
CASEVision™/WorkShop
MegaDev User’s Guide

Document Number 007-2114-002

CASEVision™/WorkShop MegaDev User’s Guide
Document Number 007-2114-002

CONTRIBUTORS

Written by Douglas B. O’Morain and Carol Geary
Illustrated by Douglas B. O’Morain and Carol Geary
Edited by Christina Cary
Production by Gloria Ackley
Engineering contributions by David Henke, Stuart Liroff, Ashok Mouli, Michey

Mehta, Roy Mittendorff, Anil Pal, Andrew Palay, Jack Repenning, Krishna
Sethuraman, Ravi Shankar, and Shankar Unni

© Copyright 1994, Silicon Graphics, Inc.— All Rights Reserved
This document contains proprietary and confidential information of Silicon
Graphics, Inc. The contents of this document may not be disclosed to third parties,
copied, or duplicated in any form, in whole or in part, without the prior written
permission of Silicon Graphics, Inc.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure of the technical data contained in this document by
the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS 52.227-7013 and/
or in similar or successor clauses in the FAR, or in the DOD or NASA FAR
Supplement. Unpublished rights reserved under the Copyright Laws of the United
States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd.,
Mountain View, CA 94043-1389.

Silicon Graphics and IRIS are registered trademarks and IRIX, IRIS IM, IRIS ViewKit,
Indigo Magic, Indigo Magic Desktop, CASEVision, CASEVision/WorkShop, and
CASEVision/WorkShop Pro C++ are trademarks of Silicon Graphics, Inc. Open
Software Foundation, Motif, OSF, OSF/Motif are trademarks of the Open Software
Foundation, Inc. PostScript is a registered trademark of Adobe Systems, Inc.

iii

 Contents

Introduction xv
What This Guide Contains xv
What You Should Know Before Reading This Guide xvi
Related Information xvi
Conventions xvii

1. CASEVision/WorkShop MegaDev 1
About WorkShop MegaDev Tools 1

Fix and Continue 2
C++ Browser 2

Setting Up Your System 3

2. Getting Started with Fix and Continue 5
Starting Fix and Continue 5
Redefining Functions Using Fix and Continue 6

Fix and Continue Functionality 6
Fix and Continue/WorkShop Integration 8

How Redefined Code Is Distinguished From Compiled Code 8
Restrictions on Fix and Continue 9

The Fix and Continue Environment 10
Debugger With Fix and Continue Support 10
GUI Debugger Command Line 10
Change ID, Build Path, and Other Concepts 11

Identifying Functions 11
Finding Files 11
Tracking Program Output 11

iv

Contents

3. Using Fix and Continue: A Sample Session 13
Setting Up the Sample Session 13
Redefining a Function 15

Editing a Function 16
Changing Code 17

Deleting Changed Code 19
Changing Code From the Debugger Command Line 19

Saving Changes 20
Setting Breakpoints in Redefined Code 21
Viewing Status 24
Comparing Original and Redefined Code 25

Switching Between Compiled and Redefined Code 25
Comparing Function Definitions 26
Comparing Source Code Files 27

Ending the Session 27

4. Fix and Continue Reference 29
Graphical User Interface 29

Fix and Continue Menu Operations 31
Show Difference Submenu 32
View Submenu 32
Preferences Submenu 33

Fix+Continue Status Window 34
Admin Menu 35
View Menu 35
Fix+Continue Menu 36

Fix+Continue Message Window 38
Admin Menu 39
View Menu 39

Fix+Continue Build Environment Window 39
Keyboard Accelerators 41

Contents

v

Changes to Debugger Views 41
Main View 42
Command-Line Interface 43
Call Stack 43
Trap Manager 44

Command-Line Interface 45
Common Fix and Continue Command Arguments 45
Fix and Continue Commands 46

5. Getting Started with the C++ Browser 51
Starting the C++ Browser 51

Starting the Static Analyzer 52
Creating a Fileset 52
Creating a Static Analysis Database 53
Launching the C++ Browser from the Static Analyzer 53

Understanding C++ Browser Concepts and Components 54
C++ Class Structure and the Current Class 55

Members 55
Related Classes and Functions 56
Interclass Relationships 57

Main C++ Browser Windows 58
The Class View Window 59
The Class Graph Window 61
The Call Graph Window 62

6. Using the C++ Browser: A Sample Session 65
Setting Up the Sample Session 65

Preparing the Fileset and Database 66
Launching the C++ Browser 66

Choosing the Current Class 67
Using Name Completion 67
Bringing Up the List of Classes Chooser 68

Using the Class View Outline Lists 68

vi

Contents

Examining Members and Classes 69
Making Queries on Data Members 69

Detailed Data Member Query Information 72
Making Queries on Methods 74
Making Queries on Parent Classes 77

Making Queries on the Current Class 78
Making Queries on Base Classes 78

Making Queries on Derived Classes 79
Making Queries on Classes That the Current Class Uses 79
Making Queries on Classes That the Current Class is Used By 80
Returning to a Previous Current Class 80
Making Queries on Friends 81

Finding Current Class Methods That a Friend Function Uses 82
Finding Current Class Methods That Use a Friend Class 82
Finding Friend Class Methods That Use the Current Class 82

Using the Class Graph Window 83
Opening a Class Graph Window 83
Pruning the Class Graph View 84
Changing the Current Class From the Class Graph Window 85
Switching the Relationship Viewed by the Class Graph 85

Using the Call Graph Window 86
Opening a Call Graph Window 87
Adding Methods 87
Showing Method Argument Lists 88
Replacing Methods 89
Viewing Method Source 89

Generating Reference (Man) Pages 89
Ending the Session 91

Contents

vii

7. C++ Browser Reference 93
Class View Window 93

Class View Menu Bar 94
Admin Menu 95
Views Menu 99
History Menu 99
Queries Menu 101
Preference Menu 102
Help Menu 103

Current Class Field 104
Show in Static Analyzer Toggle 104
Last Query Button 104
Class View Message Area 105
Class View Outline Lists 105

Outline Icons 106
Annotated Scroll Bars and Highlighted Entries 107

Member List 107
Member List Structure 108
Member List Query Menus 109

Related Class List 111
Related Class List Structure 111
Related Class List Query Menus 112

Keyboard Accelerators 116

viii

Contents

Class Graph and Call Graph Displays 117
Class and Call Graph Main Display 119

Selecting Nodes 119
Node Pop-Up Menus 119
Moving Nodes 120

Class and Call Graph Display Controls 120
Zoom Option Menu and Zoom Buttons 120
Overview Button 120
Multiple Arcs Button 121
Align Button 121
Rotate Button 122

Class Graph Window 122
Class Graph Menu Bar 122

Admin Menu 122
Views Menu 122
Help Menu 123

Double-Clicking 123
Class Graph Relationship Option Menu 123
Keyboard Accelerators 124

Call Graph Window 124
Call Graph Menu Bar 126

Admin Menu 126
Help Menu 127

Customizing the C++ Browser 128
Customizing the Class View Lists 128

Member List Resource 128
Related Class List Resource 129
Other Class View List Resources 130

Customizing Reference Page Generation 133

Glossary 135

Index 139

ix

Figures

Figure 2-1 Fix and Continue Cycle 7
Figure 2-2 Line Numbers in Decimal Notation 8
Figure 3-1 Execution View Icon 13
Figure 3-2 Debugger Main View With Fix and Continue Menu 14
Figure 3-3 Program Results in Execution View 15
Figure 3-4 Selecting a Function for Redefinition 16
Figure 3-5 Redefined Function 17
Figure 3-6 Checking Syntax Opens Fix and Continue Status

Window 18
Figure 3-7 Report of Successful Redefinition 18
Figure 3-8 bounce Window 19
Figure 3-9 Saving a Function File 21
Figure 3-10 Stopping After Breakpoints in Redefined Code 22
Figure 3-11 Call Stack BreakPoint Results 23
Figure 3-12 Trap Manager BreakPoint Results 24
Figure 3-13 Using the View Status Window 25
Figure 3-14 Comparing Compiled vs. Redefined Function

Code: xdiff 26
Figure 4-1 Fix+Continue Menu Selections 30
Figure 4-2 Fix+Continue Menu 31
Figure 4-3 ”Save File+Fixes As...” Popup Window 31
Figure 4-4 Show Difference Submenu 32
Figure 4-5 View Submenu 32
Figure 4-6 Preferences Submenu 33
Figure 4-7 Preferences Dialog 33
Figure 4-8 Fix+Continue Status Window 34
Figure 4-9 Fix+Continue Status Window Menus 35
Figure 4-10 Status Window Admin Menu 35

x

Figures

Figure 4-11 Status Window View Menu 35
Figure 4-12 Status Window Fix+Continue Menu 36
Figure 4-13 Show Difference Submenu 36
Figure 4-14 Enable Submenu 36
Figure 4-15 Save Submenu 37
Figure 4-16 File Dialog 37
Figure 4-17 Show Submenu 37
Figure 4-18 Fix+Continue Message Window 38
Figure 4-19 Fix+Continue Build Environment Window 40
Figure 4-20 Debugger Main View 42
Figure 4-21 Command-Line Interface With Redefined Function 43
Figure 4-22 Call Stack 44
Figure 4-23 Trap Manager With Redefined Function 44
Figure 4-24 Editing a Function in the vi Editor 47
Figure 5-1 Static Analyzer Launches C++ Browser 54
Figure 5-2 Interclass Relationships 58
Figure 5-3 The Class View Window 60
Figure 5-4 The Class Graph Window 62
Figure 5-5 The Call Graph Window 63
Figure 6-1 Minimizing the Static Analyzer 66
Figure 6-2 Selecting a Current Class 67
Figure 6-3 Changing the Current Class to MainWindow 68
Figure 6-4 Expanding a List 68
Figure 6-5 Collapsing a List 69
Figure 6-6 Queries on Data Members 70
Figure 6-7 Queries on Data Members Pop-Up Menu 71
Figure 6-8 Source View Window 72
Figure 6-9 “What Accesses” Query Result 73
Figure 6-10 Query Result in Static Analyzer and Source View 74
Figure 6-11 Show in Static Analyzer Toggle On 74
Figure 6-12 Queries on Methods 75
Figure 6-13 ”What is Used” Submenu and Query Results 76
Figure 6-14 No Results Were Found 77

xi

Figure 6-15 BASE CLASSES Representation 77
Figure 6-16 Queries on Current Class 78
Figure 6-17 Queries on Base Class 78
Figure 6-18 DERIVED CLASSES Structure 79
Figure 6-19 Queries on Derived Class 79
Figure 6-20 Queries on Used “What Uses” 79
Figure 6-21 Queries on Users “What is Used” 80
Figure 6-22 Queries on Users “What Instantiates” 80
Figure 6-23 Using History Menu to Show Previous Class 81
Figure 6-24 “Show History” Opens List of Classes Shown Window 81
Figure 6-25 Queries on Friend Function 82
Figure 6-26 Queries on Friend Class 82
Figure 6-27 Queries on Friend of Class 82
Figure 6-28 Inheritance Class Graph 84
Figure 6-29 Interaction Relationship in Class Graph Window 86
Figure 6-30 Adding a Method to the Call Graph Window 88
Figure 6-31 Toggling “Show Arg List” 88
Figure 6-32 Generating Man Pages 90
Figure 6-33 Man Page Template 91
Figure 7-1 Class View Window Elements 94
Figure 7-2 Class View Menu Bar 95
Figure 7-3 List of Classes Chooser Window 96
Figure 7-4 Reference Page Generation 98
Figure 7-5 Views Menu 99
Figure 7-6 History Menu 99
Figure 7-7 List of Classes Shown 100
Figure 7-8 Queries Menu 101
Figure 7-9 “What Uses” Submenu of Queries Menu 101
Figure 7-10 “What Is Used” Submenu of Queries Menu 102
Figure 7-11 Preference Menu 102
Figure 7-12 “Member Display” Submenu of Preference Menu 102
Figure 7-13 “Relation Display” Submenu of Preference Menu 103
Figure 7-14 Help Menu 103

xii

Figures

Figure 7-15 Current Class Field 104
Figure 7-16 Show in Static Analyzer Toggle 104
Figure 7-17 Last Query Button 104
Figure 7-18 Class View Message Area and Outline Lists 105
Figure 7-19 Expanded List, Downward Pointing Icon 106
Figure 7-20 Collapsed List, Right-Pointing Icon 106
Figure 7-21 Outline Lists and Icons 106
Figure 7-22 Query Result in List, Highlighted Icon 107
Figure 7-23 Annotated Scroll Bars 107
Figure 7-24 Source View of Class Data Member 108
Figure 7-25 Class View Derived Classes List 112
Figure 7-26 Queries on Current Class Pop-Up Menu 113
Figure 7-27 Queries on Derived Class Pop-Up Menu 113
Figure 7-28 Queries on Used Pop-Up Menu 114
Figure 7-29 Queries on Users Pop-Up Menu 115
Figure 7-30 Class Graph with Context View—Bounce Hierarchy 118
Figure 7-31 Hidden Children 119
Figure 7-32 Call Graph Context Viewport of Call Graph Window 121
Figure 7-33 “Save Graph” Submenu of Admin Menu 122
Figure 7-34 Working With the Call Graph Display 125
Figure 7-35 Call Graph With Show Arglist On 127
Figure 7-36 Customized Class View Display 133

xiii

Tables

Table 1-1 WorkShop Pro C++ Special Dependencies 3
Table 2-1 Fix and Continue Compile Time Cycle 6
Table 4-1 Fix and Continue Keyboard Accelerators 41
Table 7-1 Keyboard Accelerators for Class View 116
Table 7-2 Keyboard Accelerators for Class Graph 124
Table 7-3 Sort Resources for Outline Lists 132

xv

Introduction

This guide describes the Fix and Continue and Browser utilities. These tools
are part of CASEVision™/WorkShop, a suite of graphical, interactive,
computer-aided software engineering (CASE) tools designed especially for
programmers who develop and maintain C and C++ libraries and
applications.

What This Guide Contains

This guide describes the Fix and Continue feature of the Debugger and the
Browser. Chapters 2-4 cover Fix and Continue, and Chapters 5-7 cover the
Browser. The guide contains the following chapters:

• Chapter 1, “CASEVision/WorkShop MegaDev,” gives an overview and
tells where to find information about each application.

• Chapter 2, “Getting Started with Fix and Continue,” tells you how to
install Fix and Continue and run it on your C or C++ files that have
been compiled with debug information. This chapter also provides a
brief overview of the Fix and Continue utility’s user interface and
explains some basic concepts.

• Chapter 3, “Using Fix and Continue: A Sample Session,” helps you
learn how to perform the basic tasks that the Fix and Continue utility
allows, such as making changes to functions and running the program
with compiling or linking. Each task description is accompanied by a
corresponding tutorial session.

• Chapter 4, “Fix and Continue Reference,” contains a complete
description of the Fix and Continue utility’s graphical user interface.

• Chapter 5, “Getting Started with the C++ Browser,” tells you how to
install and use the C++ Browser on your C++ source or library files.
This chapter also provides an overview of the C++ Browser’s user

xvi

Introduction

interface and explains some important concepts you’ll need to know to
get the most out of the C++ Browser.

• Chapter 6, “Using the C++ Browser: A Sample Session,” helps you
learn how to perform the basic tasks the C++ Browser allows, such as
examining class structures, making queries on C++ objects and
methods, and viewing class and calling structures. Each task
description is accompanied by a corresponding tutorial session.

• Chapter 7, “C++ Browser Reference,” contains a complete description
of the Browser’s graphical user interface. It tells how to customize some
aspects of the interface.

The glossary defines key terms for both Fix and Continue and the Browser.

What You Should Know Before Reading This Guide

This guide assumes that you’re familiar with C, C++, and object-oriented
programming, and have had some experience with the CASEVision/
WorkShop tools, particularly the Static Analyzer and Debugger.

Related Information

Fix and Continue and the Browser are layered on the core CASEVision/
WorkShop toolset (available from Silicon Graphics, Inc.). For further
information about related tools, refer to the following documents:

• CASEVision/WorkShop User’s Guide, which contains detailed
information on how to use the CASEVision tools: the static analyzer, the
debugger, the performance analyzer, and the build manager.

• C++ Programmer’s Guide, which describes the Silicon Graphics C++
programming environment.

• IRIS ViewKit User’s Guide, which describes how to create programs
using IRIS ViewKit, a C++ toolkit that provides commonly needed
facilities for applications based on the IRIS user interface toolkit.

• CASEVision Environment Guide, which contains general information on
using the CASEVision environment, the Silicon Graphics computer-
aided software engineering (CASE) tools.

Conventions

xvii

• MIPSpro Compiling, Debugging and Performance Tuning, which discusses
how to compile, debug, and tune the performance of programs written
in the Silicon Graphics development environment (C, Fortran, and
C++).

In addition, the following manuals provide information about an earlier
implementation of the C++ language from Silicon Graphics (that is, not
Delta/C++).

• C++ Language System Overview, which contains an overview of new
language features of C++. Most of the extensions take the form of
removing restrictions on what can be expressed in C++.

• C++ Language System Product Reference Manual, which contains a
general description of the C++ language.

• C++ Language System Library, which discusses the iostream support in
the C++ library and describes a data-type complex that provides the
basic facilities for using complex arithmetic in C++.

Conventions

Below are the typographical and graphic conventions used in this guide:

• Bold—Functions, option flags, and classes.

• Italics—Filenames, button names, field names, variables, emphasis,
glossary terms, and IRIX commands.

• Regular—Menu and window names, data types, keywords, and text.

• “Quoted”—Menu choices.

• Fixed-width —Code examples and command syntax.

• Bold fixed-width —User input. Nonprinting <keys> are bracketed.

• Graphic convention—Pull-down or popup menus.

A

B

1

Chapter 1

1. CASEVision/WorkShop MegaDev

The CASEVision/WorkShop MegaDev software is layered on the core
CASEVision/WorkShop toolset. MegaDev provides more advanced tools
for the development of applications, featuring

• Fix and Continue

• C++ Browser

About WorkShop MegaDev Tools

The programming language C++ offers a good balance between flexibility
and performance. Programmers accept C++ for its portability and use of
libraries. Object-oriented programming in C++ promises efficient execution,
structured classification, and substantial reuse of code. Nevertheless, you
might encounter some of these problems as you build a large software
system in C++:

• expensive recompilations whenever a class definition changes

• a long edit-compile-debug cycle for minor changes to code

• an inability to support shared C++ libraries

• a lack of high-level libraries

• difficulty understanding code because key information is hidden in
class hierarchies

As a solution to these problems, the WorkShop Pro C++ package speeds
compiles, improves debugging, simplifies user interface design, and helps
you to visualize complex class relationships. Thus it enables you to be a more
productive C++ programmer. Here’s a quick description of what each tool
allows you to do:

2

Chapter 1: CASEVision/WorkShop MegaDev

Fix and Continue
Redefine existing C or C++ functions, and then continue
your execution without recompiling your entire code set.

C++ Browser Display information about classes and their relationships as
query results or class/call graphs.

The following sections provide more detailed descriptions of each tool
included in the MegaDev package.

Fix and Continue

Fix and Continue lets you redefine existing C or C++ function definitions in
several ways, then disable or re-enable individual redefinitions. You
continue running your program in the Debugger without recompiling the
entire system or linking. You can examine the differences between the
original and redefined functions. Fix and Continue accepts input from the
Debugger command line as an alternative to using Debugger menus.

Fix and Continue is integrated with the WorkShop 2.4 Debugger, so you can
set breakpoints inside the redefined code. Special notation for line numbers
in the Debugger (and in many of its views) shows when a given function is
redefined, in addition to unique color highlighting of the source code.

Fix and Continue is covered in Part I of this guide and introduced in
Chapter 2, “Getting Started with Fix and Continue.”

C++ Browser

The C++ Browser lets you view the structure of any set of C++ classes. It
provides a global, graphical view of interclass relationships such as
inheritance, containment, and interaction within a set of classes. The
convenient, outline-based display shows class relationships and internal
class structure from the point of view of any class, member, or method in the
hierarchy. A history facility lets you quickly shift among classes. Complete
source listings of any class or member are available at the click of a button.
The C++ Browser uses a compiler-generated static analysis database to
answer your queries.

Setting Up Your System

3

The C++ Browser is part of the WorkShop 2.4 Static Analyzer, so you can use
it as an interactive development and maintenance aid for application source
code as well as a reference tool for exploring the structure of C++ programs
or libraries.

The C++ Browser is covered in Part II of this guide and introduced in
Chapter 5, “Getting Started with the C++ Browser.”

Setting Up Your System

CASEVision/WorkShop MegaDev requires installation of IRIX™ system
software version 5.3 or greater, ToolTalk 1.1 or greater, and the Integrated
Development Option (IDO).

The C++ Browser requires the WorkShop 2.4 Execution Environment,
CASEVision 2.4, and CASEVision/WorkShop 2.4.

To determine what software is installed on your system, enter the following
at the shell prompt:

% versions

If the software items mentioned in this section are not installed, consult your
sales representative, your service provider, or (in the U.S.) call the Silicon
Graphics Technical Assistance Center at 1-(800)-800-4SGI. To order
additional memory, consult your sales representative, or call 1-(800)-800-
SGI1. Table 1-1 shows the base product needed to run each module in
WorkShop Pro C++.

Table 1-1 WorkShop Pro C++ Special Dependencies

Element Requirement

Fix and Continue CASEVision/WorkShop

Debugger

C++ Browser CASEVision/WorkShop
Static Analyzer

4

Chapter 1: CASEVision/WorkShop MegaDev

If you have all the software and memory you need, you’re ready to install
the CASEVision/WorkShop Pro C++ software. Consult the IRIS Software
Installation Guide for general instructions on software installation. For
specific installation instructions, see the CASEVision/WorkShop MegaDev
Browser Release Notes.

5

Chapter 2

2. Getting Started with Fix and Continue

This chapter shows you how to start the Fix and Continue utility, explains
pertinent concepts, and presents an overview of its command-line and
graphical user interface.

Note: In Chapters 2 through 4, the word function means a C function or a
C++ member or nonmember function.

This chapter contains the following sections:

• “Starting Fix and Continue”

• “Redefining Functions Using Fix and Continue”

• “The Fix and Continue Environment”

Starting Fix and Continue

Fix and Continue is integrated with the CASEVision/WorkShop Debugger,
cvd. To start the Debugger from a shell command line, use the following
syntax:

cvd [-pid pid] [-host host] [executable [corefile]] [&]

You can specify the executable from the Debugger and by default the host is
local, so all you really need to enter is cvd .

You issue Fix and Continue commands graphically from the Fix+Continue
pulldown menu of the Debugger main window. You may also issue Fix and
Continue commands from the Debugger command line (cvd>).

6

Chapter 2: Getting Started with Fix and Continue

Redefining Functions Using Fix and Continue

Fix and Continue gives you the ability to make changes to a program you are
debugging without having to recompile and link the entire program, and
then continue debugging the code. With Fix and Continue, you can edit a
function, parse the new function, and continue execution of the program
being debugged. Fix and Continue enables you to speed up your
development cycle significantly.

 Table 2-1 compares the cycle time in seconds between a full rebuild and a
Fix and Continue for three typical programs.

Fix and Continue Functionality

Fix and Continue lets you:

• Redefine existing function definitions

• Disable, re-enable, save, and delete redefinitions

• Set breakpoints in and single-step within redefined code

• View the status of changes

• Examine differences between original and redefined functions

Table 2-1Fix and Continue Compile Time Cycle

Example Time to Rebuild Time to Fix+Continue

Program A 0:06 0:02

Program B 0:33 0:06

Program C 5:24 0:49

Redefining Functions Using Fix and Continue

7

The basic cycle of using Fix and Continue is shown in Figure 2-1.

Figure 2-1 Fix and Continue Cycle

A typical session would be the following:

1. Using the Fix and Continue commands, you redefine a function. When
you continue executing the program, the Debugger attempts to call the
redefined function. If it cannot, an information popup appears, and the
redefined function will be executed the next time the program calls that
function.

2. You redefine other functions, alternating between debugging,
disabling, re-enabling, and deleting redefinitions. You might save
function redefinitions to their own files, or save files to a different
name, to be used later with the present or with other programs.

Frequently during debugging you can review the status of changes by listing
them, showing specific changes, or looking at the Fix and Continue Status
View. You can compare changes to an individual function or to an entire file
with the compiled versions. When satisfied with the behavior of your
application, you save the file, replacing the compiled source.

Redefine
function

Continue
debugging

Redefine
function

Continue
debugging

Redefine
function

Continue
debugging

Redefine
function

Continue
debugging

8

Chapter 2: Getting Started with Fix and Continue

Fix and Continue/WorkShop Integration

Using Fix and Continue affects these WorkShop tools:

• The WorkShop Debugger Main View, the Source View, and the Fix and
Continue Status window make a clear distinction between compiled
and redefined code, and allow editing only in redefined code.

• The different WorkShop views that are knowledgeable about redefined
code:

– Call Stack

– Trap Manager

– Debugger command-line

How Redefined Code Is Distinguished From Compiled Code

Redefined functions have an identification number and special line
numbers, and in the Debugger views, are color-coded.

Line numbers in the compiled file stay the same, no matter how redefined
functions change. However, when you begin editing a function, the line
numbers of the function body are represented in decimal notation (n.1, n.2,
..., n.m). n is the compiled line number where the function body begins. m is
the line number relative to the beginning of the function body, starting with
1.

Figure 2-2 shows two redefined functions. Function 1 replaces lines 8-15.
Function 2 replaces lines 18-20. Although its three lines are now one, the
following line number is still 21.

The Call Stack and Trap Manager both use function-relative decimal
notation when referring to a line number within the body of a redefined
function.

The Debugger command line reports ongoing status. In addition to
providing the same commands available from the menu, edit commands
allow you to add, replace, or delete lines from files. You can easily operate
on several files at once.

Function 1

Function 2

mn.

Figure 2-2 Line Numbers in
Decimal Notation

Redefining Functions Using Fix and Continue

9

Restrictions on Fix and Continue

Fix and Continue has the following restrictions when you fix a function in
which you have stopped:

• You may not add, delete, or reorder the local variables in a function.

• You may not change the type of a local variable.

• You may not change a local variable to be a register variable, and vice-
versa.

• You may not add any function calls that increase the size of the
parameter area.

• You may not add an alloca function to a frame that did not previously
use an alloca.

• Both the old and new functions must be compiled with -g.

In other words, the layout of the stack frames of both the old and new
functions must be identical for you to continue execution in the
function that is being modified. If not, execution of the old function
continues, and the new function is executed the next time it is called.

• If you redefine functions which are in but not on top of the call stack,
the modified code will not be executed when they combine. Modified
functions will be executed only on their next call or on a re-run.

For example, consider the following call stack:

foo()
bar()
foobar()
main()

1. If you redefine foo(), you can continue execution provided the
layout of the stack frames are same.

2. If you redefine bar() [or foobar()], the new code will not be
executed when foo() returns. The code will be executed only on the
next call of bar() [or foobar()].

3. If you redefine main() after you have run, it will be executed only
when you re-run.

10

Chapter 2: Getting Started with Fix and Continue

The Fix and Continue Environment

The interface to Fix and Continue is through the Fix+Continue menu and its
associated windows: Status, Message, and Build Environment. These
windows are completely dependent on Fix and Continue, and do not
operate unless it is installed.

For more complete information on all of the Fix and Continue menus,
windows, and functions, see Chapter 4, “Fix and Continue Reference.”

Debugger With Fix and Continue Support

Without Fix and Continue, the Debugger source views are Read-Only by
default. That is so you can examine your files with no risk of changing them.
When you select “Edit” from the Fix+Continue menu, the Debugger source
code status indicator (in the lower-right corner of the Debugger window—
see Figure 4-20) remains Read-Only . Fix and Continue edits are saved in an
intermediate state and must be explicitly written with the “Save File+Fixes
As...” option to be saved.

When you edit a function, it is color-highlighted. Then, if you switch to the
compiled version, the color changes to show that there is a redefinition. If
you try to edit the compiled version, the Debugger beeps, indicating it is
Read-Only .

When you have completed your edits and wish to see the results, click
“Parse and Load.” When the Parse and Load has executed successfully, the
color changes again. If the color doesn’t change, there may be errors, and you
should check your “Message Window...” view.

GUI Debugger Command Line

Just as you can enter any dbx command at the Debugger command line, you
can enter Fix and Continue commands there.

The Fix and Continue Environment

11

Change ID, Build Path, and Other Concepts

The Fix and Continue methods for accessing functions through ID numbers,
finding files, and so forth, are discussed below.

Identifying Functions

Each redefined function is numbered with a change ID. Its status is
redefined, enabled, disabled, deleted, or detached.

Finding Files

Fix and Continue needs to know where to find include files and other
parameters specified by compiler build flags (compiler options). You can set
the build environment for all files or for a specific file. You can display the
current build environment from the Fix+Continue pulldown menu, the
command line, or the Fix and Continue Status Window. When you finish a
Fix and Continue session, you can unset the build environment.

Tracking Program Output

A successful run results in output in the Execution View. This functionality
is the same as it is in the Debugger without Fix and Continue.

13

Chapter 3

3. Using Fix and Continue: A Sample Session

This chapter provides an interactive sample session that demonstrates most
of the Fix and Continue functions. The session outlines common tasks you
can perform with Fix and Continue, using example C++ application source
to illustrate the use of each function. For complete reference information on
the Fix and Continue user interface, see Chapter 4, “Fix and Continue
Reference.”

Most steps in the session use the graphical interface but give the command-
line alternatives.

This chapter contains the following sections:

• “Setting Up the Sample Session”

• “Redefining a Function”

• “Setting Breakpoints in Redefined Code”

• “Viewing Status”

• “Comparing Original and Redefined Code”

• “Ending the Session”

Setting Up the Sample Session

For this tutorial, use the demo files in the directory
/usr/demos/WorkShop/bounce, which contain the complete source code for the
C++ application bounce. To prepare for the session, you first need to create
the fileset, then launch Fix and Continue from the Debugger. You must enter
the commands listed below:

1. cd /usr/demos/WorkShop/bounce

2. make bounceFigure 3-1 Execution View
Icon

14

Chapter 3: Using Fix and Continue: A Sample Session

3. cvd bounce &

The cvd command brings up the CaseVision Debugger, from which you
can use the Fix and Continue utility. The Execution View icon (shown in
Figure 3-1) and Main View (shown in Figure 3-2) appear. Note that the
Debugger shows that the source code status indicator is (Read Only) .

Figure 3-2 Debugger Main View With Fix and Continue Menu

Fix and Continue menu

Run button

Debugger command line

Source code display area

Source annotation column

Source code status indicator

Redefining a Function

15

4. Open the Execution View and position the window so you can see it
and the Debugger Main View.

5. To see what the program does, click Run. The bounce program opens a
window on your desktop. Click Run in the new window, and then add
balls from the Actors Menu to see how the program executes. (You may
need to resize the bounce window.)

6. The Execution View shows the program output (see Figure 3-3).

Figure 3-3 Program Results in Execution View

If your screen shows different results, the program files may have been
modified during a previous tutorial session.

Redefining a Function

In this section, you will do the following:

• edit a function

• change the code of an existing function and then parse and load the
function, rebuilding your program to see the effect of your changes on
program output (without recompiling)

• save the changed function to its own separate file

16

Chapter 3: Using Fix and Continue: A Sample Session

Editing a Function

1. Choose a function to edit by entering the following on the command
line:

cvd> func Clock::speedChanged

This opens the file Clock.C, and places the cursor at the beginning of the
function Clock::speedChanged, as shown in Figure 3-4.

Figure 3-4 Selecting a Function for Redefinition

2. Show line numbers by selecting “Show Line Numbers” from the
Debugger Display menu.

3. Select “Edit” from the Debugger Fix+Continue menu, or enter the Ctrl-
E keyboard accelerator. The function is highlighted.

4. Note the results as shown in Figure 3-5. Line numbers change to a
decimal notation based on the first line number of the function body.
The function body highlights to show that it is being edited. The line
numbers of the rest of the file are not affected.

Redefining a Function

17

Figure 3-5 Redefined Function

Changing Code

1. To increase the speed of the ball, change the value of _delta from 1000 /

value to 100 / value .

2. Click the Stop button in the Debugger to halt the bounce process.

3. Select “Parse and Load” from the Debugger Fix+Continue menu, or
enter the Ctrl-P keyboard accelerator.

If there are any errors, the Fix+Continue error messages window opens
as shown in Figure 3-6. The Debugger command line also gives a
report. If all went as planned, there are no errors or warnings.

Line number
notation

Highlight

18

Chapter 3: Using Fix and Continue: A Sample Session

Figure 3-6 Checking Syntax Opens Fix and Continue Status Window

If you do have an error, correct it and repeat steps 1-3. You can go to the
error location by double-clicking the appropriate line in the error
message window. When you see the change ID and activated status, as
shown in Figure 3-7, continue with the next step.

When the parse and load has completed, the highlighting color of the
function changes.

Figure 3-7 Report of Successful Redefinition

4. Select Continue from the Debugger main view.

5. The new value is not active until the function is called. To call the
function, adjust the slider bar in the bounce window (see Figure 3-8).

Debugger command line report

Redefined function change id # Status

Redefining a Function

19

Figure 3-8 bounce Window

Deleting Changed Code

If you make a mistake, there’s a graceful way out. Suppose for example that
you decided you didn’t want to change the speed after all. To delete the
change, you need merely select the “Delete All Edits” option from the
Fix+Continue menu in the Source view.

Changing Code From the Debugger Command Line

As an alternative to using the Fix and Continue menu, you can redefine and
check syntax for a function from the Debugger command line. Try changing
_delta to 100 by entering the following at the command line:

cvd> replace_source “Clock.C”:83
“Clock.C”:84.0>
“Clock.C”:84.1>
“Clock.C”:84.2> _delta = 100 / value;
“Clock.C”:84.3> .

20

Chapter 3: Using Fix and Continue: A Sample Session

This generates the following output:

Change id: 4 redefined
Change id: 4 modified
Process 5779 stopped at [“select.s”:12, 0x0fac2010]
Change id: 4 activated
Change id: 4 , build results:

4 enabled /usr/demos/WorkShop/bounce/
Clock.C Clock::speedChanged(int)
cvd>

If you prefer to use the command line, experiment with add_source and
redefine to get the same functionality described for the menu commands.
For details on each command, refer to “Command-Line Interface” on
page 56.

Saving Changes

Your original source files are not updated until the changed source file is
saved. You could save redefined function changes to Clock.C. However, if
you did, the file would not match the tutorial. So just observe the following
steps:

1. Select “Save Files+Fixes As...” from the Fix+Continue menu.

2. Look at the features of the dialog box (see Figure 3-9) that enable you to
save your file. To save the changes back to the original source files, click
that radio button and then click Apply or OK. To save to a different file,
click the other radio button, choose a suffix, and click Apply or OK.
Since you don’t want to save the changes, press Cancel.

Alternatively, on the Debugger command line, you could type
save_changes -file Clock.C Clock.C . Either method saves all the
changes to the file, replacing the compiled source code.

Setting Breakpoints in Redefined Code

21

Figure 3-9 Saving a Function File

You usually want to wait until you are finished with Fix and Continue before
you save your changes. In addition to the method described above, you can
also save your changes with the “Update All Files...” option of the
Fix+Continue menu. See “Fix and Continue Menu Operations” on page 36
for more information.

Setting Breakpoints in Redefined Code

To see how the Debugger works with traps (breakpoints) in redefined code
you’ll set breakpoints, run the Debugger, and view the results.

1. Choose the function BouncingBall::BouncingBall by entering the
following on the command line:

cvd> func BouncingBall::BouncingBall

This opens the file BouncingBall.C, and places the cursor at the
beginning of the function BouncingBall::BouncingBall.

2. Select “Edit” from the Fix+Continue menu or enter Ctrl-E.

3. Enter the following line after line 35:

#define SIZE 15

This makes the size of the balls smaller.

4. Select “Parse and Load” from the Fix+Continue menu.

22

Chapter 3: Using Fix and Continue: A Sample Session

5. Set a breakpoint just after your new SIZE definition by clicking in the
source annotation column at line 35.3.

Alternatively, you can set a breakpoint through the command line by
entering stop at # or b # where # is the line number at which you
want your breakpoint. (See Figure 3-10.) Note that in code that has
already been parsed and loaded, the line number is in decimal notation.

Figure 3-10 Stopping After Breakpoints in Redefined Code

Setting Breakpoints in Redefined Code

23

6. Select Run, then in the bounce window pull down the Actors menu and
select “Add Red Ball”. The Debugger command line reports that the
process stopped at some point in the code. You see the following
information in the Debugger command line:

[1] Stop at file /usr/demos/WorkShop/bounce/
BouncingBall.C line 35.3
[0] Process 595 stopped at [“BouncingBall.C”:35,
0x004088d0]

7. Select “Call Stack” from the Views menu to view the results of the
breakpoint (see Figure 3-11).

Figure 3-11 Call Stack BreakPoint Results

8. Select “Trap Manager” from the Views menu to view the locations of
the traps (see Figure 3-12).

24

Chapter 3: Using Fix and Continue: A Sample Session

Figure 3-12 Trap Manager BreakPoint Results

9. Remove the breakpoint by clicking on it in the source annotation
column.

Viewing Status

Pull down the Fix+Continue menu, choose the Views submenu, and select
“Status Window”. The View Status window opens, as shown in Figure 3-13.

Comparing Original and Redefined Code

25

Figure 3-13 Using the View Status Window

Comparing Original and Redefined Code

You can compare your modified code to the original source when using Fix
and Continue. This section shows you several ways to view your changes.

Switching Between Compiled and Redefined Code

If you want to see how the redefined code makes your executable different,
follow these steps:

1. Select Run to view your redefined code. Notice that the balls you add
are smaller in your modified version.

2. Place the insertion point in function BouncingBall.

3. Select “Edit<-->Compiled” from the Fix+Continue menu. This disables
your changes.

4. Select Continue. Notice that the balls you add are now their original
size, and that the Debugger command line states that the change has
been deactivated.

26

Chapter 3: Using Fix and Continue: A Sample Session

You can get the same results by entering the command
disable_changes # from the Debugger command line, where # is the
redefined function ID number.

To re-enable your changes, do the following:

5. Select Stop.

6. Select “Edit<-->Compiled” from the Fix+Continue menu. This re-
enables your changes. The balls you add will now be smaller.

You can get the same results by entering the command
enable_changes # at the Debugger command line.

Comparing Function Definitions

1. Place the insertion point in the BouncingBall function body.

2. Pull down the Fix+Continue menu, choose the Show Difference
submenu, and select “For Function”. A xdiff window opens as shown in
Figure 3-14.

Figure 3-14 Comparing Compiled vs. Redefined Function Code: xdiff

Ending the Session

27

You can get the same result by entering the command show_diff #
from the Debugger command line.

If you don’t like xdiff, you can change the comparison tool by pulling
down the Fix+Continue menu, choosing the Show Difference submenu,
and selecting “Set Diff Tool...”.

Comparing Source Code Files

When you have made several redefinitions to a file, sometimes you need a
side-by-side comparison of the entire file. To see how your changes to the file
look, pull down the Fix+Continue menu, choose the Show Difference
submenu, and select “For Function”. This opens a xdiff window that displays
the entire file, rather than just the function.

You’ll get the same result from the Debugger command line if you enter the
following:

show_diff -file BouncingBall.C

As an alternative to pulling down menus using the mouse, you can use
mnemonics to select the menu item from the keyboard. After closing the
difference window, you’ll reopen it. With the insertion point anywhere in the
file, enter the following:

Alt-f d f

Ending the Session

Exit the Debugger by pulling down the Admin menu and choosing “Exit”.

29

Chapter 4

4. Fix and Continue Reference

This chapter describes in detail the function of each window, menu, and
display in the Fix and Continue utility’s graphical user interface (GUI). In
addition, the chapter describes the Fix and Continue commands available on
the Debugger command line (see “Command-Line Interface” on page 45).
Most commands are available from either interface. You can move from one
to the other as you prefer. For a task-oriented introduction to
commonly-used functions, see Chapter 3, “Using Fix and Continue: A
Sample Session.”

With Fix and Continue, the Debugger is in the “Edit” state by default. This
means that you may select a function for editing, redefine, check syntax, and
run the program. You can work with several redefinitions, selectively
enabled or disabled.

This chapter contains the following sections:

• “Graphical User Interface”

• “Changes to Debugger Views”

• “Command-Line Interface”

Graphical User Interface

The Fix and Continue GUI affects several WorkShop windows and provides
three more. The Debugger and Source View access the Fix and Continue
utility from the menu bar. The results of running redefined code are
displayed in the Debugger Execution View. Special line numbers (decimal
notation) applied to redefined functions appear in several WorkShop views
(refer to “Changes to Debugger Views” on page 41). Fix and Continue comes
with three windows devoted entirely to Fix and Continue: Status, Message,
and Build Environment. This section describes Fix and Continue menu
selections and these windows.

30

Chapter 4: Fix and Continue Reference

The Fix and Continue menu is available from the Debugger Main View
menu bar, as shown in Figure 4-1. The menu selections operate on the
selected function or on the file shown in the source view. The Fix and
Continue menu is also available from Source View and from the Fix and
Continue Status window.

Figure 4-1 Fix+Continue Menu Selections

Fix+Continue menu
Show Difference submenu

View submenu

Menu Bars

Preferences submenu

Graphical User Interface

31

Fix and Continue Menu Operations

The Fix and Continue menu (see Figure 4-2) offers the following menu
selections:

“Edit“ Allows you to edit functions using the Debugger editor.

“External Edit“ Allows you to edit functions using an external editor. The
default editor is vi, but can be changed by using the “Set
Edit Tool...” popup menu in the Admin menu of the Status
window. See “Fix+Continue Status Window” on page 34 for
further information.

“Parse and Load“
Parses your modified function and loads it for execution.
You can execute the modified function by clicking on the
Run or Continue buttons in the Debugger main view.

“Cancel Edit” Takes you out of edit mode.

“Show Difference“ submenu
Allows you to see the difference between the original code
and your modifications. See “Show Difference Submenu”
on page 32 for further information.

“Edited<-->Compiled“
Enables or disables your changes. This switch allows you to
see how your application executed before and after the
changes you made.

“Delete All Edits“
Deletes any changes that you made to functions.

“Save File+Fixes As...“
Allows you to save your changes to a file (see Figure 4-3).
You can save the changes to the current source file (the
default), or to a separate file.

“Update All Files...”
Launches the “Save File+Fixes As...” dialog (see Figure 4-3),
which allows you to update the current session, saving all
the modified functions to the appropriate files.

Figure 4-2 Fix+Continue
Menu

Figure 4-3 ”Save File+Fixes
As...” Popup Window

32

Chapter 4: Fix and Continue Reference

“View“ submenu
Allows you to change to different views. Fix and Continue
supports status, message, and build environment windows.
See “View Submenu” on page 32 for further information.

“Preferences” submenu
Allows you to set your Fix+Continue preferences. See
“Preferences Submenu” on page 33 for further information.

Show Difference Submenu

 This submenu(see Figure 4-4) allows you to see the difference between the
original and your modified code. It contains the following options:

“For Function”
Opens a window that shows you the differences between
the original function source and your modified source.

“For File” Opens a window that shows you the differences between
the original source file and your modified version.

“Set Diff Tool ...”
Launches the Preference dialog (see Figure 4-7), which
allows you to set the tool that displays the differences
between the two sets of code. The default is xdiff. For further
information on the Preference dialog, see “Preferences
Submenu” on page 33.

View Submenu

 This submenu(see Figure 4-5) allows you to open different Fix+Continue
view windows. It contains the following options:

“Status Window”
Launches the Fix+Continue Status window. See
“Fix+Continue Status Window” on page 34 for more
information.

“Message Window”
Launches the Fix+Continue Message window. See
“Fix+Continue Message Window” on page 38 for more
information.

Figure 4-4 Show Difference
Submenu

Figure 4-5 View Submenu

Graphical User Interface

33

“Build Environment Window”
Launches the Fix+Continue Build Environment window.
See “Fix+Continue Build Environment Window” on
page 39 for more information.

Preferences Submenu

 The PreferenceMenu (see Figure 4-6) allows you to set various options for
Fix and Continue environment, such as the difference tool, the external
editor command, and so on. The menu contains the following options:

“Show Preferences”
Launches the Preference dialog (see Figure 4-7), which
displays the preferences that are currently enabled for the
session, and allows you to change the settings.

Figure 4-7 Preferences Dialog

“Reset Factory Defaults”
Sets the preferences to the installed defaults.

Figure 4-6 Preferences
Submenu

34

Chapter 4: Fix and Continue Reference

“Save Preferences”
Allows you to save your preferences to a file. This item
brings up the File dialog. See Figure 4-16.

“Load Preferences...”
Allows you to load preferences from a file. This item brings
up the File dialog. See Figure 4-16.

Fix+Continue Status Window

This section describes the Fix+Continue Status window (see Figure 4-8). The
Status window provides you with a summary of the modifications that you
have made during your session. It also allows you quick access to your
modified functions, and a somewhat expanded Fix+Continue menu.

Figure 4-8 Fix+Continue Status Window

The function ID number, status, name, and filename are displayed in the
Status window. Double-clicking a line item in the status window brings up
the corresponding source in the Debugger main window.

The menus and submenus that provide you with extra functionality through
the Status window (see Figure 4-9) are described below.

Function list

Function ID #

Function status

Function name

Filename for function

Graphical User Interface

35

Figure 4-9 Fix+Continue Status Window Menus

Admin Menu

The Admin menu (see Figure 4-10) contains an option for closing the
window.

“Close” Closes the Status window.

View Menu

The View menu (see Figure 4-11) contains options for sorting the
information in the window, and displaying filenames.

Figure 4-10 Status Window
Admin Menu

Figure 4-11 Status Window
View Menu

36

Chapter 4: Fix and Continue Reference

“Sort Status View”
Sorts the information in the status view according to the
field currently selected.

“Show Long Filenames”
A toggle that allows you to show the absolute (long)
pathnames, relative pathnames, or base names.

Fix+Continue Menu

The Fix+Continue menu (see Figure 4-12) that is available from the Status
view is somewhat different from that available through the Debugger main
view. It contains a number of options and submenus, which are all described
below. These options and submenus are active on the function that you select
in the Source view. You can select a function by clicking on it.

“External Editor”
Allows you to edit with an external editor such as vi, rather
than the Debugger’s default editor.

“Parse And Load”
Parses your modified function and loads it for execution.
You can execute the modified function by clicking on the
Run or Continue buttons in the Debugger main view.

Update All Files...”
Launches the “Save File+Fixes As...” dialog (see Figure 4-3),
which allows you to update the current session, saving all
the modified functions to the appropriate files.

“Show Difference” submenu (see Figure 4-13)
Allows you to show the difference between the original
source and your modified code. You can show the
difference in the code in one of the two following ways:

• “For Function” shows the differences for the current
function only.

• “For File” shows the differences for the entire file that
contains the current function.

“Enable” submenu (see Figure 4-14)
Allowsyou to enable the changes in your modified code in
one of the three following ways:

Figure 4-12 Status Window
Fix+Continue Menu

Figure 4-13 Show Difference
Submenu

Figure 4-14 Enable Submenu

Graphical User Interface

37

• “Function” enables the changes in the current function.

• “Functions in File” enables the changes to the current
function in its own file.

• “All Functions” enables the changes to all functions in
the modified code.

“Disable” submenu (see Figure 4-14)
Has the same menu choices as the “Enable” submenu, but
disables rather than enables.

“Save” submenu (see Figure 4-15)
Allowsyou to save your code changes to a file. You can save
the changes in one of the three following ways:

• “Function...” launches the File dialog (see Figure 4-16),
allowing you to save only the current function to a file.

• “File...” launches the “Save File+Fixes As...” popup
window (see Figure 4-3), allowing you to save the
entire file that contains the current function.

“Delete” submenu (see Figure 4-14)
has the same menu choices as the “Enable” submenu, but
deletes rather than enables.

“Show” submenu (see Figure 4-17)
Allowsyou to launch any of the following three different Fix
and Continue windows:

• “Message Window” launches a Message window for
the selected function. See “Fix+Continue Message
Window” on page 38 for more details.

• “Build Env for File” launches a Build Environment
window for the file shown in the Source View. See
“Fix+Continue Build Environment Window” on
page 39 for more details on the Build Environment
window.

• “Default Build Env” launches the Build Environment
window to show the options that are to be used in
cases where they could not be obtained from the target.
See “Fix+Continue Build Environment Window” on
page 39 for details on the Build Environment window.

Figure 4-15 Save Submenu

Figure 4-16 File Dialog

Figure 4-17 Show Submenu

38

Chapter 4: Fix and Continue Reference

Fix+Continue Message Window

The Fix+Continue Message window (see Figure 4-18) contains a list of any
errors and other system messages that pertain to your source modifications,
parses, and attempts to run your modified source.

Figure 4-18 Fix+Continue Message Window

You can highlight the source line where the error occurred by
double-clicking the appropriate line in the Message window. The window
contains the following buttons:

Clear Clears all the parsing errors and warnings.

Clear button

Next button

Rescan button

Clear button

Error Messages

Graphical User Interface

39

Next Puts a tick mark on the next unticked error warning entry in
the parse messages. It displays the corresponding file and
line in the Source view, highlighting it according to the type
of error or warning. Next doesn’t function after all the
entries in the messages are ticked.

Rescan Erases all the ticks, so that you can rescan all the error
warnings from the beginning.

The added functionality available through the Message window’s Admin
and View menus is described below.

Admin Menu

The Admin menu allows you to perform either of the following two
operations:

“Clear All” Clears all messages in the Message window.

“Close” Closes the window.

View Menu

The View menu allows you to set any of the following three toggles:

“Show Warnings”
Causes compile warnings to be displayed in the parse errors
list.

“Append Parse Messages”
Causes parse messages to be appended to the parse errors
list.

“Append Load Messages”
Causes load messages to be appended to the load errors list.

Fix+Continue Build Environment Window

This section describes the Fix+Continue Build Environment window (see
Figure 4-19). The Build Environment window provides you with the build
information for your source code in your current environment. It displays

40

Chapter 4: Fix and Continue Reference

the command that was used to build your executable and the name of the file
that contains the function that you currently have selected.

Figure 4-19 Fix+Continue Build Environment Window

The compiler and associated flags that were used to compile the file are
normally gathered from the target. You can use the Build Environment
window to make any changes to these flags.

The Build Environment window allows you to select your build
environment setting through the “Build Environment Setting” toggle, which
contains the two options described below:

Cancel Button

Files Button

OK Button

Clear Button

Set Button

Unset Button

Done Button

Changes to Debugger Views

41

“Default” Sets the build environment to default that is displayed in
the Build Environment window.

“File Specific” Sets the build environment to that of the file that contains
the currently selected function. You can change the file by
clicking the Select File button, which launches the File dialog
(see Figure 4-16).

The Build Environment window also contains the following buttons:

Select File Launches the File dialog and allows you to select a file from
which to set the build environment.

Clear Clears the window.

Set Sets the build environment to what is displayed in the
window.

Unset Unsets the build environment.

Done Dismisses the window.

Keyboard Accelerators

Use the accelerators in Table 4-1 to issue Fix+Continue commands directly
from the keyboard.The accelerators are listed alphabetically by command.

Changes to Debugger Views

When you use Fix and Continue, Debugger views change to show redefined
functions or stopped lines containing redefined functions.

Table 4-1Fix and Continue Keyboard Accelerators

Command Ctrl + key

Cancel Edit U

Edit E

External Edit X

Parse And Load P

42

Chapter 4: Fix and Continue Reference

Main View

When you open the Debugger after installing Fix and Continue, you’ll notice
several changes to the environment. All Fix and Continue functions are
available through the Fix+Continue menu. See Figure 4-20 for details.

Figure 4-20 Debugger Main View

You select Fix and Continue commands from the Fix+Continue menu or
enter them at the Debugger command line. The source code status is Read

Editable function

Decimal notation

Command line

Source
code
status
indicator

Annotated
scroll
bar

Source view

Fix and
Continue
menu

Changes to Debugger Views

43

Only . Color coding shows the differences between editable code, enabled
redefinitions, disabled definitions, and breakpoints. Line numbers in
redefined functions have decimal notation that is used for every reference to
the line number. The integer portion of the decimal is the same as the first
line of the function. This ensures that compiled source code line numbers
remain unchanged.

Command-Line Interface

The Debugger command-line interface accepts Fix and Continue commands
and reports status involving redefined functions or files. Figure 4-21 shows
a function successfully redefined using the command line. Change id 1 was
previously redefined and assigned the number 1.

Figure 4-21 Command-Line Interface With Redefined Function

Call Stack

The Call Stack View recognizes redefined functions. It uses the decimal
notation for line numbers, as shown in Figure 4-22.

Specify function with Change id 1

44

Chapter 4: Fix and Continue Reference

Figure 4-22 Call Stack

Trap Manager

The Trap Manager recognizes redefined functions. It uses the decimal
notation for line numbers, as shown in Figure 4-23.

Figure 4-23 Trap Manager With Redefined Function

Decimal notation for line number

Decimal notation for line numbers

Command-Line Interface

45

Command-Line Interface

The commands in this section let you work with Fix and Continue from the
Debugger command line. Command arguments that are used for more than
one command are grouped and documented separately in the next section.
They are listed in alphabetical order for quick lookup.

Common Fix and Continue Command Arguments

This section contains descriptions of some Fix and Continue flags and
variables that are common to more than one command.

[-all] Specifies existing changes.

[change_id] A unique identifier (ID number) returned on the Debugger
command line the first time you redefine a function. From
then on, you can use the ID to refer to the function.
Disabling or enabling the ID undoes or redoes the
cumulative changes performed on the function.

[-file] Specifies the following source file (filename); for example:
-file fmain.c

[filename] Specifies a filename with an extension such as .h, .c, or .CC

[func_spec] Specifies a function using the following syntax:

[change_id | [“ filename ”:] function_signature]

where function_signature is the name of the function. A
C++ member function includes the class name and scope
resolution operator (::). For example:

3
“fmain.c”: getNumbers
getNumbers
A::bingo

[line_number]

Specifies the number of the line in the source code.

46

Chapter 4: Fix and Continue Reference

Fix and Continue Commands

add_source {“ filename ”: line_number }

Prompts you to add source code lines (for example,
add_source “fmain.c”:15.2). line_number must be
within the body of a function. Entering a period (.) specifies
the end of your input. The source lines you provide are
added after the specified line. This command returns an ID
existing or new, depending on whether the function
affected has already been changed or not. The resulting new
definition of the function is executed on its entry next time.
See also delete_source , replace_source .

delete_changes { func_spec | -all | {-file filename }}

Undoes the changes corresponding to the selected functions
(for example, delete_changes getNumbers -file

fmain.c). Once deleted, you won’t be able to use the IDs
again, since the IDs associated with the selected functions
are released. The default is -all . See also save_changes .

delete_source {“ filename ”: line_number [, line_number]}

Deletes the given line(s) if line_number or ,line_number
(range) is within the body of a function. An example is:
delete_source “fmain.c”:8.6,8.7 . This command
eturns an ID existing or new, depending on whether the
function affected has already been changed or not. The
resulting new definition of the function is executed on its
entry next time.

disable_changes { func_spec | -all | {-file filename }}

Undoes changes specified for the selected functions (for
example, disable_changes getNumbers -file fmain.c .
Nothing happens if the selected function is already
disabled. The compiled definition of the function is
executed on its next entry. You can invoke this command
when the process is stopped or on a running process when
a function entry breakpoint is set.

enable_changes { func_spec | -all | {-file filename }}

Redoes changes specified for the selected functions (for
example, enable_changes getNumbers -file fmain.c .
Nothing happens if the selected function is already enabled.
The latest accepted definition of the function is redefined on

Command-Line Interface

47

its next entry. You can invoke this command when the
process is stopped or on a running process when a function
entry breakpoint is set.

list_changes [func_spec | -all | {-file filename }]

Lists one or more lines using the following syntax:

change_id isEnabled filename function_spec

For example:

4 enabled foo.c foo
8 disabled A.c++ A::bingo

The default is list_changes -all .

redefine func_spec
[-edit |

{ -read filename [line_number , line_number]}]

Specifies a new body for a function. The new definition is
checked, and errors (if any) are printed. The new function
body is redefined on the next function entry. Breakpoints (if
set) on the old definition are put on the new definition based
on their relative line number position from the beginning of
the function definition. (Note that some breakpoints may
not make it to the new definition.) You can invoke this
command when the process is stopped or on a running
process when a function entry breakpoint is set. There are
three ways to provide a new definition:

• -edit pops up an editor of your choice containing the
current definition of the function. The specification of
the new definition is complete when you exit the
editor. You may not leave the editor open. Figure 4-24
shows the vi editor.

Figure 4-24 Editing a Function in the vi Editor

48

Chapter 4: Fix and Continue Reference

• -read takes the contents of the file specified (within the
line numbers if given) as the new function definition.

• No option allows you to type in replacement code from
the next line. A period in the first column on a fresh
line terminates the definition. For example:

redefine getNums
“/usr/fmain.c”:8.1> {
“/usr/fmain.c”:8.2> printf(“In getNums.\n”);
“/usr/fmain.c”:8.3> }
“/usr/fmain.c”:8.4> .

You can use a combination of characters (yet to be
determined) to open an editor of your choice
containing the lines typed. The specification of the new
definition is complete when you exit the editor.

replace_source {“ filename ”: line_number [, line_number]}

Prompts you to type in replacement source if line_number
or ,line_number (range) is within the body of a function.
The source lines you provide replace the specified line(s).
An example is replace_source “fmain.c”:12 . This
command returns an existing or new id depending on
whether the function affected has already been changed or
not. The resulting new definition of the function is executed
on its entry next time. See also add_source and
delete_source .

save_changes { func_spec | {-file filename }}

[-[w|a]] filename_to_save
Saves (enabled or disabled) function redefinitions or an
entire file to a separate file (filename_to_save). An
example of saving a function definition is the following:

save_changes getNumbers getNumbersFunc

If you specify the -file option, then before saving to
filename_to_save , all function changes are applied to the
compiled source of the file (with the condition that the file
has had only its functions redefined, and has not been
edited since the last build). An example of saving an entire
file is the following:

save_changes -file fmain.c fmain.c

Command-Line Interface

49

-w replaces the filename_to_save . -a appends to the
file_to_save . An example of adding a function to a file is
the following:

save_changes getNumbers -a newFuncs

See also delete_changes .

setbuildenv [“ filename ”] compiler-flag-list

Overrides default build environment flags (compiler
options). Without filename , the flags are passed along with
-c -g flags to the compiler for any function in any file
except those set separately with setbuildenv . An example
is the following:

setbuildenv -DnameA -Idir

If filename is given, this command sets separate flags
specifically for that file. For example, consider the
following:

setbuildenv “fermat.c” -DnameB -Ianotherdir

See also unsetbuildenv .

showbuildenv [“ filename ”]

Lists all the build environment flags set so far.
showbuildenv “filename ” lists any build environment
specs set separately with setbuildenv “ filename ” .

show_changes [func_spec | -all | {-file filename }]

Prints the code of all enabled redefinitions of the specified
function(s). The default is show_changes -all . See also
enable_changes and disable_changes .

show_diff { func_spec | {-file filename }}

Launches a xdiff comparing the compiled source and its
latest redefinition for the specified function. If -file

filename is specified, xdiff shows the difference between
the compiled file and the file with all redefinitions applied
to the compiled source of the file (with the condition that the
file has had only its functions redefined, and has not been
edited since the last build).

50

Chapter 4: Fix and Continue Reference

unsetbuildenv [“ filename ”]

Disregards the default build environment flags if specified
earlier. For all functions in files that don’t have an
overriding build environment, unsetbuildenv passes only
the -c and -g flags.

If filename is given, this command disregards the build
environment flags specified for the file earlier. Further
redefinition of the functions in the file use the default build
environment flags, if set. See also setbuildenv .

51

Chapter 5

5. Getting Started with the C++ Browser

This chapter is designed to get you up and running with the C++ Browser. It
tells you what you need to run the Browser, shows you how to start it, and
presents a brief overview of its main windows and menus. It also provides a
brief explanation of pertinent concepts concerning C++ class structure. If
you are already familiar with C++ and the basic components of the C++
Browser, and want to perform a specific task, see Chapter 6, “Using the C++
Browser: A Sample Session.” If you need specific reference information on
any part of the Browser’s user interface, see Chapter 7, “C++ Browser
Reference.”

The chapter contains the following sections:

• “Starting the C++ Browser”

• “Understanding C++ Browser Concepts and Components”

Starting the C++ Browser

The C++ Browser is integrated with, and must be launched from, the
WorkShop Static Analyzer, cvstatic. The Static Analyzer creates a fileset, or list
of source files, it then uses to build a static analysis database used by both the
Static Analyzer and the C++ Browser. The Browser accesses this database
when it displays C++ class, member, and method information.

Thus, to use the Browser to view your C++ classes, you must perform these
tasks:

1. Start the Static Analyzer.

2. Create a fileset that contains the files defining the C++ classes you wish
to examine.

3. Build a static analysis database from the fileset.

4. Launch the C++ Browser from the Static Analyzer.

52

Chapter 5: Getting Started with the C++ Browser

The following sections describe the previous steps in detail.

Starting the Static Analyzer

To start the Static Analyzer, perform these steps in your shell window:

1. Move to the directory containing your source files or your database
(unless your fileset has path information to the source directory).

cd source_directory

2. Start the Static Analyzer. If you want to build a database, enter:

cvstatic &

If you have already built a database, enter:

cvstatic -readonly &

Creating a Fileset

When you start the Static Analyzer, it creates a default fileset that includes
all C, C++, and Fortran files in the directory from which you started it. You
need to create a custom fileset. The Static Analyzer builds the database from
your fileset.

If a fileset exists, select “Change Fileset” from the Admin menu and select
files from the Fileset Selection Browser window that appears.

To create a new fileset, perform these steps:

1. From the Static Analyzer’s Admin menu, select “Edit Fileset.”

2. In the Fileset Editor window, first ensure that the Directories field
shows the location of your source files. If your source files are in a
different directory, click the Move Directory Parser button.

3. Click the C++ toggle under the list of files, to restrict the files shown.

4. Click the Move Files Parser button to move the list of files into the Parser
Fileset list box. Files in this box are parsed, and the information goes to
the static analysis database when you scan.

Starting the C++ Browser

53

If you are not satisfied with the files in the Parser Fileset list box, remove
them all. Select all the lines and then click the Remove button. Continue
moving directories and files to create the parser fileset.

5. When you are satisfied with the files in the Parser Fileset field, click OK.

For detailed information on how to create a custom fileset, as well as general
information on filesets and their use, see Chapter 4, “Creating a Fileset and
Generating a Database,” in the CASEVision/WorkShop User’s Guide.

Creating a Static Analysis Database

If you are recreating the database, rescan using one of the following
methods. If you’ve just modified source code and want to update, select
“Rescan” from the Admin menu. To completely rebuild the cross-reference
database, select “Force Scan” from the Admin menu.

To build a new database, select “Force Scan” from the Admin menu.

Launching the C++ Browser from the Static Analyzer

To launch the Browser from the Static Analyzer, choose the “C++ Browser”
command from the Static Analyzer’s Admin menu. The Class View window
of the C++ Browser appears, along with the chooser window, List of Classes
(see Figure 5-1). The Class View window and other major components of the
Browser interface are described in the next section, “Understanding C++
Browser Concepts and Components.”

54

Chapter 5: Getting Started with the C++ Browser

Figure 5-1 Static Analyzer Launches C++ Browser

Understanding C++ Browser Concepts and Components

You can use the Browser to view the C++ classes used in any application or
library. Specifically, you view classes present in the sources included in the
fileset. The Browser’s Class View window (described on page 59) shows the
internal structure of a class and its relationships with other classes in a

C++ Browser Class View

C++ Browser chooser window

Static Analyzer

Minimize button

Understanding C++ Browser Concepts and Components

55

textual, outline format. The Class Graph window displays the same
information as a graphical view of the class structure, providing more of a
global perspective of the overall class structure. Thus, you can
simultaneously examine the overall class structure, as well as the details of
an individual class (its methods, members, friends, and so on).

This section describes the basic user interface design of the C++ Browser. It
also introduces the concept of queries, the means by which the Browser and
the Static Analyzer let you narrow your search for specific information.

C++ Class Structure and the Current Class

The C++ Browser displays three main types of information:

• the members of a class (current class) that you select from the set of
classes found in the given fileset.

• the classes in the given fileset related to the current class and,
conversely, the interclass relationships between the current class and
other classes, and global relationships between all the classes found in
the given fileset

• the calling structure of member functions (methods) belonging to
selected classes

This section provides a brief overview and explanation of the different terms
the Browser uses to refer to the members, classes, and interclass
relationships it displays.

Members

The C++ Browser displays four kinds of class members:

• types define data types declared by a class.

• data members are variables that contain state information for a class.

• methods, or member functions, define how a class interacts with other
classes and structures.

56

Chapter 5: Getting Started with the C++ Browser

• virtual methods define how an instantiated object interacts in conditions
when parent and child classes have identically named methods that
perform different functions. Using virtual methods for an object
ensures that the method invoked is defined by the class from which the
object was instantiated, regardless of type casting.

Each of these four kinds of members come in two types:

• static members, meaning that all objects of a given class contain the
same value for a given member, and when that value is changed, it
changes for all instances of that class

• instance (non-static) members, meaning that the value of the given
member can be different for each instance of that class

Finally, each of these kinds of members can fall into one of three categories,
based on their accessibility:

• public members can be accessed by any method or C-style function

• protected members can be accessed only by methods in derived classes,
friend classes, or friend functions (see the next section, “Related Classes
and Functions”).

• private members can be accessed only by methods in the class in which
they are defined, friend classes, or friend functions.

The C++ Browser displays class members in a hierarchical, expandable
outline format based on the categories described above. The layout of the
member list display is customizable (see “Customizing the C++ Browser” on
page 128), and the default display is described in “The Class View Window”
on page 59 and in detail in Chapter 7, “C++ Browser Reference.”

Related Classes and Functions

The C++ Browser displays this information about class structure from the
point of view of a chosen current class:

• base classes, meaning the current class and its ancestors

• derived classes, meaning subclasses of the current class

• classes whose members the current class uses or classes that are
components of the current class

Understanding C++ Browser Concepts and Components

57

• classes that members of the current class are used by or classes of which
the current class is a component

• friend classes and friend functions of the current class

Like the member information, the Browser displays related class
information in a hierarchical, expandable outline format based on the
categories described previously.

The layout of the related class list display is also customizable (see
“Customizing the C++ Browser” on page 128), and the default display is
described below in “The Class View Window” and in detail in Chapter 7,
“C++ Browser Reference.”

Interclass Relationships

There are four main types of interclass relationships displayed by the C++
Browser:

• inheritance, which describes the relationship of parent classes to derived
classes

• containment, which describes the relationship of container classes to the
classes they contain

• interaction, which describes the relationship of classes using methods of
other classes.

• friends, which describes the relationship of classes declaring other
classes as friends.

The Browser displays this information in a graphical tree format as shown in
Figure 5-2. For more information on the details of the user interface, see “The
Class Graph Window” on page 61 and Chapter 7, “C++ Browser Reference.”

58

Chapter 5: Getting Started with the C++ Browser

Figure 5-2 Interclass Relationships

Main C++ Browser Windows

The C++ Browser uses three main windows (also called views) to display
different sets of information about classes, class members, and interclass
relationships.

• The Class View window contains member and class information,
organized in an expandable, hierarchical outline format. The Class
View window allows you to make queries on listed members and
classes, and lets you invoke the other main Browser windows from
pop-up menus and the menu bar.

• The Class Graph window contains a graphical display of the current
class (as displayed in the Class View window) and related classes found
in the static analysis database.

Inheritance

Containment

Interaction

Friend

Understanding C++ Browser Concepts and Components

59

• The Call Graph window contains a graphical display of the calling
relationships of methods and virtual methods selected from the Class
View window.

Some of the features of these windows are described below.

The Class View Window

Class View is the primary C++ Browser window. It opens when you launch
the Browser from the Static Analyzer’s Admin menu. Figure 5-3 shows an
example of the Class View window.

You can use the Class View window to:

• view lists of members defined in the current class and classes associated
with the current class in an expandable side-by-side display

• issue queries about a selected member or class to examine details of its
structure and how other members or classes relate to it

• open Class Graph and Call Graph windows to further explore class and
method relationships

• display detailed results of your queries in the Static Analyzer, or use the
annotated scroll bar to find the results of your queries quickly within
the Class View member and related class lists

• view source files containing class and member definitions

• generate reference pages

Directly below the menu bar is the Current Class field, an editable text field
(with name completion) that contains the name of the current viewpoint
class. Below this, the Class View window presents two lists containing
information about the currently selected class:

• The member list (on the left) gives you a detailed view of the members of
the current class.

• The related class list (on the right) shows the relative position of the
current class in your application’s or library’s class hierarchy.

60

Chapter 5: Getting Started with the C++ Browser

Figure 5-3 The Class View Window

By default, the Browser sorts the members and classes under keyword
headings, discussed previously in “C++ Class Structure and the Current
Class” on page 55. Ways of altering the sorting scheme are discussed in
“Customizing the C++ Browser” on page 128.

The Class View window features annotated scroll bars in its member and
related class lists. When you issue a query, the scroll bar contains marks
(“annotations”) that indicate the relative location of members or classes
identified by the query within each list. For more information on issuing
queries, and on using the Class View window in general, see Chapter 6,
“Using the C++ Browser: A Sample Session.”

Understanding C++ Browser Concepts and Components

61

The Class Graph Window

The Class Graph window provides a graphical view of class structure (see
Figure 5-4). You can choose to display a directed graph of any of four
interclass relationships, and can switch between these graphs at will, or
display multiple graph windows, each displaying a different relationship.
You can choose to view relationships among all the classes in the static
analysis database, or just those that directly involve the class. Double-
clicking on a class node in the Class Graph selects the class as the new
current class in the Class View window.

Buttons located at the bottom of the Class Graph window allow you to
adjust the view of the class structure. You can

• enlarge or shrink the class nodes to fit them into the same-size window

• invoke a graph overview window that serves as a navigational aid by
providing a miniature, schematic view of the entire graph you’re
exploring

• toggle a display of multiple connections between two nodes

• align nodes to clarify the display

• turn the direction of the tree graph by 90 degrees so that the tree graph
grows downwards instead of to the right

• choose which one of the four interclass relationships so displayed at
any given time

The Class Graph View menu gives you different options for setting the scope
of the graph. You can

• show the global relationships of the entire set of classes found in the
current fileset

• simplify a complicated graph by showing only related (recursively
derived) classes of the current class

• show a butterfly view of the current class, showing only the immediate
base and derived classes of the selected class

Figure 5-4 shows an example of the Class Graph window.

62

Chapter 5: Getting Started with the C++ Browser

Figure 5-4 The Class Graph Window

The Call Graph Window

The Call Graph window allows you to graphically view the calling structure
of class methods and virtual methods. Methods selected from the Class View
window can be added or deleted from the Call Graph window. Double-
clicking on a method node in the Call Graph window opens a view of the
source code defining the method.

Buttons located at the bottom of the Call Graph window adjust the view of
the class structure. You can

• enlarge or shrink the class nodes to fit them into the same-size window

• invoke a graph overview window that serves as a navigational aid by
providing a miniature, schematic view of the entire graph you’re
exploring

• toggle a display of multiple connections between two nodes

• align nodes to create a more clear graph

Understanding C++ Browser Concepts and Components

63

• turn the direction of the tree graph by 90 degrees so that the tree graph
grows downwards instead of to the right

Figure 5-5 shows an example of the Call Graph window.

Figure 5-5 The Call Graph Window

65

Chapter 6

6. Using the C++ Browser: A Sample Session

This chapter provides an interactive sample session that demonstrates most
of the C++ Browser’s main functions. The session outlines common tasks
you can perform with the browser, using example C++ application source to
illustrate the use of each function. For complete reference information on the
browser’s user interface, see Chapter 7, “C++ Browser Reference.”

This chapter contains the following sections:

• “Setting Up the Sample Session”

• “Choosing the Current Class”

• “Using the Class View Outline Lists”

• “Examining Members and Classes”

• “Using the Class Graph Window”

• “Using the Call Graph Window”

• “Generating Reference (Man) Pages”

• “Ending the Session”

Setting Up the Sample Session

The C++ Browser comes with a demonstration directory,
/usr/demos/WorkShop/bounce, which contains the complete source code for the
C++ application bounce. To prepare for the session, you first need to create
the fileset and static analysis database, then launch the browser from the
Static Analyzer.

66

Chapter 6: Using the C++ Browser: A Sample Session

Preparing the Fileset and Database

Prepare for the session by following these steps:

1. Open a shell window and start the WorkShop Static Analyzer in the
/usr/demos/WorkShop/bounce directory:

% cd /usr/demos/WorkShop/bounce
% cvstatic

The Static Analyzer window opens.

2. Select “Edit Fileset” from the Admin menu.

3. Click the C++ toggle under the list of files.

4. Click the Move Files Parser button to move the list of files into the Parser
Fileset list box.

5. Click OK.

6. Select “Force Scan” from the Admin menu.

Launching the C++ Browser

Once the static analysis database is built, you can continue with the steps or
close the Static Analyzer. If you have closed it, restart it as follows:

cvstatic -readonly

The -readonly option suppresses the Static Analyzer’s Build Window.

1. Select the “C++ Browser...” command from the Admin menu of the
Static Analyzer window (see Figure 5-1). The Class View window
opens, along with a chooser window, List of Classes, that contains the
names of each C++ class included in the demo directory.

2. Stow the Static Analyzer Window as an icon using the minimize button
in the upper right of the window frame; you will be using it later (see
Figure 6-1.

3. Position the Class View window in a convenient place on the screen.

You are now ready to begin the sample session.

Figure 6-1 Minimizing the
Static Analyzer

Choosing the Current Class

67

Choosing the Current Class

The List of Classes chooser window that opened with the Class View
contains the complete list of C++ classes included in the current fileset. Select
Actor, the first class listed in the List of Classes window, by clicking on it
with the left mouse button. Then click on the OK button. The List of Classes
window closes, and Actor is now listed in the Current Class: text field.
Information about the class appears in the two outline list views below it (see
Figure 6-2). Actor is now the current class.

Figure 6-2 Selecting a Current Class

Using Name Completion

Now select the name in the Current Class: field by rapidly double-clicking on
it using the left mouse button. You want to replace the class Actor with the
class MainWindow as the current class. Type

Main

into the Current Class: field, and then press the <space bar>. The Current
Class: field completes the name of the class for you. Press the <Enter> key to
set MainWindow as the current class. See Figure 6-3.

68

Chapter 6: Using the C++ Browser: A Sample Session

Figure 6-3 Changing the Current Class to MainWindow

Bringing Up the List of Classes Chooser

Without selecting any text, type a question mark (?) into the Current Class:
field. This reopens the List of Classes chooser window. Right now, you want
to keep MainWindow as the current class, so click on the Cancel button with
the left mouse.

Using the Class View Outline Lists

The lower two-thirds of the Class View window contains two side-by-side
lists which contain information about the currently selected class in outline
form:

• The lefthand, or members, list provides a detailed view of the members
of the current class.

• The righthand, or related class list displays the relationships of other
classes and of friend functions in your application’s or library’s class
hierarchy to the current class.

By clicking on the outline icon to the left of a heading, you can collapse or
expand the list under that category. The direction in which the outline icon
points indicates if the heading is expanded or collapsed.

A downward-pointing outline icon indicates that the list is expanded, as
shown in Figure 6-4.

Figure 6-4 Expanding a List

Examining Members and Classes

69

In the member list, click on the PUBLIC heading’s downward-pointing
outline icon using the left mouse button. Class View hides all of the entries
for that heading, and the icon toggles to become a right-pointing arrow (see
Figure 6-5).

Click the PUBLIC heading’s right-pointing icon again. Class View once
again displays the entries for that heading, and the icon toggles to become a
downward-pointing arrow.

Examining Members and Classes

To learn details about the structure of your C++ code, you make queries—
predefined questions—about the current class’s members and related
classes. By making queries, you can gain a detailed view of a large,
complicated class structure from the “viewpoint” of any class or member.

Queries search the static analysis database for specific information about
classes and their members, including class hierarchy, class and member
declarations and definitions, and the interactions among members and
classes (for example, which members call which members, where a
definition overrides another, where an instance is created or destroyed, and
so on).

The C++ Browser answers queries by highlighting items in the member and
related class lists that match the query. Optionally, you can display more
detailed query results in the Static Analyzer window from which you
launched the browser.

In the following sections, you will explore the queries available for data
members, methods, and classes, plus several other display features of the
Class View window.

Making Queries on Data Members

In this section, you will examine a data member in the class MainWindow
(see Figure 6-6).

Figure 6-5 Collapsing a List

70

Chapter 6: Using the C++ Browser: A Sample Session

Figure 6-6 Queries on Data Members

To select the data member in the member list, do the following:

1. Use the member list’s scroll bar to scroll until the outline heading
PROTECTED is visible (if it is not already).

2. Left-click the corresponding outline icon, and then scroll until the
heading DATA and the members under it are visible.

3. Click on the data member

Widget _workArea;

using the left mouse button. The member is highlighted with a raised
bar.

Annotated
scroll bar tick

Query results

Member list Related class list

Scroll bar

Query type and target

Selected target data member

Pop-up menu selection
(right-mouse button)

Outline icon

Message area:

Examining Members and Classes

71

4. Hold down the right mouse button anywhere in the member list. The
Queries on Data Members pop-up menu appears, as shown in
Figure 6-7.

Try each of these items and note the results. Methods in the member list and
classes in the related class list are highlighted, and the list is automatically
scrolled to display the highlighted items.

Also notice the use of the annotated scroll bars: they show where highlighted
entries occur in the member and related class lists by displaying ticks in the
highlight color at the proper location in the scroll bar. When the bottom or
top of the scroll bar overlaps a given tick, the corresponding entry is visible
in the list window.

The query type, target, and result are shown in the message area between the
current class field and the outline lists.

Next, try double-clicking on the member you’ve selected (Widget _workArea).
A Source View window opens, highlighting the location of the source for
that member (see Figure 6-8). This works for all members in the member list.

Figure 6-7 Queries on Data
Members Pop-Up Menu

72

Chapter 6: Using the C++ Browser: A Sample Session

Figure 6-8 Source View Window

Detailed Data Member Query Information

Now, suppose you want to see more detailed information on your queries.
Choose “What Accesses” from the Queries on Data Members pop-up menu
(see Figure 6-9). Note that the display scrolls to show the results of your
query. Then click on the Last Query button in the upper right corner of the
Class View window.

Data Member definition

Browser source icon

Examining Members and Classes

73

Figure 6-9 “What Accesses” Query Result

Now open the Static Analyzer window that you had minimized earlier. The
window contains precise information on where the member is accessed, as
shown in Figure 6-10. Using the left mouse button, double-click anywhere in
the first entry listed in the Static Analyzer window. A Source View window
opens, displaying the highlighted access. Double-click anywhere in any
other entry in the Static Analyzer window, and the Source View shifts to the
corresponding access.

Highlighted result of query

Last Query button

Show in Static Analyzer toggle

74

Chapter 6: Using the C++ Browser: A Sample Session

Figure 6-10 Query Result in Static Analyzer and Source View

Try this for each of the other query items, and examine the results.

When you have finished, return to the browser Class View. Click on the Show
in Static Analyzer toggle button (see Figure 6-11). The label to the right of the
toggle should change to Yes. All subsequent queries you make display
detailed results in the Static Analyzer window automatically.

Making Queries on Methods

In this section, you will examine a method (member function) in the class
MainWindow. To select the method in the member list, follow these steps:

1. Use the member list’s scrollbar to scroll until the outline heading
PUBLIC : INSTANCE : VIRTUAL_METHODS is visible.

Double-click anywhere on the line...

...to open the source,
with access highlighted

Figure 6-11 Show in Static
Analyzer Toggle On

Examining Members and Classes

75

2. Using the left mouse button, click on the method

void initialize(void);

The method is highlighted with a raised bar.

3. Hold down the right mouse button anywhere in the member list to
bring up the Queries on Methods pop-up menu (shown in Figure 6-12).

Figure 6-12 Queries on Methods

Try each of the items on the menu (except “Call Graph”), and note the
results. Make sure to look at the detailed results that appear in the Static
Analyzer window. Also try double-clicking on the method to get a view of
its source.

When you are finished, go back and choose “All (method and data access)”
from the What is Used submenu (see Figure 6-13).

76

Chapter 6: Using the C++ Browser: A Sample Session

Figure 6-13 ”What is Used” Submenu and Query Results

Notice that several items in the heading DATA (under PROTECTED) are
highlighted. Try clicking on the outline icon next to the heading. You’ll see
that when the list collapses, the outline icon is highlighted. This indicates
that there are highlighted items within the collapsed heading. Note that the
annotated scroll bar adjusts accordingly.

With MainWindow& MainWindow (char*); selected, try “What Uses” from
the Queries on Methods pop-up menu. The Static Analyzer becomes active
and displays an error message, as shown in Figure 6-14.

Query type and target
Message area:

Examining Members and Classes

77

Figure 6-14 No Results Were Found

Making Queries on Parent Classes

In this section, you’ll examine the current class (MainWindow) and one of its
ancestors. To get ready, scroll the related class list so that the heading BASE
CLASSES is visible. You’ll notice that beneath the heading there are class
names, each of which is indented from the previous one (see Figure 6-15).
The first of these is

<-This

which represents the current class. Each class listed below it is an ancestor of
the current class; parentage is denoted by indentation. Thus, in this case,
UIComponent is the parent of MainWindow, and BasicComponent is the
parent of UIComponent. Notice that child classes have outline icons
associated with them, allowing you to collapse and expand the hierarchy.
Try clicking on the current class outline icon to collapse the hierarchy, and
then click again to expand it.

Figure 6-15 BASE CLASSES
Representation

78

Chapter 6: Using the C++ Browser: A Sample Session

Making Queries on the Current Class

Select the current class (<-This) by clicking on it with the left mouse button,
then hold down the right mouse button anywhere in the related class list to
bring up the Queries on Current Class pop-up menu. The menu is divided
into four sections, as shown in Figure 6-16.

Try each of the first three sections of the menu, and examine the results in
both the Class View and the Static Analyzer windows. All the queries on the
current class in the first three sections are also available from the Queries
menu in the Class View menu bar.

The last section of the Queries on Current Class pop-up menu contains two
items:

• “Show Source” opens a Source View window on the source or header
file containing the declaration of the selected class. The declaration is
highlighted in the source. Note that if you minimized a Source View
previously, this command updates the window. However, the window
remains minimized.

• “New Class View” opens a new Class View window with the selected
class as the current class within it.

These two items are found on almost every pop-up Query menu in the
related class list, so they won’t be mentioned again. Feel free to try them out
while you are running this session, but close each new window after trying
it so you don’t get lost.

Making Queries on Base Classes

Now select the class UIComponent by clicking on it with the left mouse
button. Then hold down the right mouse button anywhere in the related
class list to bring up the Queries on Base Class pop-up menu (see
Figure 6-17).

Try each of the menu items, and examine the results in both the Class View
and the Static Analyzer windows.

Figure 6-16 Queries on
Current Class

Figure 6-17 Queries on Base
Class

Examining Members and Classes

79

Making Queries on Derived Classes

In this section, you’ll examine a class derived from (that is, a descendant of)
the current class (MainWindow, see Figure 6-18). To get ready, scroll the
related class list so that the heading DERIVED CLASSES is visible. Notice
that beneath the heading there are class names, each of which is indented
from the previous one. Each class listed below it is a descendant of the current
class; childhood is denoted by indentation. Thus, in this case, MenuWindow
is the child of MainWindow (the current class is not listed under the heading,
however); and BounceWindow is the child of MenuWindow. Note that the
meaning of indentation is the opposite of what it was under the BASE
CLASSES heading.

Notice that parent classes have outline icons associated with them, allowing
you to collapse and expand the hierarchy. Try clicking on the MenuWindow
outline icon to collapse the hierarchy, and then click again to expand it.

Now select the class MenuWindow by clicking on it with the left mouse
button, then hold down the right mouse button anywhere in the related class
list to bring up the Queries on Derived Class pop-up menu (see Figure 6-19).

Try finding the members of the current class that are overridden by choosing
“What Is Overridden” from the menu, and examine the results in both the
Class View and the Static Analyzer windows. (The other items won’t find
results in this example.)

Making Queries on Classes That the Current Class Uses

In this section you’ll examine a class that the current class uses. Scroll until
the heading USES is visible in the related class list, and select the class
Application using the left mouse button. Hold down the right mouse button
anywhere in the related class list to bring up the Queries on Used pop-up
menu.

Try finding the methods that call members of Application by selecting “By
Calling Methods” from the “What Uses” submenu (see Figure 6-20). Be sure
to check the results in the Static Analyzer window as well.

Figure 6-18 DERIVED
CLASSES Structure

Figure 6-19 Queries on
Derived Class

Figure 6-20 Queries on Used
“What Uses”

80

Chapter 6: Using the C++ Browser: A Sample Session

Making Queries on Classes That the Current Class is Used
By

In this section you’ll examine a class that uses the current class. For this
example, we’re going to change to a different current class, the class
Application. Instead of going back to the current class text field, however,
we’re going to use a shortcut.

1. Double-click on any mention of Application in the related class list (the
currently selected one is fine). Notice that the current class in the Class
View window switches to Application, and that the member and
related class lists are updated accordingly. You can change classes from
the related class list at any time by double-clicking on the class you
wish to make current.

2. Scroll until the heading USED BY is visible in the related class list, and
select the class BouncingBall using the left mouse button. Hold down
the right mouse button anywhere in the related class list to bring up the
Queries on Users pop-up menu as shown in Figure 6-21.

This menu is very similar to the Queries on Used menu from the last
section. Try finding the members of Application that BouncingBall calls
by selecting “By Calling Methods” from the “What Is Used” submenu.

Remember that the results for the next query appear only in the Static
Analyzer window.

3. To see the results of this query, you must have the Show in Static
Analyzer toggle set, or you must click on the Last Query button after
making the query. Now, double-click on BouncingBall to make it the
new current class. Select the class AddBallCmd under the heading
USED BY. Find the members of AddBallCmd that instantiate
BouncingBall by selecting “What Instantiates” from the Queries on
Users pop-up menu (see Figure 6-22).

Returning to a Previous Current Class

Now let’s return to the previously displayed current class, Application.
There’s an easy way to do this: go to the History menu in the Class View
menu bar, and choose “Show Previous Class,” as shown in Figure 6-23. The
current class reverts to whatever it was before the last change.

Figure 6-21 Queries on Users
“What is Used”

Figure 6-22 Queries on Users
“What Instantiates”

Examining Members and Classes

81

Figure 6-23 Using History Menu to Show Previous Class

Now try the other item from the History menu, “Show History.” This item
brings up the List of Classes Shown window (see Figure 6-24) that lists each
of the previous current classes you have examined, in the order you
examined them. To choose one, double click on the name in the list. For now,
though, click on the Cancel button.

Figure 6-24 “Show History” Opens List of Classes Shown Window

Making Queries on Friends

Next you’ll examine the kinds of friend relations that Class View supports.
For a selected friend function (of the current class Application), you’ll find
methods in the following choices:

82

Chapter 6: Using the C++ Browser: A Sample Session

• current class that the friend function uses

• current class that uses the friend class

• friend class that uses the current class

Finding Current Class Methods That a Friend Function Uses

Locate the heading FRIEND FUNCTIONS in the related class list, and select
the function listed under it. Hold down the right mouse button in the related
class list to bring up the Queries on Friend Function pop-up menu (see
Figure 6-25). If you try “What It Uses,” you’ll find that the function main()

uses no members of the current class. However, double-clicking the function
opens the related Source View.

Finding Current Class Methods That Use a Friend Class

Now locate the heading FRIENDS in the related class list, and select the class
listed under it. Hold down the right mouse button in the related class list to
bring up the Queries on Friend Class pop-up menu (see Figure 6-26). Try the
query item “What Is Used.” Check the results in both the Class View and
Static Analyzer Windows to see if it highlights all members of the current
class that the selected friend class uses.

Finding Friend Class Methods That Use the Current Class

Finally, locate the heading FRIEND OF in the related class list, and select the
class listed under it. Hold down the right mouse button in the related class
list to bring up the Queries on Friend Of Class pop-up menu (see
Figure 6-27).

Try the query item “What Uses.” Check the results in both the Class View
and Static Analyzer Windows to see if it highlights all members of the
current class that use the friend class.

Now that you’re familiar with the basic functions available within the Class
View window, let’s look at the C++ Browser’s other two main windows, the
Class Graph window and the Call Graph window.

Figure 6-25 Queries on Friend
Function

Figure 6-26 Queries on Friend
Class

Figure 6-27 Queries on Friend
of Class

Using the Class Graph Window

83

You can minimize (but don’t exit) the Static Analyzer window; you won’t be
using it for the rest of the session. (If you exit the Static Analyzer, you also
exit the Browser.)

Using the Class Graph Window

The Class Graph window provides you with a graphical view of your
fileset’s class hierarchy. Open the Class Graph from the Views menu in the
Class View window. The Class Graph displays the complete class hierarchy
as found in the fileset, according to one of four available relationships, and
highlights the current class. From there, you can prune the graph of classes
until you are viewing only those classes that you are interested in.

The Class Graph has the same basic user interface as the other graph views
found in the WorkShop suite of tools, which are explained in Appendix A,
“Graphical Views in the CASEVision Environment,” in the
CASEVision/WorkShop User’s Guide. For functions specific to the C++
Browser Class Graph window, refer to “Class Graph and Call Graph
Displays” on page 117.

Opening a Class Graph Window

Go to the Views menu in your Class View window and you’ll see the
selections shown in Figure 6-28.

Choose “Show Inheritance Graph.” The Class Graph window appears (it
takes a little bit of time for the browser to access the static analysis database).
You can resize the Class Graph by dragging the window frame with the left
mouse button and by using the zoom in and zoom out buttons. This graph
represents the complete inheritance structure of the example application.
Later on, you’ll see how to change the relationship being viewed from within
the Class Graph window.

84

Chapter 6: Using the C++ Browser: A Sample Session

Figure 6-28 Inheritance Class Graph

Pruning the Class Graph View

Once you are comfortable with the Class Graph window, scroll until you
find the class Application. This is the current class in your Class View
window, and is highlighted in the Class Graph window.

You may have noticed that the graph is large and somewhat complicated,
and this is only a small example! Luckily, there’s an easy way to prune the
classes displayed so that only those related to the current class are displayed.

Using the Class Graph Window

85

1. Go to the View menu in the Class Graph window, and select “Show All
Related.” The graph changes so that only the current class (Application)
and its direct relatives (ancestors UIComponent and BasicComponent)
are visible.

2. Go back to the Class View for a moment, and change the current class to
Application’s parent, UIComponent. Notice that the Class Graph
window updates to reflect the change. Note that the view is still
restricted to those classes related to the current class: all ancestors and
descendants.

3. Now choose “Show Butterfly” from the View menu. Now the graph is
even more restricted, showing only immediate relations (in this case,
parents and children).

Changing the Current Class From the Class Graph
Window

Changing the current class from the Class View can be troublesome when
you’re using the Class Graph. Luckily, you can change the current class from
inside the Class Graph by double-clicking on a class node with the left
mouse button. Choose “Show All” from the View menu. Find the class
ColorView in the Class Graph window, and double-click to make it the
current class. Note that the Class View window and the butterfly view in the
Class Graph window both update accordingly.

Switching the Relationship Viewed by the Class Graph

Now you’ll change the kind of relationship you’re going to view. First,
choose “Show All” from the View menu, just to make the graph more
exciting. Then use the option menu in the lower right corner of the Class
Graph window to choose a new relationship. Note the change in color of the
arcs for the differing relationships. Figure 6-29 shows the Interaction
relationships.

86

Chapter 6: Using the C++ Browser: A Sample Session

Figure 6-29 Interaction Relationship in Class Graph Window

Experiment with the different views and relationships available in the Class
Graph window for as long as you like. When you’re finished, close the Class
Graph by choosing “Close” from the Admin menu.

Now you’ve seen the basic functions available within the Class Graph
window. Your next exercise is to examine the Call Graph window.

Using the Call Graph Window

The Call Graph window provides you with a graphical view of the methods
and their calls in your classes. Open the Call Graph from the Views menu in
the Class View window, or the Queries on Methods pop-up menu for a
selected method of the current class. The Call Graph displays the calling
structure of any method you choose to add from the Class View window.

Option menu

View menu

Using the Call Graph Window

87

The Call Graph, like the Class Graph window, has the same basic user
interface as the other graph views found in the WorkShop suite of tools. This
interface is explained in the appendix titled “Graphical Views in the
CASEVision Environment” in the CASEVision/WorkShop User’s Guide and are
also covered in “Call Graph Window” on page 124. This section familiarizes
you with the functions specific to the C++ Browser Call Graph window.

Opening a Call Graph Window

Go to the Views menu of your Class View window and select the first item,
“Show Call Graph.” You’ll probably want to resize the window (even
though there’s nothing in it yet) so that a comfortable area is visible.

Adding Methods

Now go back to the Class View window for a moment, and make
ControlPanel the current class. Find and select the method named:

ControlPanel& ControlPanel(Widget,char*,Clock);

You may have to stretch out the Class View window and slide the sash
(central divider) to see the whole name.

Once you’ve selected it, choose “Call Graph” from the Queries on Methods
pop-up menu. Choose “Add” from the Call Graph submenu. The selected
method and its calling structure are added to the Call Graph window as
shown in Figure 6-30.

Note: If a Call Graph window is closed, you can open it by choosing “Call
Graph”: “Add” from the Queries on Methods pop-up menu. This provides
a method of the current class that is selected in the member list.

88

Chapter 6: Using the C++ Browser: A Sample Session

Figure 6-30 Adding a Method to the Call Graph Window

Showing Method Argument Lists

The Call Graphnodes do not show argument lists, by default. Select a node
of the calling structure. Look at the “Show Arg List” toggle from the Admin
menu (see Figure 6-31). Turn it on by releasing the left mouse button directly
over the toggle. Notice that each method in the Call Graph now shows its
argument list. The node that you clicked matches the Node Selected
information in the message area over the display.

Menu bar

Message area

...adds method and its calling structure

Pop-up menu

Call Graph menu submenu...

Figure 6-31 Toggling “Show
Arg List”

Generating Reference (Man) Pages

89

Replacing Methods

Go back to the Class View. Find and select the method named:

const Widget baseWidget(void);

Select “Replace” from the Call Graph submenu of the Queries on Methods
pop-up menu. Note that the Call Graph is cleared, then the newly selected
method is added to the Call Graph. The graph shows where the method is
currently defined. Here BasicComponent provides the current definition of
baseWidget.

Add some other methods to the Call Graph. To replace part of the display,
use “Remove” and “Add” from the Call Graph submenu of the “Queries on
Methods” pop-up menu, with selected individual methods in the member
list.

Viewing Method Source

Double-click on any method node displayed in the Call Graph window. A
Source View appears, highlighting the position of the method’s source code.

Generating Reference (Man) Pages

The Browser generates reference page templates from your classes so that all
you have to do is fill in the descriptions and provide comments. To create
reference pages for classes in the fileset, follow these steps:

90

Chapter 6: Using the C++ Browser: A Sample Session

1. Select “Generate Man Pages” from the Class View Admin menu. The
Generate Man Pages window opens, as shown in Figure 6-32.

Figure 6-32 Generating Man Pages

2. Output files go in the directory shown in the Man Page Directory field. If
you would like to specify a different output directory (an existing
directory, where you have write permission), click Set Directory. The
Select Man Page Directory dialog box lets you specify your choice.
Click OK or Cancel to close the window.

3. Select classes from the class list. Use Select All to select every class in the
source directory. To select no classes, click Unselect All. When you are
satisfied with the classes selected in the class list, go on to the next step.

4. Click Generate. Wait for a few seconds while your files are generated.

5. To view the output files, Click View. A winout window opens as shown
in Figure 6-33. You can edit the files using any text editor, such as vi.

Output directory

Select all classes

Select no classes

Start file generation

Open on-line man pages

Change output directory

Class list

Ending the Session

91

Figure 6-33 Man Page Template

Ending the Session

You’ve reached the end of the sample session. You can exit both the Static
Analyzer and the C++ Browser by choosing “Exit” from the Static
Analyzer’s Admin menu.

93

Chapter 7

7. C++ Browser Reference

This chapter describes in detail the function of each window, menu,
keyboard accelerator, and display in the C++ Browser user interface. For a
task-oriented description of commonly used functions, refer to Chapter 6,
“Using the C++ Browser: A Sample Session.”

This chapter contains the following sections:

• “Class View Window”

• “Class Graph and Call Graph Displays”

• “Class Graph Window”

• “Call Graph Window”

• “Customizing the C++ Browser”

Class View Window

Class View is the primary C++ Browser window (see Figure 7-1). It opens
when you select “C++ Browser” from the Admin menu of the WorkShop
Static Analyzer. Class View displays class members and related classes of a
selected class, called the current class. Class View lets you perform a variety
of static analysis database queries using the display. Detailed query results
can be displayed in Source Views and in the Static Analyzer. You can launch
graphical views of classes or calls from the Class View window to enhance
the information. Also, you can generate reference pages from Class View.

94

Chapter 7: C++ Browser Reference

Figure 7-1 Class View Window Elements

The next sections describe the function of each element of the Class View
window.

Class View Menu Bar

This section describes the menus found in the menu bar of the Class View
window (see Figure 7-2). By choosing the dashed line (the first item in each
of the menus), you can “tear off” the menu from the menu bar, so that it is
displayed in its own window, and is thus always visible. Some menus
contain submenus, which can also be torn off and displayed in separate
windows. Finally, this section provides an alphabetical lookup table of the
keyboard accelerators that are shortcuts for many of the menu selections.

Menu bar

Current class field

Show in Static Analyzer toggle
Last Query button

Message area

Outline icon

Member list

Related class list

Class View Window

95

Figure 7-2 Class View Menu Bar

Admin Menu

The Admin menu contains commands for selecting a new current class, for
manipulating Class View windows, generating reference pages (man pages),
and exiting the Class View.

“Change Current Class”
lets you select a new current class without manually typing
it into the current class text field. Choosing this command

96

Chapter 7: C++ Browser Reference

opens a class chooser window (List Of Classes, see Figure 7-
3) that contains a scrolling list of all the classes available
from the current fileset. To select a class, choose one from
the list by clicking on it with the left mouse button and then
pressing the Accept button. To select a class and
simultaneously close the chooser window, click on the item
and then click on the OK button, or simply double-click on
the item in the list. The Cancel button closes the chooser
window without changing the current class.

Figure 7-3 List of Classes Chooser Window

“Another Class View”
creates an identical copy of the Class View window. All
current information displayed within the initial window is
preserved by the copy, but connections to Class Graph and
Call Graph windows are not carried over to the new Class
View window.

“Close Class View”
shuts the Class View window from which the command
was selected. Also, any associated windows, such as Graph
or List of Classes, are shut.

Classes in the current fileset

Current class selection field

Change current class and close window
and window stays openChange current class

No change and close window

Class View Window

97

“Generate Man Pages...”
opens a Man Page Generator window that lets you create
reference page templates for classes (see Figure 7-4). For a
tutorial about using this feature, refer to “Generating
Reference (Man) Pages” on page 89.

Select individual classes by clicking on them. To start over
with no classes selected, click Unselect All. If you want a
reference page for every class in the list, click Select All.
Clicking the Generate button creates a reference page
template for each selected class. If reference pages exist for
selected classes, the browser warns you, unless you toggle
Warn Overwrite: to No.

Output files go in the directory shown in the Man Page
Directory field, if it exists. To specify a different output
directory using the Select Man Page Directory dialog box,
click the Set Directory button in the Man Page Generator
window.

98

Chapter 7: C++ Browser Reference

Figure 7-4 Reference Page Generation

“Exit Browser” quits the C++ Browser, closing all windows launched from
it (except Source View). The Static Analyzer window from
which the browser was launched is not affected.

Output directoryChange output directory

Admin menu

Filter specification field

Directory list

File list

Selection field

Filter activation button

Select all classes

Select no classes

Start file generation

Open online reference pages

Class list

Overwrite warning toggle

Generated reference page

Class View Window

99

Views Menu

The Views menu contains commands for opening windows with graphical
views, as shown in Figure 7-5. For descriptions of the display and controls,
refer to “Class Graph and Call Graph Displays” on page 117. Each of the first
four selections opens a Class Graph window for the current class, with a
specific relationship; refer to “Class Graph Window” on page 122. The last
selection opens a Call Graph window; refer to “Call Graph Window” on
page 124.

“Show Inheritance Graph”
describes the relationship between base classes and derived
classes.

“Show Containment Graph”
describes the relationship of container classes to the classes
they use as components.

“Show Interaction Graph”
describes the relationship of used classes to the classes that
are their users.

“Show Friend Graph”
describes the relationship of classes declaring friends to the
classes they declare.

“Show Call Graph”
opens a Call Graph window. To operate on it, choose a
current class from the “List Of Classes” chooser window.
Then select a method from the member list display (left list
on the Class View window). Press right mouse button to
pop up the “Queries on Methods” menu and choose one of
the commands in the “Call Graph” submenu. This menu
provides a more selective view than is available in the Static
Analyzer.

History Menu

The History menu contains commands that let you quickly select previously
chosen classes for display in the Class View window (see Figure 7-6). If no
class was selected previously, a message appears.

Figure 7-5 Views Menu

Figure 7-6 History Menu

100

Chapter 7: C++ Browser Reference

“Show Previous Class”
sets the current class to the previously displayed class and
the information in the Class View window changes to reflect
this.

“Show History”
opens a “List of Classes Shown” chooser window (see
Figure 7-7) that presents the list of previously displayed
current classes in chronological order, with the most
recently displayed class at the bottom of the list.

To select a class, choose one from the list by clicking on it
with the left mouse button, and then press the Apply
button. To select a class and simultaneously close the
chooser window, click on the item and then click on the OK
button, or simply double-click on the item in the list. The
selected class then becomes the current class, and the
information in the Class View window changes to reflect
this. The Cancel button closes the chooser window without
changing the current class.

Figure 7-7 List of Classes Shown

Class View Window

101

Queries Menu

The Queries menu contains a set of predefined searches for information
about the current class, as shown in Figure 7-8. The Class View window
outlines display the results of each query by highlighting classes or
members. If the Show in Static Analyzer toggle is set to yes, detailed results of
the query appear in the WorkShop Static Analyzer window from which you
launched the C++ Browser (refer to “Show in Static Analyzer Toggle” on
page 104). Descriptions of the current query and the magnitude of the results
of the query are shown in the message area between the current class field
and the outline lists. The selections are:

“What Is Declared”
displays all methods declared by the current class.

“What Is Defined”
displays all members defined by the current class.

“What Is Overridden By”
displays all inherited methods that the current class
overrides.

“What Instantiates”
displays classes that instantiate the current class by
invoking its constructors or by using its new methods.

“What Destroys”
displays classes that destroy the current class by invoking
its destructors or by using its delete methods.

”What Uses” submenu (see Figure 7-9)
queries which classes use the current class in these contexts:

• “To Contain” displays classes that use the current class
as either an embedded or linked component.

• “As Friend” displays classes that use the current class
as a friend class.

• “Methods” displays classes that use the methods
defined by the current class.

• “Data Members” displays classes that use (by
modifying, reading, or taking the address) data
members defined by the current class.

Figure 7-8 Queries Menu

Figure 7-9 “What Uses”
Submenu of Queries Menu

102

Chapter 7: C++ Browser Reference

“What Is Instantiated”
displays classes that the current class instantiates by
invoking its constructors.

“What Is Destroyed”
displays classes that the current class destroys by invoking
its destructors.

“What Is Used” submenu (see Figure 7-10)
queries which classes are used by the current class in these
contexts:

• “To Contain” highlights classes that the current class
uses either as embedded or linked components.

• “As Friend” highlights classes that the current class
uses as friend classes.

• “By Methods” highlights classes whose methods are
used by the current class.

• “By Data Access” highlights classes whose data
members are assigned, read, or have their address
taken by the current class.

Additional queries on classes, data members and methods
are accessible from pop-up menus described in “Member
List” on page 107 and “Related Class List” on page 111.

Preference Menu

The Preference menu allows you to control how the class information is
displayed in the window (see Figure 7-11). The selections are:

“Member Display” submenu (see Figure 7-12)
allows you to control how the class members are displayed.
There are three choices:

• “Declaration Order” displays the members in order of
their declaration.

• “End To End Sort” performs an end-to-end sort of the
member display strings and displays the result.

• “Name Sort” performs a sort based on the name of the
members and displays the result.

Figure 7-10 “What Is Used”
Submenu of Queries Menu

Figure 7-11 Preference Menu

Figure 7-12 “Member Display”
Submenu of Preference Menu

Class View Window

103

“Align Names” aligns the member names in the display. A radio button
indicates if this feature is enabled or disabled.

“Align Arglists”aligns the member function argument lists in the display. A
radio button indicates if this feature is enabled or disabled.

“Relation Display”submenu (see Figure 7-13)
allows you to control how the class relations are displayed.
There are two choices:

• “Declaration Order” displays the related classes in
order of their declaration or the detection of their
relation.

• “End To End Sort”displays a sorted list of related
classes.

Help Menu

The Help menu contains commands that allow you to access online
information and documentation for the C++ Browser, as shown in Figure 7-
14. It is part of the Static Analyzer help system. See Chapter 2, “Using Online
Help,” in the CASEVision Environment Guide for more detailed information
on how to use the C++ Browser help features.

“On Version” opens a window containing version number information
for the Static Analyzer.

“On Window” invokes the CASEVision Help Viewer, which displays a
descriptive overview of the current window or view and its
graphical user interface.

“On Context” invokes context-sensitive help. When you select the “On
Context” command, the normal mouse cursor (an arrow) is
replaced with a question mark. When you click on graphical
features of the application with the left mouse or position
the cursor over the feature and press the <F1> key, the Help
Viewer displays information on that context.

“Index...” invokes the Help Viewer, which displays the list of available
help topics. You can browse alphabetically, hierarchically, or
graphically.

Figure 7-13 “Relation Display”
Submenu of Preference Menu

Figure 7-14 Help Menu

104

Chapter 7: C++ Browser Reference

Current Class Field

The Current Class text field is directly below the menu bar (see Figure 7-15).
It displays the name of the currently selected class in the Class View window.
You can type into this field to change the current class.

Type a complete class name into the text field and then press the <Enter>

key to make the change effective. If you type a partial string and then press
the <space bar> , the browser attempts to complete the class name with a
class from the fileset. It gives a beep if it finds more than one matching class
name. If a match is made, press the <Enter> key to make the change
effective.

If you type a question mark (?) into the Current Class field, a class chooser
dialog window (List of Classes) opens. You can select a new class by left-
clicking on a class name in the chooser window’s scrolling list, or click once
with the left mouse button and then click on the OK or Apply buttons.
Clicking Apply leaves the chooser window open; other combinations close
the chooser window.

Show in Static Analyzer Toggle

The Show in Static Analyzer toggle is directly to the right of the Current Class
field (see Figure 7-16). When the toggle is set (highlighted and labeled Yes),
the results of all queries are displayed in the WorkShop Static Analyzer
window from which the C++ Browser was launched, providing detailed
source information not listed in the Class View window. If no results are
found, and the Static Analyzer window is open, it comes to the front with an
error message. Refer to the CASEVision/WorkShop User’s Guide for more
information on the Static Analyzer.

Last Query Button

The Last Query button is to the far right, directly beneath the Help menu (see
Figure 7-17). Clicking on this button displays the results of the most recent
query in the WorkShop Static Analyzer window from which the C++
Browser was launched.

Figure 7-15 Current Class
Field

Figure 7-16 Show in Static
Analyzer Toggle

Figure 7-17 Last Query
Button

Class View Window

105

Class View Message Area

The Class View message area is located directly below the Current Class
field (see Figure 7-18). This area displays the most recent query as an English
sentence, listing both the query question and the name of the data member,
method, or class that is the object of the query. The end of the line displays
query results, such as how many members and classes are involved.

Class View Outline Lists

The lower two-thirds of the Class View window contains two side-by-side
lists that contain information about the currently selected class in outline
form (see Figure 7-18).

Figure 7-18 Class View Message Area and Outline Lists

• The lefthand, or member list, provides a detailed view of the members of
the current class.

• The righthand, or related class list, displays the relationships of other
classes and of friend functions to the current class.

Message area: Query type and target

Query results

Sash

Related Class ListMember List

106

Chapter 7: C++ Browser Reference

The organization of each of these lists is described in “Member List” on
page 107 and “Related Class List” on page 111. This section describes
features common to both lists. You can change the widths of the lists by
moving the sash or central divider.

Outline Icons

The lists of members and class are organized in an outline format. By
clicking on the outline icon to the left of a heading, you can collapse or
expand the list under that category. The direction in which the outline icon
points indicates if the heading is expanded or collapsed; downward-
pointing outline icon indicates that the list is expanded (see Figure 7-19),
while a right-pointing icon indicates that the category is collapsed (see
Figure 7-19).

To collapse an outline list, click on the heading’s downward-pointing outline
icon. Class View hides the entries for that heading, and the icon toggles to
become a right-pointing arrow, as shown in Figure 7-21.

Figure 7-21 Outline Lists and Icons

To expand a list of members or classes under a particular heading, click on
the heading’s right-pointing icon. Class View displays the entries for that
heading, and the icon toggles to become a downward-pointing arrow.

Figure 7-19 Expanded List,
Downward Pointing Icon

Figure 7-20 Collapsed List,
Right-Pointing Icon

Expanded list

Collapsed list
with query matches

Collapsed list
with no query matches

Class View Window

107

A highlighted right-pointing outline icon indicates that one or more of the
collapsed entries matches the most recent query (see Figure 7-22). Click on
the outline icon to display the entry.

Annotated Scroll Bars and Highlighted Entries

Both outline lists make use of annotated scroll bars as a means of locating
highlighted list entries. When you make a query on an entry in the member
or related class list, all members or classes that satisfy the query are
highlighted in their respective lists; if that entry is collapsed, the
corresponding outline icon of the nearest exposed heading that contains the
entry is highlighted instead. The annotated scroll bars show where
highlighted entries occur in the scrolling list by displaying ticks in the
highlight color at the proper location in the scroll bar. When the thumb of the
scroll bar overlaps a given tick, the corresponding entry is visible in the list
window.

Member List

The Class View member list contains information on types, data members,
methods, and virtual methods included in the current class.

Double-clicking on any member in the member list opens a Source View
window for that member’s code with the member’s declaration highlighted.
See Figure 7-24.

Figure 7-22 Query Result in
List, Highlighted Icon

Figure 7-23 Annotated Scroll
Bars

108

Chapter 7: C++ Browser Reference

Figure 7-24 Source View of Class Data Member

Member List Structure

The member list sorts the members of the current class recursively into three
nested lists according to the access specification (public, protected, private)
of each member. Within each of the three resulting lists, the members are
sorted once again by scope into two sublists (instance and static). Finally,
within each of these sublists, members are displayed by member category
type in this order: type members, data members, methods (member
functions), and virtual methods.

Here is a schematic of the outline format for each nested list:

Access (Public, Protected, or Private)
Scope (Instance or Static)

Types
Data
Methods
Virtual Methods

Source View

Highlighted code for member

Access

Class View Window

109

For a discussion of these concepts, refer to “C++ Class Structure and the
Current Class” on page 55. The list organization is customizable. For more
information, refer to “Customizing the C++ Browser” on page 128.

Member List Query Menus

This section details each of the pop-up query menus available from the
member list display. To execute a query from one of these menus, select the
member entry you wish to query on by left-clicking on it. Then, click and
hold down the right mouse button anywhere in the member list display to
open the corresponding query menu. By choosing the dashed line (the first
item in each of the menus), you can “tear off” the menu from the menu bar,
so that it is displayed in its own window, and is thus always visible.

The Queries on Data Members pop-up query menu performs these queries
on selected data members:

“What Modifies”
highlights all methods and classes in which the selected
data member is assigned a value.

“What Reads” highlights all methods and classes in which the selected
data member is read.

“What Accesses”
highlights all classes where the selected data member is
assigned a value, read, or its address is taken.

“What Defines”
highlights the class that defines the selected data member.

The Queries on Methods pop-up query menu performs these queries on
selected methods:

“What Uses” highlights all methods and classes that use the currently
selected method.

“What Is Used” submenu
contains these menu items:

• “All (method and data access)” highlights all data
members, methods, and classes the currently selected
method uses.

110

Chapter 7: C++ Browser Reference

• “Method Calls” highlights all methods called by the
currently selected method.

• “Data Access” highlights all data members that have
been assigned, read, or had their address taken by the
currently selected method.

• “Data Modification” highlights all data members
assigned by the currently selected method.

• “Data Read” highlights all data members read by the
currently selected method.

“Call Graph” submenu
contains these menu items:

• “Add” adds the currently selected method and its
calling structure to the Call Graph window, if one is
open. If not, “Add” opens a Call Graph window before
adding the method.

• “Replace” replaces all methods in the display with the
selected method and its calling structure in the Call
Graph window.

• “Remove” removes the currently selected method and
its calling structure from the Call Graph window.

“What Declares”
highlights the class that declares the currently selected
method.

“What Currently Defines”
highlights the class that provides the current definition for
the method.

“What Else Defines”
highlighs all classes that define the currently selected
method.

“What Overloads”
highlights all methods and classes that overload the
currently selected method.

Class View Window

111

Related Class List

The Class View window lists the current class and its related classes in the
related class list. Within this list, the current class is displayed as follows:

<- This

This class refers to the class in the Current Class text field.

Double-clicking on any class listed in the related class list makes it the new
current class. Double-clicking on a friend function brings up a Source view
window highlighting the function’s definition.

Related Class List Structure

The related class list display is composed of seven sublists (not all of which
may be in use for a given class):

• BASE CLASSES contains the current class and its ancestors, listed
hierarchically.

• DERIVED CLASSES contains descendants of the current class, listed
hierarchically.

• USES contains classes that the current class uses (that is, instantiates,
destroys, interacts with, or contains).

• USED BY contains classes that use the current class.

• FRIEND FUNCTIONS contains global functions declared as friends by
the current class.

• FRIENDS contains classes that are declared as friends by the current
class.

• FRIEND OF contains classes that declare the current class as a friend.

The Base Classes sublist shows the ancestors of the current class, if any. Each
indented class is an ancestor of the class listed above it. The Base Classes
sublist indicates a multiple inheritance relationship by indenting the two or
more parent classes to the same level. If a given class has ancestors, it is
accompanied by an outline icon, which works in a similar manner to the
outline icons in the member list. Each ancestor name is followed by its
inheritance access type (public, protected or private) listed in parentheses.

112

Chapter 7: C++ Browser Reference

This schematic gives an example of a possible Base Classes sublist:

BASE CLASSES
<-This

first_parent_of_This (access type)
parent_of_first_parent_class (access type)

second_parent_of_This (access type)
parent_of_second_parent_class (access type)

The Derived Classes sublist shows the descendants of the current class, if
any. Each indented class is a descendant of the class listed above it. If a given
class has descendants, it is accompanied by an outline icon, which also
works in a similar manner to the outline icons in the base classes sublist and
member list. (See Figure 7-25 for an example.)

This schematic gives an example of a possible Derived Classes sublist:

DERIVED CLASSES
first_child_of_This

child_of_first_child_class
second_child_of_This

child_of_second_child_class

Figure 7-25 Class View Derived Classes List

Related Class List Query Menus

This section details each of the pop-up query menus available from the
related class list display. To execute a query from one of these menus, select
the name of the class you wish to query by clicking on it with the left mouse
button. Then, click and hold down the right mouse button anywhere in the

Indentation shows
inheritance structure

Class View Window

113

related class list display to open the corresponding query menu. By choosing
the dashed line (the first item in each of the menus), you can “tear off” the
menu from the menu bar, so that it is displayed in its own window, and is
thus always visible.

Most of the related class query menus have two generic commands (shown
in Figure 7-26) that affect the selected item:

“Show Source” opens a Source View window on a file containing the
declaration of the selected item. The first line of the
declaration is highlighted in the source.

“New Class View”
opens a new Class View window displaying the selected
class.

These two items are omitted from the lists below.

The Queries on Current Class pop-up query menu (see Figure 7-26) contains
items identical with those in the Queries menu in the Class View menu bar.
It also contains the two generic commands described previously.

The Queries on Base Class pop-up query menu, under the heading BASE
CLASSES, performs these queries on selected classes:

“What Is Declared”
highlights all methods declared by the selected base class.

“What Is Defined”
highlights all members defined by the selected base class.

“What Is Overridden”
highlights all methods belonging to the selected base class
that are overridden by the current class.

Queries on Derived Class pop-up menu, under the heading DERIVED
CLASSES (see Figure 7-27), allows you to perform functions on selected
classes:

“What Is Used” submenu
contains these queries:

Figure 7-26 Queries on
Current Class Pop-Up Menu

Figure 7-27 Queries on
Derived Class Pop-Up Menu

114

Chapter 7: C++ Browser Reference

• “by Accessing Any Member” highlights all members
(of the current class) that the selected derived class
uses.

• “by Calling Methods” highlights all methods (of the
current class) that the selected derived class uses.

• “by Accessing Data Members” highlights all data
members (of the current class) that the selected derived
class modifies, reads, or takes the address of.

• “by Modifying Data Members” highlights all data
members (of the current class) to which the selected
derived class assigns a value.

• “by Reading Data Members” highlights all data
members (of the current class) from which the selected
derived class reads a value.

“What Is Overridden”
highlights all members of the current class that are
overridden by the selected derived class.

“What Is Overloaded”
highlights all members of the current class that are
overloaded by the selected derived class.

The Queries on Used pop-up menu, under the heading USES (see Figure 7-
28), allow you to perform these functions on selected classes:

“What Uses” submenu
contains these queries:

• “by Accessing Any Member” highlights all members
(of the current class) that use the selected class.

• “by Calling Methods” highlights all methods (of the
current class) that use the methods of the selected class.

• “by Accessing Data” highlights all data members (of
the current class) that modify, read, or take the address
of data members of the selected class.

• “by Modifying Data” highlights all data members (of
the current class) that assign a value to data members
of the selected class.

Figure 7-28 Queries on Used
Pop-Up Menu

Class View Window

115

• “by Reading Data” highlights all data members (of the
current class) that read a value from data members of
the selected class.

“What Instantiates”
 highlights all members of the current class that instantiate
the selected class.

“What Destroys”
highlights all members of the current class that destroy the
selected class.

The Queries on Users pop-up query menu, under the heading USED BY (see
Figure 7-29), performs these queries on selected classes:

“What Is Used” submenu
contains these queries:

• “by Accessing Any Member” highlights all members
(of the current class) that the selected class uses.

• “by Calling Methods” highlights all methods (of the
current class) that the selected class uses.

• “by Accessing Data” highlights all data members (of
the current class) that the selected class reads, modifies,
or takes the address of.

• “by Modifying Data” highlights all data members (of
the current class) to which the selected class assigns a
value.

• “by Reading Data” highlights all data members (of the
current class) from which the selected class reads a
value.

“What Instantiates”
finds all members of the selected class that instantiate the
current class and displays them in the Workshop Static
Analyzer window. To see the results of this query, you must
have the Show in Static Analyzer toggle set, or you must click
on the Last Query button after making the query.

“What Destroys”
finds all members of the selected class that destroy the
current class and displays them in the Workshop Static

Figure 7-29 Queries on Users
Pop-Up Menu

116

Chapter 7: C++ Browser Reference

Analyzer window. To see the results of this query, you must
have the Show in Static Analyzer toggle set, or you must click
on the Last Query button after making the query.

The Queries on Friend Function pop-up query menu is listed in the related
class list for the sake of convenience, under the heading FRIEND
FUNCTIONS. Double-clicking a friend function opens a Source View
window highlighting the first line of the function definition. This menu
performs the query described below on the selected friend function.

“What It Uses” highlights all members of the current class that the selected
friend function uses.

The Queries on Friend Class pop-up query menu, under the heading
FRIENDS, performs the query described below on a selected class.

“What Is Used”
highlights all members of the current class that the selected
friend class uses.

The Queries on Friend Of pop-up query menu, under the heading FRIEND
OF, performs the query describe below on a selected class.

“What Uses” highlights all members of the current class that use the
friend class.

Keyboard Accelerators

To issue Class View commands directly from the keyboard, use the keyboard
accelerators in Table 7-1. The accelerators are listed in alphabetical order.

Table 7-1 Keyboard Accelerators for Class View

Command Ctrl + key

Change to previous class P

Exit C++ Browser X

Highlight what is declared by the current class L

Highlight what is defined by the current class E

Class Graph and Call Graph Displays

117

Class Graph and Call Graph Displays

You invoke the Class Graph and Call Graph windows from the Views menu
of the Class View window. These windows show graphical views of the
current fileset. As their names suggest, a Class Graph displays class
relationships, and a Call Graph displays methods and their calling
relationships. However, the displays and controls have the same features.

Figure 7-30 shows the bounce fileset class hierarchy. The Class Graph Context
View shows an overview of the selected class with respect to the fileset. This
section describes in detail how to view classes in a Class or Call Graph
window.

Highlight what is overridden by the current class R

Open another Class View V

View Call Graph A

View Containment Class Graph O

View Friend Class Graph F

View Inheritance Class Graph I

View Interaction Class Graph T

View list of classes U

View list of classes shown previously H

Table 7-1 Keyboard Accelerators for Class View

Command Ctrl + key

118

Chapter 7: C++ Browser Reference

Figure 7-30 Class Graph with Context View—Bounce Hierarchy

Main display

Overview button

Menu Bar

Overview window

Relationship option menu

Zoom menu

Zoom Out button
Zoom In button

Multiple Arcs button
Realign button
Rotate button

Class Graph and Call Graph Displays

119

Class and Call Graph Main Display

The Class and Call Graph main display presents a graphical view of classes
(or class nodes) and methods (or method nodes) and their relations. These
nodes can be selected, hidden, collapsed, expanded, and moved. Double-
clicking nodes are documented under separate headings for each kind of
window.

Selecting Nodes

There are several ways to select nodes:

• To select a single node, click on it with the left mouse button. It becomes
highlighted in red.

• To select a node and all of its descendant nodes, hold down the
<Shift> key while clicking on the desired node.

• To select an arbitrary group of nodes, hold down the left mouse button
in an empty area of the display, and then drag it. A box is drawn; move
the mouse so that all nodes you want to select are inside the box, then
let go of the mouse button.

Node Pop-Up Menus

Two pop-up menus in the main display manipulate nodes: the Class or
Method Node pop-up menu, and the Selected Node pop-up menu.

The Class or Method Node Pop-Up Menu appears if you hold down the
right mouse button over a particular node. The node’s name appears as the
menu title. The node does not need to be selected for the menu commands
to apply. It contains these commands:

• “Hide Node” hides the named node and leaves its descendants visible
and disconnected from the rest of the graph.

• “Collapse Subgraph” hides the named node and its descendants.

• “Show Immediate Children” adds any non-visible children of the
named node to the graph. If a node has hidden children, it contains an
arrow within the node pointing to the right (see Figure 7-31).

• “Show Parents” adds any hidden parents of the named node to the
graph.

Figure 7-31 Hidden Children

120

Chapter 7: C++ Browser Reference

Any menu items that are not applicable for a given node are grayed out
when the menu is opened.

The Selected Nodes pop-up Menu appears if you hold down the right mouse
button over an empty portion of the main display. The commands apply to
any selected nodes.

• “Hide Selected Nodes” hides the selected nodes, and leaves their
descendants visible and disconnected from the rest of the graph.

• “Collapse Selected Nodes” hides the selected nodes and their
descendants.

• “Expand Selected Nodes” adds all non-visible descendants of the
selected nodes to the graph.

Moving Nodes

You can move any single node (selected or not) by holding the middle mouse
button down over the desired node and dragging to the new desired
position. You can move a group of nodes by first selecting them, then
holding down the middle mouse button over any of the selected nodes and
dragging to the new position.

Class and Call Graph Display Controls

The Class or Call Graph main display can be manipulated with the controls
found at the bottom of the Class or Call Graph window. Refer to Figure 7-30.

Zoom Option Menu and Zoom Buttons

The Zoom option menu and Zoom buttons let you choose the size of the
class nodes in the Class or Call Graph display. You can choose one of the
items from the option menu, or click on either of the two buttons to the right
of the menu to zoom in or out on the graph.

Overview Button

Clicking on the Overview button opens the Context View window for the
Class or Call Graph display. As you move the rectangular pane over a

Class Graph and Call Graph Displays

121

condensed, schematic version of the graph displayed within the Class or
Call Graph window, the display scrolls accordingly.

For example, Figure 7-32 shows the Call Context View window opened from
a Call Graph. The area under the rectangular viewport is displayed in the
Call Graph window. In a Class Graph Context View, the currently selected
class node is highlighted in a different color from that of the other class
nodes.

Figure 7-32 Call Graph Context Viewport of Call Graph Window

Multiple Arcs Button

Clicking on the Multiple Arcs button toggles the Class or Call Graph display
between showing a single arrow for multiple instances of a relationship
between two nodes, and showing a separate arrow for each instance.

Align Button

Clicking on the Align button tidies the nodes of the currently displayed
graph, snapping them into an orderly configuration.

Viewport

Context overview window

Display

122

Chapter 7: C++ Browser Reference

Rotate Button

Clicking on the Rotate button causes the graph displayed in the Class or Call
Graph window to branch downwards from the top of the display, rather
than from left to right, which is the default. Clicking on the button a second
time returns the display to the default configuration.

Class Graph Window

The Class Graph window is invoked from the Views menu of the Class View
window. It displays a graphical view of classes in the current fileset and their
relationships. For details about the display, refer to “Class Graph and Call
Graph Displays” on page 117. This section discusses the menu bar, keyboard
accelerators, double-clicking, and the relationship option menu.

Class Graph Menu Bar

The Class Graph window’s menu bar contains the three menus described in
this section. By choosing the dashed line (the first item in each of the menus),
you can “tear off” the menu from the menu bar, so that it is displayed in its
own window, and is thus always visible.

Admin Menu

The Class Graph Admin menu contains two commands:

“Save Graph” allows you to save the graph to a file. It brings up a file
selection dialog. When you select your file and click on
“OK,” it saves the graph as a PostScript file with the name
specified in “Selection.”(See Figure 7-33.)

“Close” closes the Class Graph window when selected.

Views Menu

The Class Graph Views menu commands control which classes included in
the current fileset are displayed in the Class Graph window. The choices are
describe below.

Figure 7-33 “Save Graph”
Submenu of Admin Menu

Class Graph Window

123

“Show All” displays all classes included in the fileset as nodes, and their
relations as arcs, as chosen from the relationship option
menu (see Figure 7-30).

“Show All Related”
displays only those classes included in the chain of
relations, which includes the current class.

“Show Butterfly”
displays only those classes that are the immediate relatives
(for example, parents and children for an inheritance
relation of the current class).

Help Menu

The Help menu contains commands that allow you to access online
information about the C++ Browser. For more information on the help
features of the C++ Browser, refer to “Help Menu” on page 103, and to
Chapter 2, “Using On-line Help,” in the CASEVision Environment Guide.

Double-Clicking

The current class that is displayed in the Class View from which the Class
Graph window was launched is highlighted in the Class Graph window.
Double-clicking with the left mouse on any class node in the Class Graph
window makes that class the new current class in both the Class View and
Class Graph windows.

Class Graph Relationship Option Menu

The relationship option menu lets you switch between viewing the different
kinds of class relationships in a Class Graph window. The different graphs
that you can display through the the option menu are listed below.

• “Inheritance”

• “Containment”

• “Interaction”

• “Friends”

124

Chapter 7: C++ Browser Reference

Refer to “Views Menu” on page 99 for descriptions of these menu
commands.

Keyboard Accelerators

To issue Class Graph commands directly from the keyboard, use the
accelerators in Table 7-2. The accelerators are listed alphabetically by
command.

Call Graph Window

The Call Graph window is invoked from the Views menu of the Class View
window or from the Queries on Methods pop-up menu for a selected
method of the current class. It displays a graphical view of methods of the
current class, as shown in Figure 7-34. For details about the display that are
the same in the Class Graph window, see “Class Graph and Call Graph
Displays” on page 117.

Table 7-2 Keyboard Accelerators for Class Graph

Command Ctrl + key

Show all A

Show all related R

Show butterfly B

Call Graph Window

125

Figure 7-34 Working With the Call Graph Display

Message area

Call Graph submenu

Queries on Methods pop-up menu

Views menu

Selected
method

126

Chapter 7: C++ Browser Reference

You add, replace, or remove methods by using the Queries on Methods pop-
up menu in the member list of the Class View window. Refer to the Call
Graph submenu description on page 110. Note that when you select a node
in the display, a message area opens below the menu bar, showing the
method with its argument list.

In a Call Graph window, double-clicking on any method node opens a
Source View window on the code defining the method. The definition is
highlighted in the source.

Call Graph Menu Bar

The Call Graph window’s menu bar contains the two menus described in
this section. By choosing the dashed line (the first item in each of the menus),
you can “tear off” the menu from the menu bar, so that it is displayed in its
own window, and is thus always visible.

Admin Menu

The Call Graph window’s Admin menu contains the toggle and three
commands described below.

“Show Arglist” toggle
includes the argument list in the display of each method as
shown in Figure 7-35. Clicking the toggle button turns it on.
It is highlighted until clicked again, turning it off. Toggling
“Show Arglist” shows all hidden nodes.

“Clear” removes all methods from the Call Graph window.

“Save Graph” allows you to save the graph to a file. It brings up a file
selection dialog. When you select your file, it saves the
graph to a postscript file. See Figure 7-33 for an example.

“Close” closes the Call Graph window.

Call Graph Window

127

Figure 7-35 Call Graph With Show Arglist On

Help Menu

The Help menu contains commands that allow you to access online
information about the C++ Browser. For more information on the help
features of the C++ Browser, refer to “Help Menu” on page 103, and to
Chapter 2, “Using On-line Help,” in the CASEVision Environment Guide.

Argument List

Admin menu

Show Arg List toggle

128

Chapter 7: C++ Browser Reference

Customizing the C++ Browser

The C++ Browser lets you customize your display and the way you work
with reference pages (man pages). These formats are implemented as X
application resources that you can redefine in your local .Xdefaults file. After
editing it, run xrdb .Xdefaults and then reopen the Static Analyzer.

Customizing the Class View Lists

This section shows you how to customize the outline formats of Class View
lists by applying your own keyword headers and rearranging the features of
each list.

Member List Resource

The layout of the Class View member list is controlled by this resource:

Cvstatic*memberOrder

The general format of this resource is as follows:

Level-1-keyword: HEADING [keyword], HEADING [keyword],..; Level-2-
keyword: HEADING [keyword], HEADING [keyword],...; Level-3-
keyword: HEADING [keyword], HEADING [keyword],...;

The three level keywords are Protection, Scope, and Member. The order in
which these are used determines the level of nesting in the outline list used
for protection, scope, and member headings, respectively.

Headings may consist of any string you choose to describe the heading
category. The headings listed with the level-1 keyword become top-level
headings in the outline list, the level-2 headings appear indented under each
of the level-1 headings, and the level-3 headings appear indented beneath
each of the level-2 headings.

Each heading in a level has an associated keyword that determines the sort
of items that appear under the heading. The allowable keywords are as
follows for each associated level keyword:

Customizing the C++ Browser

129

Protection: [public] , [protected] , [private]

Scope: [instance] , [static]

Member: [type] , [data] , [method] , [virtualmethod]

It is also possible to combine the types associated with two or more
keywords under one heading by using the construction for any given
heading:

HEADING [keyword1+keyword2+...]

You can also control whether a heading is expanded or collapsed when the
browser starts up. Placing an asterisk (*) at the end of the heading string
causes that heading to be collapsed by default:

HEADING* [keyword]

The default assignment for the outline resource of the member list can be
found in /usr/lib/X11/app-defaults/Cvstatic. The contents of the file appear
below:

Cvstatic*memberOrder: Protection: PUBLIC [public],
PROTECTED* [protected], PRIVATE* [private]; Scope: INSTANCE
[instance], STATIC [static]; Member: TYPE* [type], DATA
[data], METHODS [method], VIRTUAL_METHODS [virtualmethod];

Note: The sample above is a single line.

You can override this definition by placing your own definition in your local
.Xdefaults file. For example, to make the display look like the sample in
Figure 7-36, add this line:

Cvstatic*memberOrder: Member: IS (Type) [type], Data Members-
-------------------- [data], Methods-------------------------
---- [method], Virtual Methods--------------------
[virtualmethod]; Scope: Non-Static [instance], Static
[static]; Protection: Private [private], Protected
[protected], Public [public];

Related Class List Resource

The layout of the Class View related class list is controlled by this resource:

Cvstatic*relationOrder

130

Chapter 7: C++ Browser Reference

The construction of this resource is similar to that of the member list, but
simpler:

HEADING [keyword], HEADING [keyword],...

The headings and keywords work as described for the member list, but there
is no concept of level keywords in the related class list.

The allowable keywords for the related class list are as follows:

[base] , [derived] , [uses] , [usedby] , [friendfunction] , [friend] ,
[friendof]

Note: In the related class list, headings cannot contain multiple keywords,
as they can in the member list. ♦

As in the member list, you can control whether a heading in the related class
list is expanded or collapsed when the browser starts up. Placing an asterisk
(*) at the end of the heading string causes that heading to be collapsed by
default:

HEADING* [keyword]

The default assignment for the related class list outline resource can be
found in /usr/lib/X11/app-defaults/Cvstatic, and is listed below for your
convenience:

Cvstatic*relationOrder: BASE CLASSES [base], DERIVED CLASSES
[derived], USES [uses], USED BY [usedby], FRIEND FUNCTIONS
[friendfunction], FRIENDS [friend], FRIEND OF [friendof]

You can override this definition by placing your own definition in your local
.Xdefaults file. For example, for the display shown in Figure 7-36, try this:

Cvstatic*relationOrder: Parent Classes [base], Child Classes
[derived], Used Classes [uses], User Classes [usedby],
Friend Functions [friendfunction], Friend Classes [friend],
Friend Of [friendof]

Other Class View List Resources

XWindows resources listed in this section, found in /usr/lib/X11/app-defaults/
Cvstatic, can be modified in your local .Xdefaults file. The default values are
listed with each resource. You can set any true value to false.

Customizing the C++ Browser

131

Cvstatic*completeClassName: true

enables ClassName completion; by typing a space in the
current class field, you complete a class name from the list
of classes in the fileset (if set to true, as it is by default).

Cvstatic*showMessageArea: true

enables the message area in the Class View window (if set
to true, as it is by default).

Cvstatic*scream: true

enables warning beeps when there are 0 results for a query,
or when a class name has more than one completion in the
current class field (if set to true, as it is by default).

Cvstatic*indentationWidth: 15

sets the indentation in the outline lists in pixels. Figure 7-36
shows the making the following change to the resource:

Cvstatic*indentationWidth: 10

Cvstatic*nameAlign: true

aligns names of the members under the same parent so that
the type declarations and member (variable and function)
names form left-justified columns (if set to true, as it is by
default).

Cvstatic*arglistAlign: true

aligns the argument lists of member functions under the
same parent so they form a left-justified column (if set to
true, as it is by default).

Cvstatic*sort: true

sorts items in the outline lists based on the value of the
entire string denoting an item (if set to true, as it is by
default). For example, given two members, void f and int

k , the C++ Browser lists int k before void f in the list.

Cvstatic*nameSort: true

sorts items in the outline lists based on the string value of
the name of a member (if set to true, as it is by default). For
example, void f would be listed before int k).

132

Chapter 7: C++ Browser Reference

Using both of the previous resources in conjunction sorts first by type and
then by name, as shown in Table 7-3.

Figure 7-36 shows the Class View display using the sample resources set in
.Xdefaults.

Table 7-3 Sort Resources for Outline Lists

sort name Sort effect

false false Members are in declaration order

false true Members are sorted based on the name and not on type or
return type. This behavior is shown in Figure 7-36.

true false Members are sorted based on the their return type or type.
Within the same return type, members appear in
declaration order.

true true Members are sorted both on their type or return type and
their name. This is the default behavior.

Customizing the C++ Browser

133

Figure 7-36 Customized Class View Display

Customizing Reference Page Generation

The resources in this section are associated with the Man Pages for Classes
window, available from the Class View Admin menu item “Generate Man
Pages.”

Cvstatic*manPageDirPath: <default manpage directory path>

The default is the current directory (.). To place generated
reference pages in the windTunnel directory (that you have
created) use this:

Cvstatic*manPageDirPath: ./manpage/windTunnel

All headings expanded

Headings appear in reversed order
Headings are different

Members sorted on name only

Indentation changed from 15 to 10 pixels

134

Chapter 7: C++ Browser Reference

Cvstatic*manPageSuffix: .< suffix >

The default <suffix> is 3. The name of a reference page is
<class_name >.3. To change the suffix to 4, use this:

Cvstatic*manPageSuffix: .4

Cvstatic*manPageViewCommand: < commands>
Pressing the View button in the Man Pages for Classes
window executes the command specified by this resource.
The argument given is the set of reference pages for the
classes that are selected. By default, View displays the most
recently generated reference page in a read-only window.
The default commands are:

Cvstatic*manPageViewCommand: winterm -H -c man -
d

Cvstatic*manPageCopyRightMessage: < string >

The default string is “Copyright 1994 by Silicon Graphics.”
A customized example is:

Cvstatic*manPageCopyRightMessage: Copyright
1994 by Fred Smythe

135

Glossary

Terms shown in italics indicate glossary items, in addition to document
conventions such as buttons, file names, document titles.

<-This

C++ Browser current class as shown in the Current Class field. <-This appears
in the related class list of the Class View window under the heading BASE
CLASSES.

access

Public, Private, or Protected members of a class.

base class

Parent of a class. In the C++ Browser, the parent of the current class is shown
following <-This in the related class list.

beep

User interface warning. In the C++ Browser Current Class field, when
attempting to complete a partial input string, the browser beeps if it finds
more than one match.

calling structure

In the C++ Browser Call Graph, shows methods that call each other.

current class

Class you select to study in the C++ Browser. It is shown in the Class View
window Current Class field. You can specify the class in the field or select it
from the List of Classes, List of Classes Shown, or Class Graph windows.

current definition

C++ Browser term used with a method in the pop-up related class list query,
“What Currently Defines.” The result of the query is the class that provides
the current definition for the method.

136

Glossary

data

In C++, data member of a class. A variable that contains state information for
a class. A field of a class that is not a method.

database

Compiler-generated static analysis database built from a fileset in the Static
Analyzer. Used by both the Static Analyzer and the C++ Browser. The C++
Browser accesses this database when it displays C++ class, data, and method
information.

DCC

A native C++ compiler that allows you to use dynamic classes. See the
DCC(1) reference page for more information.

derived class

In C++, child of the current class.

fileset

List of source file built by the Static Analyzer. Used to build a function and
object database for the C++ Browser.

function

Refers to either a C function or a C++ member function.

instantiate

In C++, declare an object of type classname. The result is an instance or an
object.

list of classes

C++ Browser chooser window that displays all the source files in the fileset.
The selected class becomes the current class in the Class View and Class
Graph windows.

list of classes shown

C++ Browser history window that lists each current class that you have
selected, in chronological order.

137

Glossary

member function

A C++ function that is a member of a class or structure data type. Also
known as a method.

member list

In C++ Browser, lefthand outline list in the Class View. It contains members
of the current class. They are sorted according to access, scope, and kind of
member (type, data, method, or virtual method).

member

An object that contains either data or methods, or both, belonging to a class
(class members).

method

C++ function that is a member of a class or structure data type. Also known
as a member function.

multiple inheritance

Where a derived class inherits traits from more than one base class.

NCC

A native C++ compiler that uses the same compiler as DCC, but doesn’t
allow you to use dynamic classes.

object

C++ term. See instantiate.

outline button

In C++ Browser Class view, shows if entry is collapsed, contains query
results, or is expanded.

private

In C++, a type of access to the class member that is restricted to the class in
which it is defined, friend classes, or friend functions.

138

Glossary

protected

In C++, a type of access to the class member that is restricted to the class (and
all derived classes) in which it is defined, friend classes, and friend
functions.

public

In C++, access is open to any method or function.

related class

A class (and friend functions) that is related to the current class.

scope

In the C++ Browser, a kind of member in the member list.

Smart Build

An option to the compiler where only those files that must be recompiled are
recompiled.

type

In C++ Browser, data type that is a member of the current class displayed in
the member list.

virtual method

In C++ Browser, member of the current class, displayed in the member list.
Allows derived classes to provide different versions by redefining or
overriding it.

139

Index

Symbols

<-This, 77
? in Current Class field, 104

A

access specification, 108
”Add” to Call Graph, 110
adjusting view, 61
Admin menu, 35
”Align Arglists”, 103
”Align Names”, 103
”All (method and data access)” used by method, 109
annotated scroll bars, 60, 107
”Another Class View” selection in Class View Admin

menu, 96
argument list, 126
arguments, common command line, 45
”As Friend”, 101
”As Friends”, 102

B

base classes
queries, 78

pop-up menu, 113
sublist, 112

breakpoints, setting, 21

Build Environment window, 39
build path, 11
”by Accessing Any Member” of class, 114
”by Accessing Any Member” used by class, 115
”by Accessing Any Member” used by derived class,

114
”by Accessing Data” by class, 115
”by Accessing Data Members” used by derived class,

114
”by Accessing Data” of class, 114
”by Calling Methods” of class, 114
”by Calling Methods” used by class, 115
”by Calling Methods” used by derived class, 114
”By Data Access”, 102
”By Method Calls”, 102
”by Modifying Data” by class, 115
”by Modifying Data Members” by derived class, 114
”by Modifying Data” of class, 114
”by Reading Data” by class, 115
”by Reading Data Members” by derived class, 114

C

C++ Browser
about, 2
concepts, 54
customizing, 128
selection in Static Analyzer Admin menu, 53, 66
starting, 51

140

Index

”Call Graph” submenu, 110
Call Graph window and, 99

Call Graph window, 124
display, 117

controls, 120
introduction, 62
menu bar, 126

call stack, 23
call stack view, 43
”Change Current Class” selection in Class View

Admin menu, 95
change ID, 11
changes, re-enabling, 26
chooser window

current class and, 67
List of Classes, 53, 96

class
See also related class
hierarchy, 59
information, 56

Class Graph window, 122
Context View, 117
display, 117

controls, 120
introduction, 61
keyboard accelerators, 124
menu bar, 122
relationship option menu, 123

Class View, 53, 93
Admin menu, 95
elements, 94
History menu, 99
introduction, 59
member list, 107
menu bar, 94
message area, 105
outline lists, 68, 105
Preference menu, 102

Queries menu, 101
Views menu, 99

”Clear” selection in Call Graph Admin menu, 126
”Close Class View” selection in Class View Admin

menu, 96
code, changing, 17
code, changing from command line, 19
code, comparing, 25
code, deleting changed, 19
code, switching between compiled and redefined, 25
”Collapse Selected Nodes” of graph, 120
”Collapse Subgraph” of graph node, 119
command line interface, 43, 45
comparing function definitions, 26
context-sensitive help, 103
Context View, 117
conventions, font, for manual, xvii
current class

C++ class structure and, 55
queries, 78
returning to previous, 80
selecting

from Class Graph, 123
List of Classes window, 67
related class list, 80

text field, 59, 67
<-This, 77, 111

Current Class field, 104
customizing

C++ Browser resources, 128
cvstatic, 51

See also Static Analyzer

D

”Data Access” by method, 110
database

141

Index

See also fileset
creating for sample session, 65
static analysis, 53

”Data Members”, 101
data members

queries, 69, 109
detailed, 72

used by current class, 102
”Data Modification” by method, 110
”Data Read” by method, 110
Debugger

call stack view, 43
changes to views, 41
command line interface, 43
main view, 42
trap manager, 44

Debugger, exiting, 27
Debugger with Fix and Continue support

Fix and Continue
Debugger support with, 10

derived classes
queries, 79

pop-up menu, 113
sublist, 112

destroy
class, 115
classes, 102
current class, 101, 115

difference tools, 26
documentation, recommended reading, xvi
double-clicking

a friend function, 116
Call Graph node, 126
Class Graph node, 123
closing List of Classes, 96
closing List of Classes Shown, 100
opening Source View, 107
related class list entries, 111

E

”Edit Fileset” selection in Static Analyzer Admin
menu, 66

Error Message window, 38
”Exit Browser” selection in Class View Admin menu,

98
exiting Debugger, 27
”Expand Selected Nodes” of graph, 120

F

files, comparing source code, 26
files, finding, 11
fileset, 51

See also List of Classes window
creating, 52

for sample session, 65
finding files, 11
Fix+Continue menu, 36
Fix and Continue

about, 2
basic cycle, 7
breakpoints, 21
Build Environment window, 39
build path, 11
change ID, 11
changing code, 17
changing code from command line, 19
command line, 45
commands, 46
deleting changed code, 19
editing a function, 16
environment, 10
Error Message window, 38
functionality, 6
getting started, 5
GUI, 29

142

Index

GUI command line, 10
menu operations, 31
redefining functions with, 6
restrictions, 9
sample session, 13
Session, 31, 36
Show Difference, 32
starting, 5
Status window, 24, 34
traps, 21
View, 32
WorkShop integration, 7

font conventions, for manual, xvii
”Force Scan” selection in Static Analyzer Admin

menu, 66
friend

classes, 102
current class, 101
function, 116
relations, 81

function, editing, 16
function, redefining

Fix and Continue
redefining functions, 15

function definitions, comparing, 25
functions, identifying, 11

G

gdiff, 27
”Generate Man Pages” selection in Class View

Admin menu, 97
generating man pages for C++ classes, 89
graphical view

calling structure, 62
class structure, 61

GUI command line, 10

H

Help menu
Class View, 103

hidden nodes in Call Graph, 126
”Hide Node” of graph, 119
”Hide Selected Nodes” of graph, 120
highlighted

Class View entry, 107
friend function source code, 116
graph display, 119
in Class Graph Context View, 121
member declaration, 107
method definition, 126
query results, 69
using keyboard accelerators, 116

History menu, Class View, 99

I

identifying functions, 11
Index... Help menu command, 103
inherited methods, 101
installation, 3
instantiate

current class, 101
inter-class relationship types, 57
interface, command line, 43, 45

K

keyboard accelerators
Class Graph, 124
Class View, 116

143

Index

L

Last Query button, 104
”What Instantiates” query and, 80

launching C++ Browser, 53
List of Classes Shown window, 100
List of Classes window, 53, 96
list of source files. See fileset

M

main view, Debugger, 42
Man Page Generator window, 97
man pages

customizing generation, 133
generating for C++ classes, 89

MegaDev
about the tools, 1

“Member Display” submenu
”Name Sort”, 102

”Member Display” submenu, 102
”Declaration Order”, 102
"End To End Sort", 102

member functions. See methods
member list, 59, 107

resource, 128
members

types displayed, 55
menu bar

Call Graph, 126
Class Graph, 122
Class View, 94

menu operations, 31
message area

Class View, 105

Message window, 38
Admin menu, 39
buttons, 38
View menu, 39

”Method Calls” by method, 110
”Methods”, 101
methods

calling structure and, 55
graphical view, 124
queries, 74
used by current class, 102

mouse button
middle, 120

moving nodes in graphs, 120
multiple inheritance, 111

N

”New Class View”, 113
nodes in graphs

moving, 120

O

On Context Help menu command, 103
online information, 103
On Version... Help menu command, 103
On Window... Help menu command, 103
outline

customizing display, 128
format of display, 56
icons, 68, 106

overview window
Class or Call Graph, 117

144

Index

P

parent classes
making queries on, 77
multiple inheritance, 111

pop-up menus
Class or Method Node, 119
Queries on Base Class, 113

using, 78
Queries on Current Class, 113

using, 78
Queries on Data Members, 109

using, 71
Queries on Derived Class, 113

using, 79
Queries on Friend Class, 116

using, 82
Queries on Friend Function, 116

using, 82
Queries on Friend Of, 116

using, 82
Queries on Methods, 109

Call Graph submenu, 126
using, 75

Queries on Used, 114
using, 79

Queries on Users, 115
using, 80

Selected Nodes, 120
”What Is Used” submenu, 115

using, 80
”What Uses” submenu, 114

using, 79
Preference menu, 33, 102

”Align Arglists”, 103
”Align Names”, 103
”Member Display” submenu, 102
”Relation Display” submenu, 103

private members
access, 56

program output, tracking, 11
protected members

access, 56
public members

access, 56

Q

query
annotated scroll bars and, 60
C++ code and, 69
data members, 69
methods, 74
Queries menu selections, 101
result in Static Analyzer, 74, 104

only, 115

R

Read-Only
Debugger status, 10

readonly
cvstatic command option, 66

redefining functions, 6
related class list, 59, 111

resource, 129
structure, 111

”Relation Display” submenu, 103
”Declaration Order”, 103
”End To End Sort”, 103

relationship option menu of Class Graph, 123
relationships

inter-class, 55
”Remove” method in Call Graph, 110
”Replace” method in Call Graph, 110
resources

customizing C++ Browser, 128

145

Index

results not found, 76
right mouse button, 109

S

sample session
C++ Browser, 65
Interpreter, 13

sample session setup, 13
saving to source file, 20
scope, 108
scroll bars, annotated, 60, 107
selecting

nodes in Class or Call Graph windows, 119
Session submenu, 31, 36
”Show All Related” selection of Class Graph Views

menu, 123
”Show All” selection of Class Graph Views menu,

123
”Show Arg List” toggle in Call Graph Admin menu,

126
”Show Butterfly” selection of Class Graph Views

menu, 123
”Show Call Graph” selection in Class View Views

menu, 99
”Show Containment Graph” selection in Class View

Views menu, 99
Show Difference submenu, 32
”Show Friend Graph” selection in Class View Views

menu, 99
”Show Immediate Children” of graph node, 119
“Show Inheritance Graph” selection in Class View

Views menu, 99
Show in Static Analyzer button, 104

”What Instantiates” query and, 80
”Show Interaction Graph” selection in Class View

Views menu, 99

”Show Parents” of graph node, 119
”Show Previous Class” selection in Class View

History menu, 100
”Show Source”, 113
source code status indicator, 10, 14
source file, saving to, 20
Source View

Call Graph method mode and, 126
Class View member, 107

starting
C++ Browser, 53
Static Analyzer, 52
Static Analyzer for sample session, 66

starting Fix and Continue, 5
starting the Browser, 51
Static Analyzer

results shown in, 116
starting, 52

status, viewing, 24
Status window, 24, 34

Admin menu, 35
Fix+Continue menu, 36
Preference menu, 33
View menu, 35

T

Technical Assistance Center, 3
terms defined, 135
“To Contain”

“What Is Used” submenu, 102
”To Contain”

”What Uses” submenu, 101
tracking program output, 11
trap manager, 23
trap mananger, 44
traps, setting, 21

146

Index

U

using
C++ Browser, 65
Interpreter, 13

V

view, call stack, 43
view changes in Debugger, 41
viewing status, 24
View menu, 35
view. See window
Views menu, Class View, 99
View submenu, 32

W

”What Accesses” data members, 109
”What Currently Defines” method, 110
”What Declares” method, 110
”What Defines” data members, 109
”What Destroys” class, 115
”What Destroys” selection in Class View Queries

menu, 101
”What Instantiates” class, 115
”What Instantiates” current class, 115
”What Instantiates” selection in Class View Queries

menu, 101
”What Is Declared” by base class, 113
”What is Declared” selection in Class View Queries

menu, 101
”What Is Defined” by base class, 113
”What Is Defined” selection in Class View Queries

menu, 101

”What Is Destroyed” selection in Class View Queries
menu, 102

”What Is Instantiated” selection in Class View
Queries menu, 102

”What Is Overloaded” by derived class, 114
”What is Overridden By”, 101
”What Is Overridden” by derived class, 114
”What Is Used” by friend class, 116
“What Is Used” submenu

in Class View Queries menu, 102
”What Is Used” submenu, 113

Queries on Methods pop-up, 109
”What It Uses”, 116
”What Modifies” data members, 109
”What Overloads” method, 110
”What Reads” data members, 109
”What Uses” friend class, 116
”What Uses” methods, 109
”What Uses” submenu in Class View Queries

menu, 101
window

Call Graph, 62
Class Graph, 61
Class View, 59
main types, 58

WorkShop integration, 8

X

.Xdefaults file, 128

We'd Like to Hear From You

As a user of Silicon Graphics documentation, your comments are important
to us. They help us to better understand your needs and to improve the
quality of our documentation.

Any information that you provide will be useful. Here is a list of suggested
topics to comment on:

• General impression of the document

• Omission of material that you expected to find

• Technical errors

• Relevance of the material to the job you had to do

• Quality of the printing and binding

Please include the title and part number of the document you are
commenting on. The part number for this document is
007-2114-002.

Thank you!

Three Ways to Reach Us

The postcard opposite this page has space for your comments. Write your
comments on the postage-paid card for your country, then detach and mail
it. If your country is not listed, either use the international card and apply the
necessary postage or use electronic mail or FAX for your reply.

If electronic mail is available to you, write your comments in an e-mail
message and mail it to either of these addresses:

• If you are on the Internet, use this address: techpubs@sgi.com

• For UUCP mail, use this address through any backbone site:
[your_site]!sgi!techpubs

You can forward your comments (or annotated copies of manual pages) to
Technical Publications at this FAX number:

415 965-0964

NO POSTAGE

NECESSARY

IF MAILED

IN THE

UNITED STATES

BUSINESS REPLY MAIL

Silicon Graphics, Inc.

2011 N. Shoreline Blvd.

Mountain View, CA 94043

