changed. Thus, by
default, the flag PFIBR_NEAREST is not set and the two or, in case of 3D views, four
closest views are blended together. If the graphics hardware supports register combiners,
flags PFIBR_USE_REG_COMBINERS and PFIBR_USE_2D_TEXTURES are
automatically set by the class constructor and blending of textures can be done in one
pass.

The flag PFIBR_USE_PROXY is used when the views are mapped on an approximation

of the complex object (a proxy) and a different draw function is applied. You can read
more about proxies in section “Creating a pfIBRnode Using a Proxy” on page 205.
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By default on IRIX, the flag PFIBR_USE_2D_TEXTURES is not set and a 3D texture is
used for fast blending between the two closest views. To avoid flickering when the object
is viewed from a distance, additional 3D textures are used to store additional mipmap
levels. This feature is available on machines with multisampling only (InfiniteReality
systems). To disable the mipmapping, set flag PFIBR_MIPMAP_3DTEXTURES to zero.
In case of several rings, the nearest ring is selected and the views inside this ring are
blended using the 3D texture. 3D texture is not compatible with other distributions of the
views. Hence, in this case, ensure that you set flag PFIBR_USE_2D_TEXTURES.

The Simplify Application

The Simplify application is an interactive tool that is used to simplify a complex object.
It has the following two main functions:

* Create a regular simplification of an object

e Create a proxy of an object

In a regular simplification of an object, the resulting geometry does not cross the inner
and outer boundaries of the original object. The distance of these boundaries from the
original object controls the coarseness of the resulting geometry. All vertex parameters,
such as the normal or texture coordinates, are preserved. A simplified version of the
object can be used to create a pfLOD node (see section “pfLOD Nodes” on page 70).

A proxy is a simplified version of the object where the original object is fully inside the
proxy. This property is important because the proxy is used in image-based rendering
where the images of a complex object from various directions are projected onto the
proxy. In this way, it is possible to render a very complex object using a simplified version
(a proxy) and store the surface detail, including the associated lighting, in multiple
textures. See section “Creating Images of an Object with makeProxyImages” on page 215
for the process of making the textures that are projected on the proxy.

The Simplify Graphical User Interface (GUI)
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The Simplify application is based on the Perfly application and they share many
command-line parameters and key commands (see the man page for per f | y). The
syntax for the command-line invocation is as follows:

simplify [ perfly-options 1 infile outfile [ simplification-options ]
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You can get the list of the simplication options by running si npl i f y with no option or
with only the option -h.

When you start the Simplify application, the menu is similar to that of Perfly. There is an
additional pane of buttons and sliders, called the Simplify pane, which can be enabled
and disabled using the Simplify pane button. Figure 6-3 shows the Simplify pane, which
is enabled by default. Most of the buttons and sliders on the Simplify pane have
command-line equivalents.

Figure 6-3 The Default Simplify Pane
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Making a Proxy of an Object
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Computing a proxy with Simplify requires two basic decisions:

Where to position the initial proxy and an outer boundary for the original object

What algorithm to use for creating the initial proxy and the outer boundary

Since these decisions may be difficult to make in an analytical fashion initially, the
Simplify GUI allows you to make some guesses and refine them in an iterative fashion.
The following procedure for making a proxy assumes that you have invoked the
Simplify application using the default simplification options.

1.
2.

Ensure that the Simplify into proxy button is selected (the default).
Specify the initial distance of the proxy from the object and an outer boundary.

Use the sliders Initial distance and Outer boundary to do this. Distances are
specified as a percentage of the object diameter (more precisely, the diameter of the
object's bounding sphere). Initially, you might want to use the defaults, 2% for
Initial distance and 5% for Outer boundary.

Select the algorithm for creating the initial proxy.

Simplify provides two algorithms: the marching cubes algorithm and the
deplace-along-normals algorithm. The first button on the Simplify pane is the

Do marching cubes button, which is selected by default. If the Do marching cubes
button is not selected, Simplify uses the deplace-along-normals algorithm.

The marching cubes algorithm creates an isosurface at a certain distance (slider
Iso distance) from the original object. The isosurface is later moved to the distance
of the outer boundary (slider Outer boundary) and a copy of the isosurface is
moved to the distance of the initial proxy (slider Initial distance).

The marching cubes algorithm has the following additional controls:
* Grid Size X slider
* Grid Size Y slider
* Grid Size Z slider
e Iso distance slider

With these controls, you can set the grid size at each axis and the distance of the
isosurface from the object (using the slider Iso distance). The finer the grid, the

longer the algorithm takes and the more complex the initial proxy. On the other
hand, if the grid is too coarse, many details may be missed.
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Simplifying an Object

212

In general, the algorithm does not work very well if the desired isosurface distance
is too small compared to the size of a grid voxel. For this reason, it is possible to
specify the isosurface distance separately from the outer boundary distance and the
initial proxy distance. Often it is possible to specify the isosurface distance large
enough so that the isosurface does not miss any part of the object and then move it
closer as needed. It is also possible to preview the isosurface by clicking the button
Get isosurface while the button Show boundary is selected.

If you select the deplace-along-normals algorithm, the outer boundary and the
initial proxy are created by displacing the original surface along its normals. This
approach works better in the case where distances are very small. Unfortunately,
some areas of the object may not be simplified. For example, if two parts of the
object are touching, displacing along the normals will create a self-intersecting
boundary that will not allow any room for simplification in the area of intersection.

With the deplace-along-normals algorithm, the grid is used to accelerate the
intersection test of the simplified proxy with the boundary surfaces. Thus, do not
reduce the grid resolution too much.

Click the Run simplify proxy button to start the simplification.

The simplification algorithm starts by moving the isosurface or the original surface
to create the outer boundary and the initial proxy. The initial proxy is simplified by
removing vertices and edges as long as the surface is within the surfaces defined by
the object and the outer boundary. At the end, the vertices of the proxy are moved
as close to the original object as possible.

After completing the computation, the proxy is saved in the file specified on the
command line.

The simplification algorithm can be stopped or paused by clicking the

Stop simplify or Pause button, respectively. When the algorithm is paused, it is
possible to save the current proxy by clicking the Save mesh button. The file name
contains the index of the current step so that several meshes can be output during
the simplification.

The procedure for a regular simplification is very similar to the procedure for making a
proxy, as described in the preceding section. In contrast to making a proxy, however,
Simplify uses two boundary surfaces, an outer boundary (set by the slider

Outer boundary) and an inner boundary (set by the slider Inner boundary) to create a
regular simplication.
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To simplify an object requires two basic decisions:
*  Where to place an outer boundary and inner boundary
*  What algorithm to use for creating the boundaries
The following procedure for making a proxy assumes that you have invoked the
Simplify application using the default simplification options.
1. Ensure that the Simplify into proxy button is not selected.
This is not the default. Figure 6-4 shows the resulting Simplify pane.

Figure 6-4 The Simplify Pane for Simplifying an Object
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2.

3.

4.

Specify inner and outer boundaries.

Use the sliders Inner boundary and Outer boundary to do this. Distances are
specified as a percentage of the object diameter (more precisely, the diameter of the
object's bounding sphere). Initially, you might want to use the defaults, 2.5% for
Inner boundary and 5% for Outer boundary.

Select the algorithm for creating the boundaries.

Simplify provides two algorithms: the marching cubes algorithm and the
deplace-along-normals algorithm. The first button on the Simplify pane is the

Do marching cubes button, which is selected by default. If the Do marching cubes
button is not selected, Simplify uses the deplace-along-normals algorithm. See the
preceding section for a description of the algorithms.

If you select the marching cubes algorithm, the distance of both boundaries from
the original surface is the same (in absolute value) and it is controlled by the slider
Iso distance. As in the case of making a proxy, the isosurface can be previewed by
clicking the Get isosurface button.

If you select the deplace-along-normals algorithm, the boundaries are created by
moving the original surface along its normals to distances specified by the sliders
Outer boundary and Inner boundary. Note that the distance for the inner boundary
is specified as a negative number.

Click the Run simplify button to start the simplication.

The computation can be paused or stopped by clicking the Pause or Stop simplify
button, respectively. When the algorithm is paused, it is possible to save the
intermediate result by clicking the Save mesh button or to toggle the visibility of the
boundary by clicking the Show boundary button. After the simplification is
finished you can display the original object by clicking the Restore object button.
You can restart the algorithm without restoring the original object.

As you may realize, this procedure could be used to create an object proxy if you select
the displace-along-normals algorithm and the inner boundary is set to zero. The result
may be different, though, because the algorithm is trying to preserve seams between
pfGeoSets with different pfGeoStates; the seam preservation is not necessary for the

proxy.
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Creating Images of an Object with makePr oxyl nages

You can use the program makePr oxy| mages to create images (views) of the specified
object from a set of directions. Since the images are being projected on a proxy, a
simplification of the original object, additional processing may be required to add views
of parts of the proxy that are partially or fully obstructed by other parts. These additional
texture pieces are important because as the proxy is rotated away from the view at which
the texture was computed, some parts of the proxy that were not directly visible from the
view may become visible. Thus, each image consists of the view of the object and a
collection of texture pieces for obstructed parts of the proxy.

It is necessary to store texture coordinates for each proxy triangle so that the texture
pieces are correctly mapped. Consequently, the program makePr oxy| mages outputs
not only textures storing the views but also a pfIBRnode that contains the texture
coordinates and the proxy geometry. You can create the proxy of an object using the
program Simplify.

Command-Line Options for makePr oxyl nages
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The input to the makePr oxy| mages program is the file containing the original complex
object. Table 6-8 and the following sections describe other key, command-line options:

e “Packing Additional Textures Pieces” on page 216
* “Fine Tuning Texture Rendering” on page 217

e “Potential Problems” on page 218

Table 6-8 Key Command-Line Options of makePr oxyl mages

Command

Option Description

—pf Specifies the file containing the proxy.

—f Specifies the files where the images are stored. A view number and the

extension r gb is added automatically.

—pfb Specifies the file where the resulting pfIBRnode is stored.

-W Specifies the size of the texture (-Wxsize ysize). Itis important to specify
the size.

-0 Specifies the oversampling factor. Specify this option when the

hardware does not support antialiasing.
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Packing Additional Textures Pieces

216

Table 6-8 Key Command-Line Options of makePr oxyl nages (continued)

Command

Option Description

—-rv Specifies the text file with ring information to determine the view
directions. Each line of the ring file contains two values: the angle from
the horizontal plane and how many views are created for that angle.

-n Specifies that only views around the object are used.

-nv Specifies that uniformly distributed 3D views are used.

—sk Enables skipping a certain number of views in each ring.

-S Scales up the object. By default, the program uses orthographic

projection. The center of the projection is the center of the bounding
sphere around the object and the object is scaled so that the bounding
sphere fits the window. If the bounding sphere is too large you may try
to upscale the object using the —s option to make better use of the
texture. You can use perspective projection by defining the distance of
the camera from the center of the bounding sphere. Unless there are
reasons for doing otherwise, use the orthographic projection.

Specifies non-default lighting. In image-based rendering the lighting is
captured in the textures. Thus, it is important you specify the lights in
the same way as in your scene. By default, the default Perfly lighting is
selected. You can specify your own lights using the —| option:

- posx posy posz poswr g b

You can use multiple -| specifications to define multiple lights.

To obtain the full set of options, run the program makePr oxyl mages without any
parameters.

By default, the program makePr oxyl nages renders only the view of the object without
the extra texture pieces for obstructed triangles of the proxy. To enable this feature you
have to add the option —ev. The process has two steps. First, the number and size of
texture pieces is determined and a packing algorithm determines their position around
the primary view. Second, for each view the texture pieces are rendered in place.
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The packing algorithm operates on the pixel level and there are several options that affect
its speed and the quality of the results. To speed up the packing algorithm, you can
downsample the textures before packing using the option —evd. The drawback is that
there may be more wasted space between texture pieces. You can also reduce the number
of neighboring pixels the texture packing algorithm checks when finding the optimal
place for texture pieces by using the option —evp. In general, the texture pieces are not
aligned with their neighboring pieces. Thus, when the view texture is mipmapped, the
gaps between the textures may become visible. For this purpose, you can add the option
—evnp to set the number of mipmapping levels that will not have cracks. Each edge of
the texture piece that is not a silhouette edge is extended to contain more pixels from
neighboring triangles. Setting the value too high may cause the packing algorithm to fail.

If the packing algorithm fails to place the texture pieces around the primary view, the
object is scaled down a little (for the given view) and the algorithm is restarted. This
process repeats until all the texture pieces fit.

Similarly, as obstructed triangles may come into full view, backfacing triangles may
become visible as the proxy is rotated away from the view. Thus, it is possible to add
texture pieces for backfacing triangles into the view texture using the option -bf . Not all
backfacing triangles are added but only those that may be visible from neighboring
views. Since additional texture pieces that are used for backfacing triangles of the proxy
can be found in neighboring views, it is advantageous to combine several views into a
single texture. This reduces the number of texture pieces packed into a texture for one
view. You can use the option —t mto control this. Do not exceed 2Kx2K when combining
several views into one texture.

Fine Tuning Texture Rendering
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When rendering additional texture pieces, you can control how far before and after the
proxy triangle the clip planes are being set. This option affects triangles around the
silhouette of the object. This is view-dependent: for each view, there are different
triangles that contain the silhouette of the object. Since the proxy fully contains the
original object, parts of the silhouette triangles may be transparent. This may cause
visible cracks when the object is rotated. Moving the clip planes reduces some of the
cracks.

If you move the plane that is behind the triangle farther away (using option —evl b),
some of the geometry that is behind the silhouette is included in the texture. When you
move the front clip plane closer to the cameras (using option —ev| f ), some of the
geometry that is in front of the silhouette is included in the texture.
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Potential Problems
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Because some proxy triangles may have a texture with transparent edges, it may be
desirable to sort the proxy triangles. Because the proxy can be viewed from any direction,
it is necessary to determine how the triangles are sorted. If the proxy is rendered with
only the nearest views selected, the triangles are ordered for each view differently. You
must set that mode using the option —nr. By default, three or four of the nearest views
are blended together. In that case, the proxy triangles are sorted for each group of views.
Sometimes it may be possible to see changes in transparency as the view moves from one
group of views to another. If this becomes too obvious, you can disable the sorting using
the option —evns.

Generally, you can drastically reduce problems if you place the proxy very close to the
original object (especially around visible sharp edges) or if you increase the number of
views. The following are some potential problems you might encounter:

¢ The images are missing an alpha channel.

If your machine does not support a single-buffered visual with at least 8 bits per
red, green, blue, and alpha component, the images may be missing an alpha
channel. Note the number of alpha bits printed at the beginning of the

makePr oxyl mages output. On some SGI systems with multisampling, you may
try to use the option —-nns to request a visual without multisampling to improve the
probability of getting a visual with an alpha channel.

¢ Your textures are not antialiased.

Do not forget to oversample the textures on machines with no antialiasing (using
option -0).

* The processing time is very long.

The process may take a very long time if the proxy is very fine and many texture
pieces have to be added to each view. Since the rendering is done into a window,
ensure that you do not overlap the window during the process or that the screen
saver does not start. If some of the textures are corrupt, you may restart the program
with the same parameters and add the option —sf r, which skips the rendering of
the specified number of textures. It is also a good idea to increase shared arena size
(use environment variable PESHAREDSIZE) to avoid memory overflow when the
pfIBRnode is saved at the end.
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¢ Texture pieces intersect the image of the object.

Inspecting the view textures, you may notice that sometimes the additional texture
pieces may intersect the image of the object. This is fine because those triangles that
are overlapped are assigned one of the additional texture pieces packed around the
object.

Creating Images of an Object with makel BRi mages
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You can use the program makel BRi mages from the directory

/usr/share/ Performer/src/conv/ onlRIXand Linux and %°FROOT% Sr ¢/ conv
on Microsoft Windows to create images (views) of a specified object from a set of
directions. The input is a file that can be read by OpenGL Performer and the output is a
set of images of that object that can be directly used as an input for a pfIBRtexture. The
images are stored in a directory specified using the option - f .

If a text file i nf 0 is present in the output directory, a set of 3D views is rendered. The file
has the same syntax as described in section “Creating a pfIBRtexture” on page 206. Each
line of the file i nf 0 contains two values: the angle from the horizontal plane and how
many views are created for that angle. The images are then indexed by two integer values
that are appended to the name specified by the option - f . The first value is the ring index
of the views and the second one indexes the views within the ring.

If the file info is not present, a set of N views (set by the option - n) is computed around
the object using the horizontal angle of 0. In this case, only one index is appended to the
image name.

If you specify the option - pf b, the program outputs a pf b file in the specified directory.
The file contains a single pfIBRnode that uses the created images.

Note:
Before loading per f | y, ensure that PFPATH is set to the directory that contains the
images.

If your machine does not support a single-buffered visual with at least 8 bits per red,

green, blue, and alpha component, the images may be missing the alpha channel. Note
the number of alpha bits printed when makel BRi mages begins.
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When using pfIBRnodes and pfIBRtextures in per f | y, you also need an alpha buffer. If
the pfIBRnode is rendered as a full rectangle, try the command-line parameter —9, in
which case per f | y requests a visual with alpha.

To obtain the full set of command-line options, run the program makel BRi mages
without any parameters.

Limitations

The following are current limitations of image-based rendering in OpenGL Performer:

e A pfIBRtexture applied to a pfIBRnode is not properly rotated when the pfIBRnode
is viewed from the top. This may result in visible rotation of the texture with respect
to the ground.

e When the flag PFIBR_3D_VIEWS is set in a pfIBRtexture, do not use 3D textures.
This mode is not implemented.
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Chapter 7

Importing Databases

Once you have learned how to create visual simulation applications with OpenGL
Performer your next task is to import visual databases into those applications. OpenGL
Performer provides import and export functions for numerous popular database formats
to ease this effort.

This chapter describes the following:

* The steps involved in creating custom loaders for other data formats

* Preexisting file-loading utilities

¢ Several utility functions in the OpenGL Performer database utility library that can
make the process of database conversion easier for you

Overview of OpenGL Performer Database Creation and Conversion

Source code is provided for most of the tools discussed in this chapter. In most cases the
loaders are short, easy to understand, and easy to modify.

Table 7-1 lists the subdirectories of / usr/ shar e/ Per f or mer/ src/ i b on IRIX and
Linux and %°FROOT% Sr ¢/ | i b on Microsoft Windows where you can find the source

code for the database processing tools.

Table 7-1 Database-Importer Source Directories

Directory Name Directory Contents

I'i bpfdu General database processing tools and utilities.
I'i bpfdb Load, convert, and store specific database formats..
I'i bpfutil Additional utility functions.
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7: Importing Databases

Before you can import a database, you must create it. Some simulation applications
create data procedurally; for examples of this approach, see the “SGI PHD Format” on
page 268 or the “Sierpinski Sponge Loader” on page 280” sections of this chapter.

In most cases, however, you must create visual databases manually. Several software
packages are available to help with this task, and most such systems facilitate geometric
modeling, texture creation, and interactive specification of colors and material
properties. Some advanced systems support level-of-detail specification, animation
sequences, motion planning for jointed objects, automated roadway and terrain
generation, and other specialized functions.

li bpf du - Utilities for Creating Efficient OpenGL Performer Run-Time

Structures
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There are several layers of support in OpenGL Performer for loading 3D models and 3D
environments into OpenGL Performer run-time scene graphs. OpenGL Performer
contains the | i bpf du library devoted to the import of data into (and export of data
from) OpenGL Performer run-time structures. Note that two database exporters have
already been written for the Medit and DWB database formats.

At the top level of the API, OpenGL Performer provides a standard set of functions to
read in files and convert databases of unknown type. This functionality is centered
around the notion of a database converter. A database converter is an abstract entity that
knows how to perform some or all of a set of database format conversion functions with
a particular database format. Moreover, converters must follow certain API guidelines
for standard functionality such that they can be easily integrated into OpenGL Performer
in a run-time environment without OpenGL Performer needing any prior knowledge of
a particular converter’s existence. This run-time integration is done through the use of
dynamic shared object (DSO) libraries on IRIX and Linux. On Microsoft Windows this is
accomplished using Dynamic-link Libraries (DLL).
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pfdLoadFile - Loading Arbitrary Databases into OpenGL Performer

007-1680-080

Table 7-2 describes the general routines for 3D databases provided by | i bpf du.

Table 7-2 | i bpf du Database Converter Functions

Function Name Description

pfdInitConverter() Initialize the library and its classes for the desired format.

pfdLoadFile() Load a database file into an OpenGL Performer scene graph.

pfdStoreFile() Store a run-time scene graph into a database file.

pfdConvertFrom() Convert an external run-time format into an OpenGL Performer scene graph.

pfdConvertTo() Convert an OpenGL Performer scene graph into an external run-time format.

The database loader utility library, | i bpf du, provides a convenient function, named
pfdLoadFile(), that imports database files stored in any of the supported formats listed
in Table 7-6 on page 242.

Loading database files with pfdLoadFile() is easy. The function prototype is
pf Node *pfdLoadFile(char *fil eName);

pfdLoadFile() tests the filename-extension portion of fileName (the substring starting at
the last period in fileName, if any) for one of the format-name codes listed in Table 7-6 on
page 242, then calls the appropriate importer.

The file-format selection process is implemented using dynamic loading of DSOs,
dynamic shared objects, for IRIX and Linux and DLLs, dynamic link libraries, for
Microsoft Windows. This process allows new loaders that are developed as database
formats change to be used with OpenGL Performer-based applications without
requiring recompilation of the OpenGL Performer application.

Note: Subsequent general references in this manual to DSOs also pertain to DLLs unless
otherwise noted.

If at all possible, pfdInitConverter() should be called before pfConfig() for the potential
formats that may be loaded. This will preload the DSO and allow it to initialize any of its
own data structures and classes. This is required if the loader DSO extends

223



7: Importing Databases

OpenGL Performer classes or uses any node traversal callbacks so that if multiprocessing
these data elements will all have been precreated and be valid in all potential processes.
pfdInitConverter() automatically calls pfdLoadNeededDSOs_EXT() to preload
additional DSOs needed by the loader if the given loader has defined that routine. These
routines take a filename so that the loader has the option to search through the file for
possible DSO references in the file.

Loading Process Internals

Loader Name
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The details of the loading process internal to pfdLoadFile() include the following:
1. Searching for the named file using the current OpenGL Performer file path.
2. Extraction of the file-type extension.

3. Translation of the extension using a registered alias facility, formation of the DSO or
DLL name.

4. Formation of a loader function name.

5. Finding that function within the DSO using either dlsym() on IRIX and Linux or
GetProcAddress() on Microsoft Windows.

6. Searching first the current executable and loaded DSOs for the proper load function
and then searching through a list of user-defined and standard directories for that
DSO. Dynamic loading of the indicated DSO using dlopen() on IRIX and Linux and
using LoadLibrary() on Microsoft Windows.

7. Invocation of the loader function.

The loader function name is constructed from two components:
e A prefix always consisting of pf dLoadFi | e_.

* Loader suffix, which is the file extension string.

Note: The loader function pf dLoadFi | e_ must be exported using
_decl spec(dl | export) on Microsoft Windows only.
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Examples of several complete loader function names are shown in Table 7-3.

Table 7-3 Loader Name Composition
File Extension Loader Function Name
dwb pfdLoadFile_dwb()
flt pfdLoadFile_{f1t()
nmedi t pfdLoadFile_medit()
obj pfdLoadFile_obj()

pf b pfdLoadFile_pfb()

Shell Environment Variables

Several shell environment variables are used in the loader location process. These are
PFLD_LIBRARY({N32,64}_PATH, LD_LIBRARY{N32,64}_PATH, and PFHOME.
Confusion about loader locations can be resolved by consulting the sources mentioned
earlier in this chapter to understand the use of these directory lists and reading the
following section, “Database Loading Details” on page 225. When the pfNotifyLevel is
set to the value for PENFY_DEBUG (5) or greater, the DSO and loader function names
are printed as databases are loaded, as is the name of each directory that is searched for
the DSO.

The OpenGL Performer sample programs, including per f | y, use pfdLoadFile() for
database importing. This allows them to simultaneously load and display databases in
many disparate formats. As you develop your own database loaders, follow the source
code examples in any of the | i bpf db loaders. Then you will be able to load your data
into any OpenGL Performer application. You will not need to rebuild per f | y or other
applications to view your databases.

Database Loading Details
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Details about the database loading process are described further in this section, the

pf dLoadFi | e man page, and the source code which is in

/usr/share/ Performer/src/lib/libpfdu/pfdLoadFil e.c onIRIX and Linux
and in 9%°PFROOT% Src/ | i b/ | i bpf du/ pf dLoadFi | e. ¢ on Microsoft Windows.
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The routines pfdInitConverter(), pfdLoadFile(), pfdStoreFile(), pfdConvertFrom(), and
pfdConvertTo() exist only as a level of indirection to allow you to manipulate all
databases regardless of format through a central API. They are in fact merely a
mechanism for creating an open environment for data sharing among the multitudes of
three-dimensional database formats. Each of these routines determines, using file-type
extensions, which database converter to load as a run-time DSO. The routine then calls
the appropriate functionality from that converter’s DSO. All converters must provide
API that is exactly the same as the corresponding | i bpf du API with _ EXT added to the
routine names (for example, for . medi t files, the suffix is _medi t ). Note that multiple
physical extensions can be mapped to one converter extension with calls to
pfdAddExtAlias(). Several aliases are predefined upon initialization of | i bpf du.

It is also important to note that because each of these converters is a unique entity that
they each may have state that is important to their proper function. Moreover, their
database formats may allow for multiple OpenGL Performer interpretations; so, there
exist APIs, shown in Table 7-4, not only to initialize and exit database converters, but also
to set and get modes, attributes, and values that might affect the converter’s
methodology.

Table 7-4 I i bpf du Database Converter Management Functions

Function Name Description

pfdInitConverter() Initialize a database conversion DSO.
pfdExitConverter() Exit a database conversion DSO.
pfdConverterMode() Specify a mode for a specific conversion DSO.
pfdGetConverterMode() Get a mode setting from a specific conversion DSO.
pfdConverterAttr() Specify an attribute for a conversion DSO.
pfdGetConverterAttr() Get an attribute setting from a conversion DSO.
pfdConverterVal() Specify a value for a conversion DSO.
pfdGetConverterVal() Get a value setting from a conversion DSO.

Once again each converter provides the equivalent routines with _ EXT added to the
function name.

For example, the converter for the Open Inventor format would define the function
pfdInitConverter_iv() if it needed to be initialized before it was used. Likewise, it would
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define the function pfdLoadFile_iv() to read an Open Inventor “. i v” file into an
OpenGL Performer scene graph.

Note: Because each converter is an individual entity (DSO) and deals with a particular
type of database, it may be the case that a converter will not provide all of the
functionality listed above, but rather only a subset. For instance, most converters that
come with OpenGL Performer only implement their version of pfdLoadFile but not
pfdStoreFile, pfdConvertFrom, or pfdConvertTo. However, users are free to add this
functionality to the converters using compliant APIs and OpenGL Performer’s| i bpf du
will immediately recognize this functionality. Also, | i bpf du traps access to nonexistent
converter functionality and returns gracefully to the calling code while notifying the user
that the functionality could not be found.

Finding and initializing a Converter
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When one of the general database converter functions is called, it in turn calls the
corresponding routine provided by the converter, passing on the arguments it was given.

But the first time a converter is called, a search occurs to identify the converter and the
functions it provides. This is accomplished as follows.

¢ Parse the extension—what appears after the final “.” in the filename. This is referred
to as EXT in the following bulleted items.

*  Check to see if any alias was created for the EXT extension with pfd AddExtAlias().
If a translation is defined, EXT is replaced with that extension.

¢ Check the current executable to see if the symbol pfdLoadFile_EXT is already
defined, that is. if the loader was statically linked into the executable or a DSO was
previously loaded by some other mechanism. If not, the search continues.

For IRIX and Linux:

— Generate a DSO library name to search for using the extension prototype
“libpfEXT_{-g,}.s0”. This means the following strings will be constructed:

|'i bpf EXT_. so for the optimized OpenGL loader
|'i bpf EXT_-g. so for the debug OpenGL loader

— Look for the DSO in several places, including the following:

$PFLD_LI BRARY_PATH
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$LD_LI BRARY_PATH
$PFHOME/ usr/ i b{, 32, 64}/1i bpf db
$PFHOME/ usr/ share/ Performer/lib/libpfdb

— Open the DSO using dlopen().
For Microsoft Windows:

— Generate a DLL library name to search for using the extension prototype
“libpfEXT_{-g,}.s0”. This means the following strings will be constructed:

I'i bpf EXT_. so for the optimized OpenGL loader
I'i bpf EXT_- g. so for the debug OpenGL loader

— Look for the DLL in several places, including the following:

$PFLD_LI BRARY_PATH

$LD LI BRARY_PATH

$PFHOVE/ Li b/ | i bpf db
$PFHOME/ Li b/ Debug/ | i bpf db

— Open the DLL using LoadLibrary().
*  Once the object has been found, processing continues.

—  Query alll i bpf du converter functionality from the symbol table of the DSO
using dlsym() on IRIX and Linux and of the DLL using GetProcAddress() on
Microsoft Windows with function names generated by appending _EXT to the
name of the corresponding pfd routine name. This symbol dictionary is
retained for future use.

— Invoke the converter’s initialization function, pfdInitConverter_EXT(), if it
exists.

— Invoke pfdLoadNeededDSOs_EXT() if it exists. This routine can then
recursively call pfdInitConverter_EXT(), as needed.

Developing Custom Importers

Having fully described how database converters can be integrated into OpenGL
Performer and the types of functionality they provide, the next undertaking is actually
implementing a converter from scratch. OpenGL Performer makes a great effort at
allowing the quick and easy development of effective and efficient database converters.
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While creating a new file loader for OpenGL Performer is not inherently difficult, it does
require a solid understanding of the following issues:

* The structure and interpretation of the data file to be read
* The scene graph concepts and nodes of | i bpf

¢ The geometry and attribute definition objects of | i bpr

Structure and Interpretation of the Database File Format

In order to effectively convert a database into an OpenGL Performer scene graph, it is
important to have a substantial understanding of several concepts related to the original
database format:

e The parsing of the file based on the database format

e The data types represented in the format and their OpenGL Performer
correspondence

* The scene graph structure of the file (if any)

e The method of graphics state definition and inheritance defined in the format

Before trying to convert sophisticated 3D database formats into OpenGL Performer it is
important to have a thorough grasp of how every structure in the format needs to affect
how OpenGL Performer performs its run-time management of a scene graph. However,
although it requires a great deal of understanding to convert complex behaviors of
external formats into OpenGL Performer, it is still very straight forward to migrate basic
structure, geometry, and graphics state into efficient OpenGL Performer run-time
structures using the functionality provided in the OpenGL Performer database builder,
pfdBuilder.

Scene Graph Creation Using Nodes as Defined in | i bpf
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Creating an OpenGL Performer scene graph requires a definite knowledge of the
following OpenGL Performer | i bpf node types: pfScene, pfGroup, and pfGeode.

These nodes can be used to define a minimally functional OpenGL Performer scene

graph. See “Nodes” in Chapter 3 for more details on | i bpf and OpenGL Performer
scene graphs and node types.
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Defining Geometry and Graphics State for | i bpr

In order to input geometry and graphics into OpenGL Performer, it is important to have
an understanding of how OpenGL Performer’s low-level rendering objects work in

I'i bpr, OpenGL Performer’s performance rendering library. The main | i bpr
rendering primitives are a pfGeoSet and a pfGeoState. A pfGeoSet is a collection of like
geometric primitives that can all be rendered in exactly the same way in one large
continuous chunk. A pfGeoState is a complete definition of graphics mode settings for
the rendering hardware and software. It contains many attributes such as texture and
material. Given a pfGeoSet and a corresponding pfGeoState, | i bpr can completely and
efficiently render all of the geometry in the pfGeoSet. For a more detailed description of
pfGeoSets and pfGeoStates, see “pfGeoSets and pfGeoStates” in Chapter 9, which goes
into detail on all | i bpr primitives and how OpenGL Performer will use them.

However, realizing that OpenGL Performer’s structuring of geometry and graphics state
is optimized for rendering speed and not for modeling ease or general conceptual
partitioning, OpenGL Performer now contains a new mechanism for translating external
graphics state and geometry into efficient | i bpr structures. This new mechanism is the
pfdBuilder that exists in | i bpf du.

The pfdBuilder allows the immediate mode input of graphics state and primitives
through very simple and exposed data structures. After having received all of the
relevant information, the pfdBuilder builds efficient and somewhat optimized | i bpr
data structures and returns a low-level | i bpf node that can be attached to an OpenGL
Performer scene graph. The pfdBuilder is the recommended method of importing data
from non-OpenGL Performer-based formats into OpenGL Performer.

Creating an OpenGL Performer Database Converter using | i bpf du
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Creating a new format converter is very simple process. More than thirty database
loaders are shipped with OpenGL Performer in source code form to serve as practical
examples of this process. The loaders read formats that range from trivial to complex and
should serve as an instructive starting point for those developing loaders for other
formats. These loaders can be found in the directory

lusr/share/ Performer/src/lib/libpfdb/libpf* onIRIXand Linux and in
9WPFROOTYS Src/ i b/ 1ibpfdb/1ibpf* on Microsoft Windows.

This section describes the | i bpf du framework for creating a 3D database format

converter. Consider writing a converter for a simple ASCII format that is called the
Imaginary Immediate Mode format with the file type extension .i i m This format is
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much like the more elaborate .i m format loader used at SGI for the purposes of testing
basic OpenGL Performer functionality.

The first thing to do is set up the routine that pfdLoadFile() will call when it attempts to
load a file with the extension .i i m

#i fdef WN32

#defi ne PFDB_DLLEXPORT __decl spec(dl | export)
#el se

#defi ne PFDB_DLLEXPORT /* no-op */

#endi f

extern PFDB_DLLEXPORT pf Node *pfdLoadFile_iim(char *fil eNanme)
{
}

This function needs to perform several basic actions:

1.
2.
3.
4.
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Find and open the given file.
Reset the | i bpf du pfdBuilder for input of new geometry and state.
Set up any pfdBuilder modes that the converter needs enabled.

Set up local data structures that can be used to communicate geometry and graphics
state with the pfdBuilder.

Setup al i bpf pfGroup which can hold all of the logical partitions of geometry in
the file (or hold a subordinate collection of nodes as a general scene graph if the
format supports it).

Optionally set up a default state to use for geometry with unspecified graphics state.
Parse the file, which entails the following:

* Filling in the local geometry and graphics state data structures

* Passing them to the pfdBuilder as inputted from the file

* Asking the pfdBuilder to build the data structures into OpenGL Performer data
structures when a logical partition of the file has ended

* Attaching the OpenGL Performer node returned by the build to the higher-level
group which will hold the entire OpenGL Performer representation of this file.
Note that this step becomes more complex if the format supports the notion of
hierarchy only in that the appropriate | i bpf nodes must be created and
attached to each other using pfAddChild() to build the hierarchy. In this case
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10.

11.

requests are made for the builder to build after inputting all of the geometry
and state found in a particular leaf node in the database.

Delete local data structures used to input geometry and graphics state.
Close the file.

Perform any optional optimization of the OpenGL Performer scene graph.
Optimizations might include calls to pfdFreezeTransforms(), pfFlatten() or
pfdCleanTree().

Return the pfGroup containing the entire OpenGL Performer representation of the
database file.

Steps 1-8 expand the function outline to the following;:

ex

{

tern PFDB_DLLEXPORT pf Node *pfdLoadFile_iim(char *fil eNanme)

FILE* iinFile;
pf dGeont pol ygon;
pf G oup* root;

/* Perforner has utility for finding and opening file */
if ((iinFile = pfdOpenFile(fileName)) == NULL)
return NULL;

/* C ear builder from previous converter invocations */
pf dReset Bl dr Geonetry() ;
pf dReset Bl dr St at e() ;

[* Call pfdBldrMde for any needed nodes here */

/* Create polygon structure */
/* holds one N-sided polygon where Nis < 300 */
pol ygon = pf dNewGeon( 300) ;

/* Create pfGoup to hold entire database */
/* loaded fromthis file */
root = pfNewG oup();

/* Specify state for geonetry with no graphics state */
/* As well as default enables, etc. This routine */

/* shoul d i nvoke pfdCaptureDefaul tBldrState()*/

Set upDef aul t G- aphi csSt at el f Ther el sOne() ;

/* Do all the real work in parsing the file and */
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/* converting into Performer */
Parsel | MFi |l e(iinFile, root, polygon);

/* Delete | ocal polygon struct */
pf dDel Geomr( pol ygon) ;

/* Close File */
fclose(iinFile);

[* Optimze OpenG. Performer scene graph */
/* via use of pfFlatten, pfdC eanTree, etc. */
Opti m zeGraph(root);

return (pfNode*)root;
}

At the heart of the file loader lies the ParselIMFile() function. The specifics of parsing a
file are completely dependent on the format; so, the parsing will be left as an exercise to
you. However, the following code fragments should show a framework for what goes
into integrating the parser with the pfdBuilder framework for geometry and graphics
state data conversion. Note that several possible graphics state inheritance models might
be used in external formats and that the pfdBuilder is designed to support all of them:

* The default pfdBuilder state inheritance is that of immediate mode graphics state.
Immediate mode state is specified through calls to pfdBldrStateMode(),
pfdBldrStateAttr(), and pfdBldrStateVal().

* There also exists a pfdBuilder state stack for hierarchical state application to
geometry. This is accomplished through the use of pfdPushBldrState() and
pfdPopBldrState() in conjunction with the normal use of the immediate mode
pfdBuilder state API.

* Lastly, there is a pfdBuilder named state list that can be used to define a number of
"named materials" or "named state definitions" that can then be recalled in one API
called (for instance, you might define a "brick" state with a red material and a brick
texture. Later you might just want to say "brick" is the current state and then input
the walls of several buildings). This type of state naming is accomplished by fully
specifying the state to be named using the immediate mode API and then calling
pfdSaveBldrState(). This state can then be recalled using pfdLoadBldrState().

Parsel I MFil e(FILE *iinFile, pfGoup *root, pfdGeom *poly)
while((op = GetNextQo(iinFile)) !'= NULL)

swi t ch(op)
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{

case GEOVETRY_PCOLYGON:
pol ygon->nunmVerts = CGet NunVerts(iinFile);

/* Determine if polygon has Texture Coords */

i f (pfdGetBl dr St at eMbde( PFSTATE_ENTEXTURE) ==PF_ON)

pol ygon- >t bi nd = PFGS_PER_VERTEX;
el se
pol ygon->t bi nd = PFGS_OFF;

/* Determine if Polygon has normals */
i f (AreThereNormal sPerVertex() == TRUE)
pol ygon- >nbi nd = PFGS_PER _VERTEX;

else if

(pf dGet Bl dr St at eMbde( PFSTATE_ENLI GHTI NG) ==PF_ON)

pol ygon- >nbi nd = PFGS_PER PRI M
el se
pol ygon->nbi nd = PFGS_OFF;

/* Determine if Polygon has colors */

i f (AreThereCol orsPerVertex() == TRUE)
pol ygon- >cbi nd = PFGS_PER VERTEX;

else if (AreThereCol orsPerPrim) == TRUE)
pol ygon->chi nd = PFGS_PER PRI M

el se
pol ygon- >chi nd = PFGS_OFF;
for(i=0;i<polygon->nunVerts;i++)

{

/* Read ith Vertex into |ocal

pol ygon->coords[i][0]
pol ygon->coords[i][1]
pol ygon->coords[i][ 2]

Get Next Vert exFl oat () ;
CGet Next Vert exFl oat () ;
Get Next Vert exFl oat () ;

/* Read texture coord for ith vertex if any */

if (polygon->tbhind ==
{

pol ygon- >t exCoor ds[i][0]
pol ygon- >t exCoords[i][ 1]

}

/* Read normal for ith Vertex if normals bound*/

i f (pol ygon->nbind ==
{
pol ygon->norns[i][0]
pol ygon->norns[i][1]

PF

PF

GS_PER_VERTEX)

Get Next TexFl oat () ;
Get Next TexFl oat () ;

GS_PER_VERTEX)

Get Next Nor nl oat () ;
Get Next Nor ¥l oat () ;

data structure */
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pol ygon->norns[i][2] = Get Next Nor nFl oat ();

}

/* Read only one normal per
else if ((polygon->nbind ==

primif necessary */
PFGS_PER PRIM &&

(i ==0))
{
pol ygon->norns[ 0] [ 0] = Get Next Nor nFl oat () ;
pol ygon->norns[ 0] [ 1] = Get Next Nor nFl oat () ;
pol ygon->nornms[ 0] [ 2] = Get Next Nor nFl oat () ;
}
/* Get Color for the ith Vertex if color bound*/
if (polygon->chind == PFGS_PER_VERTEX)
{

pol ygon->col ors[i][0]
Get Next Col or Fl oat () ;
pol ygon->col ors[i][1]
Get Next Col or Fl oat () ;
pol ygon->col ors[i][2]
Get Next Col or Fl oat () ;
}

/* Get one col or per pri

else if ((pol ygon->chind

(i ==0))
{
pol ygon- >col ors[ 0] [ 0]
Get Next Col or Fl oat () ;
pol ygon- >col ors[ 0] [ 1]
Get Next Col or Fl oat () ;
pol ygon- >col ors[ 0] [ 2]
Get Next Col or Fl oat () ;
}
}

mif necessary */
== PFGS_PER PRI M &&

/* Add this polygon to pfdBuilder */

/* Because it is a single
/* is specified here */
pf dAddBI dr Geon( 1) ;
br eak;
case GRAPHI CS_STATE_TEXTURE:
{
char *texNane;
pf Texture *tex;

poly, 1 */

texNane = ReadTextureNane(iinFile);

if (texName != NULL)
{
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/* Get prototype tex from pfdBuil der*/
tex =
pf dGet Tenpl at eoj ect ( pf Get Texd assType());

/* This clears that object to default */
pf dReset Obj ect (tex);

/* 1If just the nanme of a pfTexture is */

/* set, pfdBuilder will auto find & Load */
/* the texture*/

pf TexName(t ex, t exNane) ;

/* This is the current pfdBuilder */

/* texture and texturing is on */

pf dBl dr St at eAt t r (PFSTATE_TEXTURE, t ex) ;

pf dBI dr St at eMbde( PFSTATE_ENTEXTURE, PF_ON);

el se

/* No texture neans disable texturing */
/* And set current texture to NULL */
pf dBl dr St at eMbde( PFSTATE_ENTEXTURE, PF_OFF) ;
pf dBl dr St at eAt t r (PFSTATE_TEXTURE, NULL);
}
}

br eak;
case GRAPHI CS_STATE_MATERI AL:
{
pf Material *ntl;
nl = pfdGet Tenpl at eObj ect (pf Get M| O assType());
pf dReset bj ect (ntl);
pf M| Col or (nt|, PFMIL_AMBI ENT,

Get AmRed(), Get Antreen(), Get AnBlue());
pf M1 Col or (ntl, PFMIL_DI FFUSE,

CGet Df Red(), GetDfGreen(), GetDfBlue());
pf M1 Col or (mt|, PFMIL_SPECULAR,

Cet SpRed(), GetSpGreen(), GetSpBlue());
pf M| Shini ness(ntl, GetM1 Shininess());
pf M| Al pha(nmt!l, GetMI Al pha());
pf dBl dr St at eAtt r (PFSTATE_FRONTMIL, ntl);
pf dBI dr St at eAt t r (PFSTATE_BACKMIL, ntl);

}
br eak;
case GRAPHI CS_STATE_STORE:
pf dSaveBl dr St at e( Get St at eNane() ) ;
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}

}

br eak;
case GRAPHI CS_STATE_LQOAD:
pf dLoadBl dr St at e( Get St at eNane() ) ;
br eak;
case GRAPHI CS_STATE_PUSH:
pf dPushBIl dr Stat e() ;
br eak;
case GRAPHI CS_STATE_POP:
pf dPopBIl dr St at e() ;
br eak;
case GRAPHI CS_STATE_RESET:
pfdReset Bl dr State();
br eak;
case GRAPHI CS_STATE_CAPTURE_DEFAULT:
pf dCapt ur eDef aul t Bl dr St at e() ;
br eak;
case BEGQ N_LEAF_NODE:
/* Not really necessary because it is */
/* destroyed on build*/
pf dReset Bl dr Geomet ry();
br eak;
case END LEAF NODE:
{
pf Node *nd = pfdBuild();
if (nd !'= NULL)
pf AddChi | d(r oot , nd);
}

br eak;

}

One of the fundamental structures involved in the above routine outline is the pfdGeom
structure which you fill in with information about a single primitive, or a single strip of

primitives.

The pfdGeom structure is essential in communicating with the pfdBuilder

and is defined as follows:

typedef struct _pfdGeom

{ .
i nt
i nt
i nt
short
fl oat

fl ags;
nbi nd, cbind, tbind[ PF_MAX TEXTURES];

nunVerts;

printype;
pi xel si ze;
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/* Non-indexed attributes - do not set if poly is indexed */

pf Vec3 *coor ds;
pf Vec3 *nor ns;
pf Vec4 *col ors;
pf Vec2 *t exCoor ds[ PF_MAX_TEXTURES] ;
/* Indexed attributes - do not set if poly is non-indexed */
pf Vec3 *coordLi st ;
pf Vec3 *nor nLi st ;
pf Vec4 *col or Li st;
pf Vec2 *t exCoor dLi st [ PF_MAX_TEXTURES] ;
/* Index lists - do not set if poly is non-indexed */
ushort *j coords;
ushort *i nor ns;
ushort *jcol ors;
ushort *i t exCoor ds[ PF_MAX_TEXTURES] ;
i nt nunirext ur es;
struct _pfdGeom *next ;
} pfdGeom

See the pf dGeoBui | der (3pf) man pages for more information on using this structure
along with its sister structure, the pfdPrim.

The above should provide a well-defined framework for creating a database converter
that can be used with any OpenGL Performer applications using the pfdLoadFile()
functionality.

However, it is also important to note that there are a multitude of pfdBuilder modes and

attributes that can be used to affect some of the basic methods that the builder actually
uses:
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Table 7-5 pfdBuilder Modes and Attributes

Function Name

Token Description

pfd{Get}BldrMode()

PFDBLDR_MESH_ENABLE
PFDBLDR_MESH_SHOW_TSTRIPS
PFDBLDR_MESH_INDEXED
PFDBLDR_MESH_MAX_TRIS
PFDBLDR_MESH_RETESSELLATE
PFDBLDR_MESH_LOCAL_LIGHTING
PFDBLDR_AUTO_COLORS
PFDBLDR_AUTO_NORMALS
PFDBLDR_AUTO_ORIENT
PFDBLDR_AUTO_ENABLES
PFDBLDR_AUTO_CMODE
PFDBLDR_AUTO_DISABLE_TCOORDS_BY_STATE
PFDBLDR_AUTO_DISABLE_NCOORDS_BY_STATE
PFDBLDR_AUTO_LIGHTING_STATE_BY_NCOORDS
PFDBLDR_AUTO_LIGHTING_STATE_BY_MATERIALS
PFDBLDR_AUTO_TEXTURE_STATE_BY_TEXTURES
PFDBLDR_AUTO_TEXTURE_STATE_BY_TCOORDS
PFDBLDR_BREAKUP

PFDBLDR_BREAKUP_SIZE
PFDBLDR_BREAKUP_BRANCH
PFDBLDR_BREAKUP_STRIP_LENGTH
PFDBLDR_SHARE_MASK
PFDBLDR_ATTACH_NODE_NAMES
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Table 7-5 pfdBuilder Modes and Attributes (continued)

Function Name Token Description

PFDBLDR_DESTROY_DATA_UPON_BUILD
PFDBLDR_PF12_STATE_COMPATIBLE
PFDBLDR_BUILD_LIMIT
PFDBLDR_GEN_OPENGL_CLAMPED_TEXTURE_COORDS
PFDBLDR_OPTIMIZE_COUNTS_NULL_ATTRS
pfd{Get}BldrAttr() PFDBLDR_NODE_NAME_COMPARE
PFDBLDR_STATE_NAME_COMPARE

Because the pfdBuilder is released as source code, it is easy to add further functionality
and more modes and attributes to even further customize this central functionality.

In fact, because the pfdBuilder acts as a “data funnel” in converting data into OpenGL
Performer run-time structures, it is easy to control the behavior of many standard
conversion tasks through merely globally setting builder modes which will subsequently
affect all converters that use the pfdBuilder to process their data.

Maximizing Database Loading and Paging Performance with PFB and PFI
Formats

“Description of Supported Formats” on page 244 describes all of the file formats
supported by OpenGL Performer. Although you can use files in these formats directly,
you can dramatically reduce database loading time by preconverting databases into the
PFB format and images into the PFI format.

To convert to the PFB file format or the PFI image format, use the pf conv and pf i conv
utilities.

pf conv
The pf conv utility converts from any format for which a pfdLoadFile...() function exists

into any format for which a pfdStoreFile...() exists. The most common format to convert
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Example Conversion

pfi conv

to is the PFB format. For example, to convert cow. obj into the PFB format, use the
following command:

% pf conv cow. obj cow. pfb

By default, pf conv optimizes the scene graph when doing the conversion. The
optimizations are controlled with the - 0 and - Ocommand line options. Builder options
are controlled with the - b and - B command line options. Converter modes are
controlled with the - mand - Mcommand line options. Refer to the help page for more
specific information about the command line options by entering:

% pfconv -h

When converting to the PFB format, texture files can be converted to the PFI format using
the following command line options:

% pfconv -Mpfb, 5, 1
5 means PFPFB_SAVE_TEXTURE_PFI.

1 means convert .r gb texture images to .pf i .

The pf i conv utility converts from IRIS libimage format to PFI format image files. For
example, to convert caf e. r gb into the PFI format, use the following command:

% pficonv cafe.rgb cafe. pfi

MIPmaps can be automatically generated and stored in the resulting PFI files by adding
- mto the command line.

Supported Database Formats

007-1680-080

Vendors of several leading database construction and processing tools have provided
database-loading software for you to use with OpenGL Performer. This section describes
these loaders, the loaders developed by the OpenGL Performer engineering team and
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several loaders developed in the OpenGL Performer user community for other database

formats.

Importing your databases is simple if they are in formats for which OpenGL Performer
database loaders have already been written. Each of the loaders listed in Table 7-6 is
included with OpenGL Performer. If you want to import or export databases in any of
these formats, refer to the appropriate section of this chapter for specific details about the
individual loaders.

Table 7-6 Supported Database Formats

Name Description

3ds AutoDesk 3DStudio binary data

bin SGI format used by power f i p

bpoly Side Effects Software PRISMS binary data

byu Brigham Young University CAD/FEA data

csb OpenGL Optimizer Format

ct Cliptexture config file loader - auto-generates viewing geometry
dwb Coryphaeus Software Designer’s Workbench data
dxf AutoDesk AutoCAD ASCII format

flt11 MultiGen public domain Flight v11 format

flt MultiGen OpenFlight format provided by MultiGen
gds McDonnell-Douglas GDS things data

gfo Old SGI radiosity data format

im Simple OpenGL Performer data format

irtp AAI/Graphicon Interactive Real-Time PHIGS

iv SGI Open Inventor format (VRML 1.0 superset)

Isa Lightscape Technologies ASCII radiosity data

Isb Lightscape Technologies binary radiosity data
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Table 7-6

Supported Database Formats (continued)

Name

Description

medit

nff

obj

pegg

sponge
star
stla
stlb
stm

SV

tri

unc

wrl

Medit Productions medit modeling data

Eric Haines’ ray tracing test data

OpenGL Performer fast binary format
Wavefront Technologies data format

Radiosity research data format

SGI polyhedron data format

Side Effects Software PRISMS ASCII data
Simple OpenGL Performer terrain data format
ArchVision rich photorealistic content

US Naval Academy standard graphics format
Paul Haeberli’s graphics data format

US Naval Academy simple polygon format
Sierpinski sponge 3D fractal generator
Astronomical data from Yale University star chart
3D Structures ASCII stereolithography data

3D Structures binary stereolithography data
Michael Garland’s terrain data format

John Kichury’s i3dm modeler format
University of Minnesota Geometry Center data
University of North Carolina walkthrough data

OpenWorlds VMRL 2.0 provided by DRaW Computing

007-1680-080
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Description of Supported Formats

This section describes the different database file formats that OpenGL Performer
supports.

AutoDesk 3DS Format

The AutoDesk 3DS format is used by the 3DStudio program and by a number of 3D
file-interchange tools. The OpenGL Performer loader for 3DS files is located in the
directory / usr/ shar e/ Performer/src/lib/libpfdb/libpf3ds onIRIXand
Linux and in °FROOT% Src/ 1i b/ 1 i bpfdb/|i bpf 3ds on Microsoft Windows. This
loader uses an auxiliary library, 3dsf t k. a, to parse and interpret the 3ds file.

pfdLoadFile() uses the function pfdLoadFile_3ds() to import data from 3DStudio files
into OpenGL Performer run-time data structures.

SGI BIN Format

The SGI BIN format is supported by both Showcase and the power f | i p demonstration
program. BIN files are in a simple format that specifies only independent quadrilaterals.

The image in Figure 7-1 shows several of the BIN-format objects provided in the OpenGL
Performer sample data directory.

244 007-1680-080



Description of Supported Formats

Figure 7-1 BIN-Format Data Objects

The source code for the BIN-format importer pfdLoadFile_bin() is provided in the file
pf bi n. c. This code shows how easy it can be to implement an importer. Since
pfdLoadFile_bin() is based on the pfdBuilder() utility function, it will build efficient
triangle-strip pfGeoSets from the quadrilaterals of a given BIN file. The BIN format has
the following structure:

1. A 4-byte magic number, 0x5432, which identifies the file as a BIN file.

2. A 4-byte number that contains the number of vertices, which is four times the
number of quadrilaterals.

3. Four bytes of zero.

4. A list of polygon data for each vertex in the object. The data consists of three
floating-point words of information about normals followed by three floating-point
words of vertex information.

The BIN format uses these data structures:

typedef struct
{

float normal [3];
float coordinate[3];
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} Vertex;

typedef struct

{

| ong magi c;

| ong vertices;

| ong zero;

Vertex vertex[1];
} BinFile;

pfdLoadFile() uses the function pfdLoadFile_bin() to import data from BIN format files
into OpenGL Performer run-time data structures:

The pfdLoadFile_bin() function composes a random color for each file it reads. The
chosen color has red, green, and blue components uniformly distributed within the
range 0.2 to 0.7 and is fully opaque.

Side Effects POLY Format

246

The Side Effects software PRISMS database modeler format supports both ASCII and
binary forms of the POLY format. The OpenGL Performer loader for ASCII “.poly” files
is located in the directory

lusr/share/ Performer/src/lib/libpfdb/libpfpoly for IRIX and Linux and
in YPFROOT% Src/ | i b/ | i bpfdb/libpfpoly for Microsoft Windows. The binary
format “.bpoly” loader is located in the directory

/usr/share/ Perfornmer/src/lib/libpfdb/Ilibpfbpoly for IRIXand Linux and
in %WPFROOT% Src/ i b/1ibpfdb/libpfbpoly for Microsoft Windows. These
formats are equivalent in content and differ only in representation.

The POLY format is an easy to understand ASCII data representation with the following
structure:

1. A textline containing the keyword “POINTS”

2. One text line for each vertex in the file. Each line begins with a vertex number,
followed by a colon, followed by the X, Y, and Z axis coordinates of the vertex,
optional additional information, and a new-line character. The optional information
includes color specification in the form “c(R,G,B,A)”, a normal vector of the form
“n(NX,NY,NZ)”, or a texture coordinate in the form “uv(S,T)” where each of the
values shown are floating point numbers.

3. A textline containing the keyword “POLYS”
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4. One text line for each polygon in the file. Each line begins with a polygon number,
followed by a colon, followed by a series of vertex indices, optional additional
information, an optional “<“character, and a new-line. The optional information
includes color specification in the form “c(R,G,B,A)”, a normal vector of the form
“n(NX,NY,NZ)”, or a texture coordinate in the form “uv(S,T)” where the values in
parentheses are floating point numbers.

Here is a sample POLY format file for a cube with colors, texture coordinates, and
normals specified at each vertex:

PO NTS

1: -0.5 -0.5 -0.5 ¢(0, 0, 0, 1) uv(0, 0) n(0, -1, 0)
2: -0.5-0.50.5¢(0, 0, 1, 1) uv(0, 0) n(0, -1, 0)
3: 0.5-0.50.5c(1, 0, 1, 1) uv(1l, 0) n(0, -1, 0)
4: 0.5 -0.5 -0.5 c(1, 0, 0, 1) uv(1l, 0) n(0, -1, 0)
5: -0.5-0.5 0.5 ¢(0, 0, 1, 1) uv(0, 0) n(0, 0, 1)
6: -0.5 0.5 0 5c¢(0, 1, 1, 1) uv(0, 1) n(0, 0, 1)

7: 0.50.50.5¢c(1, 1, 1, 1) uv(1l, 1) n(0, 0, 1)

8: 0.5-0.50.5c(1, 0, 1, 1) uv(1, 0) n(0, 0, 1)

9: -0.5 0.5 0.5 c(0, 1, 1, 1) uv(0, 1) n(0, 1, 0)
10: -0.5 0.5 -0.5 ¢(0, 1, 0, 1) uv(0, 1) n(0, 1, 0)
11: 0.5 0.5 -0.5 ¢(1, 1, 0, 1) uv(1, 1) n(0, 1, 0)
12: 0.5 0.5 0.5 c¢(1, 1, 1, 1) uv(1, 1) n(0, 1, 0)
13: -0.5 -0.5 -0.5 ¢(0, 0, 0, 1) uv(0, 0) n(0, 0, -1)
14: 0.5 -0.5 -0.5 ¢(1, 0, 0, 1) uv(1, 0) n(0, 0, -1)
15: 0.5 0.5 -0.5 ¢(1, 1, 0, 1) uv(1, 1) n(0, 0, -1)
16: -0.5 0.5 -0.5 ¢(0, 1, 0, 1) uv(0, 1) n(0, 0, -1)
17: -0.5 -0.5 -0.5 ¢(0, 0, 0, 1) uv(0, 0) n(-1, 0, 0)
18: -0.5 0.5 -0.5 ¢(0, 1, 0, 1) uv(0, 1) n(-1, 0, 0)
19: -0.5 0.5 0.5 ¢(0, 1, 1, 1) uv(0, 1) n(-1, 0, 0)
20: -0.5-0.5 0.5 ¢(0, 0, 1, 1) uv(0, 0) n(-1, 0, 0)
21: 0.5 0.5 0.5 c(1, 1, 1, 1) uv(1, 1) n(1, 0, 0)
22: 0.5 0.5-0.5¢c(1, 1, 0, 1) uv(1l, 1) n(1, 0, 0)
23: 0.5 -0.5-0.5¢(1, 0, 0, 1) uv(1, 0) n(1, 0, 0)
24: 0.5 -0.5 0.5 c(1, 0, 1, 1) uv(1, 0) n(1, 0, 0)
POLYS

1
2. 567 8«<

3: 910 11 12 <
4: 13 14 15 16 <
5: 17 18 19 20 <
6: 21 22 23 24 <
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pfdLoadFile() uses the functions pfdLoadFile_poly() and pfdLoadFile_bpoly() to
import data from “.poly” and “.bpoly” format files into OpenGL Performer run-time
data structures.

Brigham Young University BYU Format

The Brigham Young University “.byu” format is used as an interchange format by some
finite element analysis packages. The OpenGL Performer loader for “.byu” files is
located in the directory / usr/ shar e/ Performer/src/lib/1ibpfdb/libpfbyufor
IRIX and Linux and in %PFROOT% Src/ | i b/ | i bpf db/ | i bpf byu for Microsoft
Windows.

The format of a BYU file consists of four parts as defined below:

1. A textline containing four counts: the number of parts,thenumberofverti ces,
the number of pol ygons, and the number of el enent s in the connectivity array.

2. The part definition list, containing the starting polygon number and ending
polygon number (one pair per line) for part s lines.

3. The vertex list, which has the X, Y, Z coordinates of each vertex in the database
packed two per line. This means that vertices 1 and 2 are on the first line, 3 and 4 are
on the second, and so on for (verti ces + 1)/2 lines of text in the file.

4. The connectivity array, with an entry for each polygon. These entries may span
multiple lines in the input file and each consists of three or more vertex indices with
the last negated as an end of list flag. For example, if the first polygon were a quad,
the connectivity array might start with “1 2 3 -4” to define a polygon that connects
the first four vertices in order.

The following BYU format file defines two adjoining quads:

01000

000100
0 10 0 10 10
3 -4

5-6

pfdLoadFile() uses the function pfdLoadFile_byu() to import data from “.byu” format
files into OpenGL Performer run-time data structures.
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Optimizer CSB Format

OpenGL Performer can load native OpenGL Optimizer format files using this loader.
OpenGL Optimizer can also load OpenGL Performer’s PFB native format files,
providing full database interoperability. This allows you to use OpenGL Optimizer
database simplification and optimization tools on OpenGL Performer databases.

Virtual Cliptexture CT Loader

The OpenGL Performer CT loader allows you to create and configure cliptextures and
virtual cliptextures, complete with a scene graph containing simple geometry and
callbacks. See the Cliptexture chapter for more details.

Designer’'s Workbench DWB Format

The binary DWB format is used for input and output by the Designer’s Workbench,
EasyT, and EasyScene database modeling tools produced by Coryphaeus Software. DWB
is an advanced database format that directly represents many of OpenGL Performer’s
attribute and hierarchical scene graph concepts.

An importer for this format, named pfdLoadFile_dwb(), has been provided by
Coryphaeus Software for your use. The loader code and its associated documentation are
in the directory / usr/ share/ Performer/src/lib/libpfdb/Ilibpfdwb for IRIX
and Linux and in %°FROOT% Src/ 1i b/ 1i bpfdb/1i bpf dwb for Microsoft
Windows.The image in Figure 7-2 shows a model of the Soma Cube puzzle invented by
Piet Hein. The model was created using Designer’s Workbench. Each of the pieces is
stored as an individual DWB-format file. Do you see how to form the 3 x 3 cube at the
lower left from the seven individual pieces?
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Figure 7-2 Soma Cube Puzzle in DWB Form

pfdLoadFile() uses the function pfdLoadFile_dwb() to load Designer’s Workbench files
into OpenGL Performer run-time data structures.

AutoCAD DXF Format
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The DXF format originated with Autodesk’s AutoCAD database modeling system. The
version recognized by the pfdLoadFile_dxf() database importer is a subset of ASCII
Drawing Interchange Format (DXF) Release 12. The binary version of the DXF format,
also known as DXE, is not supported. Source code for the importer is in the file
lusr/share/ Perfornmer/src/lib/libpfdb/Ilibpfdxf/pfdxf.c for IRIXand
Linux and in “PFROOT% Src/ 1i b/ 1i bpfdb/1i bpfdxf/ pfdxf. c for Microsoft
Windows. pfdLoadFile_dxf() was derived from the DXF-to-DKB data file converter
developed and placed in the public domain by Aaron A. Collins.

The image in Figure 7-3 shows a DXF model of the famous Utah teapot. This model was
loaded from DXF format using the pfdLoadFile_dxf() database importer.
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Figure 7-3 The Famous Teapot in DXF Form

The DXF format has an unusual though well-documented structure. The general
organization of a DXF file is the following:

1. HEADER section with general information about the file

2. TABLES section to provide definitions for named items, including:

LTYPE, the line-type table

LAYER, the layer table

STYLE, the text-style table

VIEW, the view table

UCS, the user coordinate-system table
VPORT, the viewport configuration table
DIMSTYLE, the dimension style table
APPID, the application identification table
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3. BLOCKS section containing block definition entities
4. ENTITIES section containing entities and block references

5. END-OF-FILE

Within each section are groups of values, where each value is defined by a two-line pair
of tokens. The first token is a numeric code indicating how to interpret the information
on the next line. For example, the sequence

10
1. 000
20
5. 000
30
3. 000

defines a “start point” at the XYZ location (1, 5, 3). The codes 10, 20, and 30 indicate,
respectively, that the primary X, Y, and Z values follow. All data values are retained in a
set of numbered registers (10, 20, and 30 in this example), which allows values to be
reused. This simple state-machine type of run-length coding makes DXF files
space-efficient at the cost of making them harder to interpret.

pfdLoadFile() uses the function pfdLoadFile_dxf() to load DXF format files into
OpenGL Performer run-time data structures.

Several widely available technical books provide full details of this format if you need
more information. Chief among these are AutoCAD Programming, 2nd Edition, by Dennis
N. Jump, Windcrest Books, 1991, and AutoCAD: The Complete Reference, Second Edition, by
Nelson Johnson, Osborne McGraw-Hill, 1991.

MultiGen OpenFlight Format
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The OpenFlight format is a binary format used for input and output by the MultiGen and
ModelGen database modeling tools produced by MultiGen. It is a comprehensive format
that can represent nearly all of OpenGL Performer’s advanced concepts, including object
hierarchy, instancing, level-of-detail selection, light-point specification, texture mapping,
and material property specification.

MultiGen has provided an OpenFlight-format importer, pfdLoadFile_flt(), for your use.

The loaders and associated documentation are in the directories
[usr/share/ Performer/src/lib/libpfdb/libpffltllandlibpfflt for
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IRIX and Linux and in %°FROOT% Src/ | i b/ i bpfdb/ i bpffltllandlibpfllt
for Microsoft Windows. Refer to the Readre files in these directories for important
information about the loaders and for help in contacting MultiGen for information about
pfdLoadFile_flt() or the OpenFlight format.

The image in Figure 7-4 shows a model of a spacecraft created by Viewpoint Animation
Engineering using MultiGen. This OpenFlight format model was loaded into OpenGL
Performer using pfdLoadFile_flt().

Figure 7-4 Spacecraft Model in OpenFlight Format

pfdLoadFile() uses the function pfdLoadFile_flt() to load OpenFlight format files into
OpenGL Performer run-time data structures.

Files in the OpenFlight format are structured as a linear sequence of records. The first few
bytes of each record are a header containing an op-code, the length of the record, and
possibly an ASCII name for the record. The first record in the file is a special “database
header” record whose op-code, stored as a 2-byte short integer, has the value 1. This
op-code header can be used to identify OpenFlight-format files. By convention, these
files havea®. f |t ” filename extension.
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pfdLoadFile_flt() makes use of several environment variables when locating data and
texture files. These variables and several additional functions, including
pfdConverterMode_flt(), pfdGetConverterMode_{lt(), and pfdConverterAttr_flt()
assist in OpenFlight file processing.

McDonnell-Douglas GDS Format

SGI GFO Format
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The “.gds” format (also known as the “Things” format) is used in at least one CAD
system, and a minimal loader for this format has been developed for OpenGL Performer
users. The OpenGL Performer loader for “.gds” files is located in the directory
[usr/share/ Performer/src/lib/libpfdb/libpfgds forIRIX and Linux and in
UPFROOTY Src/ li b/ i bpfdb/libpfgds for Microsoft Windows.

The GDS format subset accepted by the pfdLoadFile_gds() function is easy to describe.
It consists of the following five sequential sections in an ASCII file:

1. The number of verti ces, which is given following a “YIN” tag

2. The vertices, with one X, Y, Z triple per line for verti ces lines

3. The number zero on a line by itself

4. The number of pol ygons on a line by itself

5

A series of polygon definitions, each of which is represented on two or more lines.
The first line contains the number one and the name of a material to use for the
polygon. The next line or lines contain the indices for the polygons vertices. The
first number on the first line is the number of ver t i ces. This is followed by that
number of vertex indices on that and possibly subsequent lines.

pfdLoadFile() uses the function pfdLoadFile_gds() to load “.gds” format files into
IRIS Performer.

The GFO format is the simple ASCII format of the bar cel ona database that is provided
in the OpenGL Performer sample database directory. This database represents the
famous German Pavilion at the Barcelona Exhibition of 1929, which was designed by
Ludwig Mies van der Rohe and is shown in Figure 7-5.
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Figure 7-5 GFO Database of Mies van der Rohe’s German Pavilion

The source code for the GFO-format loader is provided in the file

[usr/share/ Performer/src/lib/libpfdb/libpfgfol/pfgfo.c for IRIXand
Linux and in %PFROOT% Src/ | i b/ |1 bpfdb/ i bpf gf o/ pf gf 0. ¢ for Microsoft
Windows.

pfdLoadFile() uses the function pfdLoadFile_gfo() to load GFO format files into
OpenGL Performer run-time data-structures.

When working with GFO files, remember that hardware lighting is not used since all
illumination effects have already been accounted for with the ambient color at each
vertex.

The GFO format defines polygons with a color at every vertex. It is the output format of

an early radiosity system. Files in this format have a simple ASCII structure, as indicated
by the following abbreviated GFO file:
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SGI IM Format
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scope {

v3f {42.9632 8.7500 0.9374}
cpack {0x8785a9}

v3f {42.9632 8.0000 0.9374}
cpack {0x8785a9}

v3f {-1.0000 -6.5858 10. 0000}

cpack {Oxffffff}

pol ygon {cpack[0] v3f[0] cpack[1] v3f[1] cpack[2] v3f[2] cpack[3] v3f[3] }
pol ygon {cpack[4] v3f[4] cpack[5] v3f[5] cpack[6] v3f[6] cpack[7] v3f[7] }

pol ygon {cpack[ 7330] v3f[7330] cpack[7331] v3f[7331] cpack[7332] v3f[7332]
cpack[ 7333] v3f[7333] }

i nstance {

pol ygon[ Q]

pol ygon[ 1]

poI ygon[ 2675]
}
}

This example is taken from the file bar cel ona- | . gf o, one of only two known
databases in the GFO format. The importer uses functions from the | i bpf du library
(such as those from the pfdBuilder) to generate efficient shared triangle strips. This
increases the speed with which GFO databases can be drawn and reduces the size and
complexity of the loader, since the builder’s functions hide the details of the pfGeoSet
construction process.

The “.im” format is a simple format developed for test purposes by the OpenGL
Performer engineering team. As new features are added to OpenGL Performer, the “.im
loader is extended to allow experimentation and testing. A recent example of this is
support for pfText, pfString, and pfFont objects which can be seen by running Perfly on
the sample data file f ont sanpl e. i m The OpenGL Performer “.im” loader is in the
directory / usr/ share/ Performer/src/lib/libpfdb/Iibpfi mfor IRIX and
Linux and in %°FROOT% Src/ 1 i b/ i bpf db/ | i bpfi mfor Microsoft Windows.

”

Here is an example IM format file that creates an extruded 3D text string. Copy this to a
file ending in the extension “.im” and load it into Perfly. For a complete example of how
text is handled in OpenGL Performer, use Perfly to examine the file
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/usr/ share/ Perforner/data/fontsanpl e2. i mon IRIX and Linux and in
%PFROOTY Dat a/ f ont sanpl e2. i mon Microsoft Windows.

breakup 0 0.0 0 O
new root top
end_r oot

new font mstr-extruded Mstr 3
end_font

new str_text textnode mstr-extruded 1
Hel l o World| |
end_t ext

attach top textnode

pfdLoadFile() uses the function pfdLoadFile_im() to load “. i m" format files into
OpenGL Performer run-time data structures:

pfdLoadFile_im() searches the current OpenGL Performer file path for the named file
and returns a pointer to the pfNode parenting the imported scene graph, or NULL if the
file is not readable or does not contain a valid database.

AAl/Graphicon IRTP Format

The AAI/Graphicon “.irtp” format is used by the TopGen database modeling system
and by the Graphicon-2000 image generator. The name IRTP is an acronym for
Interactive Real-Time PHIGS. The OpenGL Performer “.irtp” loader is in the directory
[usr/share/ Performer/src/lib/libpfdb/libpfirtp forIRIXand Linux and
in%PFROOTY Src/ i b/ 1'i bpfdb/ i bpfirtpforMicrosoft Windows. Though loader
does not support the more arcane IRTP features, such as binary separating planes or a
global matrix table, it has served as a basis for porting applications to OpenGL Performer
and the RealityEngine.

pfdLoadFile() uses the function pfdLoadFile_irtp() to load IRTP format files into
OpenGL Performer run-time data structures.
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SGI Open Inventor Format

The Open Inventor object-oriented 3D-graphics toolkit defines a persistent data format
that is also a superset of the VRML networked graphics data format. The image in
Figure 7-6 shows a sample Open Inventor data file.

Figure 7-6 Aircar Database in IRIS Inventor Format

The model in Figure 7-6 represents one design for the perennial “personal aircar of the
future” concept. It was created, using Imagine, by Mike Halvorson of Impulse, and was
modeled after the Moller 400 as described in Popular Mechanics.

The Open Inventor data-file loader provided with OpenGL Performer reads both binary
and ASCII format Open Inventor data files. Open Inventor scene graph description files
in both formats have the suffix “ . i v” appended to their file names.

Here is a simple Open Inventor file that defines a cone:
#l nventor V2.1 ascii

Separator {
Cone {

}
}
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The source code for the Open Inventor format importer is provided in the
I'i bpfdb/Iibpfiv source directory.

pfdLoadFile() uses the function pfdLoadFile_iv() to load Open Inventor format files into
OpenGL Performer run-time data-structures. OpenGL Performer also comes with an
Inventor loader that works with Open Inventor 2.0, if Open Inventor 2.1 is not installed.

Lightscape Technologies LSA and LSB Formats
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The Lightscape Visualization system is a product of Lightscape Technologies, Inc., and is
designed to compute accurate simulations of global illumination within complex 3D
environments. The output files created with Lightscape Visualization can be read into
OpenGL Performer for real-time visual exploration.

Lightscape Technologies provides importers for two of their database formats, the simple
ASCII LSA format and the comprehensive binary LSB format. These loaders are in the
files pf | sa. ¢ and pf | sb. ¢ in the directories

[usr/share/ Performer/src/lib/libpfdb/libpflsaandlibpflsb for IRIX
and Linux and in Y%PFROOT% Src/ i b/ 1i bpfdb/1ibpflsaandlibpflsb for
Microsoft Windows. Files in the LSA format are in ASCII and have the following
components:

1. A 4x4 view matrix representing a default transformation

2. Counts of the number of independent triangles, independent quadrilaterals,
triangle meshes, and quadrilateral meshes in the file

3. Geometric data definitions

There are four types of geometric definitions in LSA files. The formats of these definitions
are as shown in Table 7-7.

Table 7-7 Geometric Definitions in LSA Files
Geometric Type Format
Triangle tX1Y1Z21C1X2Y27Z2C2X3Y3Z3C3
Triangle mesh tm n
X1Y1Z1C1
X2Y272C2
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Table 7-7 Geometric Definitions in LSA Files (continued)
Geometric Type Format
Quadrilateral qX1Y1Z21C1X2Y2Z72C2X3Y3Z3C3X4Y474C4
Quadrilateral mesh gmn
X1Y1Z71C1
X2Y272C2

The Cn values in Table 7-7 refer to colors in the format accepted by the OpenGL function
glColor(); these colors should be provided in decimal form. The X, Y, and Z values are
vertex coordinates. Polygon vertex ordering in LSA files is consistently
counterclockwise, and polygon normals are not specified. The first few lines of the LSA
sample file chamber . 0. | sa provide an example of the format:

0.486911 0.03228900 0.979046 0.9596590
-1.665110 0.00944197 0.286293 0.2806240
0. 000000 1.92730000 -0.017805 -0. 0174524
0. 240398 -5. 54670000 13. 021200 13. 4945000

1782 4751 0 O

7.3677 2.57 6188666 6.5 -9.3 2.57 5663353 4.35 -9.3 2.57 5728890

4.35 -
6.5 -9.3 2.57 5663353 4.35 -7.3677 2.57 6188666 6.5 -8.2463 2.57 6057596

t
t
The count line indicates that the file contains 1782 independent triangles and 4751

independent quadrilaterals, which together represent 11,284 triangles. The image in
Figure 7-7 shows this database, the New Jerusalem City Hall. This was produced by

A.]. Diamond of Donald Schmitt and Company, Toronto, Canada, using the Lightscape
Visualization system.
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Figure 7-7 LSA-Format City Hall Database

pfdLoadFile() uses the function pfdLoadFile_Isa() to load LSA format files into OpenGL
Performer run-time data structures.

Files in the LSB binary format have a very different structure from LSA files.
Representing not just polygon data, they contain much of the structural information
present in the “ . | s” files used by the Lightscape Visualization system, including
material, layer, and texture definitions as well as a hierarchical mesh definition for
geometry. This information is structured as a series of data sections, which include the
following:

The signature, a text string that identifies the file
The header, which contains global file information
The material table, defining material properties
The layer table, defining grouping and association
The texture table, referencing texture images

Geometry in the form of clusters
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The format of the geometric clusters is somewhat complicated. A cluster is a group of
coplanar surfaces called patches that share a common material, layer, and normal. Each
patch shares at least one edge with another patch in the cluster. Each patch defines either
a convex quadrilateral or a triangle, and patches represent quad-trees called nodes. Each
node points to its corner vertices and its children. The leaf nodes point to their corner
vertices and the child pointers can optionally point to the vertices that split an edge of
the node. Only the locations of vertices that are corners of the patches are stored in the
file; other vertices are created by subdividing nodes of the quad-tree as the LSB file is
loaded. The color information for each vertex is unique and is specified in the file.

The image in Figure 7-8 shows an LSB-format database developed during the design of
a hospital operating room. This database was produced by the DeWolff Partnership of
Rochester, New York, using the Lightscape Visualization system.

Figure 7-8 LSB-Format Operating Room Database

pfdLoadFile() uses the function pfdLoadFile_Isb() to load LSB format files into OpenGL
Performer run-time data structures.
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When working with Lightscape Technologies files, remember that hardware lighting is
not needed because all illumination effects have already been accounted for with the
ambient color at each vertex.

Medit Productions MEDIT Format

The “.medit” format is used by the Medit database modeling system produced by Medit
Productions. The OpenGL Performer “.medit” loader is in the directory

[usr/share/ Performer/src/lib/libpfdb/libpfnedit for IRIXand Linux and
in WPFROOTY% Src/ i b/ 1ibpfdb/libpfnmedit for Microsoft Windows.

pfdLoadFile() uses the function pfdLoadFile_medit() to load MEDIT format files into
OpenGL Performer run-time data structures.

NFF Neutral File Format
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The “.nft” format was developed by Eric Haines as a way to provide standard procedural
databases for evaluating ray tracing software. OpenGL Performer includes an extended
NFF loader with superquadric torus support, a named bui | d keyword, and numerous
small bug fixes. The “.nff” loader is located in the directory

lusr/share/ Performer/src/lib/libpfdb/Ilibpfnff for IRIXand Linux and in
WPFROOTYS Src/ i b/ 11 bpfdb/libpfnff for Microsoft Windows.

The file / usr/ shar e/ Per f or ner / dat a/ sanpl er. nff on IRIX and Linux and
YWPFROOTYS Dat a/ sanpl er. nff on Microsoft Windows uses each of the NFF data
types. It is an excellent way to explore the “Show Tree”, “Draw Style”, and “Highlight
Mode” features of Perfly. It is included here:

#-- torus

f .75 .00 .25 .6 .8 20 0
t 55000121

build torus

#-- cylinder

f .00 .75 .25 .6 .8 20 0

c

155 -3 2

1553 2

#-- put a disc on the top and bottom of the cylinder
d155-300-102
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d155300102
buil d cylinder

#-- cone

f .00 .25 .75 .6 .8 20 0

c

255 -3 3

25530

#-- put a disc on the bottom of the cone
d255-300-103

buil d cone

#-- sphere

f .75 .00 .75 .6 .8 20 0
s 5150 3

buil d sphere

#- - hexahedron

f .25 .25 .50 .6 .8 200
h 13 13 -2 17 17 2

bui | d hexahedron

#-- superquadric sphere

f .80 .10 .30 .6 .8 20 O
ss 25150222 .1 .4
bui | d superquadric_sphere

#-- disc (washer shape)
f .20 .20 .90 .6 .8 20 O
d5250001125

buil d disc

#-- grid (height field)
f .80 .80 .10 .6 .8 20 O
g 4412 18 22 28 0 4
0000O

0100

00-10

0000O

build grid

#-- superquadric torid

f .40 .20 .60 .6 .8 20 O

st 256 25 0 0.5 0.5 0.5 .33 .33 3
buil d superquadric_torid
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#-- polygon with no nornals
f .20 .20 .20 .6 .8 20 0

p 4

-5 -5 -10
35 -5 -10
35 35 -10
-5 35 -10

bui I d pol ygon

pfdLoadFile() uses the function pfdLoadFile_nff() to load NFF format files into OpenGL
Performer run-time data structures.

Wavefront Technology OBJ Format
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The OB]J format is an ASCII data representation read and written by the Wavefront
Technology Mbdel program. A number of database models in this format have been
placed in the public domain, making this a useful format to have available. OpenGL
Performer provides the function pfdLoadFile_obj() to import OBJ files. The source code
for pfdLoadFile_obj() is in the file pf obj . ¢ in the loader source directory
lusr/share/ Perfornmer/src/lib/libpfdb/Ilibpfobj forIRIXand Linux and in
YWPFROOTY Src/1ib/1ibpfdb/libpfobj for Microsoft Windows.

The OBJ-format database shown in Figure 7-9 models an office building that is part of the
SGI corporate campus in Mountain View, California.
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Figure 7-9 SGI Office Building as OB] Database

Files in the OBJ format have a flexible all-ASCII structure, with simple keywords to direct
the parsing of the data. This format is best illustrated with a short example that defines
a texture-mapped square:

#-- ‘v’ defines a vertex; here are four vertices
-5.000000 5.000000 0.000000
-5. 000000 -5.000000 0.000000

5. 000000 -5. 000000 0.000000

5. 000000 5.000000 0. 000000

#-- ‘vt’ defines a vertex texture coordinate; four are given
0. 000000 1.000000 0.000000

vt 0.000000 0.000000 0. 000000
1. 000000 0.000000 0.000000
1. 000000 1.000000 0. 000000

#-- ‘usent|l’ neans select the material definition defined

#-- by the nane Material Nane
usent| Material Nane
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#-- ‘usemap’ neans select the texturing definition defined
#-- by the nanme TextureNane
usemap Text ur eName

#-- ‘f’ defines a face. This face has four vertices ordered
#-- countercl ockwi se fromthe upper left in both geonetric
#-- and texture coordi nates. Each pair of nunbers separated
#-- by a slash indicates vertex and texture indices,

#-- respectively, for a polygon vertex.

f 1/12/2 3/3 4/4

pfdLoadFile() uses the function pfdLoadFile_obj() to load Wavefront OB]J files into
OpenGL Performer run-time data structures.

SGI PFB Format

Note: The PFB format is undocumented and is subject to change.

Although OpenGL Performer has no true native database format, the PFB format is
designed to exactly replicate the OpenGL Performer scene graph; this design increases
loading speed. A file in the PFB format has the following advantages:

* PFB files often load in one tenth (or less) of the time it takes an equivalent file in
another format to load.

¢ DPFBfiles are often half the size of equivalent files in another format.
You can think of the PFB format as being a cache. You can convert your files into PFB for

fast and efficient loading or paging, but you should always keep your original files in
case you wish to modify them.

Converting to the PFB Format

You can convert files into the PFB format in one of the following ways:
e Use the function pfdStoreFile_pfb() in | i bpf pf b.

e Usepfconv.
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SGI PFI Format

Creating PFI Files

SGI PHD Format
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The PFI image file format is designed for fast loading of images into pfTextures.
pfLoadTexFile() can load PFI files as the image of a pfTexture. Since the format of the
image in a PFI file matches that of a pfTexture, data is not reformatted at load time.
Eliminating the reformatting often cuts the load time of textures to half of the load time
of the same image in the IRIS RGB image format.

PFI files can contain the mipmaps of the image. This feature saves significant time in the
OpenGL Performer DRAW process since it does not have to generate the mipmaps.

PFlI files are created in the following ways:

e pfSaveTexFile() creates a PFI file from a pfTexture.

* The pfdlmage methods in | i bpf du create PFI files.
e pficonv converts IRIS RGB image files into PFI files.

e pf conv converts all referenced image files into PFI files when the setting
PFPFB_SAVE_TEXTURE_PFI mode is PF_ON. The command line options to do this
with pf conv is - Mpf b, 5.

The PHD format was created to describe the geometric polyhedron definitions derived
mathematically by Andrew Hume and by the Kal ei do program of Zvi HarEl This
format describes only the geometric shape of polyhedra; it provides no specification for
color, texture, or appearance attributes such as specularity.

The OpenGL Performer sample data directories contain numerous polyhedra in the PHD

format. The image in Figure 7-10 shows many of the polyhedron definitions laboriously
computed by Andrew Hume.
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Figure 7-10  Plethora of Polyhedra in PHD Format

The source code for the PHD-format importer is in the file

lusr/share/ Perfornmer/src/lib/libpfdb/libpfpoly/pfphd.conlIRIXand
Linux and in %°FROOT% Src/ 1 i b/ 1'i bpf db/1i bpf pol y/ pf dhd. ¢ on Microsoft
Windows.

PHD format files have a line-structured ASCII form; an initial keyword defines the
contents of each line of data. The file format consists of a filename definition (introduced
by the keyword f i | e) followed by one or more object definitions.

Object definitions are bracketed by the keywords obj ect . begi nand obj ect . end and
contain one or more polygon definitions. Objects can have a name in quotes following
the obj ect . begi n keyword; such a name is used by the loader for the name of the
corresponding OpenGL Performer node.

Polygon definitions are bracketed by the keywords pol ygon. begi n and
pol ygon. end and contain three or more vertex definitions.
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SGI PTU Format
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Vertex definitions are introduced by the ver t ex keyword and define the X, Y, and Z
coordinates of a single vertex.

The following is a PHD-format definition of a unit-radius tetrahedron centered at the
origin of the coordinate axes. It is derived from the database developed by Andrew
Hume but has since been translated, scaled, and reformatted.

file 000. phd

obj ect. begin "tetrahedron"

pol ygon. begi n

vertex -0.090722 -0.366647 0.925925
vertex 0.544331 -0.628540 -0.555555
vertex 0.453608 0.890430 0.037037
pol ygon. end

pol ygon. begi n

vertex -0.907218 0.104757 -0.407407
vertex -0.090722 -0.366647 0.925925
vertex 0.453608 0.890430 0.037037
pol ygon. end

pol ygon. begi n

vertex -0.090722 -0.366647 0.925925
vertex -0.907218 0.104757 -0.407407
vertex 0.544331 -0.628540 -0.555555
pol ygon. end

pol ygon. begi n

vertex 0.453608 0.890430 0.037037
vertex 0.544331 -0.628540 -0.555555
vertex -0.907218 0.104757 -0.407407
pol ygon. end

obj ect. end

pfdLoadFile() uses the function pfdLoadFile_phd() to load PHD format files into
OpenGL Performer run-time data structures.

The pfdLoadFile_phd() function composes a color with red, green, and blue components

uniformly distributed within the range 0.2 to 0.7 that is consistent for each polygon with
the same number of vertices within a single polyhedron.

The PTU format is named for the OpenGL Performer Terrain Utilities, of which the
pfdLoadFile_ptu() function is the sole example at the present time. This function accepts
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as input the name of a control file (the file with the “ . pt u” filename extension) that
defines the desired terrain parameters and references additional data files.

The database shown in Figure 7-11 represents a portion of the Yellowstone National Park.
This terrain database was generated completely by the OpenGL Performer Terrain
Utility data generator from digital terrain elevation data and satellite photographic
images. Image manipulation is performed using the SGI ImageVision Library functions.

Figure 7-11  Terrain Database Generated by PTU Tools

The PTU control file has a fixed format that does not use keywords. The contents of this
file are simply ASCII values representing the following data items:

1. The name to be assigned to the top-level pfNode built by pfdLoadFile_ptu().

2. The number of desired levels-of-detail (LOD) for the resulting terrain surface. The
pfdLoadFile_ptu() function will construct this many versions of the terrain, each
representing the whole surface but with exponentially fewer numbers of polygons
in each version.
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3. The number of highest-LOD tiles that will tessellate the entire terrain surface in the
Xand Y axis directions.

4. Two numeric values that define the mapping of texture image pixels to
world-coordinate terrain geometry. These values are the number of meters per texel
(texture pixel) of filtered grid post data in the X and Y axis dimensions.

5. The name of an image file that represents terrain height at regularly spaced sample
points in the form of a monochrome image whose brightness at each pixel indicates
the height at that sample point. Additional arguments are the number of samples in
the input image in the X and Y directions, as well as the desired number of samples
in these directions. The pfdLoadFile_ptu() function resamples the grid posts from
the original to the desired resolution by filtering the height image using SGI
ImageVision Library functions.

6. The name of an image file that represents the terrain texture image at regularly
spaced sample points. Subsequent arguments are the number of samples in the
image in the X and Y directions as well as the desired number of samples in these
directions. This image will be applied to the terrain geometry. The scale values
provided in the PTU file allow the terrain grid and texture image to be adjusted to
create an orthographic alignment.

7. An optional second texture-image filename that serves as a detail texture when the
terrain is viewed on RealityEngine systems. This texture is used in addition to the
base texture image.

8. An optional detail-texture spline-table definition. The blending of the primary
texture image and the secondary detail texture is controlled by a blend table defined
by this spline function. The spline table is optional even when a detail texture is
specified. Detail texture and its associated blend functions are applicable only on
RealityEngine systems.

The source code for the PTU-format importer is provided in the file

lusr/share/ Performer/src/lib/libpfdb/libpfptu/pfptu.conlIRIXand
Linux and in %PFROOT% Src/ | i b/ 11 bpfdb/1i bpf pt u/ pf pt u. ¢ on Microsoft
Windows.

pfdLoadFile() uses the function pfdLoadFile_ptu() to load PTU format files into
OpenGL Performer run-time data structures.
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ArchVision provides the rich photorealistic content (RPC) loader. The RPC loader loads
in images from an ArchVision RPC file. The images represent views of an object from a
set of directions around the object. If you provide an existing pfIBRnode, the images are
loaded into a pfIBRtexture of the node. Otherwise, the function creates a new pfIBRnode
with a single pfGeoSet and a pfIBRtexture containing the images. In the case of new
content with meshes, the pfGeoSet contains the mesh, which becomes the proxy in the
pfIBRnode.

The following functions allow you to access and alter the modes, values, and attributes
of the RPC loader:

e pfdConverterMode_rpc(), pfdGetConverterMode_rpc()

* pfdConverterVal_rpc(), pfdGetConverterVal_rpc()

e pfdConverterAttr_rpc(), pfdGetConverterAttr_rpc()

You control the RPC converter modes with the token PEFRPC_USE_USER_IBRNODE. By
default, the loader creates a pfIBRnode with a single pfGeoSet and a pfIBRtexture that

contains the loaded images. If this mode is set to PF_ON and you supply a pfIBRnode
using pfdConverterAttr_rpc(), the images are loaded into the pfIBRtexture of that node.

Table 7-8 describes the RPC converter values.

Table 7-8 RPC Converter Values
Converter Value Description
PFRPC_SKIP_TEXTURES Skips every n images. ArchVision RPC files often

contain hundreds of images. A pfIBRtexture containing
so many images would be too large. The default is set
to 2. If you want to use all images in the file, set it to 0.

PFRPC_CROP_LEFT Crops the loaded images by the specified number of
pixels on the left.

PFRPC_CROP_RIGHT Crops the loaded images by the specified number of
pixels on the right. Note that the resulting image width
should be a power of 2.

PFRPC_CROP_TOP Crops the loaded images by the specified number of

pixels on the top.
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Table 7-8 RPC Converter Values (continued)
Converter Value Description
PFRPC_CROP_BOTTOM Crops the loaded images by the specified number of

pixels on the bottom. Note that the resulting image
height should be a power of 2.

PFRPC_SCALE_WIDTH Scales the billboard width in the case of a pfIBRnode
without a proxy.

PFRPC_SCALE_HEIGHT Scales the billboard height in the case of a pfIBRnode
without a proxy.

PFRPC_NEAREST Sets flag PFIBR_NEAREST on the pfIBRnode created
by the loader.

PFRPC_USE_NEAREST_RING In the case of content with a proxy and having more

than one ring of views, forces the mode in which views
are selected from the nearest ring rather than having
the views blended between the two nearest rings.

PFRPC_COMBINED_TEXTURE_SIZE Combines textures into a square texture of the specified
size (should be a power of 2). By default, if the texture
size is not a power of 2, textures are combined into a
texture of size 2048x2048. If the texture size is power of
2, textures are not combined into a bigger texture
unless the value
PFRPC_COMBINED_TEXTURE_SIZE is explicitly
specified. You can also set it to O to disable combining.
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Table 7-9 describes the converter attributes.

Table 7-9 RPC Converter Attributes
Converter Attribute Description
PFRPC_USER_IBRNODE Specifies a pfIBRnode. The images from the RPC file are

loaded into the pfIBRtexture of the node.

PFRPC_RING_FILE Specifies the path to ring files that define the rings of
views where proxies are used. There is one file for each
component of the input RPC file, indexed by extension
.0, .1, .2, and so on. Each line of the ring file contains the
angle of the ring from the horizon and the number of
views in that ring. If no ring file is specified, each
component has only one ring of 16 views at horizontal
angle 0. You can use an environment variable of the
same name to set this attribute.

PFRPC_SKIP_TEXTURES See Table 7-8 for the descriptions of these attributes. You
PFRPC_SCALE_WIDTH can use an environment variable of the same name to set
PFRPC_FLIP_TEXTURES this attribute. Setting attribute values through the use of
PFRPC_NEAREST environment variables allows you to affect the loading
PFRPC_USE_NEAREST_RING of the files without the necessity of changing your

PFRPC_COMBINED_TEXTURE_SIZE application.

Note: The loader is using a relatively slow, third-party routine for decompressing
images. For a faster load time, you may want to convert your RPC files into PFB files
using pf conv.

Two sample RPC files can be found in directory

/usr/share/ Perforner/data/ibr/rpc forIRIX and Linux and in

9YPFROOTY Dat a/ i br/ r pc for MicroSoft Windows. You can download other files from
the ArchVision webpage at waww. ar chvi si on. com

USNA Standard Graphics Format

The SGF format is used at the United States Naval Academy as a standard graphics
format for geometric data. The loader was developed based on the description of the
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standard graphics format as described by David F. Rogers and J. Alan Adams in the book
Mathematical Elements for Computer Graphics. The OpenGL Performer “.sgf” format loader
is located in the directory / usr/ shar e/ Performer/src/ i b/1i bpfdb/Ii bpfsgf
for IRIX and Linux and in %°FROOT% Src/ 1 i b/ | i bpf db/ i bpf sgf for Microsoft
Windows

Here is the vector definition for four stacked squares in SGF form:
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pfdLoadFile() uses the function pfdLoadFile_sgf() to load SGF format files into OpenGL
Performer run-time data-structures.

The SGI Object format is used by several utility programs and was one of the first
database formats supported by OpenGL Performer. The image in Figure 7-12 shows a
model generated by Paul Haeberli and loaded into Perfly by the pfdLoadFile_sgo()
database importer.
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Figure 7-12  Model in SGO Format

Objects in the SGO format have per-vertex color specification and multiple data formats.
Objects contained in SGO files are constructed from three data types:

* Lists of quadrilaterals
e Lists of triangles

e Triangle meshes
Objects of different types can be included as data within one SGO file.

The SGO format has the following structure:
1. A magic number, 0x5424, which identifies the file as an SGO file.

2. A set of data for each object. Each object definition begins with an identifying token,
followed by geometric data. There can be multiple object definitions in a single file.
An end-of-data token terminates the file.
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The layout of an SGO file is the following;:

<SGO-fil e magi ¢ nunber >

<dat a-type token for object #1>
<data for object #1>

<dat a-type token for object #2>
<data for object #2>

<data-type token for object #n>

<data for object #n>
<end- of -dat a t oken>

Each of the identifying tokens is 4 bytes long. Table 7-10 lists the symbol, value, and
meaning for each token.

Table 7-10 Object Tokens in the SGO Format

Symbol Value Meaning

OBJ_QUADLIST 1 Independent quadrilaterals
OBJ_TRILIST 2 Independent triangles
OBJ_TRIMESH 3 Triangle mesh

OBJ_END 4 End-of-data token

The next word following any of the three object types is the number of 4-byte words of
data for that object. The format of this data varies depending on the object type.

For quadrilateral list (OBJ_QUADLIST) and triangle list (OB]_TRILIST) objects, there are
nine words of floating-point data for each vertex, as follows:
1. Three words that specify the components of the normal vector at the vertex

2. Three words that specify the red, green, and blue color components, scaled to the
range 0.0 to 1.0

3. Three words that specify the X, Y, and Z coordinates of the vertex itself
In quadrilateral lists, vertices are in groups of four; so, there are 4 x 9 = 36 words of data

for each quadrilateral. In triangle lists, vertices are in groups of three, for 3 x 9 = 27 words
per triangle.
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The triangle mesh, OB]_TRIMESH, is the most complicated of the three object data types.
Triangle mesh data consists of a set of vertices followed by a set of mesh-control
commands. Triangle mesh data has the following format:

1. Along word that contains the number of words in the complete triangle mesh data
packet

2. A long word that contains the number of floating-point words required by the
vertex data, at nine words per vertex

3. The data for each vertex, consisting of nine floating-point words representing
normal, color, and coordinate data

4. A list of triangle mesh controls
The triangle mesh controls, each of which is one word in length, are listed in Table 7-11.

Table 7-11 Mesh Control Tokens in the SGO Format

Symbol Value Meaning
OP_BGNTMESH 1 Begin a triangle strip.
OP_SWAPTMESH 2 Exchange old vertices.
OP_ENDBGNTMESH 3 End then begin a strip.
OP_ENDTMESH 4 Terminate triangle mesh.

The triangle-mesh controls are interpreted sequentially. The first control must always be
OP_BGNTMESH, which initiates the mesh-decoding logic. After each mesh control is a
word (of type long integer) that indicates how many vertex indices follow. The vertex
indices are in byte offsets, so to access vertex n, you must use the byte offset n x 9 x 4.

pfdLoadFile() uses the function pfdLoadFile_sgo() to load SGO format files into
OpenGL Performer run-time data structures.

You can find the source code for the SGO-format importer in the file pf sgo. c. This
importer does not attempt to decode any triangle meshes present in input files; instead,
it terminates the file conversion process as soon as an OB]_TRIMESH data-type token is
encountered. If you use SGO-format files containing triangle meshes you will need to
extend the conversion support to include the triangle mesh data type.
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USNA Simple Polygon File Format

The “.spf” format is used at the United States Naval Academy as a simple polygon file
format for geometric data. The loader was developed based on the description in the
book Mathematical Elements for Computer Graphics. The OpenGL Performer “.spf” loader
is in the directory / usr/ shar e/ Performer/src/1ib/1ibpfdb/libpfspf onIRIX
and Linux and in Y%PFROOT% Src/ i b/ 1i bpfdb/ | i bpfspf on Microsoft Windows.

The following “.spf” format file is defined in that book.

pol ygon with a hole
14, 2

4,4

4, 26

20, 26

28,18

28,4

21,4

21,8

10, 8

10, 4

10, 12

10, 20

17, 20

21,16

21,12
9,1,2,3,4,5,6,7,8,9
5,10,11, 12, 13, 14

If you look at this file in Perfly, you will see that the hole is not cut out of the letter “A”
as might be desired. Such computational geometry computations are not considered the
province of simple database loaders.

pfdLoadFile() uses the function pfdLoadFile_sp£() to load SPF format files into OpenGL
Performer run-time data structures.

Sierpinski Sponge Loader

280

The Sierpinski Sponge (also known as Menger Sponge) loader is not based on a data

format but rather is a procedural data generator. The loader interprets the portion of the
user-provided filename before the period and extension as an integer which specifies the
number of recursive subdivisions desired in data generation. For example, providing the
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pseudo filename “3.sponge” to Perfly will result in the Sponge loader being invoked and
generating a sponge object using three levels of recursion, resulting in a 35712 polygon
database object. The OpenGL Performer “.sponge” loader can be found in the directory
/usr/share/ Perfornmer/src/lib/libpfdb/libpfsponge onIRIX and Linux
and in Y%PFROOT% Src/ i b/ 1i bpfdb/1i bpfsponge on Microsoft Windows.

pfdLoadFile() uses the function pfdLoadFile_sponge() to load Sponge format files into
OpenGL Performer run-time data structures.

The “.star” format is a distillation of astronomical data from the Yale Compact Star Chart
(YCSC). The sample data file / usr / shar e/ Per f or mer / dat a/ 3010. st ar for IRIX
and Linux and %°FROOT% Dat a/ 3010. st ar for Microsoft Windows contains data
from the YCSC that has been reduced to a list of the 3010 brightest stars as seen from
Earth and positioned as 3010 points of light on a unit-radius sphere. The OpenGL
Performer “.star” loader can read this data and is provided as a convenience for making
dusk, dawn, and night-time scenes. The loader is in the directory

[usr/share/ Performer/src/lib/libpfdb/libpfstar onIRIX and Linux and
in WPFROOTY% Src/ li b/ 1ibpfdb/libpfstar on Microsoft Windows.

Data in a “.star” file is simply a series of ASCII lines with the “s” (for star) keyword
followed by X, Y, and Z coordinates, brightness, and an optional name. Here are the 10
brightest stars (excluding Sol) in the “.star” format:

s -0.18746032 0.93921369 -0.28763914 1.00 Sirius

s -0.06323564 0.60291260 -0.79529721 1.00 Canopus

s -0.78377002 -0.52700269 0.32859191 1.00 Arcturus

s 0.18718566 0.73014212 0.65715599 1.00 Capella

s 0.12507832 -0.76942003 0.62637711 0.99 Vega

s 0.13051330 0.68228769 0.71933979 0.99 Capella

s 0.19507207 0.97036278 -0.14262892 0.98 Ri gel

s -0.37387931 -0.31261155 -0.87320572 0.94 Rigil Kentaurus
s -0.41809806 0.90381104 0.09121194 0.94 Procyon

s 0.49255905 0.22369388 -0.84103900 0.92 Achernar

pfdLoadFile() uses the function pfdLoadFile_star() to load Star format files into
OpenGL Performer run-time data structures.
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The STL format is used to define 3D solids to be imaged by 3D lithography systems. STL
defines objects as collections of triangular facets, each with an associated face normal.
The ASCII version of this format is known as STLA and has a very simple structure.

The image in Figure 7-13 shows a typical STLA mechanical CAD database. This model is
defined in the bendi x. st | a sample data file.

Figure 7-13 ~ Sample STLA Database

The source code for the STLA-format loader is in the files

lusr/share/ Perfornmer/src/lib/libpfdb/libpfstlalpfstla.conlIRIXand
Linux and in %°FROOT% Src/ 1i b/ 1i bpfdb/1i bpfstlal/pfstla.conMicrosoft
Windows.

STLA-format files have a line-structured ASCII form; an initial keyword defines the
contents of each line of data. An STLA file consists of one or more facet definitions, each
of which contains the following:

1. The facet normal, indicated with the f acet nor mal keyword

2. The facet vertices, bracketed by out er | oop and endl oop keywords
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3. The endl oop keyword

Here is an excerpt from nut . st | a, one of the STLA files provided in the OpenGL
Performer sample data directories. These are the first two polygons of a 524-triangle
hex-nut object:

facet normal 0 -1 0
outer |oop
vertex 0.180666 -7.62 2.70757
vertex -4.78652 -7.62 1.76185
vertex -4.436 -7.62 0
endl oop

endf acet

facet normal -0.381579 -0.921214 -0.075915
outer |oop
vertex -4.48833 -7.59833 0
vertex -4.436 -7.62 0
vertex -4.78652 -7.62 1.76185
endl oop

endf acet

Use this function to import data from STLA-format files into OpenGL Performer
run-time data structures:

pf Node *pfdLoadFile_stla(char *fil eNane);

pfdLoadFile_stla() searches the current OpenGL Performer file path for the file named
by the fileName argument and returns a pointer to the pfNode that parents the imported
scene graph, or NULL if the file is not readable or does not contain recognizable STLA
format data.

SuperViewer SV Format
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The SuperViewer (SV) format is one of the several database formats that the 3DM
database modeling tool can read and write. The I3DM modeler was developed by John
Kichury of SGI and is provided with OpenGL Performer. The source code for the SV
format importer is in the file pf sv. c.

The passenger vehicle database shown in Figure 7-14 was modeled using I3DM and is
stored in the SV database format.

283



Figure 7-14  Early Automobile in SuperViewer SV Format

Within SV files, object geometry and attributes are described between text lines that
contain the keywords nodel and endnodel . For example:

nodel wi ng

geonetry and attributes
endnodel

Any number of models can appear within a SuperViewer file. The geometry and
attribute data mentioned above each consist of one of the following types:

¢ 3D Polygon with vertex normals and optional texture coordinates:

pol y3dn <num vertices> [textured]
x1 y1l z1 nx1 nyl nz1l [sl t1]
X2 y2 z2 nx2 ny2 nz2 [s2 t2]

where the coordinates and normals are defined as follows:
—  Xn Yn Zn are the nth vertex coordinates

—  Nxn Nyn Nzn are the nth vertex normals
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—  Sn Tn are the nth texture coordinates

3D Triangle mesh with vertex normals and optional texture coordinates

tmeshn <num vertices> [textured]
x1 y1l z1 nx1 nyl nz1l [sl t1]
X2 y2 z2 nx2 ny2 nz2 [s2 t2]

where the coordinates and normals are defined as follows:
—  Xn Yn Zn are the nth vertex coordinates

—  Nxn Nyn Nzn are the nth vertex normals

—  Sn Tn are the nth texture coordinates

Material definition. If the material directive exists before a model definition, it is
taken as a new material specification. Its format is the following:

material n Ar Ag Ab Dr Dg Db Sr Sg Sb Shine Er Eg Eb
where the variables represent the following;:

— nisaninteger specifying a material number

— Ar Ag Abis the ambient color.

— Dr Dg Db is the diffuse color.

— Sr Sg Sbis the specular color.

—  Shine is the material shininess.

— Er Eg Ebis the emissive color.

If the material directive exists within a model description, the format is the
following:

material n

where 7 is an integer specifying which material (as defined by the material
description above) is to be assigned to subsequent data.

Texture definition. If the texture directive exists before a model definition it is taken
as a new texture specification. Its format is the following;:

texture n TextureFil eNanme

If the texture directive exists within a model description, the format is the following:

texture n
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where 7 is an integer specifying which texture (as defined by the texture description
above) is to be assigned to subsequent data.

* Backface polygon display mode. The backface directive is specified within model
definitions to control backface polygon culling:

backface node

where a mode of “on” allows the display of backfacing polygons and a mode of “off”
suppresses their display.

In actual use the SV format is somewhat self-documenting. Here is part of the SV file
appl e. sv from the directory / usr/ shar e/ Per f or mer / dat a on IRIX and Linux and
in %PFROOT% Dat a on Microsoft Windows:

material 20 0.0 0.0 O 0.400000 0.000000 O 0.333333 0.000000 0.0 10.0000 0 0 O
material 42 0.2 0.2 0 0.666667 0.666667 O 0.800000 0.800000 0.8 94.1606 0 0 O
nmaterial 44 0.0 0.2 0 0.000000 0.200000 O 0. 000000 O.266667 0.0 5.0000 0 0 O
texture 4 prchmmt.rgb
texture 6 wood.rgb

nodel LEAF

material 44
texture 4

backf ace on

pol y3dn 4 textured

1. 35265 1.35761 13. 8338 0. 0686595 -0.234553 -0.969676 0 1

0.88243 0.96366 14.0329 0.0502096 -0.376701 -0.924973 0 0.75

- 4. 44467 1.24026 13.5669 0. 0363863 -0.337291 -0.940697 0. 0909091 0. 75
-2.37938 2.17479 13. 3626 0. 0363863 -0.337291 -0. 940697 0. 0909091 1

pol y3dn 4 textured

-2.37938 2.17479 13.3626 0.0363863 -0. 337291 -0.940697 0. 0909091 1
-4. 44467 1.24026 13.5669 0.0363863 -0.337291 -0. 940697 0. 0909091 0. 75
-9. 23775 2.34664 13. 1475 0.0344832 -0.284369 -0.958095 0.181818 0. 75
-6.69592 3.94535 12.6716 0.0344832 -0.284369 -0.958095 0.181818 1

This excerpt specifies material properties and references texture images stored in the files
prchmt . r gb and wood. r gb, and then defines two polygons.

pfdLoadFile() uses the function pfdLoadFile_sv() to load SuperViewer files into
OpenGL Performer run-time data structures.
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Geometry Center Triangle Format

The “.tri” format is used at the University of Minnesota’s Geometry Center as a simple
geometric data representation. The loader was developed by inspection of a few sample
files. The OpenGL Performer “.tri” loader is in the directory

[usr/share/ Performer/src/lib/libpfdb/libpftri onIRIXand Linux and in
UPFROOTY Src/ lib/libpfdb/Iibpftri onMicrosoft Windows.

These files have a very simple format: a line per vertex with position and normal given
on each line as 6 ASCII numeric values. The file is simply a series of these triangle
definitions. Here are the first two triangles from the data file

/usr/ share/ Performer/data/ mobrect.tri onIRIXand Linux and in
UPFROOTY Dat a/ nobr ect . tri on Microsoft Windows:

. 788180 1.000870 0.135214 0.076169 -0.085488 0.993423
. 574000 0.925908 0.146652 0.089015 -0.086072 0.992304
. 793360 0.634711 0.099409 0.076402 -0.111845 0.990784
. 836848 -0.595230 0.197960 0. 156677 0.044503 0.986647
. 709638 -0.345676 0.210010 0.157642 0.021968 0.987252
. 581200 -0.535321 0.234807 0.145068 0.030985 0

[eNeNeN N o

. 988936

pfdLoadFile() uses the function pfdLoadFile_tri() toload “.tri” format files into OpenGL
Performer run-time data structures.

UNC Walkthrough Format

WRL Format
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The “.unc” format was once used at the University of North Carolina as a format for
geometric data in an architectural walkthrough application. The loader was developed
based on inspection of a few sample files. The OpenGL Performer “.unc” loader is in the
directory / usr/ shar e/ Performer/src/lib/libpfdb/Iibpfunc for IRIX and
Linux and in %PFROOT% Src/ | i b/ 1 i bpfdb/ | i bpfunc for Microsoft Windows.

pfdLoadFile() uses the function pfdLoadFile_unc() to load UNC format files into
OpenGL Performer run-time data structures.

The VRML 2.0 format for OpenGL Performer, wrl, is made by DRaW Computing
Associates. It accepts geometry and texture only. Basic geometry nodes like Sphere,
Cone, Cylinder, Box and related nodes like Shape, Material, Appearance,
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TextureTransform, ImageTexture, and ElevationGrid are supported. Also, complex
geometries can be obtained using the IndexedFaceSet node. You can do geometric
manipulations to nodes using Group nodes and Transform nodes. You can also make
very complex structures using PROTOs, where you group many geometry nodes.

Database Operators with Pseudo Loaders

288

The OpenGL Performer dynamic database loading mechanism provides additional
DSOs that operate on the resulting scene graph from a file or set of files after the file(s)
are loaded. This mechanism, called “pseudo loaders,” enables the desired-operator DSO
to be specified as additional suffixes to the filename. The DSO matching the last suffix is
loaded first and provided the entire filename. That pseudo loader then can parse the
arbitrary filename and invoke the next operator or loader and then operate on the results.
This process allows additional arguments to be buried in the specified filename for the
pseudo loader to detect and parse.

One set of pseudo loaders included with OpenGL Performer are the rot, trans, and scale
loaders. These loaders take hpr and xyz arguments in addition to their Filename and can
be invoked from any program using pfdLoadFile(), as shown in this example:

% perfly cow. obj.-90, 90, 0. rot
-90, 90, and 0 are the #, p, and r values, respectively.

If you are using a shell with argument expansion, such as csh, you can create interesting
cow art. Try out the following example:

% perfly cow. obj.{0,1},0,0.trans cow. obj.{0,1,2,3,4},0,-5.trans
Specifying a base filename is only needed if the specified pseudo loader expects a file to

operate on. Loaders can generate their scene graphics procedurally based on simple
parameters specified in the command string.
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The pseudo loaders in the OpenGL Performer distribution are described in Table 7-12.

Table 7-12 OpenGL Performer Pseudo Loaders

Pseudo Loaders Description

I'i bpfrot Add pfSCS at root to rotate scene graph by specified h,p,r.

l'i bpftrans Add pfSCS at root to translate scene graph by specified x,1,z.

l'i bpfscale Add pfSCS at root to sale scene graph by specified x,y,z.

|'i bpf cl osest Adds run-time app callback to highlight closest point each frame.

libpfcliptile Adds callback to compute for the specified tilename, minS ,minT, maxS, and
maxT, the proper virtual cliptexture viewing parameters.

| i bpf sphere Generates a sphere database with morphing LOD starting from an n-gon for
specified 711, power of 2.

l'i bpfvct Convert normal cliptexture .ct file to virtual cliptexture.

Pseudo loaders should define pfdLoadNeededDSOs_EXT() for the following:
* Preinitializing DSOs
¢ Loading other special files

¢ Performing additional initialization, such as class initialization, that should happen
before pfConfig()
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Geometry Sets
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Geometry

Alll'i bpr geometry is defined by modular units that employ a flexible specification
method. These basic groups of geometric primitives are termed pfGeoSets.

A pfGeoSet is a collection of geometry that shares certain characteristics. All items in a
pfGeoSet must be of the same primitive type (whether they are points, lines, or triangles)
and share the same set of attribute bindings (you cannot specify colors-per-vertex for
some items and colors-per-primitive for others in the same pfGeoSet). A pfGeoSet forms
primitives out of lists of attributes that may be either indexed or nonindexed. An indexed
pfGeoSet uses a list of unsigned short integers to index an attribute list. (See “Attributes”
on page 299 for information about attributes and bindings.)

Indexing provides a more general mechanism for specifying geometry than hard-wired
attribute lists and also has the potential for substantial memory savings as a result of
shared attributes. Nonindexed pfGeoSets are sometimes easier to construct, usually a bit
faster to render, and may save memory (since no extra space is needed for index lists) in
situations where vertex sharing is not possible. A pfGeoSet must be either completely
indexed or completely nonindexed; it is not valid to have some attributes indexed and
others nonindexed.

Note: | i bpf applications can include pfGeoSets in the scene graph with the pfGeode
(Geometry Node).
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Table 8-1 lists a subset of the routines that manipulate pfGeoSets.

Table 8-1 pfGeoSet Routines

Routine Description

pfNewGSet() Create a new pfGeoSet.

pfDelete() Delete a pfGeoSet.

pfCopy( Copy a pfGeoSet.

pfGSetGState() Specify the pfGeoState to be used.
pfGSetGStateIndex() Specify the pfGeoState index to be used.
pfGSetNumPrims() Specify the number of primitive items.
pfGSetPrimType() Specify the type of primitive.
pfGSetPrimLengths() Set the lengths array for strip primitives.

pfGetGSetPrimLength()
pfGSetAttr()
pfGSetMultiAttr()
pfGSetDrawMode()
pfGSetLineWidth()
pfGSetPntSize()
pfGSetHlight()
pfDrawGSet()
pfGSetBBox()
pfGSetlIsectMask()
pfGSetlsectSegs()
pfQueryGSet()
pfPrint()

Get the length for the specified strip primitive.

Set the attribute bindings.

Set multi-value attributes (for example, multi-texture coordinates).
Specify draw mode (for example, flat shading or wireframe).
Set the line width for line primitives.

Set the point size for point primitives.

Specify highlighting type for drawing.

Draw a pfGeoSet.

Specify a bounding box for the geometry.

Specify an intersection mask for pfGSetIsectSegs().
Intersect line segments with pfGeoSet geometry.

Determine the number of triangles or vertices.

Print the pfGeoSet contents.
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Primitive Types
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All primitives within a given pfGeoSet must be of the same type. To set the type of all
primitives in a pfGeoSet named gset, call pfGSetPrimType(gset, type). Table 8-2 lists the
primitive type tokens, the primitive types that they represent, and the number of vertices
in a coordinate list for that type of primitive.

Table 8-2 Geometry Primitives

Token Primitive Type Number of Vertices
PFGS_POINTS Points numPrims
PFGS_LINES Independent line segments 2 * numPrims
PFGS_LINESTRIPS Strips of connected lines Sum of lengths array
PFGS_FLAT_LINESTRIPS Strips of flat-shaded lines Sum of lengths array
PFGS_TRIS Independent triangles 3 * numPrims
PFGS_TRISTRIPS Strips of connected triangles Sum of lengths array
PFGS_FLAT_TRISTRIPS Strips of flat-shaded triangles ~ Sum of lengths array
PFGS_TRIFANS Fan of conected triangles Sum of lengths array
PFGS_FLAT_TRIFANS Fan of flat-shaded triangles Sum of lengths array
PFGS_QUADS Independent quadrilaterals 4 * numPrims
PFGS_POLYS Independent polygons Sum of lengths array

The parameters in the last column denote the following;:

numPrims The number of primitive items in the pfGeoSet, as set by
pfGSetNumPrims().
lengths The array of strip lengths in the pfGeoSet, as set by

pfGSetPrimLengths() (note that length is measured here in terms of
number of vertices).

Connected primitive types (line strips, triangle strips, and polygons) require a separate
array that specifies the number of vertices in each primitive. Length is defined as the
number of vertices in a strip for STRIP primitives and is the number of vertices in a
polygon for the POLYS primitive type. The number of line segments in a line strip is
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numVerts — 1, while the number of triangles in a triangle strip and polygon is numVerts —
2. Use pfGSetPrimLengths() to set the length array for strip primitives.

The number of primitives in a pfGeoSet is specified by pfGSetNumPrims(gset, num). For
strip and polygon primitives, num is the number of strips or polygons in gset.

In addition to the primitive type, pfGSetDrawMode() further defines how a primitive is
drawn. Triangles, triangle strips, quadrilaterals, and polygons can be specified as either
filled or as wireframe, where only the outline of the primitive is drawn. Use the
PFGS_WIREFRAME argument to enable or disable wireframe mode. Another argument,
PFGS_FLATSHADE, specifies that primitives should be shaded. If flat shading is
enabled, each primitive or element in a strip is shaded with a single color.

PFGS_COMPILE_GL
At the next draw for each pfState, compile gset’s geometry into a GL
display list and subsequently render the display list.

PFGS_DRAW_GLOB]
Select the rendering of an already created display list but do not force a
recompile.

PFGS_PACKED_ATTRS
Use the gset’s packed attribute arrays, set with the
PFGS_PACKED_ATTRS to pfGSetAttr, to render geometry with GL
vertex arrays.

The pfGeoSets are normally processed in immediate mode, which means that
pfDrawGSet() sends attributes from the user-supplied attribute arrays to the Graphics
Pipeline for rendering. However, this kind of processing is subject to some overhead,
particularly if the pfGeoSet contains few primitives. In some cases it may help to use GL
display lists (this is different from the | i bpr display list type pfDispList) or compiled
mode. In compiled mode, pfGeoSet attributes are copied from the attribute lists into a
special data structure called a display list during a compilation stage. This data structure
is highly optimized for efficient transfer to the graphics hardware. However, compiled
mode has some major disadvantages:

e Compilation is usually costly.
e A GL display list must be recompiled whenever its pfGeoSet’s attributes change.

e The GL display list uses a significant amount of extra host memory.
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In general, immediate mode will offer excellent performance with minimal memory
usage and no restrictions on attribute volatility, which is a key aspect in may advanced
applications. Despite this, experimentation may show databases or machines where
compiled mode offers a performance benefit.

To enable or disable compiled mode, call pfGSetDrawMode() with the
PFGS_COMPILE_GL token. When enabled, compilation is delayed until the next time
the pfGeoSet is drawn with pfDrawGSet(). Subsequent calls to pfDrawGSet() will then
send the compiled pfGeoSet to the graphics hardware.

To select a display list to render, without recompiling it, use pfGSetDrawMode() with
the token PFGS_DRAW_GLOB].

Packed Attributes

Packed attributes is an optimized way of sending formatted data to the graphics pipeline
under OpenGL that does not incur the same memory overead or recompilation burden
as GL display lists. To render geometry with packed attributes, use the
pfGSetDrawMode(PFGS_PACKED_ATTRS) method when using OpenGL. This
pfGSetAttr list includes the currently bound PER_VERTEX vertex attribute data packed
into a single nonindexed array. When specifying a packed attribute array, the optional
vertex attributes, colors, normals, and texture coordinates, can be NULL. This array, like
the other attribute arrays, is then shared betweenOpenGL Performer, the GL, and
accessible by the user. Optionally, you can put your vertex coordinates in this packed
array but in this case the vertices must be duplicated in the normal coordinate array
because vertex coordinate data is used internally for other nondrawing operations such
as intersections and computation of bounding geometry. Packed attribute arrays also
allow OpenGL Performer to extend the vertex attribute types accepted by pfGeoSets.
There are several base formats that expect all currently bound attributes of specified data
type (unsigned byte, short, or float) to be in the attribute array. Attributes specified by the
format but not bound to vertices are assumed to not be present and the present data is
packed with the data for each vertex starting on a 32-bit word-aligned boundary. Then,
there are several derived formats that let you put some attribute data in the packed array
while leaving the rest in the normal individual coordinate attribute arrays. Table 8-3
shows the different base formats supported.
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Table 8-3 pfGeoSet PACKED_ATTR Formats

Format Description

PFGS_PA_C4UBNB3ST2FV3F Accepts all currently bound coordinate attributes; colors are
unsigned bytes; normals are shorts. Vertices are duplicated in
the packed attribute array.

PFGS_PA_C4UBNB3ST2F Vertices are in the normal coordinate array.
PFGS_PA_C4UBT2F Normals and vertices are in the normal coordinate array.

PFGS_PA_C4UBN3ST2SV3F All bound coordinate attributes are in the packed attribute
array. Colors are unsigned bytes, normals are shorts, and
texture coordinates are unsigned shorts.

PFGS_PA_C4UBN3ST3FV3F Texture coordinates are 3D floats.
PFGS_PA_C4UBN3ST3SV3F Texture coordinates are 2D shorts.

To create packed attributes, you can use the utility pfuTravCreatePackedAttrs(), which
traverses a scene graph to create packed attributes for pfGeoSets and, optionally,
pfDelete redundant attribute arrays. This utility packs the pfGeoSet attributes using
pfuFillGSetPackedAttrs(). Examples of packed attribute usage can be seen in

[ usr/ share/ Performer/src/pguide/libpr/Clpackedattrs. cand

[ usr/share/ Performer/src/sanple/ T perfly.cand

/usr/ share/ Perforner/src/sanpl e/ C++/ perfly. Cfor IRIX and Linux and in
9%PFROOTY Src/ pgui de/ | i bpr/ C/ packedattrs. c,

YPFROOTY Src/ sanpl e/ C perfly. c,and

YPFROOTY Sr ¢/ sanpl e/ C++/ per fly. Cfor Microsoft Windows.

Primitive Connectivity

296

A pfGeoSet requires a coordinate array that specifies the world coordinate positions of
primitive vertices. This array is either indexed or not, depending on whether a
coordinate index list is supplied. If the index list is supplied, it is used to index the
coordinate array; if not, the coordinate array is interpreted in a sequential order.

A pfGeoSet’s primitive type dictates the connectivity from vertex to vertex to define
geometry. Figure 8-1 shows a coordinate array consisting of four coordinates, A, B, C,
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and D, and the geometry resulting from different primitive types. This example uses
index lists that index the coordinate array.
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Note: Flat-shaded line strip and flat-shaded triangle strip primitives have the vertices
listed in the same order as for the smooth-shaded varieties.

Vertex list

Xa YA ZA

Xg. Yg, Zg

Xcs YC, Zc

w N~ O

XD YD, Zp

n K Yo 7}

Pr{?pitéve Points Line segments Line strips
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B RN SN PN
0 0 0 2 3
) 1 3 1 3 2
Index list
2 1 3 0 1
3 2 2 1 0
Pr{;/npitéve In?ﬁgﬁé}ggm Quadrilaterals Triangle strips Polygons
- —
Geometry \1 \ = i
0 0 0
1 1 1
_ 3 2 2
Index list
3 3 3
1
2 n n
Figure 8-1 Primitives and Connectivity
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The definition of a primitive is not complete without attributes. In addition to a primitive
type and count, a pfGeoSet references four attribute arrays (see Figure 8-2):

e Colors (red, green, blue, alpha)
e Normals (Nx, Ny, Nz)
e Texture coordinates (S, T)—multiple arrays for multitexture.

¢ Vertex coordinates (X, Y, Z)

(A pfGeoState is also associated with each pfGeoSet; see Chapter 9, “Graphics State” for
details.) The four components listed above can be specified with pfGSetAttr().
Multivalue attributes (texture coordinates) can be specified using pfGSetMultiAttr() or
pfGSetAttr(). Using zero as the index parameter for pfGSetMultiAttr() is equivalent to
calling pfGSetAttr(). Attributes may be setin two ways: by indexed specification—using
a pointer to an array of components and a pointer to an array of indices; or by direct
specification—providing a NULL pointer for the indices, which indicates that the indices
are sequential from the initial value of zero. The choice of indexed or direct components
applies to an entire pfGeoSet; that is, all of the supplied components within one pfGeoSet
must use the same method. However, you can emulate partially indexed pfGeoSets by
using indexed specification and making each nonindexed attribute’s index list be a singly
shared “identity mapping” index array whose elements are 0, 1, 2, 3,..., N-1, where N is
the largest number of attributes in any referencing pfGeoSet. (You can share the same
array for all such emulated pfGeoSets.) The direct method avoids one level of indirection
and may have a performance advantage compared with indexed specification for some
combinations of CPUs and graphics subsystems.

Note: Use pfMalloc() to allocate your arrays of attribute data. This allows OpenGL
Performer to reference-count the arrays and delete them when appropriate. It also allows
you to easily put your attribute data into shared memory for multiprocessing by
specifying an arena such as pfGetSharedArena() to pfMalloc(). While perhaps
convenient, it is very dangerous to specify pointers to static data for pfGeoSet attributes.
Early versions of OpenGL Performer permitted this but it is strongly discouraged and
may have undefined and unfortunate consequences.

Attribute arrays can be created through pfFlux to support the multiprocessed generation
of the vertex data for a dynamic object, such as ocean waves, or morphing geometry.
pfFlux will automatically keep separate copies of data for separate proceses so that one

299



8: Geometry

process can generate data while another draws it. The pfFluxed buffer can be handed
directly to pfGSetAttr() or pfGSetMultiAttr(). In fact, the entire pfGeoSet can be
contained in a pfFlux. Index lists cannot be pfFluxed. See Chapter 16, “Dynamic Data,”
for more information on pfFlux.

\\\\\\\\\\\\\‘%

Figure 8-2 pfGeoSet Structure
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Attribute Bindings
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Note: When using multiple texture-coordinate arrays, pfGeoSet recognizes
texture-coordinate arrays starting at the first array (index of 0) and ending immediately
before the first index with a NULL array. In other words, specifying texture-coordinate
arrays using pfGSetMultiAttr() for indices 0, 1, and 3 is equivalent to specifying
texture-coordinate arrays for only indices 0 and 1. When using pfTexGen to
automatically generate texture coordinates for some texture units, the application should
not interleave texture units with texture coordinates and texture units with pfTexGen.
Texture units with texture coordinates should come before texture units with pfTexGen.
This is an implementation limitation and may be removed in future releases.

Attribute bindings specify where in the definition of a primitive an attribute has effect.
You can leave a given attribute unspecified; otherwise, its binding location is one of the
following:

e Overall (one value for the entire pfGeoSet)
¢ Per primitive

* DPer vertex
Only certain binding types are supported for some attribute types.

Table 8-4 shows the attribute bindings that are valid for each type of attribute.

Table 8-4 Attribute Bindings

Binding Token Color Normal Texture Coordinate Coordinate
PFGS_OVERALL Yes Yes No No
PFGS_PER_PRIM Yes Yes No No
PFGS_PER_VERTEX Yes Yes Yes Yes
PFGS_OFF Yes Yes Yes No

Attribute lists, index lists, and binding types are all set by pfGSetAttr().
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For FLAT primitives (PFGS_FLAT_TRISTRIPS,PFGS_FLAT_TRIFANS,
PFGS_FLAT_LINESTRIPS), the PFGS_PER_VERTEX binding for normals and colors has
slightly different meaning. In these cases, per-vertex colors and normals should not be
specified for the first vertex in each line strip or for the first two vertices in each triangle
strip since FLAT primitives use the last vertex of each line segment or triangle to compute
shading.

A cube has six sides; together those sides have 24 vertices. In a vertex array, you could
specify the primitives in the cube using 24 vertices. However, most of those vertices
overlap. If more than one primitive can refer to the same vertex, the number of vertices
can be streamlined to 8. The way to get more than one primitive to refer to the same
vertex is to use an index; three vertices of three primitives use the same index which
points to the same vertex information. Adding the index array adds an extra step in the
determination of the attribute, as shown in Figure 8-3.
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pfGeoSet

StripLengths —— |
PrimCoords
ColorBind
NormalBind
TexCoordBind

CoordSet
ColorSet >

nl
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NormalSet
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CoordindexSet ——
ColorIndexSet
NormallndexSet

D

<r,g,b> <nx, ny, nz > <XVY,Zz>
TextCoordindexSet .
nl nl
n2 n2
n3 — n3 n3
Figure 8-3 Indexing Arrays

Indexing can save system memory, but rendering performance is often lost.

The choice of using indexed or sequential attributes applies to all of the primitives in a
pfGeoSet; that is, all of the primitives within one pfGeoSet must be referenced
sequentially or by index; you cannot mix the two.

The governing principle for whether to index attributes is how many vertices in a
geometry are shared. Consider the following two examples in Figure 8-4, where each dot
marks a vertex.
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SN ]

Figure 8-4 Deciding Whether to Index Attributes

In the triangle strip, each vertex is shared by two adjoining triangles. In the square, the
same vertex is shared by eight triangles. Consider the task that is required to move these
vertices when, for example, morphing the object. If the vertices were not indexed, in the
square, the application would have to look up and alter eight triangles to change one
vertex.

In the case of the square, it is much more efficient to index the attributes. On the other
hand, if the attributes in the triangle strip were indexed, since each vertex is shared by
only two triangles, the index look-up time would exceed the time it would take to simply
update the vertices sequentially. In the case of the triangle strip, rendering is improved
by handling the attributes sequentially.

The deciding factor governing whether to index attributes relates to the number of
primitives that share the same attribute: if attributes are shared by many primitives, the
attributes should be indexed; if attributes are not shared by many primitives, the
attributes should be handled sequentially.

There are many operations you can perform on pfGeoSets. pfDrawGSet() “draws “ the
indicated pfGeoSet by sending commands and data to the Geometry Pipeline, unless
OpenGL Performer’s display-list mode is in effect. In display-list mode, rather than
sending the data to the pipeline, the current pfDispList “captures” the pfDrawGSet()
command. The given pfGeoSet is then drawn along with the rest of the pfDispList with
the pfDrawDList() command.

When the PEGS_COMPILE_GL mode of a pfGeoSet is not active (pfGSetDrawMode()),
pfDrawGSet() uses rendering loops tuned for each primitive type and attribute binding
combination to reduce CPU overhead in transferring the geometry data to the hardware
pipeline. Otherwise, pfDrawGSet() sends a special, compiled data structure.
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Table 8-1 on page 292 lists other operations that you can perform on pfGeoSets. pfCopy()
does a shallow copy, copying the source pfGeoSet’s attribute arrays by reference and
incrementing their reference counts. pfDelete() frees the memory of a pfGeoSet and its
attribute arrays (if those arrays were allocated with pfMalloc() and provided their
reference counts reach zero). pfPrint() is strictly a debugging utility and will print a
pfGeoSet’s contents to a specified destination. pfGSetIsectSegs() allows intersection
testing of line segments against the geometry in a pfGeoSet; see “Intersecting with
pfGeoSets” in Chapter 19 for more information on that function.

In addition to the pfGeoSet, | i bpr offers two other primitives which together are useful
for rendering a specific type of geometry—3D characters. See Chapter 3, “Nodes and
Node Types” and the description for pfText nodes for an example of how to set up the
3D text within the context of | i bpf .

The basic primitive supporting text rendering is the | i bpr pfFont primitive. A pfFont is
essentially a collection of pfGeoSets in which each pfGeoSet represents one character of
a particular font. pfFont also contain metric data, such as a per-character spacing, the 3D
escapement offset used to increment a text ‘cursor” after the character has been drawn.
Thus, pfFont maintains all of the information that is necessary to draw any and all valid
characters of a font. However, note that pfFonts are passive and have little functionality
on their own; for example, you cannot draw a pfFont—it simply provides the character
set for the next higher-level text data object, the pfString.

Table 8-5 lists some routines that are used with a pfFont.

Table 8-5 pfFont Routines

Routine Description
pfNewFont() Create a new pfFont.
pfDelete() Delete a pfFont.

pfFontCharGSet() Set the pfGeoSet to be used for a specific character of this pfFont.
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Table 8-5

pfFont Routines (continued)

Routine

Description

pfFontCharSpacing()

pfFontMode()

pfFontAttr()

Set the 3D spacing to be used to update a text cursor after this character
has been rendered.

Specify a particular mode for this pfFont.
Valid modes:

PFFONT_CHAR_SPACING—Specify whether to use fixed or variable
spacings for all characters of a pfFont. Possible values are
PFFONT_CHAR_SPACING_FIXED and
PFFONT_CHAR_SPACING_VARIABLE, the latter being the default.

PFFONT_NUM_CHARS—Specify how many characters are in this font.

PFFONT_RETURN_CHAR—Specify the index of the character that is
considered a ‘return’ character and thus relevant to line justification.

Specify a particular attribute of this pfFont.

Valid attributes:

PFFONT_NAME—Name of this font.

PFFONT_GSTATE—pfGeoState to be used when rendering this font.
PFFONT_BBOX—Bounding box that bounds each individual character.

PFFONT_SPACING—Set the overall character spacing if this is a fixed
width font (also the spacing used if one has not been set for a particular
character).

Example 8-1

Loading Characters into a pfFont

/* Setting up a pfFont */

pf Font

{

pf Font

*ReadFont (voi d)

= pf NewFont ( pf Get Shar edArena());

for(i=0;i<nunCharacters;i++)

{

pf GeoSet * gset = get CharGSet (i);
pf Vec3* spaci ng = get Char Spaci ng(i);

pf Font Char GSet (fnt, i, gset);
pf Font Char Spaci ng(fnt, i, spacing);
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Simple rendering of 3D text can be done using a pfString. A pfString is an array of font
indices stored as 8-bit bytes, 16-bit shorts, or 32-bit integers. Each element of the array
contains an index to a particular character of a pfFont structure. A pfString can not be
drawn until it has been associated with a pfFont object with a call to pfStringFont(). To

render a pfString once it references a pfFont, call the function pfDrawString().

The pfString class supports the notion of ‘flattening’ to trade off memory for faster
processing time. This causes individual, noninstanced geometry to be used for each
character, eliminating the cost of translating the text cursor between each character when
drawing the pfString.

Example 8-2 illustrates how to set up and draw a pfString.

Example 8-2 Setting Up and Drawing a pfString

/* Create a string a rotate it for 2.5 seconds */

voi d

LoadAndDr awSt ri ng(const char *text)

{

pf Font *nyfont = ReadMFont();
pfString *str = pfNewString(NULL);
pfMatri x mat;

float start,t;

/* Use nyfont as the 3-d font for this string */
pfStringFont(str, fnt);

/[* Center String */
pf St ri ngMode(str, PFSTR_JUSTI FY, PFSTR_M DDLE) ;

[* Color String is Red */
pfStringColor(str, 1.0f, 0.0f, 0.0f, 1.0f);

/* Set the text of the string */
pfStringString(str, text);

[* Cbtain a transformmatrix to place this string */
Get TheMatri xToPl aceTheString(mat);
pf StringMat (str, &mat);

[* optimze for draw time by flattening the transfornms */

pf FlattenString(str);
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/* Twirl text for 2.5 seconds */
start = pfGetTinme();
do
{
pfVec4 clr;
pf Set Vec4(clr, 0.0f, 0.0f, 0.0f, 1.0f);

/* Clear the screen to black */
pf d ear (PFCL_COLOR| PFCL_DEPTH, clr);

t
t

(pfGetTime() - start)/2.5f;
PF_ M N2(t, 1.0f);

pf MakeRot Mat (mat, t * 315.0f, 1.0f, 0.0f, 0.0f);
pf Post Rot Mat (mat, mat, t * 720.0f, 0.0f, 1.0f, 0.0f);

t *=1,;
pf Post TransMat (nmat, mat, 0. Of,
150.0f * t + (1.0f - t) * 800.0f, 0.0f);

pf PushMat ri x();
pf Mul t Matri x(mat) ;

/* DRAW THE | NPUT STRI NG */
pf DrawStri ng(str);

pf PopMat ri x();
pf SwapW nBuf f er s(pf Get CurWn());

} while(t < 2.5f);
}

Table 8-6 lists the key routines used to manage pfStrings.

Table 8-6 pfString Routines

Routine Description

pfNewString() Create a new pfString.

pfDelete() Delete a pfString.

pfStringFont() Set the pfFont to use when drawing this pfString.
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Table 8-6 pfString Routines (continued)

Routine

Description

pfStringString()
pfDrawString()
pfFlattenString()

pfStringColor()
pfStringMode()

pfStringMat()

pfStringSpacingScale()

Set the character array that this pfString will represent or render.
Draw this pfString.

Flatten all positional translations and the current specification matrix
into individual pfGeoSets so that more memory is used, but no matrix
transforms or translates have to be done between each character of the
pfString.

Set the color of the pfString.

Specify a particular mode for this pfString.
Valid modes:

PFSTR_JUSTIFY — Sets the line justification and has the following
possible values: PEFSTR_FIRST or PFSTR_LEFT, PFSTR_MIDDLE or
PFSTR_CENTER, and PFSTR_LAST or PFSTR_RIGHT.

PFSTR_CHAR_SIZE — Sets the number of bytes per character in the
input string and has the following possible values: PFSTR_CHAR,
PFSTR_SHORT, PFSTR_INT.

Specify a transform matrix that affects the entire character string when
the pfString is drawn.

Specify a scale factor for the escapement translations that happen after
each character is drawn. This routine is useful for changing the
spacing between characters and even between lines.
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Graphics State

The graphics state is a class of fields that defines everything about the shape and texture
of an object in an OpenGL Performer scene. Fields include such things as transparency,
shading, reflectance, and texture. The graphics state is set globally for all objects in the
scene graph. Individual objects, however, can override graphics state settings. The cost,
however, is efficiency. For performance reasons, therefore, it is important to set the fields
in the graphics state to satisfy the greatest number of objects in the scene.

This chapter describes in detail all of the fields in the graphics state.

The graphics libraries are immediate-mode state machines; if you set a mode, all
subsequent geometry is drawn in that mode. For the best performance, mode changes
need to be minimized and managed carefully. | i bpr manages a subset of graphics
library state and identifies bits of state as graphics state elements. Each state element is
identified with a PESTATE token; for example., PESTATE_TRANSPARENCY
corresponds to the transparency state element. State elements are loosely partitioned into
three categories: modes, values, and attributes.

Modes are the graphics state variables, such as transparency and texture enable, that
have simple values like ON and OFF. An example of a mode command is
pfTransparency(mode).

Values are not modal, rather they are real numbers which signify a threshold or quantity.
An example of a value is the reference alpha value specified with the pfAlphaFunc()
function.

Attributes are references to encapsulations (structures) of graphics state. They logically

group the more complicated elements of state, such as textures and lighting models.
Attributes are structures that are modified through a procedural interface and must be
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applied to have an effect. For example, pfApplyTex(tex) applies the texture map, tex, to
subsequently drawn geometry.

Inl i bpr, there are three methods of setting a state:
¢ Immediate mode
¢ Display list mode
* pfGeoState mode

Like the graphics libraries, | i bpr supports the notion of both immediate and display-list
modes. In immediate mode, graphics mode changes are sent directly to the Geometry
Pipeline; that is, they have an immediate effect. In display-list mode, graphics mode
changes are captured by the currently active pfDispList, which can be drawn later.

I'i bpr display lists differ from graphics library objects because they capture only | i bpr
commands and are reusable. | i bpr display lists are useful for multiprocessing
applications in which one process builds up the list of visible geometry and another
process draws it. “Display Lists” on page 337 describes | i bpr display lists.

A pfGeoState is a structure that encapsulates all the graphics modes and attributes that
| i bpr manages. You can individually set the state elements of a pfGeoState to define a
graphics context. The act of applying a pfGeoState with pfApplyGState() configures the
state of the Geometry Pipeline according to the modes, values, and attributes set in the
pfGeoState. For example, the following code fragment shows equivalent ways (except
for some inheritance properties of pfGeoStates described later) of setting up some
lighting parameters suitable for a glass surface:

/* I medi ate node state specification */
pf Material *shinyMl;

pf Tr anspar ency( PFTR_ON) ;

pf Appl yM | (shinyM 1) ;

pf Enabl e( PFEN_LI GHTI NG) ;

/* is equivalent to: */

/* CeoState state specification */

pf GeoSt at e *gst at e;

pf GSt at eMbde(gst at e, PFSTATE_TRANSPARENCY, PFTR_QON);
pf GSt at eAttr(gstate, PFSTATE_FRONTMTL, shinyMI);

pf GSt at eMode( gst at e, PFSTATE_ENLI GHTI NG PF_QON);

pf Appl yGSt at e(gst ate);
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In addition, pfGeoStates have unique state inheritance capabilities that make them very
convenient and efficient; they provide independence from ordered drawing. pfGeoStates
are described in the section “pfGeoState” on page 339 of this chapter.

The | i bpr routines have been designed to produce an efficient structure for managing
graphics state. You can also set a graphics state directly through the GL. However, | i bpr

will have no record of these settings and will not be able to optimize them and may make
incorrect assumptions about current graphics state if the resulting state does not match
the | i bpr record when | i bpr routines are called. Therefore, it is best to use the | i bpr

routines whenever possible to change a graphics state and to restore the | i bpr state if

you go directly through the GL.

The following sections will describe the rendering geometry and state elements in detail.
There are three types of state elements: modes, values, and attributes. Modes are simple
settings that take a set of integer values that include values for enabling and disabling the
mode. Modes may also have associated values that allow a setting from a defined range.
Attributes are complex state structures that encapsulate a related collection of modes and
values. Attribute structures will not include in their definition an enable or disable as the
enabling or disabling of a mode is orthogonal to the particular related attribute in use.

The | i bpr library manages a subset of the rendering modes found in OpenGL. In
addition, | i bpr abstracts certain concepts like transparency, providing a higher-level
interface that hides the underlying implementation mechanism.

Thel i bpr library provides tokens that identify the modes that it manages. These tokens
are used by pfGeoStates and other state-related functions like pfOverride(). The
following table enumerates the PESTATE_* tokens of supported modes, each with a brief
description and default value.

Table 9-1 lists and describes the mode tokens.

Table 9-1 pfGeoState Mode Tokens

Token Name Description Default Value
PFSTATE_TRANSPARENCY Transparency modes PFTR_OFF
PFSTATE_ALPHAFUNC Alpha function PFAF_ALWAYS
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Table 9-1 pfGeoState Mode Tokens (continued)

Token Name Description Default Value
PFSTATE_ANTIALIAS Antialiasing mode PFAA_OFF
PFSTATE_CULLFACE Face culling mode PFCF_OFF
PFSTATE_DECAL Decaling mode for coplanar geometry PFDECAL_OFF
PFSTATE_SHADEMODEL Shading model PFSM_GOURAUD
PFSTATE_ENLIGHTING Lighting enable flag PF_OFF
PFSTATE_ENTEXTURE Texturing enable flag PF_OFF
PFSTATE_ENFOG Fogging enable flag PF_OFF

PFSTATE_ENWIREFRAME pfGeoSet wireframe mode enable flag PF_OFF
PFSTATE_ENCOLORTABLE pfGeoSet colortable enable flag PF_OFF
PFSTATE_ENHIGHLIGHTING  pfGeoSet highlighting enable flag PF_OFF
PFSTATE_ENLPOINTSTATE pfGeoSet light point state enable flag PF_OFF

PFSTATE_ENTEXGEN Texture coordinate generation enable flag PF_OFF

The mode control functions described in the following sections should be used in place
of their graphics library counterparts so that OpenGL Performer can correctly track the
graphics state. Use pfGStateMode() with the appropriate PFSTATE token to set the
mode of a pfGeoState.

You can control transparency using pfTransparency(). Possible transparency modes are
listed in the following table.

Table 9-2 pfTransparency Tokens

Transparency mode Description

PFTR_OFF Transparency disabled.

PFTR_ON Use the fastest, but not necessarily the best, transparency provided
PFTR_FAST by the hardware.
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Table 9-2 pfTransparency Tokens (continued)

Transparency mode Description

PFTR_HIGH_QUALITY  Use the best, but not necessarily the fastest, transparency provided
by the hardware.

PFTR_MS_ALPHA Use screen-door transparency when multisampling. Fastbut limited
number of transparency levels.

PFTR_BLEND_ALPHA Use alpha-based blend with background color. Slower but high
number of transparency levels.

In addition, the flag PFTR_NO_OCCLUDE may be logically ORed into the transparency
mode in which case geometry will not write depth values into the frame buffer. This will
prevent it from occluding subsequently rendered geometry. Enabling this flag improves
the appearance of unordered, blended transparent surfaces.

There are two basic transparency mechanisms: screen-door transparency, which requires
hardware multisampling, and blending. Blending offers very high-quality transparency
but for proper results requires that transparent surfaces be rendered in back-to-front
order after all opaque geometry has been drawn. When using transparent texture maps
to “etch” geometry or if the surface has constant transparency, screen-door transparency
is usually good enough. Blended transparency is usually required to avoid “banding” on
surfaces with low transparency gradients like clouds and smoke.

You can select either flat shading or Gouraud (smooth) shading. pfShadeModel() takes
one of two tokens: PFSM_FLAT or PESM_GOURAUD. One some graphics hardware flat
shading can offer a significant performance advantage.

The pfAlphaFunc() function is an extension of the glAlphaFunc() function; it allows

OpenGL Performer to keep track of the hardware mode. The alpha function is a pixel test
that compares the incoming alpha to a reference value and uses the result to determine
whether or not the pixel is rendered. The reference value must be specified in the range
[0, 1]. For example, a pixel whose alpha value is 0 is not rendered if the alpha function is
PFAF_GREATER and the alpha reference value is also 0. Note that rejecting pixels-based
alpha can be faster than using transparency alone. A common technique for improving
the performance of filling polygons is to set an alpha function that will reject pixels of low
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(possibly nonzero) contribution. The alpha function is typically used for see-through
textures like trees.

On Z-buffer-based graphics hardware, coplanar geometry can cause unwanted artifacts
due to the finite numerical precision of the hardware which cannot accurately resolve
which surface has visual priority. This can result in flimmering, a visual “tearing” or
“twinkling” of the surfaces. pfDecal() is used to accurately draw coplanar geometry on
SGI graphics platforms and it supports two basic implementation methods : stencil
decaling and displace decaling.

The stencil decaling method uses a hardware resource known as a stencil buffer and
requires that a single stencil plane (see the man page for glStencilOp()) be available for
OpenGL Performer. This method offers the highest image quality but requires that
geometry be coplanar and rendered in a specific order which reduces opportunities for
the performance advantage of sorting by graphics mode.

A potentially faster method is the displace decaling method. In this case, each layer is
displaced towards the eye so it hovers slightly above the preceding layer. Displaced
decals need not be coplanar, and can be drawn in any orde, but the displacement may
cause geometry to incorrectly poke through other geometry.

The specificaton of a decal plane can improve the displace decaling method. The object
geometry will be projected onto the specified plane and if the same plane is specified for
base and layer geometry, the base and layer polygons will be generated with identical
depth values. If the objects are drawn in priority order, no further operation is necessary.
Otherwise, displace can be applied to the planed geometry for a superior result. Decal
planes can be specified on pfGeoSets with pfGSetDecalPlane(), on a pfGeoState with the
PFSTATE_DECALPLANE attribute to pfGStateAttr(), or globally with
pfApplyDecalPlane().

Decals consist of base geometry and layer geometry. The base defines the depth values of the
decal while layer geometry is simply inlaid on top of the base. Multiple layers are
supported but limited to eight when using displaced decals. Realize that these layers
imply superposition; there is no limit to the number of polygons in a layer, only to the
number of distinct layers.

The decal mode indicates whether the subsequent geometry is base or layer and the decal

method to use. For example, a mode of PFDECAL_BASE_STENCIL means that
subsequent geometry is to be considered as base geometry and drawn using the stencil
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method. All combinations of base/layer and displace/stencil modes are supported but
you should make sure to use the same method for a given base-layer pair.

Example 9-1 illustrates the use of pfDecal().

Example 9-1 Using pfDecal() to a Draw Road with Stripes
pf Decal ( PFDECAL_BASE_STENCI L) ;

[* ... draw underlying geonetry (roadway) here ...*/
pf Decal ( PFDECAL_LAYER STENCI L) ;
[* ... draw copl anar |ayer geonetry (stripes) here ... */

pf Decal ( PFDECAL_CFF) ;

Note: | i bpf applications can use the pfLayer node to include decals within a scene
graph.

The pfCullFace() function controls which side of a polygon (if any) is discarded in the
Geometry Pipeline. Polygons are either front-facing or back-facing. A front-facing
polygon is described by a counterclockwise order of vertices in screen coordinates, and
a back-facing one has a clockwise order. pfCullFace() has four possible arguments:

PFCF_OFF Disable face-orientation culling.

PFCF_BACK  Cull back-facing polygons.

PFCF_FRONT Cull front-facing polygons.

PFCF_BOTH  Cull both front- and back-facing polygons.

In particular, back-face culling is highly recommended since it offers a significant

performance advantage for databases where polygons are never be seen from both sides
(databases of “solid” objects or with constrained eyepoints).
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The pfAntialias() function is used to turn the antialiasing mode of the hardware on or
off. Currently, antialiasing is implemented differently by each different graphics system.
Antialiasing can produce artifacts as a result of the way OpenGL Performer and the
active hardware platform implement the feature. See the man page for pfAntialias() for
implementation details.

Some modes may also have associated values. These values are set through
pfGStateVal(). Table 9-3 lists and describes the value tokens.

Table 9-3 pfGeoState Value Tokens

Token Name Description Range Default Value

PFSTATE_ALPHAREF Set the alpha function reference value. 0.0-1.0 0.0

The pfEnable() and pfDisable() functions control certain rendering modes. Certain
modes do not have effect when enabled but require that other attribute(s) be applied.
Table 9-4 lists and describes the tokens and also lists the attributes required for the mode
to become truly active.

Table 9-4 Enable and Disable Tokens
Token Action Attribute(s) Required
PFEN_LIGHTING Enable or disable lighting. pfMaterial
pfLight
pfLightModel
PFEN_TEXTURE Enable or disable texture. pfTexEnv
pfTexture
PFEN_FOG Enable or disable fog. pfFog

PFEN_WIREFRAME Enable or disable pfGeoSet wireframe rendering. none
PFEN_COLORTABLE Enable or disable pfGeoSet colortable mode. pfColortable

007-1680-080



Immediate Mode

Rendering Attributes

007-1680-080

Table 9-4 Enable and Disable Tokens (continued)

Token Action

Attribute(s) Required

PFEN_HIGHLIGHTING Enable or disable pfGeoSet highlighting.

PFEN_TEXGEN Enable or disable automatic texture coordinate

generation.

PFEN_LPOINTSTATE

Enable or disable pfGeoSet light points.

pfHighlight

pfTexGen

pfLPointState

By default all modes are disabled.

Rendering attributes are state structures that are manipulated through a procedural
interface. Examples include pfTexture, pfMaterial, and pfFog. | i bpr provides tokens
that enumerate the graphics attributes it manages. These tokens are used by pfGeoStates
and other state-related functions like pfOverride(). Table 9-5 lists and describes the

tokens.

Table 9-5

Rendering Attribute Tokens

Attribute Token Description Apply Routine
PFSTATE_LIGHTMODEL Lighting model pfApplyLModel()
PFSTATE_LIGHTS Light source definitions pfLightOn()
PFSTATE_FRONTMTL Front-face material pfApplyMtl()
PFSTATE_BACKMTL Back-face material pfApplyMtl()
PFSTATE_TEXTURE Texture pfApplyTex()
PFSTATE_TEXENV Texture environment pfApplyTEnv()
PFSTATE_FOG Fog model pfApplyFog()
PFSTATE_COLORTABLE Color table for pfGeoSets pfApplyCtab()
PFSTATE_HIGHLIGHT Definition of pfGeoSet highlighting style =~ pfApplyHlight()
PFSTATE_LPOINTSTATE pfGeoSet light point definition pfApplyLPState()
PFSTATE_TEXGEN Texture coordinate generation definition ~ pfApplyTGen()
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Rendering attributes control which attributes are applied to geometric primitives when
they are processed by the hardware. All OpenGL Performer attributes consist of a control
structure, definition routines, and an apply function, pfApply* (except for lights which
are “turned on”).

Each attribute has an associated pfNew*() routine that allocates storage for the control
structure. When sharing attributes across processors in a multiprocessor application, you
should pass the pfNew*() routine a shared memory arena from which to allocate the
structure. If you pass NULL as the arena, the attribute is allocated from the heap and is
not sharable in a nonshared address space (fork()) multiprocessing application.

All attributes can be applied directly, referenced by a pfGeoState or captured by a display
list. When changing an attribute, that change is not visible until the attribute is reapplied.
Detailed coverage of attribute implementation is available in the man pages.

OpenGL Performer supports texturing through pfTextures and pfTexEnvs, which
provide encapsulated suppport for graphics library textures (see glTexImage2D() ) and
texture environments (see glTexEnv()). A pflexture defines a texture image, format, and
filtering. A pfTexEnv specifies how the texture should interact with the colors of the
geometry where it is applied. You need both to display textured data, but you do not
need to specify them both at the same time. For example, you could have pfGeoStates
each of which had a different texture specified as an attribute and still use an overall
texture environment specified with pfApplyTEnv().

A pflexture is created by calling pfNewTex(). If the desired texture image exists as a disk
file in IRIS RGB image format (the file often has a “.rgb” suffix ) or in the OpenGL
Performer fast-loading image format (a “.pfi” suffix), you can call pfLoadTexFile() to
load the image into CPU memory and completely configure the pfTexture, as shown in
the following;:

pf Texture *tex = pflLoadTexFile(“brick.rgba”);

Otherwise, pfTexImage() lets you directly provide a GL-ready image array in the same
external format as specified on the pfTexture and as expected by glTexImage2D(), as
shown in the following:

voi d pf Texl mage( pf Texture* tex, uint* inmage,
int conp, int sx, int sy, int sz);
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OpenGL expects packed texture data with each row beginning on a long word boundary.
However, OpenGL expects the individual components of a texel to be packed in opposite
order. For example, OpenGL expects the texels to be packed as RGBA. If you provide
your own image array in a multiprocessing environment, it should be allocated from
shared memory (along with your pfTexture) to allow different processes to access it. A
basic example demonstrating loading a image file and placing the resulting pfTexture on
scene graph geometry is at

[ usr/ share/ Performer/src/pguide/libpf/C/texture.c onIRIX and Linux
and Y%PFROOT% Sr ¢/ pgui de/ | i bpf/ T t ext ure. ¢ on Microsoft Windows.

Note: The size of your texture must be an integral power of two on each side. OpenGL
refuses to accept badly sized textures. You can rescale your texture images with the

i zoomor i mgwor ks programs (shipped with IRIX 5.3 in the eoe2.sw.imagetools and
imgtools.sw.tools subsystems; and with IRIX 6.2 in the eoe.sw.imagetools and
imgworks.sw.tools subsystems).

Your texture source does not have to be a static image. pfTexLoadMode() can be used to
set one of the sources listed in Table 9-6 with PFTEX_LOAD_SOURCE. Note that sources
other than CPU memory may not be supported on all graphics platforms, or may have
some special restrictions. There are several sample programs that demonstrate paging
sequences of texture from different texture sources. For paging from host memory there
are the following:

¢  On IRIX and Linux:
— Jusr/share/Performer/src/pguide/libpr/Ctexlist.c
— Jusr/share/ Perforner/src/pguide/libpr/C mpmap.c
— lusr/share/ Performer/src/pguide/libpfutil/novietex.c
¢ On Microsoft Windows:
—  9PFROOT% Src/ pguide/libpr/Ctexlist.c
—  9YPFROOT% Src/ pgui de/ | i bpr/ T/ m pmap. ¢
-  9PFROOT% Src/ pgui de/ | i bpfutil/novietex.c
These examples demonstrate the use of different texture sources for paging textures, and

l'i bpufitl utilties for managing texture resources. One thing these examples do is use
pfTexLoadImage() to update the pointer to the image data to avoid the expensive
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reformating the texture. This requires that the provided image data be the same size as
the original image data, as well as same number of components and same formats.

Table 9-6 Texture Image Sources

PFTEX_SOURCE_ Token Source of the Texture Image

IMAGE CPU memory location specified by pfTexLoadImage() or
pfTexImage()

FRAMEBUFFER Framebuffer location offset from window origin as specified by
pfTexLoadOrigin()

VIDEO Default video source on the system

The source of texture image data can be live video input. OpenGL Performer supports
the video input mechanisms of Sirius Video on RealityEngine and InfiniteReality, DIVO
on InfiniteReality, and Silicon Graphics O2 and Octane video input. OpenGL Performer
includes a sample program that features video texturing:

[ usr/ share/ Performer/src/pguide/libpf/nmovietex.c (IRIX and Linux)
9%PFROOTY Src/ pgui de/ | i bpf/ novi et ex. ¢ (Microsoft Windows)

This example demonstrates that all video initialization, including the creation of video
library resources, is done in the draw process, as required by the video library. Part of
that initialization includes setting the proper number of components on the pfTexture
and choosing a texture filter and potentially internal format. Those basic operations are
discussed further in this section.

OpenGL Performer will automatically download the frame of video when the texture
object is applied through the referencing pfGeoState. Alternatively, you may want to
schedule this download to happen at the beginning or end of the rendering frame; you
can force it with pfLoadTex().

Textures must be created with sizes that are powers of 2; the input video frame is usually
not in powers of 2. The [0,1] texture coordinate range can be scaled into the valid part of
the pfTexture with a texture matrix. This matrix can be applied directly to the global state
with pfApplyTMat() to affect all pfGeoSets, or can be set on a pfGeoState with the
PFSTATE_TEXMAT attribute to pfGStateAttr().
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Texture storage is limited only by virtual memory, but for real-time applications you
must consider the amount of texture storage the graphics hardware supports. Textures
that do not fit in the graphics subsystem are paged as needed when pfApplyTex() is
called. The | i bpr library provides routines for managing hardware texture memory so
that a real-time application does not have to get a surprise texture load. pflsTexLoaded(),
called from the drawing process, tells you if the pfTexture is currently properly loaded in
texture memory. The initially required textures of an application, or all of the textures if
they fit, can be preloaded into texture memory as part of application initialization.
pfuMakeSceneTexList() makes a list of all textures referenced by a scene graph and
pfuDownloadTexList() loads a list of textures into hardware texture memory (and must
be called in the draw process). The Perfly sample program does this as part of its
initialization and displays the textures as it preloads them.

There are additional routines to assist with the progressive loading and unloading of
pfTextures. pfldleTex() can be used to free the hardware texture memory owned by a
pfTexture. GL host and hardware texture memory resources can be freed with
pfDeleteGLHandle() from the drawing process. OpenGL Performer will automatically
re-allocate those resources if the pfTexture is used again. For an example of management
of texture resources, see the example program

[ usr/ share/ Performer/src/pguide/libpfutil/texmem c forIRIX and Linux
or ¥PFROOTY Src/ pgui de/ | i bpfutil/texmem c for Microsoft Windows. The
program uses the pfuTextureManager from | i bpf uti | for basic texture paging
support.

The pfLoadTex() function, called from the drawing process, can be used to explicitly load
a texture into graphics hardware texture memory (which includes doing any necessary
formatting of the texture image). By default, pfLoadTex() loads the entire texture image,
including any required minification or magnification levels, into texture memory.
pfSubloadTex() and pfSubloadTexLevel() can also be used in the drawing process to do
an immediate load of texture memory managed by the given pfIexture and these
routines allow you to specify all loading parameters (source, origin, size, etc.). This is
useful for loading different images for the same pfTexture in different graphics pipelines.
pfSubloadTex() allows you to load a subsection of the texture tile by tile.

A special pfTexFormat() formatting mode, PFTEX_SUBLOAD_FORMAT, allows part or
all of the image in texture memory owned by the pfTexture to be replaced using
pfApplyTex(), pfLoadTex(), or pfSubloadTex(), without having to go through the
expensive reformatting phase. This allows you to quickly update the image of a
pfTexture in texture memory. The PFTEX_SUBLOAD_FORMAT used with an
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appropriate pfTexLoadSize() and pfTexLoadOrigin() allows you to control what part of
the texture will be loaded by subsequent calls to pfLoadTex() or pfApplyTex(). There are
also different loading modes that cause pfApplyTex() to automatically reload or subload
a texture from a specified source. If you want the image of a pfTexture to be updated
upon every call to pfApplyTex(), you can set the loading mode of the pfTexture with
pfTexLoadMode() to be PFTEX_BASE_AUTO_REPLACE. pfTexLoadImage() allows
you to continuously update the memory location of an IMAGE source texture without
triggering any reformatting of the texture.

Hint: There are texture formatting modes that can improve texture performance and
these are the modes that are used by default by OpenGL Performer. Of most importance
is the 16-bit texel internal formats. These formats cause the resulting texels to have 16 bits
of resolution instead of the standard 32. These formats can have dramatically faster
texture-fill performance and cause the texture to take up half the hardware texture
memory. Therefore, they are strongly recommended and are used by default. There are
different formats for each possible number of components to give a choice of how the
compression is to be done. These formats are described in the pf TexFor mat (3pf) man

page.

There may also be formatting modes for internal or external image formats for which
OpenGL Performer does not have a token. However, the GL value can be specified.
Specifying GL values will make your application GL-specific and may also cause future
porting problems; so, it should only be done if absolutely necessary.

The pfTexture class also allows you to define a set of textures that are mutually exclusive;
they should always be applied to the same set of geometry; and, thus, they can share the
same location in hardware texture memory. With pfTexList(tex, list) you can specify a list
of textures to be in a texture set managed by the base texture, tex. The base texture is what
gets applied with pfApplyTex(), or assigned to geometry through pfGeoStates. With
pfTexFrame(), you can select a given texture from the list (-1 selects the base texture and
is the default). This allows you to define a texture movie where each image is the frame
of the movie. You can have an image on the base texture to display when the movie is not
playing. There are additional loading modes for pfTexLoadMode() described in
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Table 9-7 to control how the textures in the texture list share memory with the base

texture.

Table 9-7 Texture Load Modes

PFTEX_LOAD_ Load Mode Values Description

modeToken

SOURCE SOURCE_IMAGE, Source of image data is host memory image,
SOURCE_FRAMEBUFFER framebuffer, default video source, digital
PFTEX_SOURCE_VIDEO media buffer, or a video library digital media
PFTEX_SOURCE_DMBUF buffer.

PFTEX_SOURCE_DMVIDEO

BASE BASE_APPLY Loading of image for pfTexture is done as
BASE_AUTO_SUBLOAD required for pfApply, or automatically

subloaded upon every pfApply().

LIST LIST_APPLY Loading of list texture image is done as
LIST_AUTO_IDLE separate apply, causes freeing of previous list
LIST_AUTO_SUBLOAD texture in hardware texture memory, or is

subloaded into memory managed by the base
texture.

VIDEO_ OFF, INTERLACED_ODD, Video input is interlaced or not and if so,

INTERLACED INTERLACED_EVEN, which field (even or odd) is spatially higher.

Texture list textures can share the exact graphics texture memory as the base texture but
this has the restriction that the textures must all be the exact same size and format as the
base texture. Texture list textures can also indicate that they are mutually exclusive,
which will cause the texture memory of previous textures to be freed before applying the
new texture. This method has no restrictions on the texture list, but is less efficient than
the previous method. Finally, texture list textures can be treated as completely
independent textures that should all be kept resident in memory for rapid access upon
their application.

The pfTexFilter() function sets a desired filter to a specified filtering method on a
pfTexture. The minification and magnification texture filters are described with bitmask
tokens. If filters are partially specified, OpenGL Performer fills the rest with
machine-dependent fast defaults. The PFTEX_FAST token can be included in the bitmask
to allow OpenGL Performer to make machine dependent substitutions where there are
large performance differences.
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There are a variety of texture filter functions that can improve the look of textures when
they are minified and magnified. By default, textures use MIPmapping when minified
(though this costs an extra 1/3 in storage space to store the minification levels). Each level
of minification or magnification of a texture is twice the size of the previous level.
Minification levels are indicated with positive numbers and magnification levels are
indicated with nonpositive numbers. The default magnification filter for textures is
bilinear interpolation. The use of detail textures and sharpening filters can improve the
look of magnified textures. Detailing actually uses an extra detail texture that you
provide that is based on a specified level of magnification from the corresponding base
texture. The detail texture can be specified with the pfTexDetail() function. By default,
MIPmap levels are generated for the texture automatically. OpenGL operation allows for
the specification of custom MIPmap levels. Both MIPmap levels and detail levels can be
specified with pfTexLevel(). The level number should be a positive number for a
minification level and a nonpositive number for a magnification (detail) level. If you are
providing your own minification levels, you must provide all log,(MAX(texSizeX,
texSizeY)) minification levels. There is only one detail texture for a pfTexture.

Standard MIPmap filtering can induce blurring on a texture if the texture is applied to a
polygon which is angled away from the viewer. To reduce this blurring, an anisotropic
filter can be used to improve visual quality. pfTexAnisotropy() sets the degree of
anisotropy to be used by the specified pfTexture. The default degree of anisotropy is 1,
which is the same as the standard isotropic filter. A value of 2 will apply a 2:1 anisotropic
filter. The maximum degree of anisotropy can be queried with pfQuerySys().
Anisotropic filtering is supported on OpenGL implementations that support the
GL_EXT_texture_filter_anisotropic extension. pfQueryFeature() can be used to
determine if anisotropic filtering is supported on the current platform. If the
environment variable PF_MAX_ANI SOTRCPY is set, then an anisotropic filter of the value
specified by PF_MAX_ANI SOTRCPY will be applied to pfIextures that do not set the
degree of anisotropy.

The magnification filters use spline functions to control their rate of application as a
function of magnification and specified level of magnification for detail textures. These
splines can be specified with pfTexSpline(). The specification of the spline is a set of
control points that are pairs of nondecreasing magnification levels (specified with
nonpositive numbers) and corresponding scaling factors. Magnification filters can be
applied to all components of a texture, only the RGB components of a texture, or to just
the alpha components. OpenGL does not allow different magnification filters (between
detail and sharpen) for RGB and alpha channels.

007-1680-080



Immediate Mode

Texture Formats

Note: The specification of detail textures may have GL dependencies and magnifications
filters may not be available on all hardware configurations. The pf Text ur e man page
describes these details.

The format in which an image is stored in texture memory is defined with pfTexFormat():
voi d pfTexFormat(pf Text ur e *tex, i nt format,i nt type)

The format variable specifies which format to set. Valid formats and their basic types
include the following;:

¢ PFTEX_INTERNAL_FORMAT— Specifies how many bits per component are to be
used in internal hardware texture memory storage. The default is 16 bits per full
texel and is based on the number of components and external format.

¢ PFTEX_IMAGE_FORMAT—Describes the type of image data and must match the
number of components, such as PFTEX_LUMINANCE,
PFTEX_LUMINANCE_ALPHA, PFTEX_RGB, and PFTEX_RGBA. The default is
the token in this list that matches the number of components. Other OpenGL
selections can be specified with the GL token.

e PFTEX_EXTERNAL_FORMAT—Specifies the format of the data in the pfTexImage
array. The default is packed 8 bits per component. There are special, fast-loading
hardware-ready formats, such as PFTEX_UNSIGNED_SHORT_5_5_5_1.

e PFTEX_SUBLOAD_FORMAT—Specifies if the texture will be a
subloadable paging texture. Default is FALSE.

In general, you will just need to specify the number of components in pfTexImage(). You
may want to specify a fast-loading hardware-ready external format, such as
PFTEX_UNSIGNED_SHORT_5_5_5_1, in which case OpenGL Performer automatically
chooses a matching internal format. See the pf TexFor mat (3pf) man page for more
informaton on texture configuration details.

Controlling Texture LOD with pfTexLOD
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You can control the levels of detail (LODs) of a texture that are accessed and used with
pfTexLOD to force higher or lower MIPmap levels to be used when minifying. You can
use this to give the graphics hardware a hint about what levels can be accessed (Impact
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hardware takes great advantage of such a hint) and you can use this to have multiple
textures sharing a single MIPmap pyramid in texture memory. For example, a distant
object and a close one may use different LODs of the same pfTexture texture. The
pfGeoStates of those pfGeoSets would have different pfTexLOD objects that referenced
the proper texture LODs. pfTexLevel() would be used to specify and update the proper
image for each LOD in the pfTexture. You can use LODs to specify to yourself and the GL
which LODs of texture should be loaded from disk into main memory. For example, if
the viewer is in one LOD, most of the texture in that LOD can often be viewed and,
consequently, should be paged into texture memory. You can set LOD parameters on a
pfTexture directly or use pfTexLOD.

To use a pfTexLOD object, you do the following:

1. Set the ranges of the LOD using pfTLODRange() and their corresponding
minimum and maximum resolution MIPmap. Because the minimum and maximum
limits can be floating-point values, new levels can be smoothly blended in when
they become available to avoid popping from one LOD to another.

2. Optionally, set the bias levels using pfTLODBias() to force blurring of a texture to
simulate motion blur and depth of field, to force a texture to be sharper, or to
compensate for asymmetric minification of a MIPmapped texture.

Note: Any LOD settings on pfTexture take priority over current pfTexLOD settings.

3. Enable LOD control over texture by using the following methods:

pf Enabl e( PFEN_TEXLCD) ;
pf GeoSt at e: : pf GSt at eMbde( myTxLOD, PFSTATE_ENTEXLOD, ON);

where myTxLOD is an instance of pfTexLOD, and ON is a nonzero integer.

4. Apply the LOD settings to the texture using pfApplyTLOD().
See the following sample program for an example of using a pfTexLOD:

[ usr/ share/ Performer/src/pguide/libpr/C/texlod. c (IRIX and Linux)
YPFROOTY Src/ pgui de/ | i bpr/ C/ t ex] od. con (Microsoft Windows)

Setting the Texture Environment with pfTexEnv
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The environment specifies how the colors of the geometry, potentially lit, and the texture
image interact. This is described with a pfTexEnv object. The mode of interaction is set
with pfTEnvMode() and valid modes include the following;:
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PFTE_MODULATE—The gray scale of the geometry is mixed with the color of the
texture (the default).

This option multiplies the shaded color of the geometry by the texture color. If the
texture has an alpha component, the alpha value modulates the geometry’s
transparency; for example, if a black and white texture, such as text, is applied to a
green polygon, the polygon remains green and the writing appears as dark green
lettering.

PFTE_DECAL—The texture alpha component acts as a selector between 1.0 for the
texture color and 0.0 for the base color to decal an image onto geometry.

PFTE_BLEND—The alpha acts as a selector between 0.0 for the base color and 1.0
for the texture color modulated by a constant texture blend color specified with
pfTEnvBlendColor(). The alpha/intensity components are multiplied.

PFTE_ADD—The RGB components of the base color are added to the product of
the texture color modulated by the current texture environment blend color. The
alpha/intensity components are multiplied.

Automatic Texture Coordinate Generation
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Automatic texture coordinate generation is provided with the pfTexGen state attribute.
pfTexGen closely corresponds to OpenGL’s glTexGen() function. When texture
coordinate generation is enabled, a pfTexGen applied with pfApplyTGen()
automatically generates texture coordinates for all rendered geometry. Texture
coordinates are generated from geometry vertices according to the texture generation
mode set with pfTGenMode(). Available modes and their function are listed in Table 9-8.
Some modes refer to a plane which is set with pfTGenPlane() and to a line that is
specified as a point and direction with pfTGenPoint().

Table 9-8 Texture Generation Modes

PFTG_ Mode Token Texture coordinates are calculated as...

OBJECT_PLANE Distance of vertex from plane in object coordinates.

EYE_PLANE Distance of vertex from plane in eye coordinates. The plane is
transformed by the inverse of the Model View matrix when the
pfTexGen is applied.

EYE_PLANE_IDENT Distance of vertex from plane in eye coordinates. The plane is

not transformed by the inverse of the ModelView matrix when
the pfTexGen is applied.
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Table 9-8 Texture Generation Modes (continued)
PFTG_ Mode Token Texture coordinates are calculated as...
SPHERE_MAP Anindex into a 2D reflection map based on vertex position and

normal. Specifics of the calculation are found in the graphics
libraries” man pages.

OBJECT_DISTANCE_TO_LINE Distance in object space from vertex to specified line.

EYE_DISTANCE_TO_LINE Distance in eye space from eye to a specified vector through
the vertex.

OpenGL Performer lighting is an extension of graphics library lighting (see glLight() and
related functions in OpenGL). The light embodies the color, position, and type (for
example, infinite or spot) of the light. The light model specifies the environment for
infinite (the default) or local viewing, and two-sided illumination.

The lighting model describes the type of lighting operations to be considered, including
local lighting, two-sided lighting, and light attenuation. The fastest light model is
infinite, single-sided lighting. A pfLightModel state attribute object is created with
pfNewLModel(). A light model also allows you to specify ambient light for the scene,
such as might come from the sun with pfLModelAmbient().

The pfLights are created by calling pfNewLight(). A light has color and position. The
light colors are specified with pfLightColor() as follows:

voi d pfLi ght Col or (pfLi ght Source* |source, int which, float r,
float g, float b);

which specifies one of three light colors as follows:
e PFLT_AMBIENT

e PFLT_DIFFUSE

e PFLT_SPECULAR

You to position the light source using pfLightPos():

voi d pfLight Pos(pfLight* light, float x, float vy,
float z, float w;
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The variable w is the distance between the location in the scene defined by (x, y, z) and
the light source Isource. If w equals O, Isource is infinitely far away and (x, y, z) defines a
vector pointing from the origin in the direction of Isource; if w equals 1, Isource is located
at the position (x, y, z). The default position is (0, 0, 1, 0), directly overhead and infinitely
far away.

The pfLights are attached to a pfGeoState through the PFSTATE_LIGHTS attribute.
The transformation matrix that is on the matrix stack at the time the light is applied

controls the interpretation of the light source direction:

¢ To attach a light to the viewer (like a miner’s head-mounted light), call pfLightOn()
only once with an identity matrix on the stack.

¢ To attach a light to the world (like the sun or moon), call pfLightOn() every frame
with only the viewing transformation on the stack.

¢ To attach a light to an object (like the headlights of a car), call pfLightOn() every

frame with the combined viewing and modeling transformation on the stack.

The number of lights you can have turned on at any one time is limited by
PF_MAX_LIGHTS, just as is true with the graphics libraries.

Note: In previous versions, attenuation was also part of the light model definition. In
OpenGL, attenuation is defined per light . The | i bpr API for setting it is pfLightAtten().

Note: | i bpf applications can include light sources in a scene graph with the
pfLightSource node.

OpenGL Performer materials are an extension of graphics library material (see
glMaterial()). pfMaterials encapsulate the ambient, diffuse, specular, and emissive colors
of an object as well as its shininess and transparency. A pfMaterial is created by calling
pfNewMtl(). As with any of the other attributes, a pfMaterial can be referenced in a
pfGeoState, captured by a display list, or invoked as an immediate mode command.

The pfMaterials, by default, allow object colors to set the ambient and diffuse colors. This
allows the same pfMaterial to be used for objects of different colors, removing the need
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for material changes and thus improving performance. This mode can be changed with
pfMtlColorMode(mtl, side, PEMTL_CMODE_*). OpenGL allows front or back materials
to track the current color. If the same material is used for both front and back materials,
there is no difference in functionality.

With the function pfMtlSide() you can specify whether to apply the the material on the
side facing the viewer (PFMTL_FRONT), the side not facing the viewer (PFMTL_BACK),
or both (PFMTL_BOTH). Back-sided lighting will only take affect if there is a two-sided
lighting model active. Two-sided lighting typically has some significant performance
cost.

Object materials only have an effect when lighting is active.

A pfColortable substitutes its own color array for the normal color attribute array
(PFGS_COLOR4) of a pfGeoSet. This allows the same geometry to appear differently in
different views simply by applying a different pfColortable for each view. By leaving the
selection of color tables to the global state, you can use a single call to switch color tables
for an entire scene. In this way, color tables can simulate time-of-day changes, infrared
imaging, psychedelia, and other effects.

The pfNewCtab() function creates and returns a handle to a pfColortable. As with other
attributes, you can specify which color table to use in a pfGeoState or you can use
pfApplyCtab() to set the global color table, either in immediate mode or in a display list.
For an applied color table to have effect, color table mode must also be enabled.

A pfFog is created by calling pfNewFog(). As with any of the other attributes, a pfFog
can be referenced in a pfGeoState, captured by a display list, or invoked as an immediate
mode command. Fog is the atmospheric effect of aerosol water particles that occlude
vision over distance. SGI graphics hardware can simulate this phenomenon in several
different fashions. A fog color is blended with the resultant pixel color based on the range
from the viewpoint and the fog function. pfFog supports several different fogging
methods. Table 9-9 lists the pfFog tokens and their corresponding actions.
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Table 9-9 pfFog Tokens

pfFog Token Action

PFFOG_VTX_LIN Compute fog linearly at vertices.
PFFOG_VTX_EXP Compute fog exponentially at vertices (e*).
PFFOG_VTX_EXP2 Compute fog exponentially at vertices (e sauared),
PFFOG_PIX_LIN Compute fog linearly at pixels.
PFFOG_PIX_EXP Compute fog exponentially at pixels (¢¥).
PFFOG_PIX_EXP2 Compute fog exponentially at pixels (gxsauared),

PFFOG_PIX_SPLINE Compute fog using a spline function at pixels.

The pfFogType() function uses these tokens to set the type of fog. A detailed explanation
of fog types is given in the man pages pf Fog(3pf) and gl Fog(3g).

You can set the near and far edges of the fog with pfFogRange(). For exponential fog
functions, the near edge of fog is always zero in eye coordinates. The near edge is where
the onset of fog blending occurs, and the far edge is where all pixels are 100% fog color.

The token PFFOG_PIX_SPLINE selects a spline function to be applied when generating
the hardware fog tables. This is further described in the pf Fog(3pf) man page. Spline fog
allows you to define an arbitrary fog ramp that can more closely simulate real-world
phenomena like horizon haze.

For best fogging effects, the ratio of the far to the near clipping planes should be
minimized. In general, it is more effective to add a small amount to the near plane than
to reduce the far plane.

OpenGL Performer provides a mechanism for highlighting geometry with alternative
rendering styles, useful for debugging and interactivity. A pfHighlight, created with
pfNewHlight(), encapsulates the state elements and modes for these rendering styles. A
pfHighlight can be applied to an individual pfGeoSet with pfGSetHlight() or can be
applied to multiple pfGeoStates through a pfGeoState or pfApplyHlight(). The
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highlighting effects are added to the normal rendering phase of the geometry.
pfHighlights make use of special outlining and fill modes and have a concept of a
foreground color and a background color that can both be set with pfHlightColor(). The
available rendering styles can be combined by ORing together tokens for
pfHlightMode() and are described in Table 9-10.

Table 9-10 pfHlightMode() Tokens

PFHL_ Mode Description

Bitmask Token

LINES Outlines the triangles in the highlight foreground color according to
pfHlightLineWidth().

LINESPAT Outlines triangles with patterned lines in the highlight foreground color or in

LINESPAT2 two colors using the background color.

FILL Draws geometry with the highlight foreground color. Combined with
SKIP_BASE, this is a fast highlighting mode.

FILLPAT Draws the highlighted geometry as patterned with one or two colors.

FILLPAT2

FILLTEX Draws a highlighting fill pass with a special highlight texture.

LINES_R Reverses the highlighting foreground and background colors for lines and fill,

FILL_R respectively.

POINTS Renders the vertices of the geometry as points according to
pfHlightPntSize().

NORMALS Displays the normals of the geometry with lines according to

pfHlightNormalLength().

BBOX_LINES  Displays the bounding box of the pfGeoSet as outlines and/or a filled box.
BBOX_FILL Combined with PFHL_SKIP_BASE, this is a fast highlighting mode.

SKIP_BASE Causes the normal drawing phase of the pfGeoSet to be skipped. This is
recommended when using PFHL_FILL or PFHL_BBOX_FILL.

For a demonstration of the highlighting styles, see the sample program
[ usr/ shar e/ Performer/ pgui de/src/libpr/C hl cube. ¢ onIRIX and Linux
and Y%PFROOT% Sr ¢/ pgui de/ | i bpr/ T hl cube. ¢ on Microsoft Windows.
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OpenGL Performer provides extensions to the standard graphics library
matrix-manipulation functions. These functions are similar to their graphics library
counterparts, with the exception that they can be placed in OpenGL Performer display
lists. Table 9-11 lists and describes the matrix manipulation routines.

Table 9-11 Matrix Manipulation Routines

Routines Action

pfScale() Concatenate a scaling matrix.
pfTranslate() Concatenate a translation matrix.
pfRotate() Concatenate a rotation matrix.
pfPushMatrix() Push down the matrix stack.

pfPushIdentMatrix() Push the matrix stack and load an identity matrix on top.

pfPopMatrix() Pop the matrix stack.
pfLoadMatrix() Add a matrix to the top of the stack.
pfMultMatrix() Concatenate a matrix.

Sprite Transformations
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A sprite is a special transformation used to efficiently render complex geometry with
axial or point symmetry. A classic sprite example is a tree which is rendered as a single,
texture-mapped quadrilateral. The texture image is of a tree and has an alpha component
whose values “etch” the tree shape into the quad. In this case, the sprite transformation
rotates the quad around the tree trunk axis so that it always faces the viewer. Another
example is a puff of smoke which again is a texture-mapped quad but is rotated about a
point to face the viewer so it appears the same from any viewing angle. The pfSprite
transformation mechanism supports both these simple examples as well as more
complicated ones involving arbitrary 3D geometry.

A pfSprite is a structure that is manipulated through a procedural interface. It is different
from attributes like pfTexture and pfMaterial since it affects transformation, rather than
state related to appearance. A pfSprite is activated with pfBeginSprite(). This enables
sprite mode and any pfGeoSet that is drawn before sprite mode is ended with
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pfEndSprite() will be transformed by the pfSprite. First, the pfGeoSet is translated to the
location specified with pfPositionSprite(). Then, it is rotated, either about the sprite
position or axis depending on the pfSprite’s configuration. Note that pfBeginSprite(),
pfPositionSprite(), and pfEndSprite() are display listable and this will be captured by
any active pfDispList.

A pfSprite’s rotation mode is set by specifying the PESPRITE_ROT token to
pfSpriteMode(). In all modes, the Y axis of the geometry is rotated to point to the eye

position. Rotation modes are listed below.

Table 9-12 pfSprite Rotation Modes

PFSPRITE_ Rotation Token Rotation Characteristics

AXTIAL_ROT Geometry’s Z axis is rotated about the axis specified with
pfSpriteAxis().
POINT_ROT_EYE Geometry is rotated about the sprite position with the object

coordinate Z axis constrained to the window coordinate Y axis; that
is, the geometry’s Z axis stays “upright.”

POINT_ROT_WORLD Geometry is rotated about the sprite position with the object
coordinate Z axis constrained to the sprite axis.

Rather than using the graphics hardware’s matrix stack, pfSprites transform small
pfGeoSets on the CPU for improved performance. However, when a pfGeoSet contains
a certain number of primitives, it becomes more efficient to use the hardware matrix
stack. While this threshold is dependent on the CPU and graphics hardware used, you
may specify it with the PFSPRITE_MATRIX_THRESHOLD token to pfSpriteMode().
The corresponding value is the minimum vertex requirement for hardware matrix
transformation. Any pfGeoSet with fewer vertices will be transformed on the CPU. If you
want a pfSprite to affect non-pfGeoSet geometry, you should set the matrix threshold to
zero so that the pfSprite will always use the matrix stack. When using the matrix stack,
pfBeginSprite() pushes the stack and pfEndSprite() pops the matrix stack so the sprite
transformation is limited in scope.

The pfSprites are dependent on the viewing location and orientation and the current
modeling transformation. You can specify these with calls to pfViewMat() and
pfModelMat(), respectively. Note that | i bpf -based applications need not call these
routines since | i bpf does it automatically.
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The | i bpr library supports display lists, which can capture and later execute | i bpr
graphics commands. pfNewDList() creates and returns a handle to a new pfDispList. A
pfDispList can be selected as the current display list with pfOpenDList(), which puts the
system in display list mode. Any subsequent | i bpr graphics commands, such as
pfTransparency(), pfApplyTex(), or pfDrawGSet() are added to the current display list.
Commands are added until pfCloseDList() returns the system to immediate mode. It is
not valid to have multiple pfDispLists open at a given time but a pfDispList may be
reopened, in which case, commands are appended to the end of the list.

Once a display list is constructed, it can be executed by calling pfDrawDList(), which
traverses the list and sends commands down the Geometry Pipeline.

The pfDispLists are designed for multiprocessing, where one process builds a display list
of the visible scene and another process draws it. The function pfResetDList() facilitates
this by making pfDispLists reusable. Commands added to a reset display list overwrite
any previously entered commands. A display list is typically reset at the beginning of a
frame and then filled with the visible scene.

The pfDispLists support concurrent multiprocessing, where the producer and consumer
processes simultaneously write and read the display list. The PFDL_RING argument to
pfNewDList() creates a ring buffer or FIFO-type display list. pfDispLists automatically
ensure ring buffer consistency by providing synchronization and mutual exclusion to
processes on ring buffer full or empty conditions.

For more information and the application of display lists, see Chapter 12, “ClipTextures.”

The contents of one pfDispList may be appended to a second pfDispList by using the
function, pfAppendDList(). All pfDispList elements in src are appended to the
pfDispList dlist.

Alternately, you can append the contents of one pfDispList to a second pfDispList by

using the function pfDispList::append(). All pfDispList elements in src are appended to
the pfDispList on which the append method is invoked.
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State Management

A pfState is a structure that represents the entire | i bpr graphics state. A pfState
maintains a stack of graphics states that can be pushed and popped to save and restore
the state. The top of the stack describes the current graphics state of a window as it is
known to OpenGL Performer.

The pfInitState() function initializes internal | i bpr state structures and should be called
at the beginning of an application before any pfStates are created. Multiprocessing
applications should pass a usinit() semaphore arena pointer to pfInitState(), such as
pfGetSemaArena(), so OpenGL Performer can safely manage state between processes.
pfNewState() creates and returns a handle to a new pfState, which is typically used to
define the state of a single window. If using pfWindows, discussed in Chapter 13,
“Windows,” a pfState is automatically created for the pfWindow when the window is
opened and the current pfState is switched when the current pfWindow changes.
pfSelectState() can be used to efficiently switch a different, complete pfState.
pfLoadState() forces the full application of a pfState.

Pushing and Popping State
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The pfPushState() function pushes the state stack of the currently active pfState,
duplicating the top state. Subsequent modifications of the state through | i bpr routines
are recorded in the top of the stack. Consequently, a call to pfPopState() restores the state
elements that were modified after pfPushState().

The code fragment in Example 9-2 illustrates how to push and pop state.

Example 9-2 Pushing and Popping Graphics State

/* set state to transparency=off and texture=brickTex */
pf Tr anspar ency( PFTR_OFF) ;
pf Appl yTex(brickTex);

/* ... draw geonetry here using original state ... */
/* save old state. establish new state */

pf PushSt ate();

pf Transpar ency( PFTR_ON) ;

pf Appl yTex(woodTex) ;

/* ... draw geonetry here using new state ...*/

007-1680-080



Immediate Mode

State Override

pfGeoState

007-1680-080

/* restore state to transparency=off and texture=brickTex */
pf PopState();

The pfOverride() function implements a global override feature for| i bpr graphics state
and attributes. pfOverride() takes a mask that indicates which state elements to affect
and a value specifying whether the elements should be overridden. The mask is a bitwise
OR of the state tokens listed previously.

The values of the state elements at the time of overriding become fixed and cannot be
changed until pfOverride() is called again with a value of zero to release the state
elements.

The code fragment in Example 9-3 illustrates the use of pfOverride().

Example 9-3 Using pfOverride()

pf Tr anspar ency( PFTR_OFF) ;
pf Appl yTex(bri ckTex);

/*

* Transparency will be disabled and only the brick texture
* will be applied to subsequent geonetry.

*/

pf Overri de( PFSTATE_TRANSPARENCY | PFSTATE _TEXTURE, 1);

[ * Draw geonetry */

/* Transparency and texture can now be changed */
pf Overri de( PFSTATE_TRANSPARENCY | PFSTATE TEXTURE, O0);

A pfGeoState encapsulates all the rendering modes, values, and attributes managed by
I'i bpr. See “Rendering Modes” on page 313, “Rendering Values” on page 318, and
“Rendering Attributes” on page 319 for more information. pfGeoStates provide a
mechanism for combining state into logical units and define the appearance of geometry.
For example, you can set a brick-like texture and a reddish-orange material on a pfGeoSet
and use it when drawing brick buildings.

You can specify texture matricies on pfGeoSets.

339



9: Graphics State

Local and Global State

340

There are two levels of rendering state: local and global. A record of both is kept in the
current pfState. The local state is that defined by the settings of the current pfGeoState.
The rendering state and attributes of a pfGeoState can be either locally set or globally
inherited. If all state elements are set locally, a pfGeoState becomes a full graphics
context—that is, all state is then defined at the pfGeoState level. Global state elements are
set with | i bpr immediate-mode routines like pfEnable(), pfApplyTex(), pfDecal(), or
pfTransparency() or by drawing a pfDispList containing these commands with
pfDrawDList(). Local state elements for subsequent pfGeoSets are set by applying a
pfGeoState with pfApplyGState() (note that pfDrawGSet() automatically calls
pfApplyGState() if the pfGeoSet has an attached pfGeoState). The state elements applied
by a pfGeoState are those modes, enables, and attributes that are explicitly set on the
pfGeoState. Those settings revert back to the pfState settings for the next call to
pfApplyGState(). A pfGeoState can be explicitly loaded into a pfState to affect future
pfGeoStates with pfLoadGState().

Note: By default, all state elements are inherited from the global state. Inherited state
elements are evaluated faster than values that have been explicitly set.

While it can be useful to have all state defined at the pfGeoState level, it usually makes
sense to inherit most state from global default values and then explicitly set only those
state elements that are expected to change often.

Examples of useful global defaults are lighting model, lights, texture environment, and
fog. Highly variable state is likely to be limited to a small set such as textures, materials,
and transparency. For example, if the majority of your database is lighted, simply
configure and enable lighting at the beginning of your application. All pfGeoStates will
be lighted, except the ones for which you explicitly disable lighting. Then, attach
different pfMaterials and pfTextures to pfGeoStates to define specific state combinations.

Note: Use caution when enabling modes in the global state. These modes may have cost
even when they have no visible effect. Therefore, geometry that cannot use these modes
should have a pfGeoState that explicitly disables the mode. Modes that require special
care include the texturing enable and transparency.

You specify that a pfGeoState should inherit state elements from the global default with
pfGStatelnherit(gstate, mask). mask is a bitmask of tokens that indicates which state
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Applying pfGeoStates
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elements to inherit. These tokens are listed in the “Rendering Modes” on page 313,
“Rendering Values” on page 318, and “Rendering Attributes” on page 319 sections of
this chapter. For example, PESTATE_ENLIGHTING | PFSTATE_ENTEXTURE makes
gstate inherit the enable modes for lighting and texturing.

A state element ceases to be inherited when it is set in a pfGeoState. Rendering modes,
values, and attributes are set with pfGStateMode(), pfGStateVal(), and pfGStateAttr(),
respectively. For example, to specify that gstate is transparent and textured with treeTex,
use the following;:

pf GSt at eMode( gst at e, PFSTATE_TRANSPARENCY, PFTR_ON);
pf GSt at eAttr(gstate, PFSTATE_TEXTURE, treeTex);

Use pfApplyGState() to apply the state encapsulated by a pfGeoState to the Geometry
Pipeline. The effect of applying a pfGeoState is similar to applying each state element
individually. For example, if you set a pfTexture and enable a decal mode on a
pfGeoState, applying it essentially calls pfApplyTex() and pfDecal(). If in display-list
mode, pfApplyGState() is captured by the current display list.

State is (logically) pushed before and popped after pfGeoStates are applied so that
pfGeoStates do not inherit state from each other. This is a very powerful and convenient
characteristic since, as a result, pfGeoStates are order-independent, and you do not have
to worry about one pfGeoState corrupting another. The code fragment in Example 9-4
illustrates how pfGeoStates inherit state.

Example 9-4 Inheriting State

/* gstateA should be textured */
pf GSt at eMbde( gst at eA, PFSTATE_ENTEXTURE, PF_ON);

/* gstateB inherits the global texture enable node */
pf GSt at el nherit (gstateB, PFSTATE _ENTEXTURE) ;

/* Texturing is disabled as the global default */
pf Di sabl e( PFEN_TEXTURE) ;

[* Texturing is enabled when gstateA is applied */
pf Appl yGSt at e( gst at eA) ;
/* Draw geonetry that will be textured */

/* The gl obal texture enable node of OFF is restored
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so that gstateB is NOT textured. */
pf Appl yGSt at e( gst at eB) ;
/* Draw geonetry that will not be textured */

The actual pfGeoState pop is a "lazy" pop that does not happen unless a subsequent
pfGeoState requires the global state to be restored. This means that the actual state
between pfGeoStates is not necessarily the global state. If a return to global state is
required, call pfFlushState() to restore the global state. Any modification to the global
state made using | i bpr functions—pfTransparency(), pfDecal(), and so on—becomes
the default global state.

For best performance, set as little local pfGeoState state as possible. You can accomplish
this by setting global defaults that satisfy the majority of the requirements of the
pfGeoStates being drawn. By default, all pfGeoState state is inherited from the global
default.

pfGeoSets and pfGeoStates

342

There is a special relationship between pfGeoSets and pfGeoStates. Together they
completely define both geometry and graphics state. You can attach a pfGeoState to a
pfGeoSet with pfGSetGState() to specify the appearance of geometry. Whenever the
pfGeoSet is drawn with pfDrawGSet(), the attached pfGeoState is first applied using
pfApplyGState(). If a pfGeoSet does not have a pfGeoState, its state description is
considered undefined. To inherit all values from the global pfState, a pfGeoSet should
have a pfGeoState with all values set to inherit, which is the default.

This combination of routines allows the application to combine geometry and state in
high-performance units that are unaffected by rendering order. To further increase
performance, sharing pfGeoStates among pfGeoSets is encouraged.

Table 9-13 lists and describes the pfGeoState routines.

Table 9-13 pfGeoState Routines

Routiine Description

pfNewGState() Create a new pfGeoState.
pfCopy( Make a copy of the pfGeoState.
pfDelete() Delete the pfGeoState.
pfGStateMode() Set a specific state mode.
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Table 9-13 pfGeoState Routines (continued)

Routiine Description

pfGStateVal() Set a specific state value.

pfGStateAttr() Set a specific state attribute.

pfGStateInherit() Specify which state elements are inherited from the global state.

pfApplyGState() Apply pfGeoState’s non-inherited state elements to graphics.

pfLoadGState() Load pfGeoState’s settings into the pfState, inherited by future
pfGeoStates.

pfGetCurGState() Return the current pfGeoState in effect.

pfGStateFuncs() Assign pre/post callbacks to pfGeoState.

pfApplyGStateTable() Specify a able of pfGeoStates used for indexing.

Figure 9-1 diagrams the conceptual structure of a pfGeoState.
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Multi-texture Support in pfGeoState
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Some graphic hardware supports the use of multiple texture maps on a single polygon.
These multiple texture maps are blended together according to a collection of texture
environments. Figure 9-2 demonstrates the OpenGL definition for generating the color
of a multi-textured pixel. The figure assumes that the hardware has four texture units and
so each pixel can receive contribution from four texture maps.

Shaded color
TexEnv 0
Texture 0
TexEnv 1

Texture 1

Texture 2

e
Texture 3 - Final Pixel Color

Figure 9-2 Generating the Color of a Multi-textured Pixel

In the figure, the shaded and un-textured color of a pixel enters the first texture blending
unit together with the texture color computed by the first texture unit. The texture
environment marked TexEnv 0 determines the math operation between the two. The
output color of this operation feeds the second texture blending unit together with the
texture color computed by the second texture unit. This process continues four times
until the final color of the pixel is generated.

The pfGeoState class allows specifying multiple texture maps on a single pfGeoSet. All
these texture maps will be applied when the pfGeoSet is applied (providing that the
graphic hardware has enough texture mapping units). pfGeoState also allows specifying
multiple pfTexEnv, pfTexGen, pfTexMat, and pfTexLOD objects—one for each pfTexture.
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The following code fragment shows how to add multiple textures to a pfGeoState:

{
pf GeoState *gstate;
pf Texture *tex;
pf TexEnv *tev;
gstate = pfNewGState (pfGetSharedArena());
for (i =0 ; i < PF_MAX_TEXTURES ; i ++)
{
/* Load texture # i froma file */
tex = pf NewTex (pfCet SharedArena());
pfLoadTexFile (tex, texture_file_nane[i]);
tev = pf NewTEnv ( pf Get SharedArena());
/* Enable texture unit # i on the pfCeoState. */
pf GSt at eMul ti Mbde (gstate, PFSTATE ENTEXTURE, i, 1);
/* Attach texture for texture unit # i */
pfGStateMul ti Attr (gstate, PFSTATE TEXTURE, i, tex);
/* Attach texture environment for texture unit # i */
pfGStateMul ti Attr (gstate, PFSTATE_TEXENV, i, tev);
}
}
Notes:

* pfGeoState recognizes texture units starting at the first array (index of 0) and ending
immediately before the first disabled texture unit. For example, enabling texture
units 0, 1, and 3 is equivalent to enabling only texture units 0 and 1.

* pfGeoState can inherit all or none of the texture units. It is enough to specify one
texture unit in order to avoid inheriting any other texture unit. In order to inherit all
texture units, one must specify no texture units on the pfGeoState.

¢ For every texture unit enabled, the application must provide texture coordinates.
Neither OpenGL Performer nor OpenGL will share texture coordinates between
texture units. There are two ways to set texture coordinates:

* Specifying a pfIexGen for a texture unit

* Specifying a texture-coordinate attribute array for a texture unit on a pfGeoSet
See section “Attributes” in Chapter 8.
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Chapter 10

Shader

This chapter describes the shader, a mechanism which allows complex rendering
equations to be applied to OpenGL Performer objects.

OpenGL Performer 3.0 introduces a completely new dynamic shader implementation.
The OpenGL Performer 3.0 approach is provide a minimal wrapping of the
OpenGL Shader API and to use OpenGL Shader to directly render shaded pfGeoSets.

The following description of the new API assumes an understanding of the

OpenGL Shader API. OpenGL Shader is available at no charge at the following URL:
http://ww. sgi.com sof t war e/ shader. OpenGL Shader documentation is
installed in the directory / usr/ shar e/ shader/ doc/ devel oper on IRIX and Linux
and in %PFROOT/ shader / doc/ devel oper on Microsoft Windows.

The OpenGL Performer and OpenGL Shader integration is documented in the following
OpenGL Performer man pages:

e pflSL
e pfl SLTexCoor dDat a
e pf GeoSet

e pfdLoadAppear ance

Setting Up Shaded pfGeoSets
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In the OpenGL Shader AP], an islAppearance embodies the complete description of the
appearance of an object and that appearance can be applied to a pfGeoSet. A pfGeoSet
gains the following functions:

pf GeoSet : : set Appear ance( i sl Appear ance *appear ance);
i sl Appear ance* pf GeoSet: : get Appear ance();
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These functions set and query the appearance that renders a pfGeoSet. The
islAppearances are mutually exclusive with pfGeoStates; hence, only one of the two can
be used to define the appearance of the pfGeoSet. To preserve the pfGeoSet cache-line
behavior, the islAppearance and the pfGeoState share the same pointer. Hence, adding
an appearance to a pfGeoSet removes the pfGeoState and conversely so.

Because OpenGL Performer only minimally wraps the OpenGL shader AP],

OpenGL Performer cannot indicate when run-time parameters are changed on any
islShaders contained within the islAppearance. Shader changes cannot be propagated in
the APP process to the DRAWwithout knowing run-time parameters. Therefore, the
following two functions are available to solve this problem:

pf Appear anceChanged(i sl Appear ance *appear ance);
pf Shader Changed(i sl Appear ance *appear ance, i sl Shader *shader);

The pfShaderChanged() function tells OpenGL Performer that the parameters of the
specified shader within the specified appearance have changed. The function
pfAppearanceChanged() tells OpenGL Performer that the specified appearance has
changed (that is, that shaders have been added or removed

Textures and Texture Coordinates

348

OpenGL Shader is a callback-based API that calls user-supplied functions to apply
textures and to draw geometry with specific texture coordinates. OpenGL Performer
supplies its own internal functions for these callbacks in order to render shaded
pfGeoSets and perform internal bookkeeping of the resources that OpenGL Shader uses.
As a result, when using OpenGL Shader within OpenGL Performer, you must use
callbacks "friendly" to OpenGL Performer in order to specify textures and texture
coordinates. The following API allows you to do this:

pf Shader TexCoor dFunc(i sl Appearance *a, pfTexCoordCall backType *func,
voi d *udat a)

pf Shader TexAppl yFunc(i sl Appear ance *a, pfTexApplyCall backType *func,
voi d *udat a)

pf Shader TexConput eFunc(i sl Appearance *a, int where,

pf TexConput eCal | backType *func, void *udata)

typedef int (*pfTexApplyCallbackType)(const isl Appearance *app, const
char *texName, void *userData);

typedef void (*pfTexConputeCall backType) (pfl SLTexCoordData *d, const
char *texNanme, void *userData);

t ypedef pfVec2* (*pfTexCoordCall backType) (pfl SLTexCoordData *d, const
float texCoordl D, void *userData);
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The function pfShaderTexCoordFunc() allows you to specify a callback to invoke
whenever the specified islAppearance requests geometry to be drawn with specific
texture coordinates. This callback is analogous to the
islShape::setDrawGeometryFunc() OpenGL Shader function

One of the parameters that OpenGL Performer passes into your callback is a pointer to a
pfISLTexCoordData class. This class holds data that is useful in computing the requested
texture coordinates such as the pfGeoSet that is being rendered, the islAppearance that
triggered the callback, the modelview matrix, and others. See the pf | SLTexCoor dDat a
man page for a description of this class.

Your callback will return a set of texture coordinates for OpenGL Performer to use in
place of those already on the pfGeoSet. When allocating new coordinates per-frame,
allocate the memory with the pfISLTexCoordData class that OpenGL Performer passed
in. This memory is automatically deallocated when OpenGL Performer finishes with it.

The function pfShaderTexComputeFunc() allows you to set an optional callback that is
invoked to compute the specified texture. This callback offloads the work of generating
procedural textures from the DRAWprocess if possible. OpenGL Performer queries the
OpenGL Shader ahead of time about which textures it will request in the DRAWprocess
and will try to call your callback in the CULL process. The parameters that are passed into
this callback are the same as for the pfShaderTexCoordFunc() function described in the
preceding paragraph.

The function pfShaderTexApplyFunc() is called whenever OpenGL Shader asks for a
texture to be applied. This callback is analogous to the
islDrawAction::setLoadTextureFunc() OpenGL Shader function. When invoking this
callback, OpenGL Performer passes in the islAppearance that requested the texture, the
name of the texture, and whatever user data specified to pfShaderTexApplyFunc(). This
function returns the number of texture dimensions (1, 2, or 3). When calling this function,
OpenGL Performer attempts to do so in the CULL process.

OpenGL Shader and OpenGL Performer
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As of OpenGL Performer 3.0, the OpenGL Shader library performs all of the rendering
state management for pfGeoSets that have been assigned an islAppearance;

OpenGL Performer draws the appropriate pfGeoSets when the OpenGL Shader library
calls the OpenGL Performer DrawGeometry callback.
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The rendering of a shaded pfGeoSet has the following flow through OpenGL Performer:

1.

A new islAppearance is created and compiled.

For more details, see the OpenGL Shader documentation installed in the directory
[ usr/ shar e/ shader/ doc/ devel oper on IRIX and Linux and in
%PFROOT/ shader / doc/ devel oper on Microsoft Windows.

The newly created islAppearance is assigned to a pfGeoSet.

OpenGL Performer uses an OpenGL Shader islCopyAction to create a
shared-memory representation of the islAppearance, which can be used in
processes other than the APP process.

In the CULL process, OpenGL Performer computes the correct shader matrix and
passes it to each islShader that comprises the islAppearanceCopy that was just
created.

OpenGL Performer uses the OpenGL Shader islSnapshotAction to create an
islAppearanceSnapshot from the islAppearanceCopy in the previous step.

The islSnapshotAction tells OpenGL Performer which sets of texture coordinates
will be required at DRAWtime so that OpenGL Performer can call any callbacks that
have been registered with the pfShaderTexComputeFunc() and
pfShaderTexCoordFunc() functions.

At DRAWtime, OpenGL Performer creates an islShape and an islDrawAction and
invoke islShape::draw().

Each time isIDrawAction requests that the shaded objects be drawn,

OpenGL Performer draws the corresponding pfGeoSets using any data that was
computed using the user callbacks invoked in the previous step. If the
islDrawAction requests that any textures be applied, OpenGL Performer calls any
functions registered by using the pfShaderTexApplyFunc() function to do the job.
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Chapter 11

Using Scalable Graphics Hardware

Scalable graphics hardware provides nearly perfect scaling of both geometry rate and fill
rate on some applications. This chapter describes how you use OpenGL Performer in
conjunction with an SGI Video Digital Multiplexer (DPLEX) and an SGI Scalable
Graphics Compositor. The corresponding sections are the following:

¢ “Using OpenGL Performer with a DPLEX” on page 351
¢ “Using OpenGL Performer with an SGI Scalable Graphics Compositor” on page 365

Using OpenGL Performer with a DPLEX

Hyperpipe Concepts
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A DPLEX is an optional daughtercard that permits multiple graphics hardware pipelines
to work simultaneiously on a single visual application. DPLEX hardware is available on
Silicon Graphics Onyx2, SGI Onyx 3000, and SGI Onyx 300 systems. For an overview of
the DPLEX hardware, see the document Onyx2 DPLEX Option Hardware User’s Guide.

OpenGL Performer taps the power of a DPLEX by using hyperpipes. The following
sections describe how to use hyperpipes:

e “Hyperpipe Concepts” on page 351

e “Configuring Hyperpipes” on page 352

e “Configuring pfPipeWindows and pfChannels” on page 359

“Programming with Hyperpipes” on page 364

A pfHyperpipe is a combination of pfPipes or pfMultipipes; there is one pfPipe for each
graphics pipe in a DPLEX ring or chain. A DPLEX ring or chain is a collection of
interconnected graphic boards.
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A key concept with hyperpipes is that of temporal decomposition. Think of a rendered
sequence as a 3D data set with time being the third axis. With temporal decomposition,
the dataset is subdivided along the time axis and distributed across, in this case, each of
the graphic pipes in the hyperpipe group.

Temporal decomposition is different from spatial decomposition, in which the dataset is
subdivided along the X axis, Y axis, or both X and Y axes.

Configuring Hyperpipes
It is the responsibility of the application to establish the hyperpipe group configuration
for OpenGL Performer. There are two steps in the configuration process:

1. Establish the number of graphic pipes (or pfPipes because there is a one-to-one
correspondence) in each hyperpipe group.

2. Map the pfPipes to specific graphic pipes.
Establishing the Number of Graphic Pipes

Use the argument in the pfHyperpipe() function to establish the number of graphic pipes
in the hyperpipe group, for example:

pf Hyper pi pe(2);

pf Config();

In this example, two pfPipes combine to create the pfHyperpipe, as shown in Figure 11-1.
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pfPipeWindow

pfPipeWindow

Figure 11-1  pfPipes Creating pfHyperpipes

Like the pfMultipipe() function, pfHyperpipe() must be invoked prior to configuring
the pfPipes using pfConfig() and after the call to pfInit().

The number of pipes is used by pfConfig() to associate the configured pfPipes. The

pfHyperpipe() function can be invoked multiple times to construct multiple hyperpipe
groups, as shown in Figure 11-2.

007-1680-080 353



11: Using Scalable Graphics Hardware
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pfPipeWindow

pfPipeWindow

pfPipeWindow

pfPipeWindow

pfPipeWindow
pfPipeWindow
pfPipeWindow

Figure 11-2  Multiple Hyperpipes

Additionally, the pfHyperpipe() function can be combined with the pfMultipipe() call
to configure pfPipes that are not associated with a hyperpipe group. The num argument
to the pfMultipipe() function defines the total number of pfPipes to configure (including
those in hyperpipe groups).

Example 11-1, diagrammed in Figure 11-2, shows the configuration of a system with
three hyperpipe groups. The first hyperpipe group consists of three graphic pipes. The
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remaining two hyperpipe groups have two graphic pipes each. This example also
configures one non-hyperpipe group graphic pipe.

Example 11-1  Configuring a System with Three Hyperpipe Groups

pflnit();

pf Mul ti pi pe(8); /* need eight pfPipes 3-2-2-1 */

pf Hyper pi pe(3); /* pfPipes 0, 1, 2 are the first group */
pf Hyper pi pe(2); /* pfPipes 3, 4 are the second group */
pf Hyper pi pe(2); /* pfPipes 5, 6 are the third group */

pf Config(); /* construct the pfPipes */

If the target configuration includes only hyperpipe groups, it is not necessary to invoke
pfMultipipe(). OpenGL Performer correctly determines the number of pfPipes from the
pfHyperpipe() calls.

Using the Default Hyperpipe Mapping to Graphic Pipes
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The pfPipes constructed by pfConfig() are ordered into a linear array and are selected
with the pfGetPipe() function. The pfPipes that are part of a hyperpipe group always
appear in this array before any non-hyperpipe group pfPipes.

The pfHyperpipe() function groups pfPipes together starting, by default, with pfPipe
number 0. In the following example, there are four pfPipes; the first two are combined
into a hyperpipe group:

pf Mul ti pi pe(4);

pf Hyper pi pe(2) ;
pf Config();

OpenGL Performer maps each pfPipe to a graphic pipe, which is associated with a
specific X display, as shown in Figure 11-3:

Hyperpipe Single pipes
pfPipe 0 1 2 3
Graphic pipe 0 1 2 3

Figure 11-3  Default Hyperpipe Mapping to Graphic Pipes
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Using Nondefault Hyperpipe Mappings to Graphics Pipes

356

Each graphics pipe is associated with only one X screen. By default, OpenGL Performer
assigns each pfPipe to the screen of the default X display that matches the pfPipe index
in the pfPipe array; in other words, pfPipe(0) in the hyperpipe is mapped to X screen 0.

In most configurations, this default mapping is not sufficient. The second phase,
therefore, involves associating the configured pfPipes with the graphic pipes. This is
achieved through the pfPipeScreen() or pfPipeWSConnectionName() function on the
pfPipes of the hyperpipe group.

Example 11-2 shows, given the configuration in Example 11-1, how to map the pfPipes to
the appropriate screens. In this example, all of the graphic pipes are managed under the
same X display, that is, a different screen on the same display.

Example 11-2  Mapping Hyperpipes to Graphic Pipes

/* assign the single pfPipe to screen 0 */
pf Pi peScr een( pf Get Pi pe(7), 0);

/* assign the pfPipes of hyperpipe group O to screens 1,2,3 */
for (i=0; i < 3; i++)
pf Pi peScreen(pf Get Pi pe(i), i+1);

/* assign the pfPipes of hyperpipe group 1 to screens 4,5 */
for (i=3; i<b; i++)
pf Pi peScreen(pf Get Pi pe(i), i+1);

/* assign the pfPipes of hyperpipe group 2 to screens 6,7 */
for (i=5b; i<7; i++)
pf Pi peScreen(pf Get Pi pe(i), i+1);

The following is a more complex example that uses GLXHyperpipeNetworkSGIX
returned from glXQueryHyperpipeNetworkSGIX() to configure the pfPipes. This
example is much more complete and is referred to in the following sections.

Example 11-3  More Complete Example: Mapping Hyperpipes to Graphic Pipes

i nt hasHyper pi pe;
GLXHyper pi peNet wor kSG X* hyper Net ;
i nt nunHyper Net ;

int i;
Di spl ay* dsp;
int num\et ;
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i nt pipel dx;
pf Channel * mast er Chan;

/* initialize Performer */
pflnit();

/* does this configuration support hyperpipe */

pf Quer yFeat ur e( PFQFTR_HYPERPI PE, &hasHyper pi pe);

i f (!hasHyperpipe) {
pf Not i f y( PFNFY_FATAL, PFNFY_RESOURCE, "no hyper pi pe support");
exit(1);

}

/* query the network */
dsp = pf Get Cur WsConnecti on();
hyper Net = gl XQuer yHyper pi peNet wor kSG X(dsp, &numHyper Net);
i f (nunHyperNet == 0) {
pf Noti f y( PFNFY_FATAL, PFNFY_RESOURCE, "no hyperpi pes");
exit(1);
}

/*
* determ ne the nunber of distinct hyperpipe networks. network
* jds are nonotonically increasing fromzero. a value < 0
* is used to indicate pipes that are not nenbers of any hyperpi pe.
*/
for (i=0, numNet=-1; i<nunHyperNet; i++)
if (nunNet < hyperNet[i].networkld)
numNet = hyperNet[i]. networKkld;

numNet += 1;

/*

* configure all of the hyperpipes in the net

*

* NOTE -

* while it is possible to be sel ective about which hyperpipe(s)
* to configure, that is left as an exercise.

*

/
for (i=0; i<numNet; i++) {
int count = O;

int j;
for (j=0; j<nunHyperNet; j++)
if (hyperNet[i].networkld == i) count ++;

pf Hyper pi pe(count);
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pf Config();

/* associate pfPipes with screens */
for (i=0, pipeldx=0; i<numNet; i++) {

int j;
for (j=0; j<nunmHyperNet; j++)
if (hyperNet[i].networkld == i)

pf Pi peWsConnect i onNane( pf Get Pi pe( pi pel dx++),
hyperNet [i] . pi peNane) ;
}

/* construct the pfPipeWndows for each hyperpipe */
mast er Chan = NULL;
for (i=0, pipeldx=0; i<nunmNet; i++) {

pf Pi pe* pi pe;

pf Pi peW ndow* pwi n;

pf Channel * chan;

PFVEC3 xyz, hpr;

pi pe pf Get Pi pe( pi pel dx);
pwi n = pf NewPW n( pi pe);
pf PW nName( pwi n, "Hyper pi pe W ndow");

/
voi d

openPi peW ndow( pf Pi peW ndow* pwi n)
{

“}
*/
pf PW nConfi gFunc(pw n, openPi peW ndow) ;
pf PW nFul | Screen(pwi n);
pf PW nMbde( pwi n, PFW N_NOBCRDER, 1);
pf PW nConfi g( pw n);

* 0% X X X

pf PW nOpen( pwi n) ;

chan = pf NewChan(pi pe) ;
pf PW nAddChan(pwi n, chan);

/*

* |ayout channels left to right in hyperpipe order. this
* ordering is arbitrary and should be redefined for the
* specific application.

*

/
pf ChanShar e( chan,
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* 0% X X X X

pf Get ChanShare() | PFCHAN_ VI EMPORT |
PFCHAN_SWAPBUFFERS | PFCHAN_SWAPBUFFERS_HW ;
pf MakeSi npl eChan(chan, 45);

pf ChanAut oAspect (chan, PFFRUST_CALC VERT);

xyz[0] = xyz[1] = xyz[2] = O;
hpr[0] = (((nunmNet-1)*.5f)-i)*45.f;
hpr[1] = hpr[2] = O;

pf ChanVi ewX f set s(chan, xyz, hpr);
pf ChanNear Far (. 000001, 100000);

/
voi d

dr awFunc( pf Channel * chan, voi d* not Used)
{

* 0% X X X X

pf d ear Chan( chan);
pf Draw() ;
*
}
*/
pf ChanTr avFunc( PFTRAV_DRAW dr awFunc) ;
if (i == 0)
mast er Chan = chan;
el se
pf At t achChan( mast er Chan, chan);

/* bunp to the first pipe of the next hyperpipe */
pi pel dx += pf Get Hyper pi pe( pi pe);

the next step is to construct the scene, attach it to
nast er Chan and start the nain loop. this bit of code
is not included here since it follows other denpbnstration

applications included el sewhere in the Programrer’s Cuide.

Configuring pfPipeWindows and pfChannels

007-1680-080

The pfPipes grouped into a pfHyperpipe are indexed; the first pfPipe is pfPipe(0) and it
is referred to as the master pfPipe. Most actions taken on the hyperpipe group are
effected through this pfPipe; for example, all objects, such as pfPipeWindows and
pfChannels, are attached to the master pfPipe. OpenGL Performer automatically clones
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all objects, except pfChannels, across all of the pfPipes in the pfHyperpipe, as shown in
Figure 11-4.

Master pipe

Cloned from
master pipe

pfPipeWindow

pfPipeWindow

Figure 11-4  Attaching Objects to the Master pfPipe

When constructing pfPipeWindows or pfChannels, the pfPipe argument should be the
master pfPipe. OpenGL Performer ensures that the constructed objects are cloned
(pfPipeWindows) or attached (pfChannels) as needed to the other pfPipes in the

hyperpipe group.
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With the exception of certain attributes, detailed in Table 11-1, OpenGL Performer
propagates attribute updates to the cloned pfPipeWindows when they occur. The
following is a list of pfPipeWindow functions for which the attributes do not propagate.

Table 11-1 pfPipeWindow Functions That Do Not Propagate

C Function

C++ Member Function

pfPWinSwapBarrier()
pfPWinWSConnectionName()
pfPWinOverlayWin()
pfPWinStatsWin()
pfPWinScreen()
pfPWinWSWindow()
pfPWinWSDrawable()
pfPWinFBConfigData()
pfPWinFBConfigAttrs()
pfPWinFBConfig()
pfPWinFBConfigld()
pfPWinGLCxt()

pfPWinList()
pfPWinPVChan()
pfPWinAddPVChan()
pfPWinRemovePVChan()
pfPWinRemovePVChanIndex()
pfBindPWinPVChans()
pfUnbindPWinPVChans()
pfSelectPWin()

pfAttachPWinWin()

setSwapBarrier()
setWSConnectionName()
setOverlayWin()
setStatsWin()
setScreen()
setWSWindow()
setWSDrawable()
setFBConfigData()
setFBConfigAttrs()
setFBConfig()
setFBConfigld()
setGLCxt()
setWinList()
setPVChan()
addPVChan()
removePVChan()
removePVChanIndex()
bindPVChans()
unbindPVChans()
select()

attachWin()
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Clones
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Table 11-1 pfPipeWindow Functions That Do Not Propagate (continued)

C Function C++ Member Function
pfDetachPWinWin() detachWin()
pfAttachPWin() attach()
pfAttachPWinSwapGroup() attachSwapGroup()

pfAttachPWinWinSwapGroup() attachWinSwapGroup()
pfDetachPWinSwapGroup() detachSwapGroup()
pfChoosePWinFBConfig() chooseFBConfig()

When using any of the preceding interfaces within an application, set the appropriate
attribute in the cloned pfPipeWindow.

Clones are identified by an index value. The index of a clone matches that of the master
pfPipeWindow. This index is used to retrieve the clone pfPipeWindow from the other
pfPipes in the hyperpipe group. Example 11-4 sets the FBConfigAttrs for each of the
pfPipeWindows in the first hyperpipe group.

Example 11-4  Set FBConfigAttrs for Each pfPipeWindow

static int attr[] = {
GLX_RGBA,
GLX_DOUBLEBUFFER,
GLX_LEVEL, O,

GLX_RED_SI ZE, 8,
GLX_GREEN S| ZE, 8,
GLX_BLUE_SI ZE, 8,
GLX_ALPHA SI ZE, 8,
GLX_DEPTH_SI ZE, 16,
GLX_STENCI L_SI ZE, 0,
GLX_ACCUM RED SI ZE, 0,
GLX_SAVPLE BUFFERS SG' S, 1,
GLX_SAWPLES SG S, 4,

None

I

i nt nunHyper = pf Get Hyper pi pe( pf Get Pi pe(0));
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for (i=0; i<nunmHyper; i++) {
/* get the first pfPipeWndow on pfPipe */
pf Pi peW ndow* pwi n = pf Get Pi pePW n( pf Get Pi pe(i), 0);
pf Pi peFBConfi gAttrs(pwi n, attr);

}

The current API has no support for directly querying the pfPipeWindow index within
the pfPipe. The only mechanism to determine an index value is to track it in the
application or search the pfPipeWindow list of the pfPipe. Example 11-5 performs such
a search.

Example 11-5  Search the pfPipeWindow List of the pfPipe

/* search the master pfPipe pipe for the pfPipeWndowin pwin */
int pwi nldx;
int nunPWns = pf Get Pi peNumPW ns( pi pe) ;
for (i=0; i<nunPWns; i++)
i f (pfGetPipePWn(pipe) == pwin) break;
if (i == nunPW ns)
pf Not i f y( PFNFY_FATAL, PFNFY_PRI NT, "oops!");
pw nldx = i;

Synchronization

When working with pfPipeWindows, it is possible for some updates to occur within the
DRAW process. For this release (and possibly future releases) of OpenGL Performer,
these updates are not automatically propagated to the clone pfPipeWindows. It is the
responsibility of the application to ensure that the appropriate attributes are propagated
or that similar actions occur on the clones.

The CULL and DRAW stages of different pfPipes within a hyperpipe group can run in
parallel. For this reason, applications that assume a fixed pfChannel to pfPipe
relationship or maintain global configuration data associated with a pfChannel that is
updated in either the CULL or DRAW stages may fail. It is currently impossible (or at
least very difficult) to transmit information from the CULL or DRAW stages of one
pfPipe to another CULL or DRAW stage of another pfPipe within a hyperpipe group. All
changes should be affected by the APP stage.
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Programming with Hyperpipes
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Programming with hyperpipes, as described in the preceding sections, generally
involves the following steps:

1.
2.
3.

4.

Configure the hyperpipe either on the fly or using a configuration file.
Map screens to hyperpipes, if necessary.

Allocate pfPipeWindow and pfChannels:

* Create one pfPipeWindow for each pfHyperpipe.

e Attach a pfPipeWindow to the master pfPipe.

* Create a pfChannel for each pfHyperpipe.

Start the main loop (pfFrame()...pfSync()).

There are two additional requirements for DPLEX:

You cannot use single buffer visuals.

The DPLEX option uses the gIXSwapBuffers() call as an indication to switch the
multiplexer. This logic is bypassed for single buffered visuals.

glXSwapBuffers() and pfSwapWinBuffers() functions must not be invoked
outside of the internal draw synchronization logic.

Because the pfuDownloadTexList() function with the style parameter set to
PFUTEX_SHOW calls gIXSwapBuffers(), this feature must be disabled. (Simply set
the style parameter to PFUTEX_APPLY).

Also, the Perfly application displays a message at startup which also swaps the
buffers. Again, this function must be disabled when using hyperpipe groups. The
version of Perfly that ships with per f or mer _den correctly disables these
features.

Each pfPipe software rendering pipeline runs at a fraction of the target frame rate as
defined by pfFrameRate(). The fraction is 1/(number of pipes in hyperpipe group). For
example, if there are two pfPipes in the pfHyperpipe, each pfPipe runs at one half of the
pfFrameRate(). Although the CULL and DRAW stages run at a slower rate, the APP
stage must run at the target frame rate.
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Using OpenGL Performer with an SGI Scalable Graphics Compositor

This section gives a brief overview of the SGI Scalable Graphics Compositor and how to
use it with OpenGL Performer. For more information on the compositor, including the
details of the hardware setup, see the document SGI InfinitePerformance: Scalable Graphics
Compositor User’s Guide.

Note: The compositor is currently supported by InfinitePerformance graphics systems
only.

This section contains the following subsections:

¢ “How the Compositor Functions” on page 365
* “Using the pfCompositor Class” on page 367
* “Load Balancing” on page 370

How the Compositor Functions

007-1680-080

The compositor receives two to four input signals and outputs a single signal either in
analog or digital format. Hence, it can handle spatial composition of four inputs which
enables multiple pipes to contribute to a single output. Four different composition
schemes are available:

*  Vertical stripes
* Horizontal stripes
e 2Dtiles

e Cut-ins

Figure 11-5 illustrates the various hardware composition schemes.
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Vertical stripes Horizontal stripes

2D tiles Cut-ins
Figure 11-5 Hardware Composition Schemes

The following items are noteworthy regarding the compositor’s capabilities:

* For every output pixel, the compositor averages all values from all the pipes.
Among other things, this provides applications with the means to do full-scene
antialiasing (FSAA) in hardware.

* Stereo through the compositor and cut-ins are not supported in OpenGL Performer
3.0.

Note: For more information on the current limitations and anomalies associated with the
use of the SGI Scalable Graphics Compositor, refer to the hardware documentation.
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Using the pfCompositor Class
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The pfCompositor class provides methods for controlling a single compositor or a
heirarchy of compositors. The class provides methods for setting the subdivision of the
inputs for the compositor to use. The subdivision is set by specifying the viewports and
frusta for each input.

The pfCompositor class also allows for automatically setting the subdivision based on
the load of each pfPipe providing an input. The subdivision pfCompositor performs can
be controlled by setting the subdivision mode. By default, automatic load balancing is
enabled and the subdivision mode is a 2x2 arrangement. Figure 11-6 illustrates some
decomposition modes available for pfCompositor.

2x1 2x1

horizontal vertical

2x2 4x1 4x1
horizontal vertical

Figure 11-6 = Decomposition Modes for pfCompositor

A pfCompositor requires a pfLoadBalance class for doing the load balancing of each of
its children. The pfLoadBalance class determines the resulting workload for each pipe.
The behavior can be customized by subclassing pfLoadBalance and overriding the
appropriate methods. A pfCompositor can use a customized pfLoadBalance class
specified using the pfCompositorLoadBalancer() function. If a load balancer is not
specified, one will automatically be created and used. See the pf LoadBal ance man
page for more information on pfLoadBalance.

Antialiasing is supported as another type of subdivision mode and is enabled with the
function pfCompositorMode().
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Table 11-2 describes the functions for managing compositors.

Table 11-2 Functions for Managing Compositors

Function

Description

pfCompositorAddChild()

pfCompositorReconfig()

pfCompositorPerspective()
pfCompositorOrtho()

pfGetCompositorFrustum()

pfCompositorNearFar()

pfGetCompositorNearFar()

pfGetCompositorFrustType()

pfCompositorViewport()

pfGetCompositorViewport()

pfCompositorChannelClipped()

pfGetCompositorChannelClipped()

Adds a pipe (specified by pipe number) to the heirarchy.

Tells the compositor to look at its child pipes and their
channels and configure itself to manage them. This
function is required and should be called once all the
pipes and channels have been created.

Sets the frustum of the indexed channel that this
pfCompositor manages. The default is a perspective
frustum with | eft, ri ght,bottomandt op setto-1,
1,-1, and 1, respectively.

Returns the |l eft,ri ght, bottomandt op values of
the frustum that was set by pfCompositorPerspective()
or pfCompositorOrtho().

Sets the near and far planes for the indexed channel that
the compositor manages.

Returns the near and far planes for the indexed channel
that the compositor manages.

Returns the type of frustum currently in use. The return
value can be PF_PERSPECTIVE or PF_ORTHO.

Sets the viewport (I ef t, ri ght,bott omt op) that this
pfCompositor will encompass. The default viewport is
©,1,0,1).

Returns the | eft,ri ght,bott omand t op values that
were set by pfCompositorViewport().

Enables or disables clipping for a specific channel. This
can be useful when you want clipping enabled on all
channels except one; for example, the graphical user
interface (GUI) channel of Perfly has clipping disabled
while all others are subjected to clipping.

Returns the value set by
pfCompositorChannelClipped().
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Table 11-2 Functions for Managing Compositors (continued)

Function

Description

pfCompositorVal()

pfGetCompositorVal()
pfCompositorMode()

pfGetCompositorMode()

pfCompositorLoadBalancer()

pfGetCompositorLoadBalancer()

Accepts the values PELOAD_COEFF and
PFCOMP_CLIPPING. PFLOAD_COEEFF passes the
value to the pfLoadBalance class. This coefficient
determines how quickly the balancer transitions from the
current state to the desired balanced state.
PFCOMP_CLIPPING enables and disables channel
viewport and frustum clipping to the composited area.
Clipping is enabled by default.

Returns the values set by pfCompositorVal().

Accepts PFECOMP_TYPE and PFLOAD_BALANCE as
arguments. PECOMP_TYPE can be one of the following:

PFCOMP_2x1HORIZ
PFCOMP_2x1VERT
PFCOMP_2x2
PFCOMP_4x1HORIZ
PFCOMP_4x1VERT
PFCOMP_4xAA

PFCOMP_TYPE specifies the type of load balancing and
subdivision the compositor should be using.
PFLOAD_BALANCE can be either PF_ON or PF_OFFE.
PFLOAD_BALANCE specifies whether the
pfCompositor should be performing automatic load
balancing. If it is PF_OFF, no load balancing
computations are made and no glXHyperpipe calls are
made unless specified otherwise with
pfCompositorChild Viewport() or
pfCompositorChildSubdivision().

Returns the values set by pfCompositorMode().

Allows the pfLoadBalance class to be used by the
pfCompositor. The pfCompositorLoadBalancer() call
must happen before pfConfig().

Returns the value set by pfCompositorLoadBalancer().
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Load Balancing
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Table 11-2 Functions for Managing Compositors (continued)

Function

Description

pfCompositorChild Viewport()

pfGetCompositorChild Viewport()

pfCompositorChildFrustum()

pfGetCompositorChildFrustum()

pfCompositorChildSubdivision()

pfGetCompositorChildSubdivision()

pfCompositorMasterPipe()

Allows you to manually set the viewport that the
indexed child of this pfCompositor should use. This
method will also calculate the necessary subdivision
information from the viewport information and send the
subdivision information to the compositor hardware.

Returns the viewport information for the indexed child
of this pfCompositor.

Allows you to manually set the frustum that the indexed
child of this pfCompositor should use.

Returns the frustum information for the indexed child of
this pfCompositor.

Allows you to manually set the subdivision that the
indexed child of this pfCompositor should use. This
method will also calculate the necessary channel
viewport information from the subdivision information
and send the viewport information to the appropriate
pfChannel.

Returns the subdivision information for the indexed
child of this pfCompositor.

Specifies a pipe as the master pipe. All changes to the
channels on the master pipe will be appropriately
propagated to the other channels that pfCompositor
manages. If a master pipe is not specified, pfCompositor
uses the pipe specified as its first child.

The pfLoadBalance class encapsulates an algorithm for distributing any incoming
workload among multiple servants. The class maintains history information about the

following:

e Workload distribution among servants

* The time it takes each servant to complete its workload allocation
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Based on this information, pfLoadBalance computes a new workload distribution to
minimize the time needed for completing the input workload.

The default implementation keeps track of a single frame of history. Subclasses of
pfLoadBalance could track history information through multiple frames. Using multiple
frames, the subclasses can compute the rate of change in the work allocation to workload
ratio.

The default implementation tries to smooth the transition as workload allocation
changes for each servant. Subclasses of pfLoadBalance could also change the smoothing
factors to match the rate of change in workload between consecutive frames.

The following psuedo code illustrates a typical use of pfLoadBalance from
pfCompositor:

/1 Set the number of servants to balance this frame.
pf LoadBal anceNumAct i ve()
foreach child
/] Tell the | oad bal ancer what the current load is on the child.
pf LoadBal ancelLoad()
end
bal ance()
foreach child
/1l Get the percentage of the work this child should perform
pf Get LoadBal anceWr k()

end
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Table 11-3 describes the functions you can use to manage load balancing.

Table 11-3 Load Balancing Functions

Function

Description

pfLoadBalanceLoad()

pfGetLoadBalanceLoad()

pfLoadBalanceBalance()

pfGetLoadBalanceWork()

pfLoadBalanceVal()

pfGetLoadBalanceVal()

pfLoadBalanceNumActive()

pfGetLoadBalanceNumActive()

Sets the load on a specified servant. This is the load
to be used during the load balancing calculations in
pfLoadBalanceBalance().

Returns the load that was set by
pfLoadBalanceLoad() for a specified servant.

Takes the new load values specified by
pfLoadBalanceLoad() and figures out the desired
workload for each servant. Then
pfLoadBalanceBalance() takes the load coefficient
(PFLOAD_COEEFF) into account while calculating the
percentage of the workload this servant should
perform.

Returns the percentage of work (a value from 0 to 1)
to be done by the specified servant.

Accepts PELOAD_COEFF as an argument, the value
of which determines how fast or how slow the
balancer transitions from the current workload to the
desired workload.

Returns the value set by pfLoadBalanceVal().
Sets the number of servants to balance.

Returns the value set by
pfLoadBalanceNumActive().

372

007-1680-080



Chapter 12

007-1680-080

ClipTextures

As CPUs get faster and storage gets cheaper, applications are moving away from scenes
with small, synthetic textures to large textures, taken from real environments, giving the
viewer realistic renderings of actual locations.

There has customarily been a trade-off between the complexity of a texture and the area
it covers: if a texture covers a large area, its resolution must be limited so that it can fit
into texture memory; high-resolution textures are limited to small regions for the same
reason.

A cliptexture allows you to circumvent many of these system resource restrictions by
virtualizing MIPmapped textures. Only those parts of the texture needed to display the
textured geometry from a given location are stored in system and texture memory:.
OpenGL Performer provides support for this technique, called cliptexturing, as a subclass
of a pfTexture called a pfClipTexture. This functionality allows you to display textures
too large to fit in texture memory or even in system memory; you can put the entire world
into a single texture.

OpenGL Performer supports texture load management from disk to system memory and
from system to texture memory, synchronizing clipped regions with the viewpoint, and
many the other tasks needed to virtualize a texture relative to the viewer location.

This chapter describes cliptextures in the following parts:

e  “Overview” on page 374

e “Cliptexture API” on page 388

¢ “Preprocessing ClipTextures” on page 389

¢ “Cliptexture Configuration” on page 392

e “Configuration API” on page 393

e “Post-Scene Graph Load Configuration” on page 415

¢ “Manipulating Cliptextures” on page 423

e “Using Cliptextures” on page 437
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Cliptexturing avoids the size limitations of normal MIPmaps by clipping the size of each
level of a MIPmap texture to a fixed area, called the clip region. A MIPmap contains a
range of levels, each four times the size of the previous one. If the clip region is larger
than a particular level, the entire level is kept in texture memory. Levels larger than the
clip region are clipped to the clip region’s size. The clip region is set by the application,
trading off texture memory consumption against image quality. The clip region size is set
through the clip size, which is the length of the sides (in texels) of the clip region’s sides.

.. Clip size
P ‘,\\‘~
Tl

Clip region

Entire level in
texture memory

Figure 12-1  Cliptexture Components

The clip region positioned so as to be centered about the clip center, or as close as possible
to the clipcenter while remaining entirely within the cliptexture. The clipcenter is set by
the application, usually to the location on the texture corresponding to the location
closest to the viewer on the cliptextured geometry. The clipcenter is specified in texel
coordinates, which is the texture coordinates (s and t values, ranging from 0.0 to 1.0,
scaled by the dimensions of the finest level of the cliptexture, level 0).
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Cliptexture Levels
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Texture memory contains the MIPmap levels, the larger ones clipped to the clip region
size; the rectangle of texture memory corresponding to each clipped level is called a tex
region. As the viewer moves relative to the cliptextured geometry, the clipcenter must be
updated. When this happens, the clipped MIPmap levels must have their texture data
updated, in order to represent the area closest to the center. This updating usually must
happen every frame, and is done by OpenGL Performer image caches.

To facilitate loading only portions of the texture at a time, the texture data must first be
subdivided into a contiguous set of rectangular areas, called tiles. These tiles can then
loaded individually from disk into texture memory.

Texture memory must be loaded from system memory; it can’t be loaded directly from
disk. In order to improve the performance of texel downloading, the region in system
memory is made larger than the destination texture memory and organized into a
lookahead cache, called the mem region.

Mem region

Tex region

Entire level in
texture memory

Figure 12-2  Image Cache Components
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Image caches must know three things in order to update clipped texture levels:
*  Where and how the data is stored on disk, so they can retrieve it,
* Location and size of system memory cache, called the mem region,

¢ The texture memory they are responsible to update when the cilpcenter moves (the
tex region).

Cliptexture Assumptions

For the cliptexture algorithm to work seamlessly, applications must abide by the
following assumptions:

* An application can only view a clip region’s worth of high resolution texel data on
its textured geometry from any viewpoint.

e The application views the texture from one location at a time. Multiple views
require multiple cliptextures.

e The viewer must move smoothly relative to the cliptextured geometry; no
“teleporting” (abrupt changes in position).

Given these assumptions, your application can maintain a high-resolution texture by
keeping only those parts of the texture closest to the viewer in texture memory; the
remainder of the texture is on disk and cached in system memory.

Why Do These Assumptions Work?

Only the textured geometry closest to the viewer needs a high-resolution texture. Far
away objects are smaller on the screen, so the texels used on that object also appear
smaller (cover a smaller screen area). In normal MIPmapping, coarser MIPmap levels are
chosen as the texel size gets smaller relative to the pixel size. These coarser levels contain
less texels, since each texel covers a larger area on the textured geometry.

Cliptextures take advantage of this fact by storing only part of each large MIPmap level
in texture memory, just enough so that when you look over the geometry, the MIPmap
algorithm starts choosing texels from a lower level (because the texels are getting small
on the screen) before you run out of texels on the clipped level. Because coarser levels
have texels that cover a larger area, at a great enough distance, MIPmapping is choosing
texels from the unclipped, smaller levels.
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When a clip size is chosen, cliptexture levels can be thought of as belonging to one of two
categories:

¢ C(Clipped levels, which are texture levels that are larger than the clip size.

¢ Non-clipped levels, which are small enough to fit entirely within the clip region.

The non-clipped levels are viewpoint independent; each non-clipped texture level is
complete. Clipped levels, however, must be updated as the viewer moves relative to the
textured geometry.

Image Cache

The image cache organizes its system memory as a grid of fixed size texture tiles. This
grid of texture data forms a lookahead cache, called the mem region. The cache
automatically anticipates texture download requirements, updating itself with texture
tiles it expects to use soon.

Image caches update texture memory by transferring image data from disk files. The
data is transferred in two steps. Data is moved from disk files a tile at a time into the mem
region in system memory. The mem region is updated so that it always contains the
image data corresponding to the tex region and its immediate surroundings. The border
of extra surrounding data allows the image cache to update the tex region as necessary
without having to wait for tiles to be loaded into the mem region from disk.

The image cache also contains a tex region, the rectangle of texel data in a given level’s
texture memory. This rectangle of data is in texture memory, and is being updated from
a corresponding rectangle of data in the memregion. As the center moves, the tex region
being loaded into texture memory can get close to the edge of the mem region. When this
happens, tiles in the mem region are updated with new data from disk so that the tex
region is moved closer to the center of the image data.
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Tex region

Texture memory

Mem region

System memory

Disk

Disk files

Figure 12-3  Mem Region Update

As the center moves, the clipped region on each clipped level of the image cache shifts
position. The clipped regions on each level move at different rates; each coarser level
only moves at one half the speed of the level above it. The image cache reflects the change
on its level by tracking the position of the clipped region with its tex region. Data in
texture memory must be updated to match the texel data in the translated tex region.

This updating is done by copying rectangles of texel data from the shifted tex region area
in the mem region to the appropriate locations in texture memory. The amount of
updating is minimized by only updating the portions of the texture memory that actually
need new data. The majority of the tex region data only has to shift position in texture
memory; this is done by translating texture coordinates, and taking advantage of the
wrap mode when accessing texels from texture memory.
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Tex region \

Texture memory

\;\ Tex region update

Mem region

System memory

Disk

Disk files

Figure 12-4  Tex Region Update

By loading textures to system memory before they are needed in texture memory, the
latency caused by waiting for tiles downloading from a disk is reduced.

1. Texture data on disk is cached into system memory in an image cache’s mem region.

2. Texture data in the tex region part of the mem region is used to update texture
memory.
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Toroidal Loading

Invalid Borders
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Image cache

Tex region

Image cache grid

Texture memory

Figure 12-5  Cliptexture Cache Hierarchy

In order to minimize the bandwidth required to download texels from system to texture
memory, the image cache’s tex regions are updated using toroidal loading. A toroidal
load assumes that changes in the contents of the clip region are incremental, such that the
update consists of:

* New texels that need to be loaded.
e Texels that are no longer valid.

e Texels that are still in the clip region, but have shifted position.

Toroidal loading minimizes texture downloading by only updating the part of the
texture region that needs new texels. Shifting texels that remain visible is not necessary,
since the coordinates of the clip region wrap around to the opposite side.

Being able to impose alignment requirements to the regions being downloaded to texture
memory improves performance. Cliptextures support the concept of an invalid border to
provide this feature. It is the area around the perimeter of a clip region that can’t be used.
The invalid border shrinks the usable area of the clip region, and can be used to
dynamically change the effective size of the clip region. Shrinking the effective clip size
can be a useful load control technique.
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When texturing requires texels from a portion of an invalid border at a given MIPmap
level, the texturing system moves down a level, and tries again. It keeps going down to
coarser levels until it finds texels at the proper coordinates that are not in the invalid
region. This is always guaranteed to happen, since each level covers the same area with
less texels (coarser level texels cover more area on textured geometry). Even if the
required texel is clipped out of every clipped level, the unclipped pyramid levels will
contain it.

You can use an invalid border to force the use of lower levels of the MIPmap to do the
following:

* Reduce the abrupt discontinuity between MIPmap levels if the clip region is small:
using coarser LODs blends MIPmap levels over a larger textured region.

¢ Improve performance when a texture must be roamed very quickly.

Since the invalid border can be adjusted dynamically, it can reduce the texture and
system memory loading requirements at the expense of a blurrier image.

Required texel Clip center

Fine Clip region

Coarser

Figure 12-6  Invalid Border
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Updating the Clipcenter

Centered

Virtual Cliptextures
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To figure out what part of the texture must be loaded in each of the clipped levels, you
must know where the viewer is relative to the geometry being textured. Often this
position is computed by finding the location of the cliptextured geometry that is closest
to the viewer, and converting that to a location on the texture. This position is called the
cliptexture center and it must be updated every frame as the viewer moves relative to the
cliptextured geometry.

Lol

// % 7
Q\

Y%

Center moves Texture coordinates wrap

<

Toroidal loads Same as centered

Figure 12-7  Clipcenter Moving

The clipcenter is set by the application for level 0, The cliptexture code then derives the
clipcenter location on all MIPmap levels. As the viewer roams over a cliptexture, the
centers of each MIPmap level move at a different rate. For example, moving the
clipcenter one unit corresponds to the center moving one half that distance in each
dimension in the next-coarser MIPmap level.

Most of the work of cliptexturing is updating the center properly and updating the
texture data in the clipped levels reliably and efficiently each frame.

Cliptextures save texture memory by limiting the extent of texture levels. Every level in
the mipmap is represented in texture memory, and can be accessed as the geometry is
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textured. There are limits to the number of levels the cliptexturing hardware can access
while rendering, which restricts the cliptextures maximum size.

This limit can be exceeded by only accessing a subset of all the MIPmap’s levels in texture
memory on each piece of geometry, “virtualizing” the cliptexture. The virtual offset is
sets a virtual “level 0” in the MIPmap, while the number of effective levels indicates how
many levels starting from the new level 0 can be accessed. The minlod and maxlod
parameters are used to ensure that only valid levels are displayed. The application
typically divides the cliptextured terrain into pieces, using the relative position of the
viewer and the terrain to update the parameter values as each piece is traversed.

Callback

Effective
levels

Callback

Effective
levels

Figure 12-8  Virtual Cliptexture Concepts

For more information about virtual cliptextures, see “Virtual ClipTextures” on page 429.
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Cliptexture Support Requirements

Centering

Applying

Texel Data

Special Features
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Ideally, pfClipTextures would be interchangeable with pfTextures in OpenGL Performer.
Unfortunately, this is only partially true. The following sections describe some of the
differences between OpenGL Performer textures and cliptextures.

Every level is complete in a regular texture. Cliptextures have clipped levels, where only
the portion of the level near the cliptexture center is complete. In order to look correct, a
cliptextures center must be updated as the channel’s viewport moves relative to the
cliptextured geometry.

Cliptextures require functionality that recalculates the center position whenever the
viewer moves (essentially each frame). This means that a relationship has to exist
between the cliptexture and a channel.

Textures only need to be applied once. Cliptextures must be applied every time the center
moves (essentially each frame). In order to apply at the right time, cliptextures need to
be connected to a pfPipe.

A texture does not know where its data comes from. The application just supplies it as a
pointer to a region of system memory when the texture is applied.

Cliptextures need to update their contents as the center moves and they are reapplied
each frame. As a result, they need to know where their image data resides on the disk. In
order to maximize performance, cliptextures also cache their texel data in system
memory. As a result, cliptextures are a lot more work to configure, since you have to tell
them how to find their data on disk, and how you want the data cached in system
memory.

Since cliptexture levels are so large, OpenGL Performer offers additional features not
available to regular textures.
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Insets

Virtualization

Multiple Pipe Support

With certain restrictions, cliptexture levels can be partially populated, containing
“islands” of high resolution data. This can be useful if the application only needs
high-resolution texel data in relatively small, widely scattered areas of a large cliptexture.
An example of this might be an airline flight simulator, where high resolution data is only
needed in the vicinity of the airports used by the simulator.

For more information about insets, see “Cliptexture Insets” on page 437.

To further increase the size of cliptextures that OpenGL Performer can use, the levels
themselves can be virtualized; It then selects a subset of all the available texture levels to
be loaded into memory. This requires additional support by the application. Virtual
cliptextures are described in detail in “Virtual ClipTextures” on page 429.

Since cliptextures require both system and texture memory resources, OpenGL
Performer has provided functionality to share the system memory resources when a
cliptexture is used in a multipipe application. “Slave” cliptextures and a “master”
cliptexture share system memory resources, but have their own classes and texture
memory.

How Cliptextures Interact with the Rest of the System

Geostates
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As a result of their special requirements, cliptextures are used differently than pfTextures
with many different OpenGL Performer classes. The following sections describe these
differences.

When everything is configured properly, a pfClipTexture is interchangeable with a
pfTexture when used in a geostate.
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Pipes

Channels

A pfClipTexture can be connected to a pfMPClipTexture, a multiprocessing component,
which is connected to a pfPipe. From the pipe’s point of view, a pfMPClipTexture is
something it can apply to.

Some functionality must be supplied to update a cliptexture’s center as the channel
moves with respect to the cliptextured geometry. This functionality can be supplied by
the application, or OpenGL Performer can do it automatically if the application uses
clipcenter nodes.

A clipcenter node is added to the scenegraph and is traversed by the APP process just
like every other node in the scenegraph. pfMPClipTexture, which contains the
cliptextured geometry, should be a child node of the clipcenter node. When the clipcenter
node is traversed by a channel, the clipcenter node computes the relationship between
the cliptextured geometry and the channel’s eyepoint, and updates the cliptexture’s
center appropriately.

Cliptexture Support in OpenGL Performer

I i bpr Support

| i bpf Support
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Cliptexture is a large and diverse piece of functionality. As a result, cliptexture support
is found in nearly every major library in OpenGL Performer.

The pflmageCache class defines image caches which manage the updating of clipped
levels, pflmageTile classes are used to define non-clipped cliptexture levels and define
pieces of clipped levels downloaded from disk to system memory. The pfQueue class
supports read queues, which manage the read requests from disk to system memory in
image caches, while the pfClipTexture class itself defines cliptextures themselves, virtual
mipmaps composed of image caches and image tile levels. The pfTexLoad class defines
download requests when image caches download texels from system to texture memory.

Thel i bpf library adds multiprocessing support for using cliptextures in scene graphs.
the pfMPClipTexture class ties together pfClipTextures, pfPipes, cliptexture centering
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libpfutil Support

I i bpf du Support

I i bpf db Support

functionality (often pfuClipCenterNode nodes) and the application itself in a
multiprocessing environment. additional functionality in the pfPipe class ensures that
cliptextures are applied properly.

The | i bpfutil library provides easy to use clipcentering functionality through the
pfuClipCenterNode class, a subclass of the pfGroup class. This library also provides
traversals to simplify the work of finding cliptextures in a scene graph using
pfuFindClipTextures(), code for post loader configuration, where pfMPClipTextures are
created, and attached to pipes and clipcenter nodes using pfuProcessClipCenters() and
pfuProcessClipCentersWithChannel(). The pfuAddMPClipTextureToPipes() and
pfuAddMPClipTexturesToPipes() routines connect pfMPClipTextures to the proper
pipes, handling multipipe issues in a clean way. Load time configuration is simplified
using the pfulnitClipTexConfig(), pfuMakeClipTexture(), and pfuFreeClipTexConfig()
along with the appropriate callbacks for image caches and image tiles. Image cache
configuration is supported with pfulnitimgCacheConfig(), pfuMakeIlmageCache(),
and pfuFreeImgCacheConfig() routines.

The cliptexture configuration file parsers are supported here; pfdLoadClipTexture() and
pfdLoadClipTextureState() work with cliptexture configuration files to simplify the
creation and configuration of cliptextures. The companion programs that create and
configure pfdLoadImageCache() and pfdLoadImageCacheState(). All of these parsers
use the pfuMakeClipTexture() and pfuMakeImageCache() configuration routines.

Example cliptexture loaders, including the | i bpf i mexample cliptexture loader, the
I'i bpfct demo loader and | i bpf vct virtual pseudo loader are all included here.

Cliptexture Manipulation
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While the scene graph is being viewed, the application may want to dynamically alter
the appearance or performance characteristics of the cliptexture. The mpcliptexture
provides functionality to support parameter changes in the APP process, providing
frame-accurate updating. Here are some of the parameters that might be changed.
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Load Control

Invalid Border

Share Masks

Read Function

Read Queue Sorting

Cliptexture API
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The DTR functionality (described in detail elsewhere in this chapter) is largely automatic.
Some high performance applications may need to adjust DTR parameters to improve
appearance performance trade-offs.

The invalid border can be adjusted at runtime to shrink the effective size of the clip
region. This might be done to provide additional load control beyond the per-level
control that DTR provides.

When operating master and slave cliptextures in a multipipe application, the application
may want to change the sharemask, which controls the synchronization of parameters
between master and slave cliptextures.

The image cache creates requests to read image tiles from disk to the image cache’s
system memory cache. The read function processes these requests and actually does the
data transfer. OpenGL Performer provides set of read functions that attempts to do
direct-IO reads for speed, but falls back to normal reads if direct IO is not possible.

The application can replace the OpenGL Performer default function with its own custom

read function. This could be useful for implementing special functionality, such as
dynamic decompression pfClipTexture data.

The read queue provides dynamic sorting of the read requests to improve performance
and minimize latency. The application can provide custom sorting routines.

Cliptexturing has a large API. Not only is there are lot of cliptexture functionality
scattered throughout the library, but there is often more than one way to use a particular
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piece of functionality. In order to make things clearer, and make it easier to use the API
described here, the cliptexture API is grouped and ordered in the same way an
application writer would use it.

The APl is grouped into four sections:

Preprocessing the cliptexture data.
Configuring cliptextures and image caches.
Post-load-time configuration.

Run-time manipulation.

Preprocessing ClipTextures

Building a MIPmap

007-1680-080

Before using cliptextures, large textures must be preprocessed, as follows:

1.

Start with the highest-resolution version of the image (texture) and build a MIPmap
of the image.

Choose a clip size.
Tile each MIPmap level.

Every image that is larger than the clip size must be cut into tiles. All of the tiles in
one MIPmap level must be equal in size. You generally choose a tile size that is
about 1/4 of the clip size or less.

Divide the levels into separate files to maximize download performance.
The files should be named properly so that the image caches can access them.

If the configuration parsers are used, cliptexture configuration files are also created
at this time.

The following sections describe the steps in this procedure in greater detail.

Building a MIPmap of an image requires an algorithm that performs the following tasks:
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1. Start with the highest-resolution version of the image (texture). The image
dimensions in pixels must be in powers of 2, for example, 8192 X 8192.

2. Average every four adjacent texels of a high resolution image into a single texture
(essentially blurring it and shrinking it by a factor of two in both dimensions).

3. Save the result as a new, blurrier, smaller image.
4. Convert the MIPmaps into a compatible format.
5. Repeat the first two steps with each blurrier image until you have a single texel

whose color is the average of all the texel colors in the original image.

Each successive reduction is called a level of detail (LOD). The more the reduction, the
higher the level of detail, the coarser the image.

There are a variety of tools that tile textures. OpenGL Performer provides some simple
ones available in the / usr/ shar e/ Per f or mer/ src/ t ool s directory for IRIX and
Linux and in %°FROOT% Sr ¢/ t ool s for Microsoft Windows. They are listed in

Table 12-1.

Table 12-1 Tiling Algorithms

Program Description

rsets Shrinks and tiles one or more .rgb image files recursively. r set s stops tiling when it
reaches the clip size you give it. r set s assumes that the original image is square.

rgb2raw Converts .rgb images into a raw format that can be downloaded directly into texture
memory. Files should be in a raw format to avoid conversions at download time.

shrink Isasubset of rsets functionality; makes a tree-like structure of LOD images from
an .rgb image.

t 05551 Converts from .rgb to the 5551 raw format.
t 0888 Converts from .rgb to the 888 raw format.
t 08888  Converts from .rgb to the 8888 raw format.

viewtil e Enables you to view a raw format image tile.

For more information about MIPmaps, see the OpenGL Programming Guide.
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Formatting Image Data

Tiling an Image
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The texel data must be in a format that can be used in OpenGL Performer textures. This
means the texels must have contiguous color components, whose size and type match a
supported format. Keep in mind that these texels will be loaded dynamically, on an
as-needed basis, so the smaller the size of each texel, the better the performance of the
cliptexture. You should choose the smallest texel format that provides acceptable color
quality. A good choice might be RGBA 5551, which takes up 16 bits per texel.

OpenGL Performer provides some tools for converting from rgb format to 5551 or 888
RGBA. They are named t 05551 and t 0888 and are found in

/usr/share/ Performer/src/tools for IRIX and Linux and in

UPFROOTY Sr ¢/ t ool s for Microsoft Windows.

For more information about file formats, see “Building a MIPmap” on page 389.

Dividing a texture into tiles allows you to look at a subset of all texels in the texture. In
this way, you can selectively download from disk into the texture memory only those
texels that the user is viewing and those they might soon look at. Since downloading
texture tile files from disk to texture memory takes a long time, the image cashes decide
which tiles a viewer might need next and download them in advance.

Note: In the highest resolution LOD, one texel corresponds to one pixel.

Texel tiles in each level are loaded into memory separately, from coarsest to finest. The
high-resolution tiles take longer to download than the coarser tiles. If a viewer advances
through a scene so quickly that the high-resolution tiles cannot download from disk into
texture memory in time, lower-resolution tiles are displayed instead. The effect is that if
the viewer goes too fast, the tiles become blurry. When the viewer slows down, the tiles
displayed are less coarse.

Using lower instead of higher-resolution levels is controlled by cliptexture’s load control
mechanism, DTR. Without DTR, OpenGL Performer waits for all of the levels to
download before displaying any one of them. DTR removes this restriction, displaying
the levels that have been downloaded.
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Tile Size

If you want to break up a .rgb image into tiles, OpenGL Performer provides the subi ng
program in/ usr/ shar e/ Per f or mer/ src/ t ool s for IRIX and Linux and in
YPFROOTY Sr ¢/ t ool s for Microsoft Windows.

Small tiles, while less efficient, are better at load leveling, since the time it takes to load a
new tile into system memory is smaller. It also means that the total size of an image cache
in system memory can be smaller. We've found that tile sizes of 512 x 512 and 1024 x 1024
provide a good trade-off between download efficiency and low latency, but download
performance is very sensitive to system configuration. Experimenting is the best way to
find a good tile size.

Cliptexture Configuration

After preprocessing the texture data, you need to configure cliptextures. Configuration
is actually a two step process; the configuration that can be done by the scenegraph
loader, and the configuration that requires pfPipes and pfChannels to be present. This
section describes the first stage of configuration.

Configuration Considerations

392

An application must configure the cliptexture in two steps:
¢ Loader—when the scene graph is constructed.
¢ Post-loading—when the channel and pipes are known to the application.

This process is complex. OpenGL Performer supplies a number of utilities to make the
job easier.

To manipulate cliptexture parameters, the application makes calls to the

pfMPClipTexture in the APP process. The pfMPClipTexture updates the cliptexture in a
frame-accurate manner.
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Load-Time Configuration

This is the time the scene graph is being constructed. Geostates are pointed to
cliptextures; the cliptextures themselves are created and configured using the cliptexture
configuration files and the | i bpf du parsers. If the application does its own
configuration, it should use the | i bpf uti | routines to simplify the process and to
ensure adequate error checking. If the application opts to use OpenGL Performer
clipcentering support, clipcenter nodes are inserted into the scene graph at the root of the
cliptextured geometry and connected to the corresponding cliptexture.

Post-Load-Time Configuration

At this stage the scene graph has been created and the channels and pipes have been
defined. The | i bpfuti| traversers (pfuProcessClipCenters() or
pfuProcessClipCentersWithChannel()) are used to create pfMPClipTextures,
connecting them with the appropriate cliptextures and clipcenter nodes. These routines
return a list of pfMPClipTextures, which can be used to with
pfuAddMPClipTextureToPipes() and pfuAddMPClipTexturesToPipes() to attach the
pfMPClipTextures to the appropriate pfPipes. These routines can be used for single pipe
and multipipe applications with little or no change to the calling sequence.

Configuration API

l'i bpr Functionality

007-1680-080

Since cliptexture configuration is complex, we provide three different cliptexture
configuration API layers, allowing different trade-offs between flexibility and simplicity.

The lowest layer, using the | i bpr calls, is the most complex and difficult. A cliptexture
has the same configuration requirements as a MIPmapped pfTexture, where texel format,
type and texture dimensions must be configured. In addition, cliptextures have to know
about system memory caching, the file configuration of the texture data, load control,
read queue, and other cliptexture specific configurations.

Using the | i bpr layer directly is not recommended, since it is error prone and does not
buy much flexibility compared to the | i bpf uti| configuration routines. In the
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following subsections are the | i bpr calls you must consider when configuring a
cliptexture directly.

These are the functions needed to configure the cliptexture itself. The cliptexture contains
two types of levels: image cache levels and image tile levels. Image caches support
clipped levels in a cliptexture. They know where their texture data resides on disk, they
understand clip regions, and set up system memory caching and updating. Every
properly-configured image cache points to an image tile, called a proto tile, which
contains global information about the texel format, size, and file information about the
image tiles the image cache uses to update clipped texture levels.

Configuring an Image Cache Level

Image tiles can be used by themselves to represent unclipped levels. Essentially the
unclipped level is represented by a single tile covering the entire level. Because image
tiles do not understand clip regions and cannot do dynamic updating, image tiles cannot
be used to represent clipped levels.

To configure an image cache level, use the following calls:

¢ pfNewClipTexture()

¢ pfTexName()

¢ pfClipTextureVirtualSize()

¢ pfClipTextureClipSize()

¢ pfTexImage()

¢ pfTexFormat()

¢ pfClipTextureInvalidBorder()

¢ pfClipTextureEffectiveLevels()

¢ pfClipTextureAllocatedLevels()

¢ pfClipTextureLevel()

Configuring an Image Cache Proto Tile
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There are also image tile calls in this sequence. They are used to configure the image
cache’s proto tile, which is used as a template for the tiles the image cache will use to load
texel data from disk to system memory cache.
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To configure an image cache proto tile, use the following calls:

¢ pfNewlmageTile()

¢ pfImageTileReadFunc()

¢ pfGetImageTileMemInfo (page size)
¢ pfIlmageTileMemInfo()

e pfImageTileReadQueue()

e pfImageTileHeaderOffset()

¢ pfImageTileNumFileTiles()

¢ pfImageTileSize()

¢ pfImageTileFileName()

e pfImageTileFilelmageType()

e pfIlmageTileMemImageType()

Configuring an Image Cache
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To configure an image cache, use the following calls:
¢ pfImageCacheName()

* pfIlmageCacheTexRegionOrigin()

* pfImageCacheMemRegionOrigin()

* pfIlmageCachelmageSize()

* pflmageCacheMemRegionSize()

¢ pfIlmageCacheTileFileNameFormat()
* pfImageCacheTexRegionSize()

¢ pflmageCacheMemRegionSize()

¢ pfImageCacheTex()

* pfIlmageCacheTexSize()

¢ pfImageCacheFileStreamServer()
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Configuring a pfTexture

Configuring the Default Tile

Configuring Image Tiles
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pflmageCacheProtoTile()—Copies the information into the image cache’s proto
tile.

pfDelete (tmp_proto_tile)—Now that it is copied into the image cache, you can
delete it.

Image caches can be used independently of cliptextures, if they are, they need to be
associated with a pfTexture, and that texture needed to be configured.

To configure a pfTexture, use the following calls:

pfTexImage()
pfTexFormat()

Image caches can have a default tile defined, which is the tile to use if a tile on disk can’t
be found. Default tiles can be useful for “filling in” border regions of a cliptexture level.
Default tiles are covered in more detail in section “default_tile” on page 407.

To configure the default tile, use the following calls:

pfNewlImageTile()
pfCopy() (proto to default)
pflmageTileFileName()
pfImageTileReadQueue()
pflmageTileDefaultTile()

Image tiles need their own configuration, since they need to know about the file they
should load from texel formats, etc.

To configure an image tile, use the following calls:

pfNewlImageTile()

pfImageTileMemImageFormat()
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¢ pfImageTileFilelmageFormat()
e pfIlmageTileMemImageType()
e pfImageTileSize()

e pfImageTileHeaderOffset()

e pfClipTextureLevel()

¢ pfLoadImageTile()

Configuration Utilities

Cliptexture Configuration
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Using the | i bpr calls to configure a cliptexture is difficult and error prone. OpenGL
Performer provides utilities to make cliptexture configuration easier and more robust.
The configuration utility API is broken into two groups. One group is used to configure
cliptextures, the other configures image caches. Each group contains three functions, an
init function, a config function, and a free function. These functions work with a structure
that the application fills in.

The initialize function initializes the optional fields in the structure with default values,
and the mandatory fields with invalid values. Configuring the structure allows the
configuration function to do more error checking, and to allow the application to avoid
the tedium of filling in optional field. The application then sets fields in the structure to
parameterize how the cliptexture or image cache should be configured. The application
then calls the configuration function on the filled in structure. The free function is then
called with the structure to ensure that all allocated values are freed.

Methods to configure the cliptexture include the following;:

pfulnitClipTexConfig(pf uCl i pTexConf i g *config)
Initialize the values of the pfuClipTexConfig structure that has been
allocated by the application.

pfuMakeClipTexture(pf uCl i pTexConf i g *config)
Return a cliptexture configured as directed by the values in the
pfuClipTexConfig structure.

pfuFreeClipTexConfig(pf ud i pTexConf i g *config)
Free any mal | oc’d structures that the application or the initialize
function may have created.
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Image Cache Configuration

Filling in the Structures
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Methods to configure the image cache include the following:

pfulnitImgCacheConfig(pf ul ngCacheConf i g *config)
Initialize the values of the pfuClipTexConfig structure that has been
allocated by the application.

pfuMakeImageCache(pf ul mngCacheConf i g *config)
Return a cliptexture configured as directed by the values in the
pfuClipTexConfig structure.

pfuFreeImgCacheConfig(pf ul ngCacheConf i g *config)
Free any mal | oc’d structures that the application or the init() function
may have created.

All of these functions are defined in | i bpfutil/cli ptexture. c. The structures
themselves are defined in pf uti | . h.

Filling the pfulmgCacheConfig structure to create and configure the image cache is
considerably simpler than setting fields in the pfuClipTexConfig structure. This is
because the cliptexture configuration must also create and configure image cache and
image tiles to populate its levels. The configuration code does this supplying a function
pointer to configure the image cache levels and a function pointer for configuring image
tile levels. Each function pointer also has a void data pointer so you can pass data to the
functions. The function pointers expect functions with the following forms:

pf I mageCache *exanpl el CacheConfi gFuncti on(pfC i pTexture *ct,
int level, struct _pfuC | pTexConfig *iclnfo)

pf I nrageTi |l e *exanpl el Ti | eConfi gFuncti on(pfd i pTexture *ct,
int level, struct _pfulipTexConfig *iclnfo)

The cliptexture and image cache configuration parsers, described in the next section, use
the configuration utilities. You can look at the parsers as example code. For example, you
may want to look at pfdLoadImageTileFormat() and pfdLoadImageCache() formats for
example functions for the function pointers. The parsers are in the

lusr/share/ Performer/src/lib/libpfdu/pfdLoadl mage. c file for IRIX and
Linux and in file %°FROOT% Src/ | i b/ | i bpf du/ pf dLoadl mage. ¢ for Microsoft
Windows.
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Configuration Files

Using Configuration Files
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The easiest and most commonly used method to configure cliptextures is to create
cliptexture and image cache configuration files, then use the configuration parsers to
create and configure cliptextures. The configuration files can be created and stored along
with the texture data files. Configuration files allow an application or loader to simply
call a single function to create and configure cliptextures.

Configuration files are ascii text files containing a token parameter format. Values are
separated by white space and the token parameter sequences can be placed in the file in
arbitrary order. Comments can also added to the configuration files, making them
self-documenting.

Four parser functions are available to create and configure cliptextures and image caches
using configuration files:

pfCipTexture *pfdLoadd i pTexture(const char *fil eNane)

pf | mageCache *pfdLoadl mageCache(const char *fil eNanme)

These parser functions take a configuration file name, and use it to configure and create
a cliptexture or an image cache respectively. The cliptexture configuration file may refer
to image cache configuration files, which will be searched for and used automatically.

Two other versions of these parsers also take a pointer to a configuration utility structure.
This allows you to preconfigure using the configuration structure and then finish with
the parser and configuration files.

pf d i pTexture *pfdLoadC i pTextureState(const char *fil eNane,
pfud i pTexConfig *state)

pf | mageCache *pfdLoadl mageCacheSt at e(const char *fil eNane,
pf ul mgCacheConfi g *state)

The parsers use OpenGL Performer’s pfFindFile() functionality to search for the
configuration files. The parsers support environment variable expansion and relative
pathnames to make it simpler to create configuration files that refer to other
configuration or data files.
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Creating Configuration Files
To successfully use cliptextures, you must first prepare the texture data and create the
configuration files:

1. Create an image cache configuration file for each level using an image cache in the
cliptexture.

The configuration file should describe the following:
¢ Format and tiling of the texture data.
* Location and names of the files containing the texture data.
¢ Size of the tex region in texture memory.
¢ Size and layout of the mem region in system memory.
2. Create a cliptexture configuration file.
It contains the following:
¢ Name and location of each image cache configuration file.

¢ Names and locations of the texture data for each image tile level in the
cliptexture. Remember, image tile levels cannot be clipped levels; so, they can
only be used in the pyramid levels. Image cache levels can be used anywhere.

* General properties of the cliptexture.

* Look at the example cliptexture configuration files in the
[usr/shar e/ Perforner/datalclipdat adirectory for IRIX and Linux and
in YPFROOTY% Dat a/ cl i pdat a for Microsoft Windows. The cliptexture
configuration files use the .ct suffix. The image cache configuration files use .ic
for their suffixes.

3. Test the image cache configuration files individually, using the
pgui de/ i bpr/ T i cache program.

4. Test the cliptexture configuration file using the / pgui de/ | i bpr/ C/ cl i ptex or
the / pgui de/ | i bpf/ C/ cl i pt ex programs

5. When the configuration and data files are complete and tested, your application can
create and configure a cliptexture by calling pfdLoadClipTexture(fnarme) using the
name of the cliptexture configuration file. If more control is needed, you can use
pfdLoadClipTextureState(fname, state) initializing and configuring the
configuration utility cliptexture structure, pfuClipTexConfig.
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Configuration File Tips

Unfortunately, cliptexture configuration is not trivial, even with documentation and
example programs. Success in creating working configuration files requires a two-prong
approach:

¢ Keep them simple: set the minimum number of fields possible. Take advantage of
default value. Try to find a similar example configuration file to copy from.

*  Work bottom-up: create and test image cache configuration files first, gradually

building up to the cliptexture configuration file.

We have found that parameterized naming of the image caches and tile files works the
best. If you have named your files consistently, this can be easy. If things do not work,
you can fall back and name your file explicitly as a sanity check. Read the error messages
carefully; they try to point out where in the configuration file the parser found problems.
If you need more information, try rerunning the program with PENFYLEVEL set to 5 or
9.

A number of example configuration files and cliptextures are available on the OpenGL
Performer release. Working from one of them can save a lot of time. Some places to look
are the following:

e datal/clipdatalhunter
e data/clipdata/ noffett

e datal/ asddata

Cliptexture Loaders

Finally, your application might be able to take advantage of some of the cliptexture
loaders. The | i bpf i mloader supports loading a cliptexture, and updating its center as a
function of viewposition. The | i bpf ct loader creates a cliptexture with simple terrain.
Virtual cliptextures, mentioned in “Virtual ClipTextures” on page 429, can also be created
using the | i bpf spherepat ch or i bpfvct loaders. These loaders can be used as
examples if you need to write your own loader that supports cliptextures.

Image Cache Configuration File Details

Image cache configuration files supply the following information to OpenGL Performer:
¢ Format of the texel data.

¢ Size of the entire texture at a particular MIPmap level.
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Configuration Fields
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¢ How to find the files containing the texel data for this image cache.

¢ Size and layout of image cache tiles in memory.

¢ Size of the image cache that should be kept in texture memory.

* A default image tile to use if one is missing.

e The size each level should be clipped to.

¢ The amount of border that should be invalidated at each level.

¢ How to find the image cache configuration files

* How to find the tiles comprising the levels that are not image caches

Configuration fields are either tokens or parameter values, as listed in Table 12-2. All
fields are character strings and all parameters must be separated by white space. The
token names marked with an asterisk (*) are optional and default to reasonable values.

Table 12-2

Image Cache Configuration File Fields

Token Name

Parameters

Description

ic_version2.0
*tex_size
*header_offset
*tiles_in_file
*s_streams
*t_streams
*r_streams
*default_tile
*page_size
*read_func
*lookahead

ext_format

no data field
3 integers
integer

3 integers
filepath list
filepath list
filepath list
filepath string
integer

1 or 2 strings
integer

string

Start of image cache config files: type and version
Area of tex memory for level if not tex_region_size
Beginning of file to skip over in bytes

Dimensions of grid of tiles stored in each file

List of streams used to access files in S dimension
List of streams used to access files in T dimension
List of streams used to access files in R dimensions
Tile to use if expected tile is not available

System page size; memory allocation alignment
Custom read function; library, func or func in app
Extra tiles in mem region for lookahead caching

External format of stored texels
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Table 12-2 Image Cache Configuration File Fields (continued)

Token Name Parameters Description

int_format string Internal format used by graphics hw

img_format string Image format of stored texels

icache_size 3 integers Size of complete image level in texels
tex_region_size 3 integers Area to load in texture memory; matches clip size
mem_region_size 3 integers Dimensions of system memory cache in tiles
tile_size 3 integers Dimensions of each file in texels

tile_format scanf-style string Parameterized path to tile files

tile_params list of symbols Parameter types in order in tile_format string

Image Cache Configuration File Description

The ic_version2.0 token must be first in an image cache configuration file. This token
identifies the file as an image cache configuration file and the format (version) of the
configuration file.

Next the parser looks for tokens and any associated data values. In general, the order of
the tokens in the file must follow the sequence specified in the table above. The tokens
marked with an asterisk are optional. Optional tokens have default values, which are
used if the token and value are omitted.Tokens can have the following:

¢ No arguments

* A fixed number of arguments

* A variable number of arguments

If a token has a fixed number of arguments, the token must be followed by a white
space-separated list containing the specified number of arguments. If the token has a

variable number of arguments, one of its arguments specifies the number of arguments
used.

Any time a token is expected by the parser, a comment can be substituted. A comment

cannot be put anywhere in the file, however. For example, if a token expects arguments,
you cannot place a comment between any of them; you have to place it after all of the
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previous tokens arguments. There are a variety of supported comment tokens; they are
interchangeable. The comment tokens are #,// ,; ,comrent , orr em

ext_format, int_format, and img_format

One of the first things that must be specified in an image cache is the format of the texel
data. This includes the external format (ext _f or mat ), internal format (i nt _f or mat )
and image format (i ng_f or mat ). The arguments expected by these format parameters
are the ASCII string names of the format’s enumerates. For example, a valid external
format would be ext _f ormat PFTEX_FLOAT. Consult the pfTexture man pages for a
list of the valid formats of each type.

icache_size, mem_region_size, and tex_region_size

The next set of parameters that must be specified in the image cache configuration file is
its size on disk, in system memory, and in texture memory. The i cache_si ze token
requires the size of the image cache. This means the dimensions, in texels, in the s, f, and
r dimensions of the complete texture at this level. Since three dimensional textures are
not currently supported, the r parameter will always be 1.

An image cache’s texels are organized into a set of fixed sized pieces, called tiles. Both in
system memory and on disk, the texels are broken up this way. At any given time, an
array of these texel tiles are cached in system memory. They are arranged as an array in
system memory. If the center of the image cache nears the edge of this array, the most
distant tiles are dropped out, and new tiles are read in from disk. The larger the array of
tiles in system memory, the more of the complete texture is cached there, and the less
likely new tiles may need to be swapped in. The benefit is offset by the cost of tying up
more system memory to hold the texel tiles.

The arrangement and dimensions of tiles in system is defined for each image cache, and
is set with the mem _r egi on_si ze token. This token expects three arguments which
determine the number of tiles in the s, t, and r dimensions of the grid. Since three
dimensional textures aren’t currently supported, the r dimension is always 1.

A subset of the texels in system memory are cached in the texture memory itself. These
texels are arranged in a rectangular region. The dimensions of this region are defined by
thet ex_r egi on_si ze token. It expects three arguments, the number of texels in the s,
t, and r dimensions. Again, since three dimensional textures are not supported, the r
value is always 1.
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The image cache configuration file allows some leeway in the arrangement of texel tiles
on disk. There can be one or more tiles on each disk file, and the file itself could contain
non-texel information at the beginning of the file. The tiles themselves can have
user-specified dimensions. While there is some flexibility in how tiles are stored in files
on disk, there are restrictions also. Any header must be the same size for every file in an
image cache. The same is true for the tile size, and the number and layout of tiles in each
file. If there is more than one tile in a file, the tiles must be arranged in row-major order.
In other words, as you pass from the first tile to the last, the s dimension must be
incrementing fastest.

tile_format and tile_params

The image cache texel data is stored in one or more files. The configuration file provides
a way for OpenGL Performer to find these files. The files usually have similar names,
varying in a predictable way, such as by tile position in the image cache array and size of
the image cache. The files themselves are grouped in on or more directories. The file
name and file path information is divided into a number of groups within the
configuration file. There is a scanf -style string specifying the path to find image cache
files. There are a number of parameters in the string that vary as a function of the tile
required and the characteristics of the image cache.

The next group of tokens describes the location of the configuration files defining the
location of the texture data tiles for the image cache. You can define the texture tile
configuration filenames with a scanf -style string containing parameter values, as is
done with image caches. To create parameterized image cache names, you must define
thetil e format andtil e_parans tokens.

Theti | e_f or mat tokenis followed by a scanf -style string describing the file path and
filename of the image cache configuration files. The argument contains constant parts,
interspersed with %d or %s parameters. The number of parameters must match the
number of symbols supplied as parameters to the t i | e_par ans token. If the
tile_format string starts with the pattern SENVNAME, ${ ENVNANE} , or $( ENVNAME) ,
then the value of ENVNAME will be assumed to be an environment variable and expanded
into the base name.
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The possible values of the image tile file name parameters is given in the table below.

Table 12-3 Image Tile Filename Tokens

Image Tile Filename Tokens Description
PFIMAGECACHE_TILE_FILENAMEARG_VSIZE_S Virtual size S width
PFIMAGECACHE_TILE_FILENAMEARG_VSIZE_T Virtual size T width
PFIMAGECACHE_TILE_FILENAMEARG_VSIZE_R Virtual size R width
PFIMAGECACHE_TILE_FILENAMEARG_TILENUM_S Tiles from origin in S
PFIMAGECACHE_TILE_FILENAMEARG_TILENUM_T Tiles from origin in T
PFIMAGECACHE_TILE_FILENAMEARG_TILENUM_R Tiles from origin in R
PFIMAGECACHE_TILE_FILENAMEARG_TILEORG_S Texels from origin in S
PFIMAGECACHE_TILE_FILENAMEARG_TILEORG_T Texels from origin in T
PFIMAGECACHE_TILE_FILENAMEARG_TILEORG_R Texels from originin R

PFIMAGECACHE_TILE_FILENAMEARG_STREAMSERVERNAME From streams

PFIMAGECACHE_TILE_FILENAMEARG_CACHENAME The tile_base value

PFIMAGECACHE_TILE_FILENAMEARG_FILENUM_S Files from origin in S
PFIMAGECACHE_TILE_FILENAMEARG_FILENUM_T Files from origin in T
PFIMAGECACHE_TILE_FILENAMEARG_FILENUM_R Files from origin in R

header_offset, tiles_in_file, and tile_size
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The header _of f set argument specifies the size of the file’s header in bytes. This many
bytes will be skipped over as a file is read. The ti | es_i n_fi | e token requires three
arguments, specifying the number of tiles in the s, t, and r dimensions. The r dimension
must always be 1, since 3D textures are not supported. The t i | e_si ze parameter
defines the texel dimensions of each tile in s, t, and r. Again, r must be 1. Both the
header _of fset andthetiles_in_fil e tokens are optional. They default to the
values 0 and 11 1, respectively, specifying no header and a single tile in each file.

One of the major bottlenecks to sustained cliptexture performance is the speed of

copying texels from disk to system memory. Cliptextures can be configured to maximize
the bandwidth of this transfer by distributing image tiles over multiple disks and
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downloading them in parallel. The streams section of the configuration file is used for
this purpose.

num_streams, s_streams, t_streams, and r_streams

default_tile

007-1680-080

A stream, short for stream device, can be thought of as a separate disk that can be
accessed in parallel with other disks. Each disk is mounted in a file system and, therefore,
has a unique filepath segment. The streams tokens allow you to identify these stream
filepath segments and how the image tiles are distributed among them. The stream
devices are arranged in a three dimensional grid with s, t, and r dimensions just like the
image tiles are in memory. The stream device is accessed by taking the position of the tile,
counting tiles from the origin in the s, t, and r directions, and generating a coordinate,
modulo the number of stream devices in the corresponding s, t, and r directions. Thes, t,
and r values generated are used to look up the appropriate stream device. If the stream
server name is part of the tile file name format string, it effects which disk is used to find
the tile.

Stream servers improve bandwidth at the expense of duplicating image tiles over
multiple disks. You must insure that the proper image tiles are available for any disk
which is addressed by the tile’s s, t, and r coordinates modulo the available number of
stream servers for each of those dimensions. The stream server tokens are optional. The
s_streans token is followed by a list of filepaths. These are the names that will be
indexed from the list by taking the s coordinate of the tile’s position in the image cache
grid, modulo the number of s stream devices. The names in the s_st r eamlist do not
have to be unique.

The t _streams and r _st r eans tokens work in exactly the same way, in the t and r
directions, respectively.

Sometimes only a subregion of the entire cliptexture is of interest to the application. This
is especially true when you consider that the number of tiles in the s, t, and r directions
must all be a power of two. To save space, improve performance, and make creating
image caches more convenient, a default tile can be defined, and tiles of no interest can
simply be omitted. If a tile cannot be found and a default tile is defined, then the default
one is used in place of the missing one.

Unlike normal tiles, which are read from disk as they are needed, the default tile is loaded
as part of the configuration process. The tile is named in the configuration file as the
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argument to the def aul t _ti | e token. The argument is a filepath to the default tile. If
theti | e_base token has been defined, it is pre-pended to the file path; otherwise, it is
used as is.

Cliptexture Configuration File Details

Image cache configuration files supply the following information to OpenGL Performer:
¢ format of the texel data

* size of the entire texture at a particular MIPmap level

¢ how to find the files containing the texel data for this image cache

¢ size and layout of image cache tiles in memory

* size of the image cache that should be kept in texture memory

¢ adefault image tile to use if one is missing

* the size to which each level should be clipped

¢ the amount of border that should be invalidated at each level

¢ how to find the image cache configuration files

* how to find the tiles consisting the levels that are not image caches

Configuration Fields

Configuration fields are either tokens or parameter values, as listed in Table 12-4. All
fields are character strings and all parameters must be separated by white space.

Table 12-4 Cliptexture Configuration File Fields

Token Name Parameters Description

#or// or ; orconment comment comment symbols; comment to end of line
ct_version2.0 no data field the beginning of the file: type and version

ext _f or mat string external format of stored texels

i nt _f or mat string internal format used by graphics hw

i mg_f or mat string image format of stored texels

virt_size 3 integers size of complete texture at level O (finest level)
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Cliptexture Configuration
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Table 12-4 Cliptexture Configuration File Fields (continued)

Token Name Parameters Description

clip_size integer size of clip region square for clipped levels
*inval i d_bor der integer width of clip region perimeter to not use
*tile_size 3 integers size of tiles (used when if no icache config files)
*smal | est _i cache 3 integers smallest icache-level dimensions

*| ookahead integer extra tiles in mem region

*j cache_f or mat
*effective_l evel s
*j cache_parans
*jcache_files
*tile files
*effective_levels
*al | ocated | evel s
*header _of f set
*tiles_in_file
*read_func
*tile_format
*tile_parans

*page_si ze

scanf string
integer

string list

list of filenames
list of filenames
integer

integer

1 integer

3 integers

1 or 2 strings
scanf string
string list

integer

icache fnames: no field? list files

levels used for texturing in virtual cliptexture
format tokens in order

only if i cache_f or mat is default

pyramid; only if ti | e_f or mat default

levels used for texturing in virtual cliptexture
total virtual cliptexture levels in texture memory
byte offset to skip user’s file header

Image tile arrangement in each file

custom read function; lib & func or func in app
Tile filename format

format parameter tokens in order

system page size; memory allocation alignment

File Description

The ct _ver si on2. 0 token must be first in an cliptexture configuration file. This token
identifies the file as an cliptexture configuration file and the format (version) of the

configuration file.

Next the parser looks for tokens and any associated data values. In general, the order of
the tokens in the file must follow the sequence specified in the table above. The tokens
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marked with an asterisk are optional. Optional tokens have default values, which are
used if the token and value are omitted.

Tokens can have the following:
® noarguments
¢ afixed number of arguments

¢ avariable number of arguments

If a token has a fixed number of arguments, the token must be followed by a white
space-separated list containing the specified number of arguments. If the token has a
variable number of arguments, one of its arguments specifies the number of arguments
used.

Any time a token is expected by the parser, a comment can be substituted. A comment
can’t be put anywhere in the file, however. For example, if a token expects arguments,
you can’t place a comment between any of them; you have to place it after all of the
previous tokens arguments. There are a variety of supported comment tokens; they are
interchangeable. The comment tokens are #,// ,; ,comrent ,orr em

ext_format, int_format, and img_format

virt_size and clip_size
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One of the first things that must be specified in a cliptexture is the format of the texel data.
This includes the external format (ext _f or mat ), internal format (i nt _f or mat ) and
image format (i mg_f or mat ). The arguments expected by these format parameters are
the ASCII string names of the format’s enumerates. For example, a valid external format
would be ext _f or mat PFTEX_FLOAT. Consult the pfTexture man pages for a list of the
valid formats of each type.

The next group of tokens characterizes the image cache itself. The vi rt _si ze token
expects three integer arguments. They define the s, t, and r dimensions of the level 0 layer
of the cliptexture in texels. The cl i p_si ze token describes the size of each layer that
exists in texture memory. It also takes three integers, describing the s, t, and r dimensions
of the clipped region. This value is the same for all levels of a cliptexture. If the image
cache configuration files’ cl i p_si ze differs from this value, the cliptexture overrides it.
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invalid_border

Thei nval i d_bor der defines the region of each clipped level that should not be used.
If a texel is needed in that region, the next level down is used instead. If the invalid border
is large, the system may have to go down multiple levels, or even down to the pyramidal,
unclipped part of the MIPmap. The invalid border argument is a single integer,
describing the width of the border in texels.

smallest_icache

The smal | est _i cache token describes the s, t, and r dimensions of the lowest level
that is described as an image cache. This parameter is needed because the unclipped,
pyramidal part of the MIPmap can also be configured as image caches. This is an optional
token. If it is not included in the file, the last clipped level is considered the smallest
image cache in the cliptexture.

icache_files, icache_format and icache_params

The next group of tokens describes the location of the configuration files defining the
image cache levels of the cliptexture. There are two methods of describing where the
image cache configuration files. You can explicitly list the filenames in order with

i cache files.

The other method is to define the image cache configuration filenames with a scanf -style
string containing parameter values, as is done with image caches. This is usually the
preferred method. To create parameterized image cache names, you must define the

i cache_format andicache_par ans tokens. If the format string starts with the
pattern SENVNAME, ${ ENVNAME} or $( ENVNANE) , then the value of ENVNAME will be
assumed to be an environment variable and expanded into the base name.

Thei cache_f or mat token is followed by a scanf -style string describing the file path
and filename of the image cache configuration files. The argument contains constant
parts, interspersed with %d or %s parameters. The number of parameters must match
the integer given with the num_i cache_par ans token. The tile parameters themselves
follow the i cache_par ans token.
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icache_files

tile_files
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The number of parameters must match the number of parameters ini cache_f or mat .
All of these parameters are optional. The list of available parameter tokens is given in
Table 12-5.

Table 12-5 Parameter Tokens

Parameter Token Name Description
PFCLIPTEX_FNAMEARG_LEVEL Cliptexture level (top is 0)
PFCLIPTEX_FNAMEARG_LEVEL_SIZE Largest value of level’s virtual size

PFCLIPTEX_FNAMEARG_IMAGE_CACHE_BASE Value of icache_base
PFCLIPTEX_FNAMEARG_TILE_BASE Value of tile_base

Uniquely naming that file for each level of the cliptexture, the parameter values are used
to construct the name of the image cache configuration file.

Near the bottom of the cliptexture, the size of lower levels are too small to warrant image
caches. These levels are specified directly, referring to a single filename containing a
single image tile for each level. The filenames for these tile files are specified in exactly
the same way as the image cache configuration files are. Instead of i cache_base,

i cache_format,num.i cache_paraneters,andi cache_paraneters,

tile base,tile format,numtile _paraneters,andtil e _paraneters are
used. The parameters available for use in the t i | e_f or mat string are identical to the
ones used for i cache_f or mat .

If image cache configuration files and /or image tiles are to be explicitly named, they are
listed in order, from the top (largest) level to the bottom, using the i cache_fi | es and
tile_fil es tokens. These tokens can only be used if the corresponding format,

num par anet er s, and parameter tokens are not. The number of filenames listed after
i cache_filesandtile_fil es mustexactly match the number of cached and
uncached levels, respectively, in the cliptexture.
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header_offset, tiles_in_file, and tile_size

The header _of f set argument specifies the size of the file’s header in bytes. This many
bytes will be skipped over as a file is read. Theti | es_i n_fi | e token requires three
arguments, specifying the number of tiles in the s, t, and r dimensions. The r dimension
must always be 1, since 3D textures are not supported. The ti | e_si ze parameter
defines the texel dimensions of each tile in s, t, and r. Again, r must be 1. Both the
header _of fset andthetil es_in_fil e tokens are optional. They default to the
values 0 and 1 1 1, respectively, specifying no header and a single tile in each file.

The image cache texel data is stored in one or more files. The configuration file provides
a way for OpenGL Performer to find these files. The files usually have similar names,
varying in a predictable way, such as by tile position in the image cache array and size of
the image cache. The files themselves are grouped in on or more directories. The file
name and file path information is divided into a number of groups within the
configuration file. There is a scanf -style string specifying the path to find image cache
files. There are a number of parameters in the string that vary as a function of the tile
required, and characteristics of the image cache.

tile_base, tile_format and tile_params
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Thetil e_f ormat token expects a scanf -style argument. If the string starts with the
pattern SENVNAME, ${ ENVNAVE} or $( ENVNAME) , then the value of ENVNAME will be
assumed to be an environment variable and expanded into the base name.

The argument contains constant parts, interpersed with %d or %s parameters.The tile
parameters themselves follow thet i | e_par ans token. The number of parameters must
match the number of parametersinti | e_f or mat .

The possible values of the image tile file name parameters are given in the table below.

Table 12-6 Image Tile Filename Tokens

Image Tile Filename Tokens Description
PFIMAGECACHE_TILE_FILENAMEARG_VSIZE_S Virtual size S width
PFIMAGECACHE_TILE_FILENAMEARG_VSIZE_T Virtual size T width
PFIMAGECACHE_TILE_FILENAMEARG_VSIZE_R Virtual size R width
PFIMAGECACHE_TILE_FILENAMEARG_TILENUM_S Tiles from origin in S
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Table 12-6 Image Tile Filename Tokens (continued)

Image Tile Filename Tokens Description
PFIMAGECACHE_TILE_FILENAMEARG_TILENUM_T Tiles from originin T
PFIMAGECACHE_TILE_FILENAMEARG_TILENUM_R Tiles from origin in R
PFIMAGECACHE_TILE_FILENAMEARG_TILEORG_S Texels from origin in S
PFIMAGECACHE_TILE_FILENAMEARG_TILEORG_T Texels from origin in T
PFIMAGECACHE_TILE_FILENAMEARG_TILEORG_R Texels from origin in R

PFIMAGECACHE_TILE_FILENAMEARG_STREAMSERVERNAME  From streams

PFIMAGECACHE_TILE_FILENAMEARG_CACHENAME Theti | e_base value
PFIMAGECACHE_TILE_FILENAMEARG_FILENUM_S Files from origin in S
PFIMAGECACHE_TILE_FILENAMEARG_FILENUM_T Files from originin T
PFIMAGECACHE_TILE_FILENAMEARG_FILENUM_R Files from origin in R

Optional Image Cache Configuration Files
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If the cliptexture has a very regular structure from level to level, the cliptexture
configuration file can be augmented with some extra fields, and the image cache
configuration files dispensed with. We recommend you start with the image cache
configuration files, however, because it makes it easier to gradually create and test your
configuration files using the icache and cliptex utilities in the

[usr/shar e/ Performner/src/pguide/libpr/Cdirectory for IRIX and Linux and
in %PFROOTY Sr c/ pgui de/ | i bpr/ Cfor Microsoft Windows.

Image cache configuration files can be removed if the image caches of the cliptexture are
essentially the same, and configuration of each image cache is simple. The image caches
should only different in size between levels; the tile size, formats, tile filename format,
etc. should be the same. Also image cache configuration files are not optional when
features like streams are configured.

To stop using image cache configuration files, youshould add ati | e_si ze token to the
cliptexture configuration file, and be sure to haveti |l e_format andtil e_par ans
specified.The tile specification in the cliptexture configuration file will be used for all tile
files the ones used by the image caches and the ones in representing pyramid levels.
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In order to make the parser stop using the image cache configuration files, remove the
entries referring to them such as i cache_f or mat, i cache_par ans, or
i cache_tiles.

An example of a cliptexture configuration file that does not use image cache
configuration files is

[ usr/ share/ Performer/datal/clipdatal/hunter/hl.noic.ct for IRIX and
Linux and %PFROOT% Dat a/ cl i pdat a/ hunt er/ hl . noi c. ct for Microsoft
Windows.

Post-Scene Graph Load Configuration

There are a number of cliptexture configuration steps that cannot be completed until the
OpenGL Performer application’s pipes and channels have been created. This
configuration stage centers around configuring cliptextures to be properly applied and
centered each frame.

Two jobs must be accomplished. Each cliptexture must be attached to a pipe through its
own pfMPClipTexture so it can be applied each frame, and a centering callback must be
established to update the cliptexture as the channel’s viewpoint moves with respect to
the cliptextured geometry.

MPClipTextures
pfMPClipTexture is a multiprocess wrapper for a pfClipTexture. A pfMPClipTexture
allows you to do the following;:
¢ Change the center of the pfClipTexture in the APP process.

* Automatically perform the necessary texture downloading (applying) in the CULL
process.

¢ Control the cliptexture parameters in the APP process.
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Figure 12-9  pfMPClipTexture Connections

Connecting MPcliptextures to pfPipes
To automatically apply of the pfClipTexture at the correct times and in the correct
processes, you must do the following:
1. Create a pfMPClipTexture object.
2. Attach the pfMPClipTexture to the cliptexture you want to control.
3. Attach the pfMPClipTexture object to a pfPipe using the pfPipe.

Note: If you use pfMPClipTexture, you should never call either
pfUpdateMPClipTexture() or pfApplyMPClipTexture(); the pfPipe should do the

applying.

When you attach a pfMPClipTexture to a pfPipe using pfAddMPClipTextureToPipes()
or pfAddMPClipTexturesToPipes(), pfPipe automatically updates and applies
pfClipTexture at the correct time. The functions take three arguments: a
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libpf Functionality

pfMPClipTexture or list of pfMPClipTextures, a pipe to which to attach (called the master
pipe), and a list of other pipes the application wants to use with the pfMPClipTextures.

o pfAddMPClipTextureToPipes(pfMPClipTexture, masterpipe, pipe_list)

o pfAddMPClipTexturesToPipes(pfMPClipTexture_list, masterpipe, pipe_list)

The pipe_list is used for multipipe applications. It is the list of pipes that slave
pfMPClipTextures should attached to. Setting pipe_list to NULL is equivalent to adding
slave pfMPClipTextures to every other pipe in the application.

There are additional | i bpf routines that can be useful:

¢ pfRemoveMPClipTexture() detaches a pfMPClipTexture from a pfPipe. If a
pfMPClipTexture is removed that is the master of other pfMPClipTextures, the
slaves will be removed from their pipes as well.

¢ pfGetNumMPClipTextures() returns the number of pfMPClipTextures attached to
a pfPipe.

¢ pfGetMPClipTexture() returns a pointer to the pfMPClipTexture that is attached to
a pfPipe.

You can do this directly with the | i bpf API using the following calls:

¢ pfNewMPClipTexture()—Create a new pfMPClipTexture.

¢ pfMPClipTextureClipTexture()—Attach the pfMPClipTexture to the cliptexture.
¢ pfAddMPClipTexture() - (a pfPipeCall)—Attach the pfMPClipTexture to a pipe.

o pfMPClipTexturePipe()—Specifies to the pfMPClipTexture the pipe to which it is
attached.

pfMPClipTexture Utilities
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OpenGL Performer provides utilities to make it easy to attach pfMPClipTextures to
pipes, and to automatically do pfMPClipTexture centering as well. As a bonus, the utility
code requires little or no changes to convert a single pipe application to a multipipe one.

To use the pfMPClipTexture utilities, you need to use OpenGL Performer’s clipcenter
nodes to center the pfMPClipTexture. clipcenter nodes are a subclass of pfGroup nodes.

417



12: ClipTextures

Clipcenter Node

418

They have additional functionality that allows them to connect to a pfMPClipTexture, the
cliptextured geometry (through their child nodes), and properly update the
pfMPClipTexture’s center each frame. At load time, clipcenter nodes are placed at the
root of the subtree containing the cliptextured geometry. All the cliptextures in the scene
are created configured and attached to the clipcenter node at this time as well.

Once you have a scenegraph with geometry, cliptextures, and clipcenter nodes, it is easy
to make pfMPClipTextures, attach them to pipes and to centering callbacks. The function
pfuProcessClipCenters() traverses the scene graph, looking for clipcenter nodes. As
each node is encountered, the function creates an MP cliptexture, attaches it to the
associated cliptexture and the clipcenter node, and saves a pointer to the MP cliptexture
in a pfList. When the function returns, it provides the list of MP cliptextures that were
created. The pfuProcessClipCentersWithChannel() routine performs the same
operations but also sets a channel pointer in the clipcenter node. When the channel
pointer is set, the clipcenter node only will update a pfMPClipTexture center when that
channel traverses it. This is useful for multichannel applications.

In order for cliptextures to be rendered correctly, the clipcenter must move along with the
viewer. OpenGL Performer has made this task simpler by providing a special node for
the scene graph that does this calculation and applies it to the cliptexture each frame.
This node, called the clipcenter node, is a subclass of a pfGroup node. In addition to
pfGroup functionality, pfuClipCenterNode’s can do the following;:

¢ Points to the cliptexture. This allows cliptextures to be attached to clipcenter nodes
at load time.

¢ Points to the geometry textured by the clipcenter node’s cliptexture. The clipcenter
node is assumed rooted in the subtree containing the cliptextured geometry.

¢ Points to an optional simplified version of the cliptextured geometry to make
centering calculations go faster.

¢ Points to the pfMPClipTexture attached to the cliptexture. The node also has API to
automatically create an pfMPClipTexture and attach it to the cliptexture.

¢ Contains a replaceable post-APP callback function for updating a
pfMPClipTexture’s center.

¢ Can point to a pfChannel and only update the pfMPClipTexture center only when
that pfChannel traverses the clipcenter node.

007-1680-080



Post-Scene Graph Load Configuration

007-1680-080

VAN

Scene graph

@

Geometry
L

MPClipTexture

Figure 12-10 pfuClipCenterNode Connections

The clipcenter node uses a simple algorithm, setting the cliptexture center to be the point
on the textured geometry closest to the viewer. Other algorithms can be substituted by
replacing the callback function.

Clipcenter nodes can be created by calling the utility routine pfuNewClipCenterNode().
There are set and get functions to attach cliptextures, channels, custom centering
callbacks, simplified cliptextured geometry, as well as a get to return the
pfMPClipTexture. See the pf uCl i pCent er Node man page for details on the APL

The clipcenter node source code is available in pf uCl i pCent er Node. Cand

pfud i pCent er Node. h inthe/usr/share/ Performer/src/lib/libputil
directory for IRIX and Linux and in %®°FROOT% Src/ 1 i b/ | i bpfuti| for Microsoft
Windows. It is implemented as a C++ class with C++and C APL It also has example code
illustrating to subclass the clipcenternode further to customize it.

If the configuration has been done properly, and if pfuClipCenterNodes have been used
for centering, most of the per-frame operations for cliptextures is automatic. Centering is
computed and applied by the clipcenter nodes during the APP traversal, and cliptexture
application is automatically handled by the pfPipes attached to the pfMPClipTextures.
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Using Cliptextures with Multiple Pipes

Cliptextures use a lot of texture memory, system memory (for their caches) and disk I/O
bandwidth. Many multipipe applications produce multiple views from the same
location, looking in different directions. It would be very inefficient to create a
completely separate cliptexture for each pipe; although there is separate texture memory
and graphics hardware from each pipe, the system memory and disk resources are
shared by the entire system.

Cliptextures have been designed to support multipipe rendering without excessive drain
on system memory and disk I/O bandwidth. Cliptextures that are to be used in multiple
pipes can be split into master and slave cliptextures. The master cliptexture is complete; it
contains an image cache and a region of texture memory to control. A slave cliptexture
points to its master and shares its image cache, using it to download into its own texture
memory. All the slave cliptextures share their master’s system memory cache and disk
I/0 resources, reducing the load on the system.

Tex region
Mem region
Tex region
Tex region
MQSter
S
|Q\/e }

Sla\/e

Figure 12-11 Master and Slave Cliptexture Resource Sharing

Making Masters and Slaves

420

Master and slave relationships can be established between image caches, cliptextures,
and pfMPClipTextures. The process starts with an object already configured you way
you want it. Then another object of the same type is created and is set to be a slave of the
configured object. This is done with the setMaster() function. When an object is made the
slave of another object, it automatically configures itself to match it’s master. It also
makes all the connections necessary to share its master’s resources.
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Multipipe Cliptexture API

Multipipe Utilities
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If two cliptextures are made into a master and slave, all of their image caches must have
the same master-slave relationship. This is done automatically. This is also true for
pfMPClipTextures. The pfMPClipTextures that will be the master and slave must be
connected to cliptextures. Only the masters have to be configured, however. When the
other pfMPClipTexture becomes a slave, it configures its cliptexture and makes it and its
image caches slaves as well.

OpenGL Performer tries to make multipipe cliptexturing as transparent as possible.
Simply call setMaster() on a cliptexture and pass it a pointer to the cliptexture that
should be its master:

e pfMPClipTexture *slave_mct = pfNewMPClipTexture()
e pfClipTexture *slave_ct = pfNewClipTexture()

o pfMPClipTextureClipTexture(slave_mct, slave_ct)

e pfMPClipTextureMaster(slave_mct, master_mct)

master_mct is a pfMPClipTexture that is already configured.

At this point, slave_mct and master_mct are connected; slave_mct is configured to match
master_mct and shares i’s image cache resources. The cliptextures and image caches are
also configured and linked. To make pfClipTextures or pfImageCaches masters and
slaves, use the same procedure.

When you attach a pfMPClipTexture to a pfPipe with pfAddMPClipTexture() provides
automatic multipipe support. If a pfMPClipTexture is added to a pipe that is already
connected to another pipe, the function silently creates a new pfMPClipTexture, makes
it a slave of the pfMPClipTexture that is already connected to another pipe, and adds the
slave to the pipe in place of the one passed as an argument to the function.

Although it is not difficult to set up master and slave cliptextures directly, it is usually not
necessary.The previously described utility routines, pfuAddMPClipTextureToPipes()
and pfuAddMPClipTexturesToPipes() can take multiple pipe arguments. A master pipe
and a list of slave pipes is specified. The routine makes the pfMPClipTexture a master
and attaches it to the master pipe. It then creates slave pfMPClipTextures, attaches them
to the master cliptexture, and attaches a slave cliptexture to each pipe in the slave pipes
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list. This routine does extra checking of pipe and cliptexture state, and is guaranteed not
to generate errors, even if the function is applied more than once.

Master/Slave Share Masks

A group of cliptextures grouped by master-slave relationships can do more than share
mem region resources. By default, slave cliptextures also track a number of their master’s
attribute values. This means changing a master’s center, for example, automatically
causes the slaves to change their center locations to match their master’s. The attributes
that a slave can track are divided into groups called share groups. The application can
control which groups are shared by setting a slave’s share mask. Changing the sharing of
a slave only affects that slave’s sharing with its master. Changing the master share mask
has no effect. The share mask is set with the following call:

pf MPCl i pText ur eShar eMask(ui nt mask)

The mask can be set using one or more of the following values:
e PFEMPCLIPTEXTURE_SHARE_CENTER—SIlaves track the master’s center.

e PFMPCLIPTEXTURE_SHARE_DTR—Slaves track DTR: DTR mode, tex load time
(actual or calculated), fade count, and blur margin.

e PFMPCLIPTEXTURE_SHARE_EDGE—SIlaves track texture level parameters,
LODbias invalid border.

e PFEMPCLIPTEXTURE_SHARE_LOD—Slaves track minLOD and maxLOD.

e PFEMPCLIPTEXTURE_SHARE_VIRTUAL—Slaves track lodOffset and num
effective levels.

e PFMPCLIPTEXTURE_SHARE_DEFAULT—A bit-wise OR of all the masks listed
above.

PFMPCLIPTEXTURE_SHARE_DEFAULT is the default share-mask value, which
provides maximum sharing between master and slave cliptextures. If an application
would like to control one or more slaves independently, it needs to change the slave’s
share mask; then start setting the slaves parameters directly as needed.

Texture Memory and Hardware Support Checking

At the first application or formatting of a cliptexture, OpenGL Performer compares the
expected size of the cliptexture texel data in texture memory against the systems texture

422 007-1680-080



Manipulating Cliptextures

memory size. If it looks like the cliptexture will not fit into texture memory, it shrinks the
clip size by two and tries again. It will keep shrinking the clip size until either the
cliptexture will fit or the clip size is zero. The system taking into account texture memory
banking and paging to come up with a more accurate estimate.

Note that the resizing mechanism does not take into account other textures or
cliptextures in use by the application. You should adjust your application so that
OpenGL Performer does not have to auto-shrink the cliptexture. See “Estimating
Cliptexture Memory Usage” on page 441 for calculating cliptexture system memory and
texture memory usage.

During the checking phase, OpenGL Performer also checks to see if cliptextures are
supported in hardware on the system. To cliptexture properly, the clipped levels need
hardware support. If cliptexturing is not supported, then the cliptexture is reconfigured
so only the unclipped pyramid levels are loaded and indicates to the system that the
texture is a normal MIPmap. The rest of the cliptexture support is unchanged. This
means that image caches in the pyramid levels will still work. This feature allows the
application writer to run and do some testing of cliptexturing applications even if the
system it is run on does not support cliptexturing.

Manipulating Cliptextures

Once cliptextures have been configured and connected into the application, they can be
manipulated by the application in the APP process. Applying and centering cliptextures
happens each frame, and is usually an automatic process, set up during post-load
configuration. Other parameters that can be adjusted include load control parameters,
min and max LOD levels, and virtual cliptexture control. Some of these parameters may
only need to be set once in the application, others, like the parameter setting for virtual
cliptextures, need to happen multiple times per frame.

Cliptexture Load Control
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The virtualization of pfTextures into pfClipTextures, allowing very large texture maps,
comes at a price. As the clipcenter moves, cliptextures have to download data from disk
to system memory, and from system memory to texture memory. Because of these
download requirements, cliptextures are sensitive to available system bandwidth.
Without some sort of download load control, a fast moving center would cause a
cliptextures to “freeze”, waiting for the system to catch up with its updates.
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While mem region updates happen asynchronously, tex region updates must happen in
the DRAW process, competing with geometry rendering and individual texture loading.
Real time applications require that cliptextures, like other OpenGL Performer features,
must be controlled in a way such that an upper bound can be set on their use of resources.
OpenGL Performer’s cliptexture load control, called Dynamic Texture Resolution (DTR),
provides this functionality.

Dynamic Texture Resolution
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Dynamic Texture Resolution (DTR) is similar to Dynamic Visual Resolution (DVR): the
bandwidth requirements are adjusted to meet system limitations by lowering the
resolution of the texture data displayed by the cliptexture.

DTR controls bandwidth by analyzing the cliptexture in the CULL process. It checks each
cliptexture level, ensuring that the mem region contains updated tiles corresponding to
the tex region, and that there is enough time to update the tex region within the
download time limit.

This checking goes from level to level, from coarser levels to finer ones. When a level is
found that cannot be displayed, DTR adjusts the cliptexture parameters so that no levels
above the finest complete level are displayed. At that point, DTR stops checking levels
until the next frame. In order not to waste CULL processing time on levels that are not
visible, DTR will not try to sharpen more than one level beyond the current minLOD and
virtualLODoffset values. It will go one level beyond these values so that it can react
quickly if the values change.

In this way the cliptexture updating will always keep up with the movement of the
clipcenter, and will never display invalid data. When the center moves too quickly, DTR
will “blur down” to coarser complete levels, then “sharpen up” to finer levels when the
center slows down and the system can catch up. In this way DTR can trade visual quality
against updating bandwidth. The visual result is that the faster a viewer goes, the less
time there is to download texture and the blurrier the texture data gets.

The nature of cliptexturing makes load control work. When the clipcenter moves, this
change is reflected at every clipped level of the cliptexture. But because each texel in a
level covers four times the geometry of the texel in the next finer level, the clipcenter only
moves half the distance each time you go down a level. This translates into less
demanding texture download requirement.
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Load Control API

Download Time

007-1680-080

DTR has other features, such as read queue sorting, which prioritize the order in which
read requests are done to improve mem region update performance. The rate at which
levels are blurred and sharpened can also be controlled to minimize visual artifacts.

DTR controls three aspects of load control, which can be turned on and off
independently: tex region updating (from the mem region in system memory), mem
region updating (loading from disks), and read queue sorting (reducing the latency of
read requests for downloads from disk to the mem region).

pfMPClipTextureDTRMode(DTRMode)

DTRMode is a bitmask; if a bit is set, that DTR feature is enabled. It has the following bits
defined:

¢ PF_DITR_MEMLOAD - Enable mem region load control from disk.
¢ PF_DTR_TEXLOAD - Enable tex region load control; DRAW download time.
¢ PF_DTR_READSORT - Enable priority sorting of the read queue.

All three bits are enabled by default, which means that DTR has all modes enabled.
Besides the bitmask to control what parts of DTR are enabled, there are parameters to
available to adjust load control performance. The DTR parameters and how they affect
DTR functionality are discussed the following subsections.

The memload component of DTR is relatively simple; it computes whether all the tiles in
a level’s mem region that cover the tex region are valid. If any are not, the tex region
cannot be updated and DTR invalidates that level. If the texload component of DTR is
enabled, DTR must also compute the time it takes to download from the mem region to
the tex region. The application provides the load control with a total download time in
milliseconds:

pf MPCl i pText ur eTexLoadTi ne(fl oat _nsec)

This is the total time DTR has available to update the cliptexture’s texture memory each
frame. As DTR analyzes each cliptexture level that needs updating, it computes all the
regions in the level’s texture memory that need updating.If a level can be updated, DTR
determines whether there is enough download time left to update the level. If there is,
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Cost Tables

Changing Levels
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DTR marks that level valid, subtracts the time needed to download that level from the
total, and starts analyzing the next finest level in the cliptexture.

OpenGL Performer contains texture download cost tables, which DTR uses to estimate
the time it will take to carry out those texture subloads. These tables are a 2D array of
floating point values, indexed by width and height of the texture rectangle being
subloaded. The cost tables themselves are indexed by machine type and can be read by
the application. The application can also define its own cost tables and configure the
system to use it. The cost table API is shown below:

pfPerf(int type, void *table)
pf QueryPerf (int type, void **table)

The text field indicates whether the cost table should be the one chosen by the system:
e PFQPERF_DEFAULT_TEXLOAD_TABLE - The one supplied by the application
e PFQPERF_USER_TEXLOAD_TABLE - The one currently in use.

¢ PFQPERF_CUR_TEXLOAD_TABLE - The default table is the current one unless a
application supplies a cost table, in which case, the application’s cost table takes
precedence.

For more details on cost tables, see the man pages for pfPerf() and pfQueryPerf(). The
cost table structure is named pfTexSubloadCostTable, defined in

[usr/incl ude/ Perforner/pr.h for IRIX and Linux and in

%PFROOTY | ncl ude/ pr. h for Microsoft Windows.

The DTR load control system is designed to minimize visual artifacts as it adjusts for
different download demands. Instead of abruptly sharpening the texture as new levels
with valid texture data become available, DTR blurs in new levels over a number of
frames, making the process of load control less noticeable. The application can control
the rate at which newly valid levels are displayed. The application sets a fade count, which
controls the number of frames it takes to fade in a new level . Each frame, the cliptexture
will sharpen 1/fadecount of the way from its current (possible fractional) level to the
next level. This process is repeated each frame, resulting in an exponential fade-in
function. If the fade count is 0, then fading is disabled, and DTR will show new levels
immediately.

007-1680-080



Manipulating Cliptextures

pf MPCl i pText ur eFadeCount (i nt _franes)

If the clipcenter roaming speed leaves barely enough bandwidth to bring in a new
cliptexture level, a distracting “LOD flicker” between to cliptexture LOD levels can
result. Since DTR must blur immediately if a level becomes invalid, the only way to
prevent flicker is to be conservative when sharpening, building in a hysteresis factor. The
parameter called blur margin helps determine when DTR should sharpen.

The bl ur mar gi n parameter also helps cliptextures blur smoothly when DTR cannot
keep up. It is a floating point value, which can be interpreted as a fraction of the
cliptexture’s tex load time. When bl ur mar gi n is not zero, DTR will load all the levels it
can within the texload time, but not display all of them. Instead it will only sharpen to
the level that would have been reached if the texload time was scaled by bl ur mar gi n.
This leaves a cushion of extra time that can be used up before DTR will be forced to blur
to a coarser level. The default bl ur mar gi n value of .5 usually causes the finest level
displayed to be one level coarser then the finest level loaded.The application can adjust
bl ur mar gi n with this call:

pf MPCl i pText ur eBl ur Mar gi n(fl oat margi n)

DTR needs this cushion in order to fade smoothly. A cliptexture can only fade between
two valid levels; if it waits until its current level is invalid, the cliptexture must
immediately jump to the next coarser level or it will show invalid data. This abrupt
blurring is very noticeable. The blur margin allows the DTR system to anticipate when it
will lose a level, and smoothly fade to the next coarser level over a number of frames.

Total Texload Time and Texload Time Fraction
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Using the texload time, blur margin, and fade count parameters is sufficient to control a
single cliptexture from a pipe, but the interface is awkward if multiple cliptextures are
applying from the same pipe. Since each pipe has the same amount of DRAW process
time available per frame, no matter how many cliptextures are applied from it, it would
be more convenient to provide a total amount of download time, then divide it among
the cliptextures using the pipe.

OpenGL Performer provides this interface using the total texload time and texload time
fraction parameters. The application can set the total texture download time available on
a pipe, then assign fractional values for each cliptexture, indicating how the download
time should be divided. The total texload time is a pfPipe call, while the fractional values
are set on pfMPClipTextures:
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Read Queue Sorting

pf Pi peTot al TexLoadTi ne(fl oat nsecs)
pf MPCl i pText ur eTexLoadTi meFrac(fl oat frac)

The fractional values should indicate the relative priority of each pfMPClipTexture on
the pipe. The fractional values do not have to add up to 1; the DTR code will normalize
them against the sum of all the fractional values set on the pipe’s pfMPClipTextures.

The total tex load time on the pipe is scaled by the normalized fractional value on each
cliptexture. The scaled tex load time is then used as the cliptexture’s texture download
time. Explicitly setting the tex load time on a pfMPClipTexture will override the
computed fractional time.

When the clipcenter moves quickly, the number of read requests for texture data tiles that
move into the clipped levels mem regions can grow much faster than the read function
can service them. If there is not enough bandwidth to display a particular level, itsread
requests may become “stale”, becoming obsolete as the location of the requested tile
moves into, then passes out of a level’s mem region.For DTR to be robust, the read queue
must be culled and sorted to remove stale read requests, and move the requests for tiles
closest to the clipcenter to the front of the queue. The cliptexture’s read queue is a sorting
queue, which means that a function can process the elements of the queue
asynchronously. DTR uses the read queue to cull read requests for tiles that are no longer
in their mem region, and to prioritize the other requested tiles as a function of level and
distance from the clipcenter. Sophisticated applications can provide their own sorting
function.

Invalidating Cliptextures
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Sometimes an application may want to force a cliptexture to completely reload itself. For
example, The pfuGridifyClipTexture() function modifies the cliptexture’s texel data in
system memory with a system of grid marks to make debugging and analysis easier. It
modifies the read function to add a grid to every tile as it’s loaded into system memory,
then invalidates the cliptexture. For more information on gridify, look at the source code
inthe/ usr/share/ Performer/src/lib/libpfutil/gridify. Cfilefor IRIXand
Linux and in %°FROOT% Src/ | i bpfutil/gridify. Cfor Microsoft Windows.

Invalidating a cliptexture forces it to completely reload its texture memory. Invalidating
is only supported for cliptextures, not MPcliptextures. This means that an application
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Virtual ClipTextures
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cannot call invalidate from the APP process. Instead, it must call invalidate from the
CULL process, usually in a pre-cull callback. The invalidate call itself is simple:

pflnvalidatedipTexture(pfdipTexture *cliptex)

Invalidation is not needed for normal operation, but it is useful as a way to immediately
update a cliptexture’s texture memory.

Regular cliptextures limit the size of each level but do not restrict the number of levels
you can access. Virtual cliptextures take the virtualization a step further by allowing you
to use only a subset of all the levels for which you have data.

Although InfiniteReality supports cliptextures of virtual size up to SMx8M = 2/23x2/23
texels (that is, 24 levels), the hardware is only capable of addressing a region of at most
32Kx32K = 2/715x2/15 texels (that is, 16 levels). By limiting the set of texture MIPMap
levels, the cliptextures can be enlarged. A larger, virtual, cliptexture is defined just like a
normal cliptexture, except that the size of the cliptexture can exceed the 32K X 32K
maximum level size dictated by the hardware.

Virtual cliptextures do use more texture memory and require more callbacks in the CULL
process, but they allow enormous cliptextures that are limited only by the precision of
the texture coordinates. Cliptextures over one million texels on a side have been
demonstrated.

Although virtual cliptextures require dividing the cliptextured geometry into sections
for a given MIPmap levelrange, the division is much coarser and less restrictive than
texture tiling. Cliptextured geometry usually does not need to be clipped to sectional
boundaries, for example, since there is a lot of leeway when there are more MIPmap
levels available than are needed for a given section of geometry.

For a sample application implementing virtual cliptextures, see

/usr/share/ Perforner/src/pguide/libpf/Cvirtcliptex.c for IRIXand
Linux and %°FROOT% Sr c/ pgui de/ | i bpf/ C/ virtcliptex. ¢ for Microsoft
Windows.

429



12: ClipTextures

Selecting the Levels
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The application is responsible for choosing which 16 (or less) levels can be accessed at
any given time by setting two parameters: virtualLODOffset and numEffectiveLevels. Most
applications make numEffectiveLevels the maximum number allowed by the hardware, 16
on InfiniteReality. Smaller values may be chosen in some cases to improve stability.
VirtualLODOffset sets the initial level in the cliptexture where 0 is the finest level.

For example, if numEffectiveLevels = 16 and virtualLODOffset = 0 then the texels the
hardware can access are limited to the 32Kx32K region surrounding the current
clipcenter, measured in finest-level texels (actually somewhat less than this. On IRIX and
Linux, see the file / usr / shar e/ Per f or mer/ doc/ cl i pmap/ | RCl i pmapBugs. ht m
or/ usr/share/ Performer/doc/clipmap/ | RA i pmapBugs. t xt for details on
cliptexture limitations on InfiniteReality graphics). On Microsoft Windows, see the file
%PFROOTY Doc/ cl i pmap/ | R i pmapBugs. ht m or

UPFROOTY Doc/ cl i pmap/ | RCl i pmapBugs. t xt . Attempting to access outside this
range results in the value of the nearest texel in the good region; that is, the texels forming
the border of the 32Kx32K area will appear to be “smeared” out to fill the virtual
cliptexture.

Increasing virtualLODOffset from 0 to 1 doubles the size of the accessible region in both S
and T (so that it is 32Kx32K level 1 texels, which are twice as big as level 0 texels) but
makes the finest level inaccessible.

The maximum virtualLODOffset allowable is numVirtualLevels-numEffectiveLevels; when
set to that value, the entire S,T range of the virtual cliptexture is accessible, and the finest
level from which texels are available is the 32Kx32K level.

In general, it is appropriate to choose a large value of virtualLODOffset when the
viewpoint is far away from the scene and more S,T area is visible; smaller values of
virtualLODOffset are appropriate as the eye moves closer to the scene, gaining needed
higher resolution at the expense of range in S, T.

Changing virtualLODOffset and numEffectiveLevels has no effect on the contents of texture
memory nor any effect on the texture coordinates stored in the geosets and passed to the
graphics: the texture coordinates, as well as the clipcenter, are always expressed in the
space of the entire virtual cliptexture rather than the smaller “effective” cliptexture of up
to 16 levels within it. (In contrast, changing the clipcenter requires texture downloading;
thus it is a much more expensive operation and therefore it is not practical to change the
clipcenter more than once per frame, whereas virtualLODOffset and numEffectiveLevels
can be changed multiple times per frame, as we will see in the following subsections.)
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How to Set Virtual Cliptexture Parameters

OpenGL Performer supports two different methods for managing virtualLODOffset and
numEffectiveLevels of a cliptexture. The simpler of the two methods allows the parameters
to be set and changed at most once per frame; the more sophisticated method allows
them to be changed multiple times per frame (different values for different parts of the
scene). In addition to virtualLODOffset and numEffectiveLevels described earlier, the
parameters minLOD, maxLOD, LODBiasS and LODBiasT often need to be set in the
same way; so, we will show how to set those as well.

Per-Frame Setting of Virtual Cliptexture Parameters
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The easy way to manage the virtual cliptexture parameters is to set the values of the
parameters on the pfMPClipTexture controlling the pfClipTexture:

int LODOfset, nunkEffectivelLevel s;
float m nLOD, maxLCD;
fl oat LODBi asS, LODBi asT, LODBi asR;

npcl i pt ex- >set Vi rtual LODO f set (LODOf f set ) ;

mpcl i pt ex- >set NunEf f ecti veLevel s(nuntf fecti veLevel s);
mpcl i pt ex- >set LODRange(m nLOD, naxLOD);

npcl i pt ex- >set LODBi as(LODBi asS, LCODBi asT, LODBi asR);

You make these calls in the APP process, either in the main program loop, a channel APP
func, or a pre- or post-node APP func. The last value you give during the APP in a
particular frame will be used for rendering that frame and all subsequent frames until
you change the value again.

This simple technique is the one that is used by the cl i pf | y program when you
manipulate the LODOffset and EffectiveLevels sliders (when using a naive scene loader
such as the . i mloader that does not do its own management of virtualLODOffset and
numEffectiveLevels): cl i pf | y makes these calls in its channel pre-APP function.

This technique is also used by the . spher epat ch loader; in this case, the calls are made
in a post-APP function of a node in the scene graph, using parameters that are
intelligently chosen based on the current distance from the eye to the closest point on the
textured geometry and are updated every frame.

Notice that even though the .spherepatch loader manages the virtualLODOffset and

numEffectiveLevels, you can still modify or override its behavior with the cl i pf | y GUI
controls. This is accomplished using a special set of “limit” parameters that are provided
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as a convenience and stored on the pfMPClipTexture. The intended use is for
applications such as cl i pf | y to set the limits based on GUI input or other criteria:

mpcl i ptex->set LODOFfsetLimt(lo, hi);

npcl i pt ex- >set Ef fecti veLevel sLimt(lo, hi);

mpcl i ptex->set M nLODLi mi t (1o, hi);

mpcl i ptex->setM nLODLi m t (1 o, hi);

npcl i pt ex- >set LODBi asLimt(Slo, Shi, Tlo, Thi, R o, Rhi);

Then the callback functions of intelligent loaders such as .spher epat ch query the
limits:

mpcl i ptex->get LODOF fsetLimt (& o, &hi);

npcl i pt ex- >get Ef fecti veLevel sLinmt (& o, &hi);

mpcl i pt ex->get M nLODLi mit (& o, &hi);

mpcl i pt ex->get M nLODLi mit (& o, &hi);

npcl i pt ex- >set LODBi asLi m t (&Sl o, &Shi, &Tlo, &Thi, &Rl o, &Rhi);

The loaders use the limits to modify the selection of the final parameters sent to
pfMPClipTexture.

The limits are not enforced by pfMPClipTexture; they are provided merely to facilitate
communication from the application to the function controlling the parameters. That
function is free to ignore or only partially honor the limits if it wishes.

The limits may also be queried frame-accurately from the pfMPClipTexture in the CULL

process, so they can also be used by scene loaders such as the .ct loader that use the
per-tile method described in the next section.

Per-Tile Setting of Virtual Cliptexture Parameters
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Many applications require accessing a wider range of the cliptexture’s data than can be
obtained by a single setting of virtualLODOffset and numEffectiveLevels. This can be
accomplished by partitioning the database into “tiles” roughly according to distance

from the eye or from the texture’s clipcenter and setting the parameters for each tile every

frame in the pre-CULL func of the pfGroup or pfGeode representing that tile by calling
pfClipTexture::applyVirtual(), pfTexture::applyMinLOD(),
pfTexture::applyMaxLOD(), and pfTexture::applyLODBias().
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Tiling Strategies
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Choosing a database tiling strategy requires careful thought and tuning. The most
conceptually straightforward method is to use a static 2D grid-like spatial partitioning.
This method requires tuning the granularity of the partitioning for the particular
database and capabilities of the machine: if a tile is too big and sufficiently close to the
eye, there may be no possible combination of virtualLODOffset and numkEffectiveLevels
that allows access to both the necessary spatial range and texture LOD range without
garbage in the distance or excess bluriness in the foreground; but if there are too many
tiles, the overhead of changing the parameters for each tile can become excessive.

In general, assuming the maximum active area is 32Kx32K (as it is on InfiniteReality),
each tile should be small enough so that it covers at most approximately 16K texels at the
finest texture LOD that will be used when rendering it; this is so that when the clipcenter
is close enough to the tile to require accessing that finest texture LOD, the 32Kx32K good
area centered at approximately the clipcenter will be able to cover it with some slop left
over to account for the inexact placement of the good area (see the IR cliptexture bugs
doc). (Finer tiles such as 8Kx8K or even 4Kx4K can be used for improved stability under
extreme magnification; see the IR cliptexture bugs doc).

This rule has two important consequences:

¢ If your cliptexture has insets (that is, localized regions in which higher-resolution
data is available) you can make the tiling coarser in the regions where only
low-resolution data is available and finer at the insets.

e If you use pfLODs to optimize your database, the coarse LODs of the pfLOD can
(and should) be tiled more coarsely than the fine ones.

This is because the coarser LODs are used at far distances, and at those far distances
the Mipmapping hardware will only want to access correspondingly coarse texture
levels anyway, so the 16Kx16K can be measured in terms of the texels of those
coarse texture levels.

A more general tiling strategy that requires less empirical database tuning than the static
tiling method is to make the tiles be concentric rings around the texture’s clipcenter (in
2D) or around the eye point (in 3D), with sizes increasing in approximately powers of 2.
However, since the clipcenter and view position changes, this means the tiles must move
as well, which requires dynamically changing the topology of the scene graph and/or
morphing the geometry so that the tiles always form those concentric rings around the
current focus.
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Doing Per-tile Updates
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The . ct loader and pfASD’s ClipRings both use this dynamic strategy. The . ct loader
is interesting in that the morphing is done for the sole purpose of forming these
concentric tiles for virtual-cliptexturing an otherwise trivial scene. It looks like simply a
square textured by the cliptexture, but if you turn on scribed mode in per fl y orcli pfly,
you can see the morphing rings that make up the square.

To do per-tile updates, use the following procedure:

1.

On each tile (typically a pfGroup or pfGeode) put a pre-node CULL func:
til e->set TravFuncs(PFTRAV_CULL, tilePreCull, NULL);

Make sure the effect of the tile’s pre-CULL func happens in the DRAW before the
contents of the tile are rendered, and that the tile’s contents do not co-mingle with
other tiles (this is not guaranteed by default, for the benefit of CULL whose sole
purpose is to return a CULL result without losing the advantages of uncontained
CULL sorting):

tile->set TravMbde( PFTRAV_CULL, PFTRAV_CULL_SORT,
PFN_CULL_SORT_CONTAI NED) ;

In the pre-node CULL func for the tile, set the parameters:

static int tilePreCull(pfTraverser *trav, void *)
{
int virtual LODOfset, nuntffectivelLevels;
float m nLOD, nmaxLQOD;
float biasS, biasT, biasR;

/] Choose intelligent values for paraneters.

cli ptex->appl yVi rtual Parans(virtual LODO f set,
nunkf f ecti velLevel s);

cli pt ex->appl yM nLOD( mi nLOD) ;

cli pt ex- >appl yMaxLOD( maxLOD) ;

cl i pt ex->appl yLODBi as( bi asS, bi asT, bi asR);

}

The values given to the apply functions are not stored in the pfClipTexture or retained

from frame to frame; when you call these functions, they override the corresponding

values stored in the cliptexture.
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It is not necessary to call all four of the apply...() functions; only use the ones you care
about (for example, most applications would not care about LODBias). However, if you
ever call a given one of these functions, applyMinLOD(), for example, on a particular
cliptexture for any tile, then you must call applyMinLOD() for every tile on that
cliptexture during that frame and forever after; if you omit it, the tile will not necessarily
get the value stored on the pfMPClipTexture or pfClipTexture; rather, it will get whatever
value happened to be most recently set when rendering that tile in the DRAW (which
may be nondeterministic due to CULL sorting of the scene graph).

How to Choose Virtual Cliptexture Parameters

The | i bpfutil library provides the function pf uCal cVi rtual i pTexParams(),
which can be very useful in selecting the virtual cliptexture parameters, regardless of
whether you are updating per-frame or per-tile.

Essentially, you give to pfuCalcVirtualClipTexParams() every piece of information you
know about the cliptexture:

¢ the tile in question

¢ the limits specified elsewhere, for example, by the cl i pf |y GUI

pfuCalcSizeFinestMipLOD() returns the lower bounds on minLODPixTex, which is one
of the input parameters to pfuCalcVirtualClipTexParams().

The function returns optimal values for virtualLODOffset, numEffectiveLevels, minLOD,
maxLOD. You can do the following with them:

¢ Set on the pfMPClipTexture in the APP process if your application is using the
per-frame method.

¢ Apply to the pfClipTexture per-tile in the CULL process if using the per-tile method.
For more details, you may also want to read the commented source code to understand
its constraints and heuristics, and how to modify pfuCalcVirtualClipTexParams to
implement your own algorithm if it does not exactly suit your needs.

Custom Read Functions
Sometimes the read function supplied by OpenGL Performer to download texture data

from disk to mem region is not good enough. The application may need to do additional
operations at read time, such as uncompression, or may need a more sophisticated read
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function, such as an interruptible one for reading large tiles from slow storage devices. A
read function may need to signal an applications secondary caching system; for example,
reading from tape storage to disk.

OpenGL Performer provides support for application supplied custom read functions.
The read function is supplied at configuration time, and there is API in both the
configuration utilities and the cliptexture and image cache configuration files for
supplying a read function.

A read function is called by the image caches read queue. The read queue expects a read
function with the following function signature:

i nt Exanpl eReadFunction(pflmageTile *it, int ntexels)

The image tile pointer provides information about the read request, such as the disk to
read from, the dimensions and format of the texel data, and the destination tile in system
memory to write to. The ntexels argument is an integer indicating the number of texels to
read from disk. The read function returns another integer indicating the number of texels
actually read. Two example read functions, ReadNormal() and ReadDirect(), are
supplied in/ usr/ shar e/ Performer/src/lib/Ii bpfdu/pfdLoadl mage. ¢ for
IRIX and Linux and in %°FROOT% Src/ | i b/ | i bpf du/ pf dLoadl mage. ¢ for
Microsoft Windows. These functions are C versions of the C++ functions that OpenGL
Performer uses to read texture data. In OpenGL Performer, the ReadDirect() function is
called by the read queue; it tries to use direct I/O to get the highest possible disk read
performance. If the read direct call fails, it calls ReadNormal(), which uses normal
fopen()-style read.

When providing a read function at configuration time, You supply the function name,
and optionally the name of a DSO library containing the function. If no dynamic shared
library is supplied, the read function is searched for in the application’s executable.

To set read custom read functions using the configuration utilities, simply fill in the
readFunc field in the pfulmgCacheConfig or pfuClipTexConfig structure (the first
structure has priority over the second if both are set). The field should contain a pointer
to the customer read function. Be sure the function has the proper signature.

When supplying custom read functions in the configuration files, you simply provide an
entry in one of two formats:

read_f unc ReadFunctionName
read_f unc DSOlibraryName ReadFunctionName
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For hints on when and how to use custom read functions, see the customizing read
functions in “Custom Read Functions” on page 448.

Using Cliptextures

Cliptexture Insets
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This section provides guidelines for using cliptextures, describing common cliptexture
application techniques, ways to solve problems, and some hints and tips to make using
cliptextures easier.

Cliptexture load control makes it possible to create cliptextures with incompletely filled
levels. A cliptexture, being much larger than an ordinary texture, may not be used in a
homogeneous way. Some areas of the cliptexture may be viewed in detail, others only at
a distance. A good example of this usage pattern is flight simulation. The terrain around
an airport will be seen from low altitude, terrain far from population centers may never
be seen below 40,000 feet. It is also possible that high resolution data is simply not
available for the entire cliptexture. Both of these cases make it valuable to create
cliptextures with incompletely populated values.

Regions of filled in data are called insets. Insets can be any shape, and do not need to
match tile boundaries (although this requires filling the rest of the tile with super
sampled data). For an inset to work properly, all of the levels from the pyramid up to the
finest level desired, must be available within the inset boundaries.
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Insets

Figure 12-12 Cliptexture Insets

Insets are supported in cliptextures as a natural consequence of load control. As the
clipped region moves from a region that has texel data to one that does not, DTR will blur
the texture down to the highest level that can completely fill the clipped region.

Adding Insets to Cliptextured Data

Insets and DTR

438

In large cliptextures, it may not be practical or even desirable to completely fill each level
with texel data. Cliptexture’s load control, DTR, automatically adjusts the finest visible
level based on what texels are available. If finer levels are not available, DTR
automatically “blurs down” to the highest complete level in the clip region.

Applications may use insets if there are only limited areas where the viewer is close to
the terrain. An example application would be a commercial flight simulator, where the
inset high-resolution data would be around the airports where the aircraft takes off and
lands. The terrain over which the aircraft cruises can be lower resolution.

To create insets properly, you have to understand how DTR load control works. At the
beginning of each frame, DTR examines a level’s mem region to see if the tiles covering
the tex region are all loaded. If the tiles are all available, DTR will make that level visible.
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Building Insets

Inset Boundaries

Supersampled Data
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DTR does this examination starting with the coarsest clipped level. If the current level is
complete, it marks that level as visible and repeats the process for the next finest level,
until it gets to the top level or finds an incomplete level.

To create an inset, assume you have a cliptexture that is complete at a coarse level. You
choose an area of the clipmap that you would like to have visible at some finer level. In
order to make that area available, you have to provide texel data in that area for each
level from the coarse complete level to the finer level you want to show.

When the clip region is completely enclosed by the finer level data, DTR checks all the
levels from the pyramid level on up, and allows the finer level to be shown in that area.
(The pyramid levels are always complete; see Figure 12-1.)

Because DTR works from the bottom up (coarser to finer levels), an inset area must have
texel data available from the finest level all the way down to the pyramid level. If a level’s
clip region is missing or incomplete, DTR does not allow the image to sharpen up to that
level; the inset gets blurry.

When the clipcenter is set such that the clip region is completely enclosed by the insetted
area, a properly constructed inset is sharp, using the finer resolution texel data. But what
happens when the clip region only partially covers an inset? In that case, DTR does not
sharpen up beyond the finest complete level, and the clip region gets blurry, including
the part of the clip region covered by the inset. Remember, the clip region only sharpens
to the finest level that is complete within the clip region.

This bluriness may not be a problem. If you know that the application moves far enough
away from the terrain before the clip region crosses an inset border, MIPmapping uses
the coarser texture levels before DTR forces the texture to use them. Sometimes, the
application would like a static boundary between the inset and the surrounding coarser
data, even when crossing an inset boundary close to the textured geometry.

Getting a static inset border requires creating a boundary of supersampled data around
the inset. This means creating texel data for the insetted levels that is deliberately made
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as blurry as the surrounding base level. This border of blurry data must be at least as
wide as the clip region to ensure a smooth transition.

— Inset

Supersampled boundary

— Coarse level

Figure 12-13 Supersampled Inset Boundary

How does this work? When the clip region crosses an inset border, it starts to cover the
boundary region. Since the boundary region has the same levels filled in as the inset
region, DTR still sees complete data up to the same finer level. The texel data of the
border has been blurred, however, so it looks like the coarser base level. This allows a
hard transition between the finer inset data and the surrounding coarse data. Since DTR
still sees complete levels, as you move away from the inset, it does not suddenly blur.

Since the boundary data is at least as wide as the clip region, the inset boundary has
moved out of the clip region before the clip region hits the far edge of the boundary
region. At this point, DTR blurs down to the coarser base level, since the finer data is no
longer incomplete, but there is no visual change, since the boundary texels were blurry
already.

Note: Supersampled borders do not guarantee a seamless transition between insets and
their surroundings, only that the inset region does not suddenly blur or sharpen as the
clip region crosses the inset border. Seamless transitions only happen if the application is
careful to get far enough from the clipmapped terrain to already be using the coarse
levels before crossing the inset border.
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Multiple Insets

Insets do not have to be any particular size or shape, although they are usually multiples
of the tile size, and at least as big as the clip region so they can be viewed without a seam
of bluriness. Typically, insets are designed so when the application is close enough to
view the finer inset levels, the clip region is already completely enclosed by the inset
region.

Keep in mind that insets are not the same size on each level, since texels from coarser

levels cover more geometry. If an inset is not a multiple of the tile size at a given level,
the tile has to be partially inset data, and partially supersampled data, or all fine data,
since DTR does not work with partial tiles.

Estimating Cliptexture Memory Usage

Because cliptextures are a voracious consumer of system and texture memory, it is
important to accurately predict the system resources required to run a cliptexture
application. It is better to customize your application than to rely on the cliptexture auto
resizing feature, since auto-resizing does not take into account multiple cliptextures or
pfTextures in your application.

Cliptextures use both system memory (texel caching, read queue elements as well object
overhead) and texture memory. The following estimation ignores the smaller
contributors to system memory overhead and concentrates on image cache consumption
of system memory for mem regions and tex regions in texture memory.

System Memory Estimation
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The following values are required to estimate system memory requirements:
¢ Size of clipmap level 0

* Clip size (in texels)

¢ Tile size (in texels; assuming tile size is the same for all levels)

* Texel size in bytes

*  Whether the tiles have high disk latency

Given these values, compute the estimate for system memory requirements using the
following procedure:
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Round up clip size to even multiple of tile size in each dimension.
Divide each dimension by tile size in that dimension.
Add 2 tiles to each dimension for a tile boundary of 1.

If there is high latency downloading, such as reading tiles over the network or
decompressing tiles, add 4 tiles per dimension, giving a tile boundary of 2.

You now have the number of tiles in each dimension per clipped level.

Multiply each tile number in each dimension by the corresponding tile size in that
dimension.

You now have the number of texels in each dimension.

Multiply the texel dimensions together.

Scale by the size of each texel.

Add in the fixed cost of image cache structs.

You now have the system memory cost in bytes for each clipped level.

Treat each level bigger than clip size as clipped. Add 4/3 of the clip size scaled by
the texel size for the pyramid levels.

This estimate is a bit too conservative, since the lowest clipped levels may exceed
the entire level size with a border of two tiles. It is a function of tile size and clip
size.

Scale the clipped level size by the number of clipped levels.

Example Estimating System Memory Requirements
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The example uses the following values in its estimation:

2M top level

1K clip size

512 tile size (everything square)
1 byte texel size (LMV example)

Example 12-1 estimates system memory requirements using the preceding procedure.
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Example 12-1  Estimating System Memory Requirements

No-op: 1K, 1K (for both s and t).

1K/512 =2, 2 (for both s and t).

2+4 =6, 6 (for both s and t; high latency on tile download)

6 * 512 = 3K, 3K (for both s and t)

3K *3K =9M

IM*1=9M

9M * 10 = 90M (for 2M -> 4K levels) + 2M (for 2K level) = 92M
4/3*1K*1K=1.3M

Total Size 92M + 1.3M = 93.3M

O ® N o U e

Texture Memory Estimation

The following values are required to estimate texture memory requirements:

¢ clip size (in texels)

¢  whether the clipmap is virtual or non-virtual

e number of levels in use (if less than 16)

Given these values, you can compute the estimate for texture memory requirements
using one of the following guidelines:

¢ If the clipmap is virtual, multiply the number of levels by the square of the clip size.
e If the clipmap is non-virtual, do the following:

1. Multiply the number of levels bigger than the clip size by the square of the clip
size.

2. Add 4/3 times the clip size squared.

There is, however, a further complication involved in accurately estimating texture
memory requirements. The following subsection describes it.

Texture Memory Usage: A Further Complication

InfiniteReality rendering boards come with either 16 or 64 megabytes of texture memory.
Unfortunately, you cannot just use the texture memory any way you want. The texture
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memory is divided into two equal banks. Each adjacent Mipmap level, clipmapped or
not, must be placed in opposite banks. This ends up restricting the amount of texture
memory available for clipmapping.

A further restriction is that texture formats can take up 16 bits or 32 bits of data per texel,
but nothing in between. This means an 888 RGB format takes up 32 bits per texel, just like
an 8888 RGBA format.

To give you an example of this restriction, consider an example using RGB texel data, 8
bits per component, and a clip size of 2048 by 2048. The largest level is 8K by 8K. The
system has an RM board with 64M of texture memory; so, it would seem that there is
plenty room, but the following calculation shows otherwise:

1. The cliptexture is non-virtual; so, the total texture memory requirement is the clip
size times the number of clipped levels plus 4/3 of the pyramid.

2. 4K, 4K levels are clipped to 2K X 2K: RGB, 8 bits per channel 4 bytes (not 3) per texel
times 2K X 2K = 4M of texels per level.

There is 6M of texture memory per clipped level.

2K and below is the pyramid; so, 4/3 of 16M = 21-1/3M.

3

4. So, that is 32M of texture memory.

5

6. The total is 53-1/3M of texture memory.

Unfortnately, the texture does not fit into texture memory because of the following:
1. 64M of texture memory means two 32M banks.

2. Each level must be in the opposite 32M bank.

3. Consequently, 8K level becomes 16M in bank 0 (16M left).

4. Atthe 4K level, 16M goes into bank 1 (16M left).

5. At the 2K level, 16M goes into bank 0 (OM left).

6. Atthe 1K level, 8M goes into bank 1 (8M left).

7

At the 512 level, there is no room in bank 0

The best you could do is to have only one clipped level, as follows:
1. At the 4K level, 16M goes into bank 0 (16M left).
2. At the 2K level, 16M goes into bank 1 (16M left).
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3. Atthe 1K level, 8M goes into bank 0 (8M left).

4. At the 512 level, 4M goes into bank 1 (12M left).

5. At the 256 level, 2M goes into bank 0 (6M left) and so on.
Probably a better solution would be to use the 5551 format RGBA texels, which only use
16 bits per texel, allowing more levels, as follows:

1. At the 32K level, 8M goes into bank 0 (24M left).

At the 16K level, 8M goes into bank 1 (24M left).

At the 8K level, 8M goes into bank 0 (16M left).

At the 4K level, 8M goes into bank 1 (16M left).

At the 2K level, 8M goes into bank 0 (8M left).

At the 1K level, 4M goes into bank 1 (12M left).

At the 512 level, 2M goes into bank 0 (6M left).

At the 256 level, 1M goes into bank 1 (11M left) and so on.

® N o g bk »W DN

You can get a lot more mileage out of smaller texel formats than fewer levels. This
becomes even more true for RMs with only 16M of texture memory.

Using Cliptextures in Multipipe Applications

OpenGL Performer provides good support for multipipe cliptextures, allowing
applications to ignore many of the differences between single pipe and multipipe
operations. The primary issue in multipipe applications is knowing when to make
master/slave cliptextures, what parameters should be shared, and when and how to
create separate centers in different master and slave cliptextures.

When to Make Master/Slave Cliptexture Groups
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When it is possible, it is desirable to make master/slave cliptexture groups in multipipe
applications. Master/slave groups share the same mem regions and disk access
bandwidth, reducing the load on the system. Masters and slave can also take advantage
of sharegroups, automating some of the work of synchronizing slave cliptextures with
their masters.
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Master and slave cliptextures do not work when the different cliptextures represent
different textures. Separate cliptextures must be created for each texture that has to be
displayed. Another condition that prevents using master/slave cliptexture groups is
when the center for the cliptexture in each pipe is completely independent. Master and
slave cliptextures assume that the tex region for each cliptexture is always completely
enclosed by the shared mem region. If that assumption is violated, the cliptexture data
will be invalid for the parts of the tex region outside of the shared mem region, and the
cilptextures will print error messages.

Slave Cliptextures with Offset Centers

There is no reason for the slave cliptextures to have the same centers as the master, as
long as the tex regions always stay within the mem region. Sometimes it is desirable for
an application to have views with slightly different viewpoints for each pipe. This can be
done by turning of clipcenter sharing and having the application set a slave’s center
directly. The application is responsible for keeping the tex region inside the master’s
mem region at all times. The position of the master’s center determines the groups mem
region, so the master’s center can not be offset from the center of the mem region.

Tex region

Mem region .
Offset tex region

Offset tex region

Figure 12-14 Offset Slave Tex Regions

Virtualizing Cliptextures

Virtual cliptextures are one of the most challenging features to use in an OpenGL
Performer application. Cliptextures themselves are challenging enough, since they tie
together functionality in the scene graph, pfPipes and pfChannels. Virtual cliptextures
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add an additional level of complication, since they require that the application segment
the terrain, estimate the texture LOD levels needed for each terrain segment based on the
current eyepoint, and update the virtual cliptexture parameters appropriately.

Some tips to consider when working with virtual cliptextures:

* Get your application working with a non-virtual cliptexture first. It is hard to
separate virtual cliptexture problems form basic cliptexture configuration problems
(which are usually easier to fix).

¢ Start off with a single segment and as little complexity in the application as possible;
then get that working. It makes debugging much simpler.

*  When in doubt, print it out. For debugging purposes, a well placed set of pfNotify()
statements can be really helpful. It is also useful to set up a canonical scene, where
you know what parameters should be generated, then compare them against what
the program does.

¢ Take maximum advantage of sample code and utilities. Try to re-use some of the
example code provided by OpenGL Performer. Using (or just reading) through the
loaders, example programs, and utilities listed in this section “Cliptexture Sample
Code” on page 448 can save you hours of work.

Customizing Load Control
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Setting texload time, multiple cliptexture load control, normally, bandwidth from disk to
system memory is optimized by image cache configuration. You can use the streams
feature in image cache configuration files to maximize bandwidth by configuring the
system with as more disks and disk controllers, and copying the texture data files over
multiple disks. By using the streams feature in image cache configuration files, you can
then parallelize the disk downloads over separate disks and disk controllers. You can
also stripe disks to increase disk download bandwidth.

Texture memory bandwidth is more a matter of careful rationing of DRAW process time
each frame. You will have to ration between sending geometry and texture data to the
graphics pipeline. You can adjust the cliptexture’s texload time to minimize idle time in
the draw process. DTR computes texture download time using a cost table to estimate
what the download updates will cost each frame. It is a good estimate but not a perfect
one. You may have to build in some time margin in the DRAW process to avoid dropping
frames.
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Download time setting can be as simple as finding the minimum time that still allows the
cliptexture to completely sharpened when the clipcenter is stationary. If the texload time
is too small, a cliptexture can get “stuck” and never sharpen beyond a given level.

If you are a sophisticated user, you might consider adjusting the invalid border as well,
which will change the effective clip size of the cliptexture. This could be used to allow a
new level to be gradually loaded over a number of frames, trading off a finer visible level
against a smaller effective clip region.

Custom Read Functions

Custom read functions allow the application to control what happens when texture data
is downloaded from disk. Operations include: texture data decompression, texture data
image processing, signaling an update of a disk cache from tape, etc. As described in the
API section, replacing the read function is fairly easy to do in OpenGL Performer.

There is one caveat: increasing the overhead of read functions can have undesirable
consequences. The latency of read operations determines the minimum size of the image
cache mem regions, since they need to lookahead to compensate for high latency reads.
Low bandwidth read operations effect how fast the center can move before DTR must
blur down to coarser levels.

One way around these problems is to implement a lookahead disk cache. Rather than
have the read function decompress files, have it read files from a cache of files that have
already been decompressed by an asynchronous process. The read function can signal
the other process to decompress more files as it gets close to the edge of the cache.

Texture data image processing, since it is relatively fast compared to disk reads, usually
does not require such elaborate measures. Changing the read function can be done in
conjunction with modifying the image cache mem region data to ensure that all data read
from disk is processed. A good example of this technique is the gridify feature, described
in “Invalidating Cliptextures” on page 428.

Cliptexture Sample Code

448

The best way to learn to use cliptextures is to work from existing code. OpenGL
Performer has a number of demo programs, test programs, loader code, and utilities,
with different levels of sophistication:
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Test and Demo Programs
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[ usr/ share/ Performer/src/pguide/libpr/Clicache.cforIRIX and Linux
and YPFROOT% Src/ pgui de/ | i bpr/ T i cache. ¢ for Microsoft Windows

This is a simple | i bpr -style program that uses an image cache and the texture
transform matrix to scroll texture across a polygon.

/usr/ share/ Perforner/src/pguidel/libpr/Cicache_miin. c for IRIX
and Linux and %°FROOT% Sr ¢/ pgui de/ | i bpr/ C/i cache_mni n. ¢ for
Microsoft Windows

This program is a multiwindow version of i cache; it uses master and slave image
caches. Note that the tex regions of the slaves image caches are offset from the
master.

/usr/share/ Perforner/src/pguide/libpr/Ccliptex.c forIRIXand
Linux and %°FROOT% Sr ¢/ pgui de/ | i bpr/ C/ cl i pt ex. ¢ for Microsoft
Windows

This is a simple | i bpr -style program that uses a cliptexture to display a bird’s eye
view of data. On a system that supports cliptexturing, it moves the clipcenter,
allowing the user to see the rectangle of texture resolution move as the center
translates between opposite diagonals.

/usr/share/ Perforner/src/pguide/libpr/C cliptex_mu n. c for IRIX
and Linux and %°FROOT% Sr ¢/ pgui de/ | i bpr/ T/ cl i pt ex_mai n. ¢ for
Microsoft Windows

This is a multiwindow version of cl i pt ex. It uses master and slave cliptextures.

/usr/share/ Perforner/src/pguidel/libpf/C cliptex.c for IRIXand
Linux and %°FROOT% Sr ¢/ pgui de/ | i bpf/ C/ cl i pt ex. ¢ for Microsoft
Windows

Thisisal i bpf implementation using cliptextures. Rather than use clipcenter
nodes, it uses a simple centering mechanism based on the x and y coordinates of the
channel’s viewpoint.

/usr/share/ Perfornmer/src/pguide/libpf/Cvirtcliptex.c forIRIX
and Linux and %°FROOT% Sr ¢/ pgui de/ i bpr/ T virtcli ptex. c for
Microsoft Windows

This is the virtual cliptexture version of the cl i pt ex program. It will take any size
cliptexture and virtualize it. It divides a flat terrain in the X,y plane into a
rectangular grid, attaching geodes with callbacks to each grid square. The callback
calculates the virtual cliptexture parameters and applies them.
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/usr/share/ Perforner/src/app/sanpl e/ C perfly. c for IRIX and Linux
and YPFROOTY Sr ¢/ app/ sanpl e/ C/ perfly. ¢ for Microsoft Windows

This sample application supports cliptextured scene graphs. It assumes that the
loaders will do the basic configuration, but it does the post loading cliptexture
configuration, creating pfMPClipTextures and attaching them to pipes. It assumes
that clipcenter nodes are in the scene graph and that they will do the centering
work. Pressing g will toggle the gridify feature.

[ usr/ share/ Performer/src/app/ sanpl e/ T cli pfly. c for IRIX and Linux
and YPFROOT% Src/ app/ sanpl e/ C/ cli pfly. ¢ for Microsoft Windows

This is the cliptexture version of the per f | y sample application. It contains extra
interface sliders and buttons that allow you to control many more cliptexture
parameters.

Loaders that Support Cliptextures

lusr/share/Performer/src/lib/libpfdb/libpfimpfimc forIRIXand
Linux and %°FROOT% Src/ i b/ 1i bpfdb/1ibpfim pfi m c for Microsoft
Windows

This is the OpenGL Performer example loader. It contains simple tokens to create
clipcenter nodes and cliptextures. It is a good starting point for cliptexture
configuration in the loader.

lusr/share/ Performer/src/lib/libpfdb/libpfct/pfct.CforIRIXand
Linux and %°FROOT% Src/ i b/ 1i bpfdb/1ibpfct/pfct. Cfor Microsoft
Windows

This is a more sophisticated cliptexture sample loader. It automatically creates some
simple cliptextured geometry, and supports virtual cliptextures, providing the
geometry segmentation and scene graph callbacks.

lusr/share/ Performer/src/lib/libpfdb/libpfvct/pfvct. Cfor IRIX
and Linux and YWPFROOTY Src/ | i b/ 1i bpfdb/ i bpfvct/pfvct. Cfor
Microsoft Windows

This is a very simple pseudo-loader that will adjust a cliptextures parameters so it
can be used as a virtual cliptexture, even if its dimensions are smaller than 32K by
32K.

/usr/share/ Performer/src/lib/libpfspherepatch/pfspherepatch.C
for IRIX and Linux and
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Cliptexture Utility Code
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UPFROOTY Src/ 1i b/ i bpfspherepat ch/ pf spherepat ch. Cfor Microsoft
Windows

This is a cliptexture loader designed to apply a cliptexture to a sphere. It is a good
example of a specific cliptexture application.

lusr/share/ Performer/src/lib/libpfutil/gridify.CforIRIXand
Linux and %PFROOT% Src/ i b/ i bpfutil/gridify. Cfor Microsoft Windows

The gridify functionality illustrates techniques for dynamically modifying
cliptexture data and illustrates how to replace the cliptexture’s read function.

lusr/share/ Performer/src/lib/libpfutil/trav.c forIRIX and Linux
and YPFROOT% Src/ i b/ i bpfutil/trav. c for Microsoft Windows

The function pfuFindClipTextures() illustrates how to traverse the scene graph to
find cliptextures.

lusr/share/ Performer/src/lib/libpfutil/pfuC ipCenterNode. Cfor
IRIX and Linux and %°FROOT% Src/ i b/ i bpfutil/pfuC i pCenterNode.C
for Microsoft Windows

This code defines the clipcenter node and contains example code for creating
customized clipcenters by subclassing.

lusr/share/ Perfornmer/src/lib/libpfutil/clipcenter.c forIRIXand
Linux and %PFROOT% Src/ i b/ i bpfutil/clipcenter. c for Microsoft
Windows

The pfuProcessClipCenters() and pfuProcessClipCentersWithChannel() functions
illustrate how to use clipcenters in an application.

lusr/share/ Performer/src/lib/libpfutil/cliptexture.c forIRIX
and Linux and %°FROOT% Src/ | i b/ 1i bpfutil/cliptexture. c for Microsoft
Windows

The pfuAddMPClipTextureToPipes() and pfuAddMPClipTexturesToPipes()
functions illustrate how to work with cliptextures and pipes.
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pfwWindows
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Windows

Rendering to the graphics hardware requires a window. A window is an allocated area
of the screen with associated framebuffer resources.

For IRIX and Linux, the X window system manages the use of shared resources among
the different windows. Windows can be requested directly from an X window server. By
use of the GLX extension, OpenGL Performer-based OpenGL graphics contexts can
render into X windows.

For Microsoft Windows, HWNDs and OpenGL/WGL contexts are used.

This chapter describes how to create, configure, manipulate, and communicate with a
window using pfWindow in OpenGL Performer. The extended | i bpf object
pfPipeWindow, based on pfWindow, is also mentioned in this chapter as the two objects
share much functionality. Likewise, for good understanding of windowing issues, read
the next chapter, Chapter 14, “pfPipeWindows and pfPipeVideoChannels.”

The pfWindow object provides an efficient windowing interface between your
application and the X Window System or the Microsoft Windows GUI. pfWindows
typically create an X window (an HWND on Microsoft Windows) or can also be
configured to embed your rendering area within a window created with Motif® or other
windowing toolkits. | i bpr provides utilities to shield you from the differences between
the different types of windows and guide you in your dealings with the window system.
pfWindows also keep track of your graphics state: they include a pfState which is
automatically initialized when you open a window and switched for you when you
change windows. Simple | i bpr windowing support centers around the pfWindow. The
I'i bpf windowing support utilizes a pfWindow as part of a pfPipeWindow.

OpenGL Performer automatically configures and initializes your window so that it will
be ready to start rendering efficiently. In the simplest case, pfWindows make creating a
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graphics application that can run on any SGI machine with OpenGL a snap. pfWindows
do not limit your ability to configure any part or all of your windowing environment
yourself; you can use the | i bpr pfWindows to manage your GL windows even if you
create and configure the actual windows yourself.

Creating a pfWindow

A pfWindow structure is created with pfNewWin(). It can then be immediately opened
with pfOpenWin(). Example 13-1 shows the most basic pfWindow operationsin| i bpr
program: to open and clear a pfWindow and swap front and back color buffers.

Example 13-1  Opening a pfWindow

int main (void)

{
pf W ndow *wi n;
/* Initialize Performer */
pfinit();
pfInitState(NULL);
/* Create and open a W ndow */
win = pf NewW n( NULL) ;
pf WnName(win, “Hello from OpenG. Performer”);
pf GpenW n() ;
/* Rendering | oop */
while (1)
{
/* Clear to black and nax depth */
pf A ear (PFCL_COLOR | PFCL_DEPTH, NULL);
pf SwapW nBuf f er s(wi n);
}
}

The pfWindow in Example 13-1 will have the following configuration:

Window system interface
An OpenGL window using the OpenGL /X GLX interface on IRIX and
Linux or an OpenGL HWND on Microsoft Windows.
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Screen On IRIX and Linux, the pfWindow will open a window on the screen
specified by the DISPLAY environment variable or else on screen 0. On
Microsoft Windows, screen 0 will always be used.

Position and size
The position and size will be undefined and the window will come up
as a rubber-band for the user to place and stretch.

Framebuffer configuration
The window will be double-buffered RGBA with depth and stencil
buffers allocated. The size of these buffers will depend on the available
resources of the current graphics hardware platform. pfWindows will
also have multisample buffers allocated if they are available on current
hardware platform.

|'i bpr state A pfState will be created and initialized with all modes disabled and no
attributes set.

Graphics state The pfWindow will be in RGBA color mode with subpixel vertex
positioning, depth testing and viewport clipping enabled. The viewing
projection will be a two-dimensional one-to-one orthographic mapping
from eye coordinates to window coordinates with distances to near and
far clipping planes -1 and 1, respectively. The model matrix will be the
current matrix and will be initialized to the identity matrix.

Typically, pfWindows go through a bit more initialization than that of Example 13-1. The
pfWindow type, set with pfWinType(), is a bitmask that selects the window system
interface and the type of rendering window. Table 13-1 lists the possible selectors that can
be ORed together for specification of the window type.

Table 13-1 pfWinType() Tokens

PFWIN_TYPE_

Bitmask Token Description

X Window will be an X window on IRIX and Linux but will be an HWND on
Microsoft Windows. This is the default.

STATS Window will have framebuffer resources to accommodate hardware statistics
modes. This type cannot be combined with PFWIN_TYPE_OVERLAY or
PFWIN_TYPE_NOPORT.

OVERLAY Window will have only overlay planes for rendering. This type cannot be

combined with PEWIN_TYPE_STATS or PFWIN_TYPE_NOPORT.
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Table 13-1 pfWinType() Tokens (continued)

PFWIN_TYPE_

Bitmask Token Description

NOPORT Window will have a graphics context but no physical window or graphics or
framebuffer rendering resources and will not be placed on the screen. This
token can not be used in combination with any other type token.

PBUFFER The pfWindow drawable will be created as a pbuffer and will not be visible.

UNMANAGED  Other than select upon open, no unrequested window management operations
are done automatically on the pfWindow.

The selection of screen can be done explicitly with pfWinScreen(), or implicitly by
opening a connection to the window system using pfOpenScreen() with the desired
screen as the default screen. A window system connection can communicate with any
screen on the system; the default screen only determines the screen for windows that do
not have a screen explicitly set for them. Only one window system connection should be
opened for a process. See “Communicating with the Window System” later in this
section for details on efficient interaction with the window system.

The position and/or size, is set with pfWinOriginSize(). If the x and y components of the
origin are (-1), the window will open with position undefined for the user to place. If the
x or y components of the size are (-1), the window will open with both position and size
undefined (the default) for the user to place and stretch. On IRIX and Linux, the X
window manager may override negative origins and place the window at (0,0). If the
window is already opened when pfWinOriginSize() is called, the window will be
reconfigured to the specified origin and size upon the next pfSelectWin(). Similarly,
pfWinFullScreen() causes a window to open as full screen or to become full screen upon
the next call to pfSelectWin(). A full screen window will have its border automatically
removed so that the drawing area truly gets the full rendering surface. The routines for
querying the position and size work a bit differently than the pattern established by the
rest of | i bpr get and set pairs of routines. This is because a user may change the origin
or size independently of the program and under certain conditions, querying the true
current X window size and origin can be expensive. pfGetWinOrigin() and
pfGetWinSize() will always be fast and returns the last explicitly set origin and size,
such as by pfOpenWin(), pfWinOriginSize(), or pfWinFullScreen(). If the window
origin or size has been changed, but not through a pfWindow routine, the values
returned by pfGetWinOrigin() and pfGetWinSize() may not be correct.
pfGetWinCurOriginSize() returns an accurate size and origin relative to the pfWindow
parent. For X windows, note that it requires an expensive query to the X server and
should not be done in real-time situations. pfGetWinCurScreenOriginSize() returns the
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size and the screen-relative origin of the pfWindow. As with pfGetWinCurOriginSize(),
this command will be quite expensive and is not recommended accept for rare use or
initialization purposes.

pfPipeWindows, discussed in Chapter 14, “pfPipeWindows and pfPipeVideoChannels,”
take advantage of the multiprocessed | i bpf environment to always be able to return an
accurate window size and origin relative to the window parent. However, even for
pfPipeWindows, getting a screen-relative origin can be an expensive operation.

Hint: Write programs that are window-relative and do not depend on knowing the
current exact location of a window relative to its parent or screen.

Configuring the Framebuffer of a pfWindow

OpenGL Performer provides a default framebuffer configurations for the current
graphics hardware platform for the standard window types: normal rendering, statistics
(stats), and overlay. You may want to define your own framebuffer configuration, such
as single-buffered, stereo, etc. You can use utilities in | i bpr to help you with this task,
or create your own framebuffer configuration structure with X utilities, or even create the
window yourself and apply it to the pfWindow. pfOpenWin() respects any specified
framebuffer configuration. Additionally, pfOpenWin() uses any window or graphics
context that is assigned to it and only creates what is undefined.

pfWinFBConfigAttrs() can be used to specify an array of framebuffer attribute tokens
listed in Table 13-2. The tokens correspond to OpenGL/ X tokens. Note that if an attribute
array is specified, the tokens modify configuration with no attributes set, not the default
OpenGL Performer framebuffer configuration.
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Table 13-2 pfWinFBConfigAttrs() Tokens

PFFB_ Token Value Description
BUFFER_SIZE integer > 0 The size of the color index buffer.
LEVEL integer > 0 The color plane level:

normal color planes have level = 0
overlay color planes have level > 0
underlay color planes have level < 0

There may be only one or no levels for overlay and
underlay color planes on some graphics hardware

configurations.

RGBA Boolean: true Use RGBA color planes (instead of color index).

if present
DOUBLEBUFFER Boolean: true Use double-buffered color buffers.

if present
STEREO Boolean: true Allocate left and right stereo color buffers (allocates

if present back left and back right if DOUBLEBUFFER is specified.
AUX_BUFFER integer > 0 Number of additional color buffers to allocate.
RED_SIZE integer > 0 Minimum number of bits color for components R, G,
GREEN_SIZE and B will all be the same and be the maximum
BLUE_SIZE specified. Alpha may be different.
ALPHA_SIZE
DEPTH_SIZE integer >0  Number of bits in the depth buffer.
STENCIL integer >0  Number of bits allocated for stencil. One is used by

pfDecal rendering and three or four are used by the
hardware fill statistics in pfStats.

ACCUM_RED_SIZE integer >0  Number of bits per RGBA component for the
ACCUM_GREEN_SIZE accumulation color buffer.
ACCUM_BLUE_SIZE

ACCUM_ALPHA_SIZE

USE_GL Boolean: true Exists for historical reasons. Has no effect.
if present
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If you desire more control over the exact framebuffer configuration of your pfWindow,
you have several options. For OpenGL/X windows you can provide the appropriate
framebuffer description for the current GL operation to the pfWindow using
pfWinFBConfig(). X uses visuals to describe available framebuffer configurations.
XVisuallnfo pointer with XGetVisualInfo() returns a list of all visuals on the system and
you can search through them to find the appropriate configuration. On IRIX-based
systems, OpenGL /X also uses GLXFBConfigSGIX to describe framebuffer
configurations. You can select either the visual or the GLXFBConfigSGIX for your
window and set it on the pfWindow with pfWinFBConfig(). pfGetWinFBConfig()
always returns the corresponding X visual.

I'i bpr also offers utilities for creating framebuffer configurations (pfFBConfig)
independently of a pfWindow. pfChooseFBConfig() takes an attribute array of tokens
from Table 13-2 and will return a pfFBConfig structure that can be used with your
pfWindows, or with X Windows created outside of | i bpr, such as with Motif. You may
get back a framebuffer configuration that is better than the one you requested. OpenGL
Performer will give you back the maximum framebuffer configuration that meets your
request that will not add any serious performance degradations. There are specific
machine-dependent instances where, for performance reasons, we do limit the
framebuffer configuration. See the man page for pfChooseWinFBConfig() for the
specific details. The | i bpf uti | utility pfuChooseFBConfig() in

lusr/share/ Perfornmer/src/lib/libpfutil/xw n.c (IRIXand Linux) and
UPFROOTY Src/ lib/1ibpfutil/xw n.c (Microsoft Windows) provides a limiting
framebuffer configuration selector, complete with source code.

You can use pfQuerySys() to query particular framebuffer resources in the current

hardware configuration and then use pfQueryWin() to query your resulting framebuffer
configuration.

pfWindows and GL Windows

Note: This is an advanced topic.

For IRIX and Linux, | i bpr allows you to use X window handles and OpenGL/X
graphics contexts to create your own windows and to set them on the pfWindow. These
handles can be assigned to the pfWindow with pfWinWSDrawable() or pfWinGLCxt().
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For Microsoft Windows, you can do the same, but you must use HWNDs (instead of X
window handles) and OpenGL/WGL graphics contexts.

pfOpenWin() will automatically call pfInitGfx() and will automatically create a new
pfState for your window. If you have your own window management and do not call
pfOpenWin(), then you should definitely call pfInitGfx() to initialize the window’s
graphics state for OpenGL Performer rendering. You will also need to call pfNewState()
to create a pfState for OpenGL Performer’s state management.

For X windows, OpenGL Performer maintains two windows and a graphics context. The
top level X window is placed on the screen and is the one that you should use in your
application for selecting X events. This top level window is very lightweight and has
minimal resources allocated to it. OpenGL Performer then maintains a separate X
window that is a child of the parent X window and is the one that is attached to the
graphics context. This allows you to select different framebuffer resources for the same
drawing area by just selecting a different graphics window and graphics context pair for
the parent X window. pfWindows directly support this functionality and this is discussed
in the next section, “Manipulating a pfWindow”. Finally, with OpenGL, you may choose
to draw to a different X Drawable than a window. X windows are created with the X
function XCreateWindow(). OpenGL graphics contexts are created with
glXCreateContext(). The parent X Window can be set with pfWinWSWindow(), the
graphics window or X Drawable is set with pfWinWSDrawable() and can be an X
window, pbuffer, or pixmap. The graphics context is set with pfWinGLCxt(). OpenGL
Performer defines the following window-system-independent types defined in

Table 13-3. If you create your own window but want to use pfQueryWin(), you must also
provide the framebuffer configuration information with pfWinFBConfig().
pfQueryWin() uses the internally stored visual.

Table 13-3 Window System Types

pfWS Type X Type pfWindow Set/Get Routine
pfWSWindow X Window for IRIX and Linux pfWinWSWindow()
HWND for Microsoft Windows pfGetWinWSWindow()

pfWSDrawable Drawable (window, pbuffer, pixmap) pfWinWSDrawable()
for IRIX and Linux pfGetWinWSDrawable()

HANDLE (to window or buffer) for
Microsoft Windows
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Table 13-3 Window System Types (continued)

pfWS Type X Type pfWindow Set/Get Routine
pfGLContext OpenGL:  GLXContext for IRIXand pfWinGLCxt()
Linux pfGetWinGLCxt()
HGLRC for Microsoft Windows
pfFBConfig XVisuallnfo* or GLXFBConfigSGIX* pfWinFBConfig()
for IRIX and Linux pfGetWinFBConfig()
i nt (pixel format ID) for Microsoft
Windows
pfWSConnection Display* for IRIX and Linux only pfGetCurWSConnection()

Manipulating a pfWindow

Windows are opened with pfOpenWin() and closed with pfCloseWin(). When a
window is closed, its graphics context is deleted. If you have multiple windows, you
select the window to draw to with pfSelectWin(). Multiple windows can be made more
efficient using share groups configured with pfWinShare() to share hardware resources.
Multiple windows can be made to have swapbuffers execute simultaneously through
window swap groups created with pfAttachWinSwapGroup(). There are also some
additional modes on pfWindows to control their behavior under various operations. This
section goes through the basics of these important features.

There are some modes you can set that can effect the general look and behavior of your

window and alternate configuration windows. These boolean modes can be individually
set and changed at any time with pfWinMode() and the tokens in Table 13-4.
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Table 13-4 pfWinMode() Tokens

PFWIN_ Token

Description

NOBORDER
HAS_OVERLAY

HAS_STATS

AUTO_RESIZE

ORIGIN_LL

EXIT

Window will be without normal window system border

Overlay alternate configuration window will be managed by the pfWindow.
pfOpenWin() will automatically create an overlay window if one has not
already been set.

pfWinlndex(win, PFWIN_OVERLAY_WIN) will also automatically

create and open an overlay window if one has not already been set.

Statistics alternate configuration window will be managed by the
pfWindow. pfOpenWin() will automatically create a statistics window if
one has not already been set.

pfWinIndex(win, PFEWIN_OVERLAY_WIN) will also automatically
create and open a statistics window if one has not already been set and if the
current window cannot support statistics.

The graphics window and active alternate configuration windows are
automatically resized to match the parent pfWinWSWindow(). This
mode is enabled by default.

The origin of the pfWindow, for placement purposes, will be the lower-left
corner. X and the Microsoft Windows GUI use the upper left corner as the
origin. This mode is enabled by default.

The application will receive a DeleteWindow message upon selection of the
“Exit” from the window system menu on the window border.

Alternate Framebuffer Configuration Windows
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OpenGL Performer supports multiple framebuffer configurations for the same drawing
area with alternate configuration windows. An OpenGL Performer alternate
configuration window has the same window parent (pfWinWSWindow()) but may have
a different drawable and graphics context. There are standard alternate configuration
windows for overlay and statistics windows that can be automatically created upon

demand.

An alternate configuration window is created as a full pfWindow and is an alternate
configuration window by virtue of being given to a base window in a pfList of alternate
configuration windows, or being directly assigned as one of the standard alternate

007-1680-080



Manipulating a pfWindow

configuration windows with either of pfWinOverlayWin() or pfWinStatsWin(). A
pfWindow may be an alternate configuration window of only one base window at a time;
alternate configuration windows may not be instanced between base windows. The
sharing of window attributes between alternate configuration windows, such as the
parent X window and GL objects (for OpenGL windows), must be set with pfWinShare()
on the base window and applied to the alternate configuration windows with
pfAttachWin(). You select the desired alternate configuration window to draw into with
pfWinIndex() and provide an index into your alternate configuration window list or one
of the standard indices (PFWIN_GFX_WIN, PEWIN_OVERLAY_WIN, or
PFWIN_STATS_WIN). PEWIN_GFX_WIN is the default window index and selects the
base window. If the alternate configuration window has not been opened, it will be
opened automatically upon being selected for rendering. Example 13-2 demonstrates
creating a pfWindow using the default overlay window. The graphics drawable and
graphics context of an alternate configuration window of a pfWindow can be closed with
pfCloseWinGL(). This can be called on the base window, in which case the active
alternate configuration window’s GL window and context will be closed, or it can be
called on the alternate configuration window pfWindow directly. The main parent
window will remain on the screen and a new alternate configuration window can be
applied to it or pfOpenWin() can be called to create a new graphics window and context.

Window Share Groups
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Multiple windows on a screen will require duplicate processing and resources unless
they are set up as share groups. A pfWindow is attached to the group of another with
pfAttachWin(groupWin, attachee). The attributes to be shared are set with pfWinShare()
on any of the windows in the group. The full list of attributes are in the man page for
pfWindow (and similarly for pfPipeWindow) but most notably are
PFWIN_SHARE_GL_CXT for using the same graphics context across multiple windows,
PFWIN_SHARE_STATE for sharing full state information, and
PFWIN_SHARE_GL_OBJS for sharing display lists and textures across windows. In
particular, sharing GL objects is important if a display list (such as for fonts) are to be
created for one context and used in multiple contexts. When default alternate
configuration windows are automatically created (overlay and stats) they are configured
to share GL objects with the base window. A | i bpf pfPipeWindow example of window
share groupsisin/ usr/ share/ Perfornmer/src/ pguide/libpf/Cnultiwin.c
for IRIX and Linux and in %°FROOT% Sr ¢/ pgui de/ | i bpf/ C/ nul tiwi n. ¢ for
Microsoft Windows.
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Synchronization of Buffer Swap for Multiple Windows

On IRIX systems, double-buffered pfWindows in window swap groups will have
simultaneous hardware execution of the buffer swap. There is a similar mechanism for
pfPipeWindows activated through pfChannel share groups sharing
PFCHAN_SWAPBUFFERS_HW that is discussed in Chapter 2, “Setting Up the Display
Environment.”

A window swap group is created by attaching windows with
pfAttachWinSwapGroup(groupWin, attachee). There is no global list maintained for
the swap group and their status so you cannot get back a list of windows in the group.
However, pfWinInSwapGroup() returns 1 if the specified window as been synchronized
to a swap group and 0 otherwise. This synchronization configuration will actually take
place upon a call to pfSelectWin() for the window. Windows of separate screens can be
attached but this also requires a BNC cable (of any Ohms) to be attached to the swap
ready connectors of the graphics pipelines. Detach from swap groups is not supported.
GLX barriers are used for multi-pipeline synchronization. If necessary, you can have a
pfWindow explicitly join a specific barrier group with pfWinSwapBarrier(). When
windows of multiple screens are attached, the video vertical retrace of those screens
should also be syncrhonized with genl ock( 7).

Communicating with the Window System
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You can communicate with a local or remote window server by means of a window
system connection, a pfWSConnection (in X, also known as a Display connection). You
can use your pfWSConnection for selecting X events for your window, as is
demonstrated in Example 13-4.

I'i bpr offers several utilities for creating a connection to a window server. A given
connection can communicate with any screen managed by that window server so usually
a process only needs one connection. A process should not share the connection of
another process, so you will need a connection per process. Typically, there is exactly one
window server on a machine but that is not required. li bpr maintains a
pfWSConnection for the current process. By default, this connection obeys the setting of
the DISPLAY environment variable which can point to a window server on a local or a
remote machine. The current connection can be requested with
pfGetCurWSConnection() and can be set with pfSelectWSConnection(). Whenever
possible, use this connection to limit the total number of open connections.
pfOpenScreen() is a convenient mechanism for opening a connection with a specified
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default screen. pfOpenWSConnection() allows you to specify the exact name specifying
the desired target for the connection. Both pfOpenScreen() and
pfOpenWSConnection() allow you to specify if you would like the new connection to
automatically be made the current | i bpr pfWSConnection; this is recommended.

More pfWindow Examples
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Example 13-2 demonstrates the creation of a window with a default overlay window.

Example 13-2  Using the Default Overlay Window

int main (void)

{

pf Wndow *w n, *over;

/* Initialize Performer */

pflnit();

pflnitState( NULL);

/* Initialize the w ndow. */
win = pf NewW n( NULL) ;
pf WnOri gi nSi ze(wi n, 100, 100, 500, 500);
pf WnName(wi n, “OpenG. Performer”);
pf WnType(wi n, PFWN_TYPE_X);
pf WnMbde(wi n, PFW N_HAS_OVERLAY, 1);
pf CpenW n(wi n) ;
/* First select and draw into the overlay w ndow */
pf W nl ndex(wi n, PFW N_OVERLAY_WN);
/* Select causes the index to be applied */
pf Sel ect W n(win);
/* Then select the main gf x wi ndow */
pf W nl ndex(wi n, PFW N_GFX W N);
pf Sel ect Wn(wi n);

}

Example 13-3 demonstrates creating a custom overlay window and is taken from the
sample program

[ usr/ share/ Performer/src/pguide/libpr/C/w nfbconfig.c for IRIX and
Linux and YPFROOT% Sr ¢/ pgui de/ | i bpr/ T wi nf bconfi g. ¢ for Microsoft
Windows.
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Example 13-3  Creating a Custom Overlay Window

static int OverlayAttrs[] = {
PFFB_LEVEL, 1, /* Level 1 indicates overlay visual */
PFFB_BUFFER SI ZE, 8,

None,
}
int main (void)
{
pf Wndow *wi n, *over;
/[* Initialize Performer */
pflnit();
pflnitState(NULL);
[* Initialize the wi ndow */
win = pf NewW n( NULL) ;
pf WnOri gi nSi ze(wi n, 100, 100, 500, 500);
pf WnName(wi n, “OpenG. Perforner”);
pf WnType(wi n, PFW N_TYPE_X);
pf W nMbde(wi n, PFW N_HAS OVERLAY, 1);
over = pf NewwW n( NULL);
pf WnNanme(over, “OpenG. Performer Overlay”);
pf WnType(over, PFWN_TYPE_X | PFW N_TYPE_OVERLAY);
/* See if we can get the desired overlay visual */
if (!(pfChooseW nFBConfig(over, OverlayAttrs)))
pf Not i fy( PFNFY_NOTI CE, PFNFY_PRI NT,
“pf ChooseW nFBConfig failed for OVERLAY win”);
pf CpenW n(wi n) ;
/* First select and draw into the overlay w ndow */
pf W nl ndex(wi n, PFW N_OVERLAY_WN) ;
/* Sel ect causes the index to be applied */
pf Sel ect W n(wi n);
/* Then select the main gfx w ndow */
pf Wnl ndex(wi n, PFWN_GFX WN);
pf Sel ect Wn(wi n);
}
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Example 13-4 demonstrates the selection of X input events on a pfWindow. This example
is taken from / usr/ shar e/ Per f or mer/ src/ pgui de/ | i bpr/ C hl cube. ¢ for IRIX
and Linux and from %°FROOT% Sr ¢/ pgui de/ | i bpr/ C/ hl cube. ¢ for Microsoft
Windows.. See the/ usr/share/ Performer/src/pguide/libpf/C/ conplex.c
sample program for a detailed example of using either standard or forked X input on
pfWindows for IRIX and Linux and sample program

9YPFROOTY Sr ¢/ pgui de/ | i bpf/ C/ conpl ex. ¢ for Microsoft Windows.

Example 13-4  pfWindows and X Input
pf WsConnect i on Dsp;

void main (void)

{
pf W ndow *wi n;
pf WBW ndow xwi n;

/* Initialize Performer */

pfinit();
pf I nitState(NULL);

/[* Initialize the wi ndow */
win = pf NewW n( NULL) ;
pf WnOri gi nSi ze(wi n, 100, 100, 500, 500);
pf WnName(wi n, “OpenG. Performer”);
pf WnType(wi n, PFW N_TYPE_X);
pf CpenW n(wi n) ;

/* set up X input event handling on pfWndow */
Dsp = pf Get Cur WsConnecti on();

Xwi n = pf Get W nWSW ndow( wi n) ;

XSel ect | nput (Dsp, xwi n, KeyPresshMask );

XMapW ndow( Dsp, Xxw n);

XSync(Dsp, FALSE) ;

do_event s(w n);
}
static void
do_event s( pf W ndow *wi n)

{
while (1) {
whi | e (XPendi ng(dsp))
{

XEvent event;
XNext Event (Dsp, &event);

007-1680-080 467



13: Windows

switch (event.type)

{

case KeyPress:

j.”
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Chapter 14

pfPipeWindows and pfPipeVideoChannels

This chapter describes the additional windowing and video-channel based functionality
provided by pfPipeWindows and pfPipeVideoChannels. These | i bpf objects, based on
their | i bpr counterparts, pfWindows and pfVideoChannels, provide automatic
configuration, multiprocessing, and extended functionality by being hooked together
with pfChannels.

Using pfPipeWindows

OpenGL Performer can automatically create and open a full screen window with a
default configuration for your pfPipe. At the other extreme, you can create and configure
your own windows and set them on a pfPipe. There is a single interface for creating,
configuring, and managing the windows. The pfPipeWindow is the mechanism by
which a pfPipe knows about and keeps track of the windows to which it is to render, the
size of the render area, and the framebuffer configuration. pfPipes and pfChannels need
this information for proper viewport and frustum management and for using rendering
features like antialiasing, transparency for fade LOD, and layers for decal geometry that
are all affected by framebuffer configuration.

In the simplest case, OpenGL Performer automatically creates a pfPipeWindow for the
application and automatically open a full screen window upon the first call to pfFrame().
This trivial case is demonstrated in Example 14-1.

Creating, Configuring and Opening pfPipeWindow
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In most cases, there are some window parameters, such as size and origin, that you will
want to set. You may also have custom graphics state that you need to set to fully
initialize your rendering window. This section describes the basics for setting up
windows through the pfPipeWindow mechanism.
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A pfPipeWindow can be created for a pfPipe using pfNewPWin(pipe). If you create a
pfPipeWindow, then you are responsible for explicitly opening it. The call to
pfOpenPWin(pwin) from the application process causes the next call to pfFrame() to
trigger the opening of the pfPipeWindow in the draw process. A pfPipeWindow created
in the application will be a rubber-band window of undefined size for the user to stretch
out. This is in contrast to the full screen window that OpenGL Performer creates on your
behalf in the fully automatic case. To easily get a full screen window, you can use the
pfPWinFullScreen() function. pfPWinOriginSize() can be used to set a fixed position
and size for the window. The code in Example 14-1, placed in the application process,
creates and opens a window in the lower-left corner of the screen of size 500 pixels on
each side.

Example 14-1  Creating a pfPipeWindow

mai n()
{
pf Pi pe *pi pe;
pf Pi peW ndow *pwi n;
pflnit();
pf Config();

/* Create pfPipeWndow for pfPipe 0 */

pi pe = pf CGet Pi pe(0;

pwi n = pf NewPW n( pi pe);

/* Set the origin and size of the pfPipeWndow */
pf PWnOri gi nSi ze(pwin, 0, 0, 500, 500);

/* Tell OpenG. Perforner that the pfPipeWndow is ready to
* be opened

*/

pf OpenPW n( pwi n) ;

/* trigger the opening of the pfPipeWndow

* in the draw process

*/

pf Frame() ;

whi | e(! Si mDone())
(..}
}

The pfPipeWindow is always physically opened in the draw process when processing
the application frame that requested the window to be opened. When both the cull and
draw processes are running as separate processes, there might be a 2-frame delay (two
additional calls to pfFrame()) for the window do actually be opened. Additionally, if the
draw is running as a separate process, the window will not be opened right after pfFrame

007-1680-080



Using pfPipeWindows

007-1680-080

but some time in that following frame. If the pfPhase is such that the application process
is allowed to spin ahead while the draw process does expensive initialization (anything
but PFPHASE_FREE_RUN), the application process may execute many pfFrame() calls
before the window is physically opened in the draw process. If in the application process
you need to check on a result from opening the window, such as framebuffer

configuration, you will want to do something that is in effect equivalent to the following:

while (!pflsPWnOpen(pwi n)) pfFrane();

pfPipeWindows are actually built upon | i bpr pfWindows, but have added support for
handling the multiprocessed environment of | i bpf applications and fit into the | i bpf
display hierarchy of pfPipes, pfPipeWindows, and pfChannels. Additionally,
pfPipeWindows support the multiprocessing environment of | i bpf by having a
separate copy of each pfPipeWindow in each pipeline process. All of the “windowness”
of pfPipeWindows really comes from the fact that there is a pfWindow internal to the
pfPipeWindow. Many of the basic support routines, such pfPWinFullScreen() and
pfWinFullScreen(), have very similar functionality for pfWindows and pfPipeWindows.
However, there are situations where pfPipeWindows are able to provide the same
functionality in a much more efficient manner. Management of dynamic window origin
and size is one case where pfPipeWindows have a real advantage over pfWindows.
pfPipeWindows are able to take advantage of the multiprocessed | i bpf environment to
always be able to return an accurate window size and origin relative to the window
parent. A process separate from the rendering process is notified by the window system
of changes in the pfPipeWindow’s size in an efficient manner without impacting the
window system or the rendering process. This can be forced off for the real-time static
displays of a deployed visual simulation system by making the pfPipeWindow of type
PFPWIN_TYPE_NOXEVENTS, which prevents OpenGL Performer from tracking the
window. Further details regarding basic window creation and configuration are
discussed with pfWindows in Chapter 13, “Windows.”

Note: pfPWin*() routines expect a pfPipeWindow and the pfWin*() routines a
pfWindow. These routines are not interchangeable: pfWindow routines cannot accept
pfPipeWindows nor the reverse. The PFWIN_* tokens can be used with the
pfPipeWindow routines.

Windows have some intrinsic type attributes that must be set before the window is
opened. The selection of the screen of a window is determined by the pfPipe that it is
opened on, set for both the pfWindow and its pfPipe with the call pfPWinScreen(), or
else set by the value of the DISPLAY variable when the window is finally opened. The
window system configuration of the window must also be set before the window is

471



14: pfPipeWindows and pfPipeVideoChannels

472

opened. Windows under OpenGL operation on IRIX and Linux systems will always be
X windows. On Microsoft Windows, the windows will be HWNDs.

Note: Micrsoft Wndows virtualizes the concept of a screen as well as all available
hardware. Hence, on such systems, you cannot specify the screen connection in a manner
similar to using the DISPLAY environment variable.

An open window must be closed for its type to be changed. The window type argument
is actually a bitmask and the type of a pfPipeWindow can include the attributes listed in
Table 14-1.

Table 14-1 pfPWinType Tokens

PFPWIN_TYPE_*
Bitmask Token Type Attributes

X The default. Rendering will be done to an X window. Ignored by OpenGL as all
OpenGL rendering is done to X windows.

STATS The window’s normal drawing configuration supports graphics statistics. This
affects framebuffer configuration and fill statistics.

SHARE The pfPipeWindow automatically attaches to the first pfPipeWindow of the
parent pipe with pfAttachPWin().

PBUFFER The window drawable is a pbuffer (not visible on the screen).
NOXEVENTS  Window size and position tracking is not done.

UNMANAGED No automatic window management operations other than select for rendering
happens. Window is not auto-sized or tracked. Swapbuffers will not
automatically be done.

pfPipeWindows have a target default framebuffer configuration. The ability to meet this
target depends on the current graphics hardware configuration, as well as their type. The
following parameters are part of the target default configuration and are listed in their
order of priority. If the goal framebuffer configuration cannot be created on the current
graphics hardware configuration, lower priority parameters are downgraded as
specified in the following:

1. double buffered
2. RGB mode with 8 bits per color component (4 if 8 cannot be supported)
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3. z-buffer with depth of 23 or 24 bits, as available

4. one-bit stencil buffer (window type PFWIN_TYPE_STATS still requires four bits of
stencil)

5. multisample buffer of 8, 4, or 0 samples as available

6. four-bit stencil buffer if still available after the above is satisfied
pfPipeWindows have OpenGL Performer | i bpr rendering state automatically
initialized when they are opened. Additionally the following graphics state is

automatically initialized when a window is opened or upon any call to pfInitGfx() for
an open window:

1. RGB mode is enabled.
2. z-buffer is enabled and a z range is set.
3. Viewport clipping is enabled.

subpixel vertex accuracy is enabled.

S

The viewing matrix is initialized to a two-dimension, one-to--one mapping from eye
coordinates to window coordinates.

6. The model matrix is initialized to the identity matrix and made the current GL
matrix.

7. Backface removal is enabled.
8. Smooth shading is enabled.

9. If the current graphics hardware platform supports multisampling, multisampled
antialiasing will be enabled with pfAntialias(PFAA_ON).

10. A default modulating texture environment is created.

11. A default lighting model is created.

Custom framebuffer configuration for a pfPipeWindow can be specified with
pfPWinFBConfigAttrs(), pfPWinFBConfig(), and pfChoosePWinFBConfig(). These
routines have identical functionality as each of the corresponding pfWindow routines.
However, the function pfChoosePWinFBConfig() has the constraint that it be called in
the draw process because it creates and stores internal data from the window server that
must be kept local to the process in which it is called. Table 14-2 lists the different
pfPipeWindow routines and describes multiprocessing constraints.
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The flexibility in changing the framebuffer configuration of OpenGL /X windows or
OpenGL/HWND:s is complex. The main window can remain in place but structures
under it must be switched or replaced. If multiple framebuffer configurations are likely
to be desired, multiple graphics contexts can be created for the window using
pfWindows. pfPipeWindows and pfWindows both allow you to have a list of alternate
pfWindows that render to exactly the same screen area but may have different
framebuffer configuration. You then select the current configuration for a pfPipeWindow
with pfPWinIndex(). There are two kinds of common alternate configuration windows
that can be created automatically for you: overlay windows created in the overlay planes
and windows to support hardware fill statistics (discussed in Chapter 20, “Statistics”).
You can use pfPWinMode() to indicate that you would like these windows created for
you automatically. Special tokens to pfPWinIndex() are used to select these common
special alternate configuration windows—PFWIN_GFX_WIN,
PFWIN_OVERLAY_WIN and PFWIN_STATS_WIN—where PFEWIN_GFX_WIN selects
the normal default drawing window. Note that only a pfWindow, never a
pfPipeWindow, can be an alternate configuration window. The source code in

Example 14-2 is taken from

[ usr/ share/ Performer/src/pguide/libpf/C pipew n.c for IRIX and Linux
and from %PFROOTY% Sr ¢/ pgui de/ | i bpf/ C/ pi pewi n. ¢ for Microsoft Windows. It
demonstrates the automatic creation and selection of overlay and statistics windows for
a pfPipeWindow. This also shows usage of pfChannels and interaction between
pfPipeWindows and pfChannels discussed in the section “Creating and Configuring a
pfChannel” in Chapter 2.

Example 14-2  pfPipeWindow With Alternate Configuration Windows for Statistics

mai n()
{
pf Pi pe *pi pe;
pf Pi peW ndow *pwi n;
pflnit();
pf Config();

/* Create pfPipeWndow for pfPipe 0 */

pi pe = pf Get Pi pe(0);

pwi n = pf NewPW n( pi pe);

/* request autonatic default overlay and stats wi ndows */
pf PW nMbde( pwi n, PFW N_HAS_OVERLAY, PF_ON);

pf PW nMbde( pwi n, PFW N_HAS STATS, PF_ON);

/* Open the main graphics w ndow */

pf OpenPW n( pwi n) ;

pf Frame();
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whi | (! Si mDone())
{

i f (Shared->w nSel == PFW N_STATS WN))
{
/* select statistics window and enable fill stats */
pf PW nl ndex( Shar ed- >pw, PFW N_STATS WN) ;
pf FSt at sCl ass(fstats,
PFSTATSHW ENGFXPI PE_FI LL, PFSTATS ON);
pf Enabl eSt at sHW( PFSTATSHW ENGFXPI PE_FI LL) ;
}
el se
{
/* we are not doing statistics so turn themoff */
pf FSt at sCl ass(fstats,
PFSTATSHW ENGFXPI PE_FI LL, PFSTATS OFF);
pf Di sabl eSt at sHW PFSTATSHW ENGFXPI PE_FI LL) ;
pf PW nl ndex( Shar ed- >pw, Shar ed->wi nSel ) ;

}

/* Channel draw process drawi ng function */
voi d DrawFunc(voi d pf Channel *chan)

{
pf Pi peW ndow *pwi n;
pwi n = pf Get ChanPW n(chan);
i f (pfGet PWnlndex(pwi n) == PFW N_OVERLAY_W N)
{
/* Draw overlay inmage */
DrawOverl ay();
/* Put back the normal drawi ng wi ndow */
pf PW nl ndex(pwi n, PFWN_GFX_ WN) ;
/* Indicate that we will now draw to the w ndow */
pf Sel ect PW n( pw n);
}
/* call the main OpenCL Perforner drawi ng function */
pf Draw() ;
}

Notice that in Example 14-2, although the pfPipeWindow is double buffered, the front
and back color buffers are never explicitly swapped. For pfPipeWindows, this operation
is done automatically after all channels on the parent pfPipe have completed their
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drawing for the given frame. The color buffers of a pfPipeWindow may be swapped
explicitly with pfSwapWinBuffers. This call may be placed in a user-swap function call
back placed on the pfPipe with pfPipeSwapFunc() to replace the pfPipe normal swap
behavior. The swap callback will be called in the draw process at the end of the frame
after all pfChannels in all pfWindows have been drawn for the pfPipe. The function is
called for all of the pfPipeWindows on the pfPipe. This is additionally useful for doing
end-of-frame rendering or readbacks from the framebuffer.

You may need to set additional window and graphics state to complete the initialization
of your pfPipeWindow. Calling pfOpenPWin() from the application process does not
give you the opportunity to do this. However, with pfPWinConfigFunc(), you can
supply a window configuration callback function that will enable you to open and
initialize your pfPipeWindow in the draw process. A call to pfConfigPWin() triggers one
call of the window configuration callback in the draw process upon the next call to
pfFrame(). pfConfigPWin() can be called at any time to trigger the calling of the current
window configuration function in the draw process. Example 14-3 demonstrates
initializing a pfPipeWindow from a draw process window configuration callback. It
creates a global light to serve as the Sun in the window configuration callback. (see the
[usr/shar e/ Perforner/src/pguide/libpf/C/ conpl ex. c example for IRIX
and Linux and %°FROOT% Sr ¢/ pgui de/ | i bpf/ C/ conpl ex. ¢ for Microsoft
Windows).

Example 14-3  Custom Initialization of pfPipeWindow State

mai n()
{
pf Pi pe *pi pe;
pf Pi peW ndow *pwi n;
pflnit();
pf Config();

/* Create pfPipeWndow for pfPipe 0 */
pi pe = pf Get Pi pe(0);
pwi n = pf NewPW n( pi pe);
/* Set the configuration function for the pfPipeWndow */
pf PW nConfi gFunc(pw n, OpenPi peW ndow) ;
/* Indicate that OpenPi peW ndow should be called in the
* draw process.
*/
pf Confi gPW n( pw n);

/* trigger OpenPipeWndow to be called in the draw process */
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pf Frame();
whi | e(! Si nDone())
{ ...}
}
/* Initialize graphics state in the draw process */
voi d
OpenPi peW ndow( pf Pi peW ndow * pw)
{

/* Set some configuration stuff */

pf PWnOri gi nSi ze(pw, 0, 0, 500, 500);

/* Open the window - will give us initialized |ibpr and *
graphics state

*/

pf OQpenPW n( pw) ;

/* create a global light in the “south-west” (Q11) */
Sun = pf NewlLi ght (NULL) ;
pf Li ght Pos(Sun, -0.3f, -0.3f, 1.0f, 0.0f);

}

In Example 14-3 the functions pfPWinOriginSize() and pfOpenPWin() are now called
in the draw process, as opposed to the application process as in Example 14-1. In general,
configuring or editing any | i bpf object must be done in the application process.
pfPipeWindows must be created in the application process. However, pfPipeWindows
may be configured, edited, opened and closed in the pfPWinConfigFunc() configuration
callback which will be called in the draw process. Window operations are best done in a
configuration callback, though they can also be done in the drawing callback for a
pfChannel on the window. Any function which aspires to directly affect the graphics
context must be called in the drawing process. Table 14-2 shows which processes
(application or draw via a configuration function) that pfPipeWindow calls can be made
from and further detail about these functions can be found in the discussion of
pfWindows in Chapter 13, “Windows.”

Table 14-2 Processes From Which to Call Main pfPipeWindow Functions

pfPipeWindow Function Application Process Draw Process
pfNewPWin() Yes No
pfPWinMode() Yes Yes
pfPWinIndex() Yes Yes
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Table 14-2 Processes From Which to Call Main pfPipeWindow Functions (continued)

pfPipeWindow Function Application Process Draw Process
pfPWinConfigFunc() Yes No
pfOpenPWin() Yes Yes
pfClosePWin()
pfClosePWinGL()
pfPWinOriginSize() Yes Yes
pfPWinFullScreen()
pfGetPWinCurOriginSize() Yes Yes.
pfPWinFBConfigAttrs() Yes Yes.
pfChoosePWinFBConfig() No Yes.
pfPWinFBConfig() Yes, but the pfFBConfig* must be Yes.
valid for access in the draw process.
pfPWinType() Yes (before opened) Yes (before
pfPWinScreen() opened).
pfPWinShare(), pfAttachWin()
pfPWinWSWindow() Yes Yes.
pfPWinGLCxt() Yes, but the context must be created  Yes.
in the draw process.
pfQueryWin() No Yes.
pfMQueryWin()
pfAddPWinPVChan() Yes Yes.
pfAttachPWinSwapGroup() Yes Yes

OpenGL Performer provides GL-independent framebuffer configuration utilities. In
most cases, pfPWinFBConfigAttrs(pwin, attrs) can be used to select a framebuffer
configuration for your pfPipeWindow based on the array of attribute tokens attrs. If attrs
is NULL, the default framebuffer configuration will be selected. If attrs is not NULL, the
rules for default values follow the rules for configuring windows in OpenGL and X,
which are different from values in the OpenGL Performer default window configuration.
Such window framebuffer configuration should be done in the draw process in a
window configuration callback function before the call to pfOpenPWin(). Window
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framebuffer configuration for pfPipeWindows is identical to that of pfWindows and is
discussed in more detail in Chapter 13, “Windows,” but the following is a simple
example of the specification of framebuffer configuration taken from the sample source
code example program

[ usr/ share/ Performer/src/pguide/libpf/C pipew n.c for IRIX and Linux
and from %PFROOT% Sr ¢/ pgui de/ | i bpf/ T pi pew n. ¢ for Microsoft Windows:

Example 14-4  Configuration of a pfPipeWindow Framebuffer

static int FBAttrs[] = {
PFFB_RGBA,
PFFB_DOUBLEBUFFER,
PFFB_DEPTH_SI ZE, 24,
PFFB_RED SI ZE, 8,
PFFB_SAMPLES, 8,
PFFB_STENCI L_SI ZE, 1,
NULL,

I

mai n()

{
pf Pi pe *pi pe;
pf Pi peW ndow *pw n;
pflnit();

pf Config();

/* Create pfPipeWndow for pfPipe 0 */

pi pe = pf CGet Pi pe(0);

pwi n = pf NewPW n( pi pe);

/* Set the franmebuffer configuration */

pf PW nFBConfi gAttrs(Shared->pw, FBAttrs);

/* Indicate that the window is ready to open */

pf OpenPW n( pwi n) ;

/* trigger the opening of the window in the draw */
pf Frane();

}

If you want to do all of your own window creation and management you can do so and
just give OpenGL Performer the handles to your windows with the
pfPWinWSDrawable() function; you may also provide a parent X window (or HWND
on Microsoft Windows) with the pfPWinWSWindow() function. pfOpenPWin() makes
use of any windows that have already been provided. More details regarding the
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creation and configuration of pfPipeWindows and pfWindows are discussed in
Chapter 13, “Windows.”

pfPipeWindows in Action

480

pfPipeWindows allow for a reasonable amount of flexibility in the running application.
pfPipeWindows can be re-ordered on their parent pfPipe to control the order that they
are drawn in with the command pfMovePWin(pipe, index, pwin). pfPipeWindows can be
dynamically opened and closed in the application or draw processes with
pfOpenPWin() and pfClosePWin(). Additionally, pfConfigPWin() can be re-issued at
any time from the application process to call the current window configuration function
to dynamically open, close, and reconfigure pfPipeWindows.

The following example is taken from the distributed source code example file

[ usr/ share/ Performer/src/pguide/libpf/C pipew n.c for IRIX and Linux
and from YPFROOTY% Sr ¢/ pgui de/ | i bpf/ C/ pi pewi n. ¢ for Microsoft Windows. It
demonstrates the dynamic closing of a window from the application process in the
simulation loop and the reuse of pfConfigPWin() to reopen the window.

Example 14-5  Opening and Closing a pfPipeWindow

mai n()

{

/* main simulation | oop */

whi | e (! Shared->exitFl ag)

{

/[* wait until next frane boundary */

pf Sync() ;

pf Frane();

[* Set view paraneters for next frame */

Updat eVi ew() ;
pf ChanVi ew( chan, Shared->vi ew. xyz, Shared->vi ew. hpr);

/* O ose pfPi peWndow */
i f (Shared->closeWn == 1)

{
pf Cl osePW n( Shar ed- >pw) ;
ct = pfGetTime();
Shar ed- >cl oseWn = 2;

}

/* then wait two seconds and reconfig w ndow */
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Motif

else if ((Shared->closeWn == 2) &&
(pfGetTime() - ct > 2.0f))

{
pf Conf i gPW n( Shar ed- >pw) ;
Shar ed- >cl oseWn = 3;
pf Noti fy( PFNFY_NOTI CE, PFNFY_PRI NT, “OPEN’);

You may want your windows to reside within a larger Motif interface and window
hierarchy. OpenGL Performer supports this and allows you to run the Motif main loop
in a separate process so that you can maintain control of your simulation loop. The Motif
interface is created in its own process and Motif event handlers and callbacks will be
executed in that process. The Motif callbacks set flags in shared memory to communicate
with the main application. Part of this communication is the sharing of X windows
between OpenGL Performer and Motif. The example program

[ usr/ share/ Performer/src/pguide/libpf/C notif.cforRIXand Linux and
program %PFROOT% Sr ¢/ pgui de/ | i bpf/ C/ noti f. ¢ for Microsoft Windows
demonstrate the basic elements of this integrated OpenGL Performer-Motif hook-up.

Multiple pfPipeWindows and Multiple pfPipes
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The use of multiple windows on a single graphics pipe can add overhead. The sharing of
the graphics context between windows consumes almost all of this overhead. To simply
share a single graphics context across windows of two pfPipe objects, include
PFPWIN_TYPE_SHARE in the pfPWinType() call. The sharing of pfPipeWindows and
attributes can be completely controlled by setting up the sharing manually to create
pfPipeWindow share groups with pfPWinAttach(groupPWin, attachee) and
pfPWinShare() as is done with pfWindows, discussed in Chapter 13, “Windows.”
pfPipeWindows can have pfWindows in their share group if a pfPipeWindow is the main
group window.

Multiple windows, particularly those on separate graphics pipelines, that are intended
to produce results that can be seen as a single image, such as projected side by side on a
large screen or to video outputs used for a stereo display, must have their video vertical
retraces synchronized with genl ock( 7) and their double buffering synchronized. This
is necessary for both image quality and performance reasons as the last window to finish
operation can hold up all of the rendering processes. Window double-buffering
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synchronization can be done through pfChannel share groups with the
PFCHAN_SWAPBUFFERS_HW token, as discussed in Chapter 2, “Setting Up the
Display Environment,” or explicitly by attaching the windows to form window swap
groups with pfAttachPWinSwapGroup(groupPWin, attachee) as discussed in Chapter 13,
“Windows.” pfPipeWindows can have pfWindows in their swap groups if a
pfPipeWindow is the main group window. The sample program in file

/usr/share/ Perforner/src/pguide/libpf/C multipipe.c for IRIX and
Linux and in file Y°FROOT% Sr c/ pgui de/ | i bpf/ T mul ti pi pe. ¢ for Microsoft
Windows demonstrates multipipe synchronization.

Controlling Video Displays
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You use pfPipeVideoChannel to direct the output of pfChannels to specified video
displays, as shown in Figure 14-1. OpenGL Performer uses the XSGIvc(3), which is a
Silicon Graphics extension of the X library, for video channel management.

pfPipe

\ pfChannel

\ / pfPipeVideoChannel

(channels 0, 1, 2)

pfPipeWindow

Figure 14-1  Directing Video Output

pfPipeVideoChannels are based on pfVideoChannels; however, pfPipeVideoChannels
are maintained by | i bpf and are used by | i bpf to render the output of pfChannels
within a pfPipeWindow. The pfVideoChannel API is duplicated for
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pfPipeVideoChannels. pfPVChan*() methods operate on a pfPipeVideoChannel and
pfVChan*() methods operate on a pfVideoChannel.

There are several sample programs to help understand the use of pfVideoChannels and
pfPipeVideoChannels. The | i bpr program

/usr/share/ Perforner/src/pguidel/libpr/C queryvchan. ¢ for IRIX and
Linux and the program “PFROOT% Sr ¢/ pgui de/ | i bpr/ C/ quer yvchan. ¢ for
Microsoft Windows show how to query video channel attributes through OpenGL
Performer and how to query additional attributes directly through the XSGIvc interface.
The program / usr / shar e/ Per f or mer/ sr c/ pgui de/ | i bpr/ C/ vchan. ¢ for IRIX
and Linux and the program “PFROOT% Sr ¢/ pgui de/ | i bpr/ C/ vchan. ¢ for
Microsoft Windows show basic video channel creation. On an InfiniteReality, this
example does resizing and translation of the video channel output area. The | i bpf
program/ usr/ shar e/ Performer/src/ pgui de/li bpf/C pvchan. ¢ for IRIX and
Linux and the program %PFROOT% Sr ¢/ pgui de/ | i bpf/ C/ pvchan. ¢ for Microsoft
Windows show basic pfPipeVideoChannel creation and hookup.

Creating a pfPipeVideoChannel
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You create a pfPipeVideoChannel from a pfPipe using pfNewPVChan() and providing
the parent pfPipe. The pfPipeVideoChannel is then attached to a pfPipeWindow with
pfAddPWinPVChan(), which returns an index into the pfPipeWindow’s video channel
list. Additionally, if the pfPipeVideoChannel has not already been assigned a hardware
video channel with pfPVChanld(), the next active video channel will be assigned.

pf Pi pe *p = pf Get Pi pe(0);

pf Pi peVi deoChannel *pvc = pf NewPVChan(p);

pf PVChanl d( pvc, 0) ;

pvcl ndex = pf PW nAddPVChan(pwi n, pvc);

To find out if a pfPipeVideoChannel with its current video channel assignment is active
for displaying output, call pfIsPVChanActive(), which returns 0 if the video channel
assignment is not fully defined or if the channel is not active and returns 1 otherwise. The
assignment of a hardware video channel is not complete until the screen of the pfPipe is
known and so might not be done immediately if the pfPipe screen has not been set with
pfPipeScreen() or if the pfPipeWindow is not open. Even if you have explicitly assigned
a hardware video channel ID, it is only meaningful relative to a known screen. The
hardware video channel assignment can be changed at any time with pfPVChanlId(). It
is an error to have multiple pfPipeWindows and pfPipeVideoChannels attempt to
manage the same hardware video channel. The index returned by pfAddPWinPVChan()
is then used for a pfChannel to reference this pfPipeVideoChannel. pfPipeWindows
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always have an initial pfPipeVideoChannel already attached whose default video
channel will be the first active video channel on the screen of the pfPipe. So, only add
pfPipeVideoChannels if you actually need additional video channels.

Multiple pfPipeVideoChannels in a pfPipeWindow

The only video channels a pfPipeVideoChannel can manage are those of the screen of the
pfPipe. Use pfGetNumScreenPVChans() to find out how many active video channels
are on a given screen.

To add additional pfPipeVideoChannels to a single pfPipeWindow, use
pfPWinAddPVChan(). The routine returns an index number associated with the
pfPipeWindow, or -1 if an error occurs. If the pfPipeVideoChannel does not already have
an assigned hardware video channel, the next active video channel relative to the video
channels already attached to the pfPipeWindow will be assigned.

There are list routines to manage the list of pfPipeVideoChannels on a pfPipeWindow.
Use pfGetPWinNumPVChans() to find out how many pfPipeVideoChannels are being
managed by the pfPipeWindow. pfPWinRemovePVChan() and
pfPWinRemovePVChanlIndex() disassociate a pfPipeVideoChannel from a
pfPipeWindow, using either the pfPipeWindow object or an index number to specify the
pfPipeWindow.

There are additional utilities to find pfPipeVideoChannels on pfPipeWindows. You can
obtain the index value of a pfPipeVideoChannel for a pfPipeWindow using
pfGetPWinPVChanIndex(), which returns the index of a pfPipeVideoChannel, or -1 of
the pfPipeVideoChannel is not registered with the pfPipeWindow. Use
pfGetPWinPVChanld() to find a pfPipeVideoChannel on a pfPipeWindow with the
specified hardware Id. NULL will be returned if no such pfPipeVideoChannel exists on
the specified pfPipeWindow.

Configuring a pfPipeVideoChannel
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pfPipeVideoChannels are bound to their hardware video channels in a lazy fashion as
needed by configuration requests. Basic queries of a video channel do not require any
explicit binding. Changing a video channel’s properties does require explicit binding.
pfPipeWindows manage this process. However, explicit binding and unbinding might
be necessary if changes are made to video channels directly through the XSGIvc APl and
not through the pfPipeVideoChannel API. This is quite reasonable since
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pfPipeVideoChannels do not duplicate all of XSGlvc. A pfPipeVideoChannel is bound to
its hardware video channel with pfBindPVChan(). All of the pfPipeVideoChannels
associated with a pfPipeWindow can be bound in one step with pfBindPWinPVChans()
and unbound with pfUnbindPWinPVChans(). You can get the XSGIvc handle from a
pfPipeVideoChannel to do your own configuration or extended queries with
pfGetPVChanlInfo().

Use pfPipeVideoChannels to Control Frame Rate
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There are two mechanisms by which pfPipeVideoChannels can help you maintain
constant frame rate in your application. Dynamic Video Resolution (DVR) addresses
reducing load caused by filling to many pixels. Pan/Zoom video scan-out to sample
different parts of the frame buffer, under resize, to be selected asynchronously to a draw
process. Both of these mechanisms make use of editing the size and or origin of the
output area of a pfPipeVideoChannel, supported by InfiniteReality graphics platforms.
Using pfPVChanOutputSize() and pfPVChanOutputAreaScale() changes the output
area size of the bound video channel. pfPVChanOutputOrigin() changes the origin of
the output area. The pf Pi peVi deoChannel ( 3) references more routines to manage
video channel origin and size.

On InfiniteReality graphics platforms, you can use pfPipeVideoChannels to dynamically
adjust the size of the output area of the video channel. The output area is then
automatically zoomed up to full video channel size by the InfiniteReality hardware using
bilinear filtering. This operation has no added performance cost or latency. This feature
can be used to allow pfChannels to reduce their viewport size to the reduced video
channel output area. Reducing the number of pixels drawn reduces the fill load for the
pfPipe and can be used as a load management technique for maintaining constant frame
rates. pfPipeVideoChannels support manual resizing, allowing you to implement your
own load management, or automatically resizes the output area and the pfChannel
viewports. You can enable and select a resizing mode with pfPVChanDVRMode() and
providing PFPVC_DVR_MANUAL or PFPVC_DVR_AUTO. The default value is
PFPVC_DVR_OFF. For more information, see “Level-of-Detail Management” in
Chapter 5.

pfPipeVideoChannels also support asynchronous editing of their size and origin. This
can be used in an asynchronous process, or in an application process that is reliably
running at frame rate, to edit the origin and size of the video channel. These changes will
affect the following video field if the pfPVChanMode() for PEVCHAN_AUTO_APPLY
is set to 1 (default is 0) and the PEVCHAN_SYNC mode is set to
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PFVCHAN_SYNC_FIELD (default is PEVCHAN_SYNC_FRAME which selects apply
upon swapbulffers).

Real-time changes to pfPipeVideoChannel origin or size should be done between
pfSync() and pfFrame() to affect the next draw frame or video field.
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Handling Queues
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Managing Nongraphic System Tasks

This chapter describes objects that manage nongraphic tasks, including the following;:
e  Queues

* Clocks

* Memory allocation

¢ Asynchronous I/0O

* Error handling and notification

* File search paths

A pfQueue object is a queue of elements, which are all the same type and size; the default
size is the size of a void pointer. A pfQueue object actually consists of three interrelated
queues, as shown in Figure 15-1.

Input
buffer

/ Output
Z / buffer

//l

pfQueue object
Figure 15-1  pfQueue Object
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Multiprocessing

Queue Contents

488

¢ Input buffer—where processes dump values to be added to the pfQueue object

*  Output buffer—values at one end of the queue that processes may remove from the
output buffer pfQueue object

* Sorted list—sorted values that processes may not remove from the pfQueue object

Note: In nonsorting mode, there is only the input buffer; values in the output buffer and
the sorted list are transferred into the input buffer.

Values in the input buffer are not sorted and are not part of the sorted list. Values in the
sorted list and the output buffer are sorted (when the pfQueue object is in sort mode)
according to a user-defined sorting function. Sorted values of highest priority are
automatically moved from the sorted list to the output buffer whenever the pfQueue
object is sorted. Priority is defined by the sorting function, for example, if a pfQueue
object contains pointers to tiles of texture, the sorting function might sort according to the
proximity of the viewer and the tile: the closer the tile is to the viewer, the higher its
priority, and the more likely the pointer to the tile will be in the output buffer. Processes
do not have access to values in the sorted list; only to those values in the output buffer.

Because there are separate input and output buffers, multiple processes can add or
retrieve elements, but only one process can actually insert elements into the input buffer
and one process retrieve elements from the output buffer at one time. The process adding
elements to the input buffer can be different from the process removing elements from
the output buffer.

The contents of the pfQueue object can be any fixed-size object; for example, pfQueues

often contain pointers to OpenGL Performer objects. You might use a pfQueue object, for
example, to organize tiles of texture according to the direction the viewer is looking and
the proximity of the viewer to the tiles. Because you declare the size and type of objects
in the pfQueue in the constructor, you cannot change the type or size of its elements after
its creation.
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Adding or Retrieving Elements

You can insert elements into the input buffer or remove them from the output buffer
using the following methods, respectively:

¢ pfQueue:insert()

¢ pfQueue:remove()

These methods can be used by multiple processes asynchronously without collision.

Warning: Do not insert NULL elements into the queue.

The pfQueue object is resized dynamically when the number of elements inserted into
the queue exceeds its declared size; the size is doubled automatically. Doubling the size
prevents repeated, incremental, costly resizing of the queue.

Tip: Doubling the size of the queue can cause excessive memory allocation. It is
important therefore to accurately declare the size of the queue.

You can set the size of the queue in the constructor of the pfQueue object or afterwards
by using pfQueue::setArrayLen(). pfQueue::getNum() returns the number of elements
in the queue.

Retrieving Elements from the Queue
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It is possible for you to do the following:

1. Create a thread to retrieve elements from the output buffer.

2. Use the pfQueue::remove() method to retrieve the element.

3. Delete the thread.

It is much easier, however, to use the pfQueue::addServiceProc() method to perform all
of those tasks. This method does the following:

* Creates a thread.

e Returns the thread ID.
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Related Methods

pfQueue Modes

490

¢ Invokes the developer-supplied function in the argument of the function.
¢ Deletes the thread.
The developer-supplied function must take as its argument an element from the output

buffer and process it. For example, if the queue contains pointers to tiles of texture, the
function might download a tile from disk to the image cache.

The pfQueue class provides a variety of other methods, described in Table 15-1, that
return information about the threads created to process the elements in the output buffer
of the pfQueue object.

Table 15-1 Thread Information

Method Description

getServiceProcPID() Returns the ID of the created thread.
pfGetGlobalQueueServiceProcPID() Returns the ID of the nth thread.
getNumServiceProcs() Returns the number of currently active threads.

pfGetNumGlobalQueueServiceProcs() Returns the number of processes that have been spr oc’d
by all pfQueues.

pfGetGlobalQueueServiceProcQueue() Returns the pfQueue associated with a particular thread.
exitServiceProc() Terminates a specific thread.

exitAllServiceProcs() Terminates all pfQueue object threads.

The pfQueue objects can run in one of two modes:
* Nonsorting

* Sorting

Either the elements in the queue are sorted according to some criteria specified by a
developer-supplied sorting function or not.

The sorting function is NULL and the sorting mode is nonsorting by default.
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NonSorting Mode

Sorting the pfQueue
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In nonsorting mode, the sorted list and the output buffer are empty; all pfQueue
elements are in the input buffer. Processes append new input objects to the front of the
queue while (potentially) other processes read an