
Cosmo 3D™

Programmer’s Guide

Document Number 007-3445-002

Cosmo 3D™ Programmer’s Guide
Document Number 007-3445-002

CONTRIBUTORS

Written by George Eckel
Illustrated by Dany Galgani and Martha Levine
Production by Carlos Miqueo
Engineering contributions by Brian Cabral, John Rohlf, Brad Grantham, Chris

Tanner, Rich Silba, Tonia Spyridi, Michael Jones, Trina Roy, Chris Walker
St. Peter’s Basilica image courtesy of ENEL SpA and InfoByte SpA. Disk Thrower

image courtesy of Xavier Berenguer, Animatica.

© 1998, Silicon Graphics, Inc.— All Rights Reserved
The contents of this document may not be copied or duplicated in any form, in whole
or in part, without the prior written permission of Silicon Graphics, Inc.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure of the technical data contained in this document by
the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS 52.227-7013
and/or in similar or successor clauses in the FAR, or in the DOD or NASA FAR
Supplement. Unpublished rights reserved under the Copyright Laws of the United
States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd.,
Mountain View, CA 94043-1389.

Silicon Graphics, the Silicon Graphics logo and OpenGL are registered trademarks,
and Cosmo 3D, ImageVision, Inspector, OpenGL Optimizer, Open Inventor, and
Performer are trademarks, of Silicon Graphics, Inc. Java is a registered trademark of
Sun Microsystems, Inc.

iii

Contents at a Glance

List of Figures xxi

List of Tables xxiii

About This Guide xxv
What This Guide Contains xxv
Related Reading xxvii
Who Should Read This Guide xxvii
What You Should Know Before Reading This Guide xxvii
Suggestions for Further Reading xxvii
Style Conventions xxviii

1. Getting Started with Cosmo 3D 1
Understanding a Cosmo 3D Scene Graph 2
Scene Graph Base Classes 2
Scene Graph Construction Classes 7
Classes That Determine How Things Are Drawn 12
Classes defining Geometric Objects 13
Steps for Creating and Displaying a Simple Scene Graph 13

2. Creating Geometries 15
Geometry Terminology 16
Using Large Geometries 16
Creating csGeoSet Objects 17
csGeoSet Attributes 20
Setting Attributes 22
Cosmo 3D-Derived csGeoSet Objects 30

iv

Contents at a Glance

3. Specifying the Appearance of Geometries 35
csContext Overview 35
Changing the Context 39
Using csAppearance 40
Applying Textures to Geometries 42
Material Settings 51
Shade Model Settings 53
Transparency Settings 53

4. Scene Graph Nodes 55
What Is a Node 56
Leaf Nodes 57
Group Nodes 58
Setting the Values in Scene Graph Nodes 61

5. Building a Scene Graph 65
Creating Scene Graphs 66
Diagramming Scene Graphs 69
Altering Scene Graphs 73
Loading a VRML Scene Graph 74
Saving Scene Graphs 75
Troubleshooting Scene Graph Construction 75

6. Placing Shapes in a Scene 77
Creating a Sense of Depth 77
Transforming Shapes to New Locations, Sizes, and Orientations 79

7. Traversing the Scene Graph 83
Scene Graph Actions 83
The Order In Which Actions Are Passed Between Nodes 86

8. Lighting and Fog 89
Using Lights in Scenes 89
Limiting the Scope of Lights 92
Using Fog in Scenes 93

Contents at a Glance

v

9. Viewing the Scene 97
Setting the Screen Display of the Scene 97
csCamera 99
csOrthoCamera 101
csPerspCamera 101
csFrustumCamera 105

10. Scene Graph Engines 107
Engines 107
Engines that Interpolate Values 110
Engines That Change Shapes 117

11. Sensors 121
csTimeSensor 122
csSphereSensor 126
csPlaneSensor 130
csTouchSensor 134

12. User Interface Mechanisms 137
Creating a csWindow 137
Handling User Input 139
Selecting Screen Objects 140
Creating Your Own Window 143

13. Multiprocessing 145
Implementing Multiprocessing 146
Thread Blocking 148
Multithreaded Example 150

14. Optimizing Rendering 151
Face Culling 152
Back Patch Culling 152
Culling the View Frustum 160
Level of Detail Reduced for Performance 160
Performance Programming Techniques 163

vi

Contents at a Glance

15. Adding Sounds To Virtual Worlds 167
Overview 168
How to Play a Sound File 173
Specifying Audio Files 174
Playing Sound in Immediate Mode 177

A. Cosmo Basic Types 179
Array Storage Class Types 180
Vector Classes 183
Bounding Volumes 187
Field Classes 188
Other Math Classes 191

B. Cosmo 3D Sample Application 193
Cube.cxx Explained 195
Scene Graph for Cube.cxx 203

C. Cosmo 3D Class Hierarchy 209

Index 215

vii

Contents

List of Figures xix

List of Tables xxi

About This Guide xxiii
What This Guide Contains xxiii
Related Reading xxv
Who Should Read This Guide xxv
What You Should Know Before Reading This Guide xxv
Suggestions for Further Reading xxv
Style Conventions xxvi

1. Getting Started with Cosmo 3D 1
Understanding a Cosmo 3D Scene Graph 2
Scene Graph Base Classes 2

The csObject Class 3
Reference Counting 3
Runtime Typing 4

The csContainer Class 5
The csField Class 5

Field Access 5
Single-Item and Multi-Item Fields 6

The csNode Class 6
Scene Graph Construction Classes 7

The csGroup Class 8
The csTransform Class 9
The csShape Class 11
The csAppearance Class 11
The csGeometry Class 11

viii

Contents

Classes That Determine How Things Are Drawn 12
csContext 12
The csEnvironment Classes 12

Classes defining Geometric Objects 13
Steps for Creating and Displaying a Simple Scene Graph 13

2. Creating Geometries 15
Geometry Terminology 16
Using Large Geometries 16
Creating csGeoSet Objects 17

csGeoSet Fields 19
Setting the Number of Primitives 19

csGeoSet Attributes 20
Attribute Bindings 20

Setting Attribute Bindings 21
Setting Attributes 22

Indexing Attributes 23
When to Index Attributes 24

Specifying Attributes 26
Using More Specific Attribute Arrays 26
Indexing Attributes 28

Setting Attributes Example 28
Editing Attribute Arrays 29

Cosmo 3D-Derived csGeoSet Objects 30
Using csPointSet 30
Using csLineSet 31
Using csIndexedLineSet 31
Using csLineStripSet 31
Using csTriSet 31
Using csTriFanSet 32
Using csTriStripSet 32
Using csPolySet 33
Using csQuadSet 33
Using csIndexedFaceSet 33

Contents

ix

3. Specifying the Appearance of Geometries 35
csContext Overview 35

State Machine 36
Inheritance Mask 36
Accessing States 37
What Modifies the Graphics State? 38
Traversal Order 38
csContext in Multi-threaded Programs 38
Overriding Appearances and Geometry Properties with csContext 39
Making the Screen One Color 39

Changing the Context 39
Using csAppearance 40

Inheriting Appearance Values 40
Setting Appearance Fields Locally 40

Lazy Updating of Appearance Values 41
Applying Textures to Geometries 42

Texture Map Coordinates 42
Applying a Texture 43
Specifying a Texture Image 44

Texture Mode Settings 44
Texture Environment Settings 46

Color Components 47
Specifying Texture Coordinates 48

Using the Default 48
Using the Texture Coordinate Function 48
Setting the csTexGen Mode 50
Enabling Texture Generation 50

Material Settings 51
Material Example 52

Filling Geometries 52
Shade Model Settings 53
Transparency Settings 53

Producing Transparency Without Blending 53

x

Contents

4. Scene Graph Nodes 55
What Is a Node 56

Node Types 56
Leaf Nodes 57

csShape 57
Group Nodes 58

Group Node Types 58
Using csSwitch to Switch Between Nodes 59
Using csBillboard 60

Setting the Values in Scene Graph Nodes 61
Using set() and get() Methods to Set and Get Single-Value Fields 61
Using Tokens to Set and Get Single-Value Fields 62
Using set() and get() Methods to Set and Get Multiple-Value Fields 62
Using Tokens to Set and Get Multiple-Value Fields 63

5. Building a Scene Graph 65
Creating Scene Graphs 66

Root Node 66
Applying Actions to Multiple Root Nodes 67
Creating A Sample Scene Graph 68

Diagramming Scene Graphs 69
Scene Graph Diagrams At A Glance 69

Altering Scene Graphs 73
Loading a VRML Scene Graph 74
Saving Scene Graphs 75
Troubleshooting Scene Graph Construction 75

6. Placing Shapes in a Scene 77
Creating a Sense of Depth 77

Overriding the Default Order of Layering Shapes 78

Contents

xi

Transforming Shapes to New Locations, Sizes, and Orientations 79
Placing Transform Nodes 79
Setting the Transformation 80
Ordering Transformations 81
Placing Geometries in World Space 82
 Cosmo 3D Matrices 82

7. Traversing the Scene Graph 83
Scene Graph Actions 83

Action Types 84
csAction 84
Rendering the Scene 85
Playing Sound Files 86

The Order In Which Actions Are Passed Between Nodes 86
Top-Down Traversals 86

8. Lighting and Fog 89
Using Lights in Scenes 89

csLight 90
csDirectionalLight 90
csSpotLight 91
csPointLight 91

Limiting the Scope of Lights 92
The Scope of the Light Array 92
csEnvironment Methods 92

Using Fog in Scenes 93
Uses of Fog in Cosmo 3D Applications 93
How to Use Fog in Cosmo 3D Applications 94

Enabling Fog 94
How to Use Fog 95

9. Viewing the Scene 97
Setting the Screen Display of the Scene 97

Using a Camera to View a Scene 98
csCamera 99

xii

Contents

csOrthoCamera 101
csPerspCamera 101

Setting the Frustum 102
Setting the Clip Planes 103
Setting the Fields of View 103
Offsetting the Fields of View 103

csFrustumCamera 105

10. Scene Graph Engines 107
Engines 107

Input and Output Fields 108
Connecting Engines to Other Nodes 108

Connecting Engines to Other Engines 108
Engine Types 109

Engines that Interpolate Values 110
Interpolator Engine Terminology 111
csSpline 112

Keys and Key Values 113
csSpline Fields 113
csColorInterpolator 114
csCoordinateInterpolator 114
csNormalInterpolator 114
csOrientationInterpolator 115
csPositionInterpolator 116
csScalarInterpolator 116
csSelectorEng3F and csSelectorEng4F 117

Engines That Change Shapes 117
csMorphEng 117

csMorphEng Fields 118
csMorphEng3f and csMorphEng4f 118

csTransformEng 119

Contents

xiii

11. Sensors 121
csTimeSensor 122

Enabling csTimeSensor 122
Updating csTimeSensor 123

Updating with csWindow 123
Setting the Start and Stop Times 123

isActive 124
Setting Cycle Duration 124
Continuing Timer Events 125

Cycle Time Event 125
Fraction Changed Event 125

csSphereSensor 126
Virtual Sphere 126

Offsetting the Rotation 126
csSphereSensor Events 127

Updating csSphereSensor 128
Setting Up csSphereSensor 128

Scope of csSphereSensor 128
Rotating Geometry Using csSphereSensor 129

csPlaneSensor 130
Setting Up csPlaneSensor 130

Scope of csPlaneSensor 131
csPlaneSensor Events 131

Updating csPlaneSensor 132
Limiting Translations 132

Unclamped Translations 132
Local or World Translations 133
csPlaneSensor Offsets 133

xiv

Contents

csTouchSensor 134
Associating csTouchSensor and Geometry 134
Scope of csTouchSensor 135
csTouchSensor Output 135

isOver Event 135
Hit Events 136
touchTime Events 136

12. User Interface Mechanisms 137
Creating a csWindow 137

Manipulating the Window Stack 138
Handling User Input 139

Using Callback Functions 139
Querying Devices 140

Selecting Screen Objects 140
Using csIsectAction 140
Using Pick() 141
Storing Selected Screen Objects 142

Creating Your Own Window 143
Sample Window Code 143

13. Multiprocessing 145
Implementing Multiprocessing 146

Creating Threads 146
Starting Threads 147
Thread Parameters 148

Thread Blocking 148
Cleaning the csContext Fields 150

Multithreaded Example 150

14. Optimizing Rendering 151
Face Culling 152

Contents

xv

Back Patch Culling 152
Back Patch Culling Advantage 153
When to Use Back Patch Culling 154
Method of Calculation 154

Updating the View Vector 155
Normals 155
Choosing the Type of Normal 156

Using Back Patch Culling 157
Enabling Back Patch Culling 157
Building Back Patch Culling Data for a csGeoSet 158
Updating Back Patch Culling Data 158

Back Patch Culling Code 159
Culling the View Frustum 160
Level of Detail Reduced for Performance 160

Choosing a Child Node Based on Range 161
Transitioning Between Levels of Detail 162

Performance Programming Techniques 163
Minimize Use of csAppearance Fields 163
Minimize Use of csAppearance Modes 163
Indexing csGeoSet Attributes 164
Setting the Transformation Matrix Directly 164
Compiling Part of a Scene Graph 164

15. Adding Sounds To Virtual Worlds 167
Overview 168

csSound Fields 169
Choosing Sound Samples to Play 169

Sound Priority 170
Playing the Sound File 170
Locating and Directing the Sound 170

Reverse Direction Sound 172
How to Play a Sound File 173

xvi

Contents

Specifying Audio Files 174
Manipulating the Audio Samples Directly 176
Example Setting a csAudioSamples Node 176

Playing Sound in Immediate Mode 177
csSoundPlayer Methods 177

A. Cosmo Basic Types 179
Array Storage Class Types 180

Data Class 180
Array Classes 181

Array Methods 181
Returning Array Data 183

Vector Classes 183
Vector Math 184
Vector Methods 184

csVec3s 186
csVec4ub Methods 186

Transforming csVec3f Vectors 186
Bounding Volumes 187
Field Classes 188

csField 189
csFieldInfo 189
csMField 189
csAtomField 190
csArrayField 190

Other Math Classes 191
csSeg 191
csPlane 192
csFrustum 192

Contents

xvii

B. Cosmo 3D Sample Application 193
Cube.cxx Explained 195

Understanding the Different Parts of Cube.cxx 202
Scene Graph for Cube.cxx 203

Relating Local Space to World Space 204
Creating the User Interface 206
Rendering World Space 206
Summary 207

C. Cosmo 3D Class Hierarchy 209

Index 215

xix

List of Figures

Figure 1-1 Cube Scene Graph 8
Figure 1-2 Two Transformations into World Space 10
Figure 2-1 Primitives in a csGeoSet 18
Figure 2-2 Sequential Specification of Attributes Per Primitive 23
Figure 2-3 Indexed Attributes 24
Figure 2-4 Deciding Whether to Index Attributes 25
Figure 2-5 Stride and Offset Values 27
Figure 2-6 TriFanSet 32
Figure 2-7 Triangle Strip 32
Figure 3-1 Inheritance Mask 37
Figure 3-2 Applying a Texture to a Geometry 42
Figure 3-3 Texture Coordinates 43
Figure 3-4 Non-Perspective and Perspective Modes 45
Figure 3-5 Texture Coordinate Function 48
Figure 3-6 Repeated Texture on a Geometry 49
Figure 4-1 A Simple Grouping 58
Figure 4-2 Setting Single and Multiple-Value Variables 61
Figure 5-1 Scene Graph 65
Figure 5-2 Multiple Root Nodes 67
Figure 5-3 Simple Scene Graph 69
Figure 5-4 Two Sets of Data Rendered Differently 70
Figure 5-5 Torso Subgraph 71
Figure 5-6 Showing the Same Geometry in Two Locations 72
Figure 6-1 Placement of csTransform Nodes 79
Figure 6-2 Scaling in Different Orientations 81
Figure 6-3 Order of Transformations 81
Figure 7-1 The Flow of an Action Through A Scene Graph 87

xx

List of Figures

Figure 9-1 Viewport 98
Figure 9-2 Aspect Ratio 99
Figure 9-3 Changing the Window Without Changing the Image’s Aspect 100
Figure 9-4 Perspective Explained 102
Figure 9-5 Horizontal and Vertical Fields of View Offsets 104
Figure 10-1 Keys and Key Values 110
Figure 10-2 Engine Terminology 111
Figure 10-3 Spline 112
Figure 11-1 Rotation and trackPoint Representations 127
Figure 11-2 Placing csSphereSensor in a Scene Graph 129
Figure 11-3 Placing csPlaneSensor in a Scene Graph 131
Figure 11-4 Placing csTouchSensor in a Scene Graph 134
Figure 12-1 Ray Pick Action 141
Figure 12-2 Creating Your Own Window 143
Figure 13-1 Multiprocessing 145
Figure 13-2 Blocking Action of Multiple Threads 149
Figure 14-1 Before and After Back Patch Culling 153
Figure 14-2 Viewing Angle 154
Figure 14-3 Face and Primitive Normals 155
Figure 14-4 Direction of Normals 156
Figure 14-5 csLOD Ranges 162
Figure 14-6 Arranging Scene Graph Nodes 165
Figure 15-1 Sound Classes 168
Figure 15-2 Sound Direction 171
Figure 15-3 Forward and Reverse Sound Propagation 172
Figure A-1 Bounding Sphere 187
Figure B-1 Cube Application 194
Figure B-2 Cube Scene Graph 203
Figure B-3 Two Transformations Into World Space 205

xxi

List of Tables

Table 2-1 Geometry Terminology 16
Table 2-2 Fields in a csGeoSet 19
Table 2-3 Attribute Bindings 21
Table 4-1 Examples of Fields in Nodes 56
Table 8-1 Fields in csFog 94
Table 15-1 csAudioClip Fields 173
Table 15-2 Fields of csSoundSamples 175

xxiii

About This Guide

Cosmo 3D is a new toolkit that brings 3D graphics programming to desktop applications.
Cosmo 3D is a scene graph API; its concepts are new, but similar to concepts developed
in Open Inventor, Performer, and OpenGL.

This guide shows you how to develop Cosmo 3D applications. Included are descriptions
of Cosmo 3D applications that you can run on your workstation, as well as code
examples that you can use as a guide when developing your Cosmo 3D applications.

This guide presents the developer’s view of the Cosmo 3D’s C++ library with C++
examples.

What This Guide Contains

This guide presents information about Cosmo 3D in a task-oriented manner: the topics
in this guide are arranged to coincide with the order in which you need to refer to them
while writing a Cosmo 3D application. To illustrate the use of Cosmo 3D, code examples
are sprinkled throughout the guide. Additional sample source code is provided in the
/usr/share/optimizer/cosmo1.1/cosmo/test/C++ directory.

Brief descriptions of the chapters in this guide follow:

• Chapter 1, “Getting Started with Cosmo 3D,” provides an overview of Cosmo 3D,
introduces some of its most basic classes, and lists the steps involved in creating a
typical application.

• Chapter 2, “Creating Geometries,” discusses large, ready-made geometries, such as
csSphere and csCube objects, and explains how to use the csGeoSet-derived
classes provided by Cosmo 3D and how to create your own csGeoSet-derived
classes.

xxiv

About This Guide

xxiv

• Chapter 3, “Specifying the Appearance of Geometries,” describes the appearance
fields in csContext and csAppearance.

• Chapter 4, “Scene Graph Nodes,” describes nodes and node types.

• Chapter 5, “Building a Scene Graph,” describes how to build and edit a scene
graph.

• Chapter 6, “Placing Shapes in a Scene,” describes how to place shapes in scenes.

• Chapter 7, “Traversing the Scene Graph,” describes how an action traverses a scene
graph and a description of the actions available in Cosmo 3D.

• Chapter 8, “Lighting and Fog,” describes how to use lights, change the shadow
modeling, and change the screen to one color. It also discusses fog, a new feature in
Cosmo 3D 1.1.

• Chapter 9, “Viewing the Scene,” describes how to set up the viewport and how to
use cameras to view a scene.

• Chapter 10, “Scene Graph Engines,” describes csEngine and the multiple subclasses
derived from it.

• Chapter 11, “Sensors,” explains how to implement sensors. Sensors are used to
detect time passing and ointer device events.

• Chapter 12, “User Interface Mechanisms,” discusses how to implement user
interaction using X window code, csWindow, and selection mechanisms.

• Chapter 13, “Multiprocessing,” describes how to implement multiprocessing.

• Chapter 14, “Optimizing Rendering,” describes the Cosmo 3D nodes and
programming techniques that can help optimize your application’s performance.

• Chapter 15, “Adding Sounds To Virtual Worlds,” describes how to set and play
sound using Cosmo 3D.

• Appendix A, “Cosmo Basic Types,” discusses all of the basic types that are used in
other Cosmo 3D classes.

• Appendix B, “Cosmo 3D Sample Application,” lists a complete sample application
and explains its components.

• Appendix C, “Cosmo 3D Class Hierarchy,” shows the class hierarcy in Cosmo 3D.

These chapters and appendices are followed by an index.

About This Guide

xxv

Related Reading

Reference pages for Cosmo 3D are obtained by pointing your web browser at:

• For IRIX: /usr/share/Optimizer/doc/developer

• For Windows: <inst_dir>/doc/developer

Where inst_dir is the directory where Optimizer was installed. The default installation
location is <system_drive>:/Progral Files/Silicon Graphics/Optimizer.

Who Should Read This Guide

This guide is written for developers of OpenGL Optimizer applications. Developers use
Cosmo 3D scene graph nodes and actions to develop OpenGL Optimizer applications.

What You Should Know Before Reading This Guide

This guide is written with the assumption that the reader is experienced with C++.

Suggestions for Further Reading

For information on Open Inventor, see the following:

• Wernecke, Josie, The Inventor Mentor. Reading, Mass.:Addison Wesley 1994

• Wernecke, Josie, The Inventor Toolmaker. Reading, Mass.:Addison Wesley 1994

• Open Inventor Architecture Group, Open Inventor C++ Reference Manual. Reading,
Mass.:Addison Wesley 1994

• OpenGL Architecture Review Board, M. Woo, J. Neider, and Tom Davis, OpenGL
Programming Guide, Second Edition, 1997. (Also known as “the Red book.”)

For information on OpenGL Optimizer; see the following SGI manual:

OpenGL Optimizer Programmer’s Guide: An Open API for Large-Model Visualization
(document number 007-2852-002).

xxvi

About This Guide

xxvi

Style Conventions

These style conventions are used in this guide:

• Bold—Functions, class names, node names, data members, and data types

• Italics—Variables, filenames, spatial dimensions, and commands

• Regular—Program names and enumerated types

Code examples are set off from the text in a fixed-space font.

1

Chapter 1

1. Getting Started with Cosmo 3D

Cosmo 3D is a scene graph API that brings 3D graphics programming to desktop
applications. Cosmo 3D speeds up and facilitates the process of creating complex
graphics applications. It allows applications to use a higher-level interface than the
lower-level OpenGL language that it is based on. Developers interact with C++ objects
that are arranged in an object hierarchy.

With its scene graph architecture and features such as culling, level of detail (LOD), 2D
texture mapping, and audio, Cosmo 3D enables you to develop complex graphic
applications, for example, professional character animations and gaming applications.

After creating a scene graph using Cosmo 3D objects, developers can use the OpenGL
Optimizer API to improve performance. See the manual OpenGL Optimizer Programmer’s
Guide: An Open API for Large-Model Visualization for more information.

This chapter gives an overview of the base classes of a Cosmo 3D scene graph.
Understanding how each class contributes to the scene graph is essential for making
optimal use of the API. These are the sections in this chapter:

• “Understanding a Cosmo 3D Scene Graph” on page 2.

• “Scene Graph Base Classes” on page 2.

• “Scene Graph Construction Classes” on page 7.

• “Classes That Determine How Things Are Drawn” on page 12.

• “Classes defining Geometric Objects” on page 13.

• “Steps for Creating and Displaying a Simple Scene Graph” on page 13.

2

Chapter 1: Getting Started with Cosmo 3D

Understanding a Cosmo 3D Scene Graph

A scene graph is a directed acyclical graph of nodes that embodies the semantics of what
is to be drawn, but not how it is to be drawn. Developers interacting with a scene graph
are interested in achieving a result, usually seeing a model on screen and manipulating
it. They leave it up to Cosmo 3D to achieve this result in the most efficient way.

A Cosmo 3D scene graph consists of objects that inherit appropriate methods and fields
from the Cosmo 3D classes. Conceptually, there are four kinds of classes:

• Base classes—csObject, csField, csContainer, and csNode. These classes are never
instantiated directly. Instead, applications create subclasses that inherit certain
functionality from the base classes. Base classes are discussed in this chapter.

• Scene graph construction classes—csGroup, csShape, csGeometry, and
csAppearance determine appearance in a general way.

• Specific appearance classes—csContext, csDrawTraversal, csEnvironment and
some of their subclasses determine how things are drawn, for example, whether
lights or fog are applied.

• Geometry classes, such as csSphere or csCylinder, are the building blocks of the
model itself.

This manual starts by discussing the different kinds of classes. It then briefly lists the
steps required to create a simple sample program. The sample program itself is listed in
Appendix B, “Cosmo 3D Sample Application.”

Scene Graph Base Classes

This section discusses the following abstract, base classes that provide the functionality
that is necessary to implement a scene graph:

• “The csObject Class”

• “The csContainer Class”

• “The csField Class”

• “The csNode Class”

Scene Graph Base Classes

3

The csObject Class

The csObject class is the base class for all objects in a scene; where an object is an entity
that you can place in the scene graph. A csObject provides reference counting and
runtime typing for all its children.

Reference Counting

Many kinds of data objects in Cosmo 3D can be placed in a hierarchical scene graph.
Using instancing, an object can be referenced multiple times. Scene graphs can become
quite complex, which can cause problems if you’re not careful. Deleting objects can be a
particularly dangerous operation, for example, if you delete an object that another object
still references.

Within each csObject is a counter that keeps track of the number of objects referencing a
particular instance. Reference counting provides a bookkeeping mechanism that makes
object deletion safe: an object should never be deleted if its reference count is greater than
zero. In general, you should only unreference an object in case it is referenced by another
object.

It is just as important, however, not to unreference an object that has not been referenced.
Because the reference count is an unsigned integer, unreferencing an object that has not
been referenced decrements the reference count from 0 to a large positive number and it
will never be deleted.

Each csObject is created with a reference count of 0. It is important to reference an object
when it is created to make sure that someone else does not delete it when they
unreference it.

When object A is attached to object B, the reference count of A is incremented.
Additionally, if A replaces a previously referenced object C, the reference count of C is
decremented.

4

Chapter 1: Getting Started with Cosmo 3D

Example 1-1 demonstrates how reference counts are incremented and decremented.

Example 1-1 Objects and Reference Counts

csAppearance *appearanceA, *appearanceC;
csGeoSet *gset;
csShape *shape;

shape->setGeometry(0, gset);
/* Attach appearanceC to gset. Reference count of appearanceC
 * is incremented. */
shape->setAppearance(appearanceC);

/* Attach appearanceA to gset, replacing appearanceC. Reference
 * count of appearanceC is decremented and that of appearanceA
 * is incremented. */
shape->setAppearance(appearanceA);

When the reference count of an existing csObject becomes 0, the object is assumed not to
be referenced by any other object and is deleted. An object that has nothing above itself
in the scene hierarchy is removed because it is no longer part of the scene graph.

This automatic reference counting is usually all you ever need to use. However, the
routines csObject::Ref(), csObject::Unref(), and csObject::GetRefCount() allow you to
increment, decrement, and retrieve the reference count of a csObject should you wish to
do so.

Runtime Typing

Each csObject knows what type it is. Applications can find out the class object of an
instance by querying the object with getClassType(), as in the following example:

// csContainer *ctr

if(ctr->getType() == csMaterial::getClassType())
printf(“It’s a csMaterial!\n”);

else
printf(“It’s not a csMaterial!\n”);

You need to know the runtime type of an object so you can invoke the right code to
manipulate an object.

For checking the derivation of a type, use csObject::isOfType().

Scene Graph Base Classes

5

The csContainer Class

csContainer objects contain data associated with scene graphs. The data in csContainer
objects is grouped into fields (csField). Fields are not accessible directly to applications.
Instead, set() and get() methods are provided to set and return field values.

Each field contains either a single value of a simple data type, such as a float, or a group
of values, all of simple data types.

As an abstract, base class, csContainer provides functionality common to all objects
containing fields, such as generic access to the fields, creating and deleting field
connections, and managing reference counts when objects are added and removed as
fields.

The csField Class

Fields contain the data of csContainer objects; data generally associated with scene
graphs. All publicly-accessible fields in classes derived from csContainer should be
derived from csField.

Fields differ from standard C++ data members. Fields are not evaluated until they are
queried. Consequently, none of the meta information (for example, the field’s name)
exists unless you ask for it.

Field Access

Fields are compact but they still allow applications complete access in two ways:

• Indirect access. Methods for field access and modification are part of each class.
Most of the time, applications access fields using these get*() and set*() functions.

• Generic access. Applications can query any container object abstractly using
getFieldInfo() on any object that inherits from csContainer. This is useful for
getting information about unknown objects and makes it possible, for example, to
create a GUI for an application.

6

Chapter 1: Getting Started with Cosmo 3D

Single-Item and Multi-Item Fields

Each field contains either a single value of a simple data type, such as a float, or a group
of values, all of simple data types.

• Single Item Fields—Single-valued field types, including SFDouble, SFEnum,
SFRef, SFString, SFInt, SFFloat, SFVec2f, SFVec3f, SFVec4f, SFBitMask, SFName,
SFMatrix4f, SFRotation.

• Multiple Item Fields—Multi-valued field types, including MFRef, MFString,
MFInt, MFFloatMFMatrix4f, MFVec2f, MFVec3f, MFVec4f, MFRotation.

For more information about single- and multi-item fields, see “Setting the Values in
Scene Graph Nodes” on page 61.

The csNode Class

All Cosmo 3D scene graph components, except leaf objects, such as csGeometry, are
derived from csNode. csNode, a subclass of csContainer, maintains a bounding sphere
for the geometry and the descendant geometry associated with a csNode-type object,
such as csGroup.

csNode is the fundamental object to which csActions are applied.

For more information about leaf objects, see “Leaf Nodes” on page 57.

For more information about bounding spheres, see “Bounding Volumes” on page 187.

Scene Graph Construction Classes

7

Scene Graph Construction Classes

This section discusses several essential elements of a scene graph.These elements are part
of most scene graphs and make it possible for the geometry elements of a model to be
drawn and to relate to one another.

Figure 1-1 shows a basic scene graph similar to the example program discussed in
Appendix B, “Cosmo 3D Sample Application.” Black lines indicate parent-child
relationships; gray lines indicate class-field links.

The figure shows the following elements, which are discussed in this section:

• “The csGroup Class”—allows you to group csNodes.

• “The csTransform Class”—applies a transformation, such as rotation, scaling, to all
its children.

• “The csShape Class”—encapsulates a geometric shape; providing appearance and
geometry fields and a draw() method.

• “The csAppearance Class”—contains fields to specify the material properties of a
surface, including transparency, color, and texture.

• “The csGeometry Class”—encapsulates the geometric data to which a
csAppearance can be applied.

8

Chapter 1: Getting Started with Cosmo 3D

Figure 1-1 Cube Scene Graph

The csGroup Class

The csGroup class allows applications to group a list of csNodes. When the application
then applies actions to the csGroup, the actions traverse the scene graph starting at the
group-type node. The group-type node passes the action to some or all of its children.
The bounding sphere of a csGroup is the bounding sphere containing all the bounding
spheres of its children.

In Figure 1-1, a group node is the top of the scene graph, joining two csTransform nodes
and a light.

Pointlight

Transform lxf

Transform xf

Geometry

Appearance

Shape

Appearance

Shape

Group

Scene Graph Construction Classes

9

The csTransform Class

A csTransform is a csGroup that allows applications to apply a transformation to all of
its children. A csTransformAction pushes down an action’s matrix stack, applies the
transform to the top of the stack, visits the children, and then pop the action’s matrix
stack.

See “Transforming Shapes to New Locations, Sizes, and Orientations” on page 79 for
more information.

Once you define the orientation of a shape, you use csTransform nodes to place and
orient the shape in a different coordinate system. World space is the coordinate system of
the root node. If all the shapes in a scene graph are transformed into world space, a
csCamera object attached to the root node can view all the shapes in the scene graph
together in one coordinate system.

World space is rendered when a draw action is applied to the root node of the scene
graph; local space is rendered when a draw action is applied to a subsection of the scene
graph. The same object rendered in these two spaces may appear different, for example,
a shape in world space may appear smaller than in local space because it is farther from
the viewer; it might also be rotated and positioned differently.

There are usually many transformation nodes in a scene graph and a shape is often
transformed more than once. Figure 1-2 illustrates how a leaf node is first transformed
twice, then placed in world space.

10

Chapter 1: Getting Started with Cosmo 3D

Figure 1-2 Two Transformations into World Space

Group node

Leaf node

Group node

Transform node

Transform node

Scene Graph Construction Classes

11

The csShape Class

csShape nodes, derived from csNode, define a textured geometry by associating a
csAppearance, which describes the look of a shape (such as its color), with a csGeometry,
which defines the dimensions of the geometry (such as whether the geometry is a cube
or sphere).

The csAppearance Class

A csAppearance contains fields to specify the material properties of a surface, including
transparency, color, and texture. csAppearance also provides some facilities borrowed
from OpenGL, like specifying whether the surface is drawn filled or in wireframe mode,
and the alpha and depth functions to use. csAppearance is associated with a csGeometry
container by a csShape, which contains fields for one appearance and a list of geometry.

The csGeometry Class

csGeometry encapsulates the geometric data to which a csAppearance can be applied.
For example, a csGeometry can define a sphere onto which the texture of an orange can
be applied to create a realistic image of an orange. Together, csGeometry and
csAppearance combine to form a textured shape. csShape associates the two classes.

12

Chapter 1: Getting Started with Cosmo 3D

Classes That Determine How Things Are Drawn

The set of nodes discussed in this section determines how things are drawn.

• “csContext”—Maintains the OpenGL state, for example,

• “The csEnvironment Classes”—Determines how lights and fog are applied to its
children.

csContext

csContext defines the default, global graphics state of shapes in the scene graph. Shapes
inherit some or all of the csContext values according to the values set in a mask.
csAppearance values set on shapes override the default csContext values. Similarly,
geometry values, defined in csContext, can be overridden by individual shapes.

csContext is multi-threaded. A thread can associate a csContext and a csWindow to
facilitate multi-threaded processing. For more information about multi-threading, see
Chapter 13, “Multiprocessing.”

For more general information about csContext, see “csContext Overview” on page 35.

The csEnvironment Classes

The csEnvironment class determines how lights and fog are applied to the scene graph.

The lights that affect a csShape during a csDrawAction are the lights attached to all
ancestor csEnvironments of the shape, plus all lights applied before invoking the
traversal. For more information on lights, see Chapter 8, “Lighting and Fog.”

Classes defining Geometric Objects

13

Classes defining Geometric Objects

The actual geometric objects in a Cosmo 3D scene graph are derived as follows:

• As a direct subclass of csGeometry. These subclasses include csCone, csSphere, and
so on.

• A csGeoSet is a collection of primitives, such as points, lines, triangles, and triangle
strips, that, when arranged, create a geometry.

For more information, see Chapter 2, “Creating Geometries.”

Steps for Creating and Displaying a Simple Scene Graph

The following procedure summarizes the steps you take to create and render the simple
scene graph shown in Figure 1-1. This scene graph is created by the example program
discussed in Appendix B, “Cosmo 3D Sample Application.”

1. Create csAppearance and csGeometry containers to define the appearance and the
geometry of a shape.

For more information on setting csAppearance values, see Chapter 3, “Specifying
the Appearance of Geometries.” For more information on setting csGeometry
values, see Chapter 2, “Creating Geometries.”

2. Create csShape and csTransform nodes.

For more information on setting csShape values, see Chapter 2, “Creating
Geometries.”

3. Associate the csAppearance and csGeometry containers using the csShape node.

4. Add the csShape node as a child of a csTransform node.

The csTransform node orients and positions the geometry encapsulated in the
csShape node. For more information on setting csTransform values, see Chapter 6,
“Placing Shapes in a Scene.”

Note: A csShape node by itself can be a complete scene graph. Typically, however,
scene graphs have many csShape nodes, most of which are connected to other parts
of the scene graph with csTransform nodes.

14

Chapter 1: Getting Started with Cosmo 3D

5. Add the csTransform node as a child of a csGroup-type node.

For more information about adding nodes to scene graphs, see Chapter 6, “Placing
Shapes in a Scene.”

6. Create a window, csWindow, in which to view the application and interact with it.

7. Set the current graphical context, csContext.

8. Draw all of the shapes in world space by applying a csDrawAction to the root of the
scene graph.

The root node is the csGroup-type node at the “top” of the scene graph. For more
information about draw actions, see Chapter 7, “Traversing the Scene Graph.”

15

Chapter 2

2. Creating Geometries

csGeometry is an abstract class. All derivations of the class represent one or more
geometric objects, either concrete (such as a sphere or cube) or abstract (such as geoSet).
The appearance of a shape—whether a sphere is dotted or striped— is characterized by
a csAppearance object, csContext object, or both. Combining a geometry with an
appearance completely describes the graphic content of a rendered object.

A csGeoSet is a collection of primitives, such as points, lines, triangles, and triangle
strips, that, when arranged, create a geometry. For example, a collection of points can
represent a star field and a collection of triangles can be arranged to form a sphere or a
landscape.

After a brief terminology overview, the first part of this chapter discusses the ready-made
geometries available in Cosmo 3D, such as csSphere and csCube. The remainder of the
chapter discusses how to create your own csGeoSet-derived classes and how to use the
csGeoSet-derived classes provided by Cosmo 3D.

These are the sections in this chapter:

• “Geometry Terminology” on page 16

• “Using Large Geometries” on page 16.

• “csGeoSet Attributes” on page 20.

• “Setting Attributes” on page 22.

• “Cosmo 3D-Derived csGeoSet Objects” on page 30.

16

Chapter 2: Creating Geometries

Geometry Terminology

Table 2-1 briefly summarizes the geometry terminology used in this manual.
Understanding the key terms will help you understand the discussions of the different
elements.

Using Large Geometries

Cosmo 3D provides five ready-made geometries:

• csSphere

• csCube

• csBox

• csCone

• csCylinder

Table 2-1 Geometry Terminology

Term Description Encapsulated in

Geometry An object of any form; the surface of
which is uniform and non-descript.

csGeometry objects or objects derived
from this class.

Appearance Contains all the parameters that specify
the look of a geometry.

csAppearance object.

Shape Combination of a geometry and an
appearance.

csShape object.

Context Maintains and manages the graphics
state.

csContext object.

Creating csGeoSet Objects

17

Each class has methods that allow you to set and retrieve the values necessary to define
the geometry, including (where appropriate)

• coordinates of the center

• length of the radius

• height

• width

The names of the methods that set and retrieve these values are intuitively obvious, for
example, to set and retrieve the coordinates of the center of a geometry, you use methods
similar to the following:

void setCenter(const csVec3f& center);
void getCenter(csVec3f& center);

Creating csGeoSet Objects

csGeoSet is a virtual class from which all geometric primitives are derived. Each
csGeoSet-derived class contains a collection of primitives, such as points, quads, or
triangle strips. All of the primitives in a collection are of the same type. You can construct
a geometric object by specifying the coordinates of several of these primitives and
combine them in a collection. For example, you can arrange triangles to form a sphere or
a landscape. The vertices, normals, colors, and texture coordinates of each primitive are
captured as attributes of each primitive.

Figure 2-1 illustrates how:

• Each csGeoSet-derived object contains an array of primitive shapes.

• Each primitive is made of an array of four attributes.

• Each of the four attributes refers to an array of attribute values, as shown in
Figure 2-1.

Note: The order of the attributes can be changed depending on the needs of the
application.

18

Chapter 2: Creating Geometries

Figure 2-1 Primitives in a csGeoSet

These attributes are captured in csGeoSet fields.

StripLengths
PrimCoords
ColorBind
MormalBind
TexCoordBind

CoordSet
ColorSet
NormalSet
TexCoordSet

CoordIndexSet
ColorIndexSet
NormalIndexSet
TextCoordIndexSet

< x, y, z >
.
.
.

< r, g, b >
.
.
.

< nx, ny, nz >
.
.
.

< x, y, z >
.
.
.

le1
le2
le3
.
.
.

csGeoSet

Creating csGeoSet Objects

19

csGeoSet Fields

The fields in a csGeoSet object can be grouped in the following manner:

The remainder of this section describes csGeoSet general settings. The other parts of this
chapter describe the attribute fields.

For more information about cull facing, see “Face Culling” on page 152.

Setting the Number of Primitives

The following csGeoSet methods affect all of the primitives in a csGeoSet object:

void setPrimCount(csInt primCount);
csInt getPrimCount();

To specify or retrieve the number of primitives in a csGeoSet, use the setPrimCount()
and getPrimCount() methods. Appendix B, “Cosmo 3D Sample Application” shows
how to retrieve the number of primitives in a csGeoSet.

Table 2-2 Fields in a csGeoSet

Field Default

General settings short cullFace
int primCount

BACK
0

Attribute specifications Color colors
Normal normals
TexCoord texCoords
Coord coords

NULL
NULL
NULL
NULL

Attribute index specifications Index colorIndices
Index normalIndices
Index texCoordIndices
Index coordIndices

NULL
NULL
NULL
NULL

Attribute binding specifications char colorBind
char normalBind
char texCoordBind

OFF
OFF
OFF

20

Chapter 2: Creating Geometries

csGeoSet Attributes

csGeoSet is a virtual class from which all geometric primitives are derived. Cosmo
3D-supplied csGeoSet-derived classes include, for example:

• csPointSet—A collection of equally-sized points.

• csLineStripSet—A collection of linestrips, also known as polylines, of equal width.

• csTriStripSet—A collection of triangle strips.

• csPolySet—A collection of convex, coplanar polygons.

All of the primitives within a given set are equal in size. These primitives are defined by
an array of four attributes:

• color—(red, green, blue, alpha)

• normal—(Nx, Ny, Nz)

• texture coordinates—(S, T)

• coordinates—(X, Y, Z)

Each attribute consists of an array of two to four values; a primitive is defined by these
twelve values.

Note: Although texture coordinates can be specified using four values (S, T, R, Q), the R
value has no current meaning in Cosmo 3D because it does not support textures greater
than two dimensions, and the Q value is always one.

Attribute Bindings

Not all attributes can be applied with the same level of specificity. The levels of specificity
include

• The entire collection of primitives in a csGeoSet object.

• Individual primitives in a csGeoSet object.

• Individual vertices of individual primitives in a csGeoSet object.

csGeoSet Attributes

21

For example, a single color can be specified for the entire collection of primitives, for
individual primitives, or per vertex. One set of coordinates, on the other hand, cannot be
specified for the entire collection of primitives, cannot be specified for individual
primitives, but must be specified per vertex. It does not make sense for all of the
primitives in a collection to have the same coordinates, nor does it make sense for all
vertices in each primitive to have the same coordinates. Each vertex must have its own
coordinates.

Each level of specificity is called a different binding, for example, an attribute that is
specified for an entire collection of primitives is said to have an OVERALL binding. A
binding tells you how many primitives in a csGeoSet object an attribute applies to.
Table 2-3 shows the different possible bindings.

All attributes in a csGeoSet collection must share the same set of attribute bindings, for
example, you cannot specify colors-per-vertex for some primitives and
colors-per-primitive for others in the same csGeoSet object, the color binding must be the
same. You can, however, have, for example, color-per-vertex and overall normal
bindings in the same csGeoSet.

Setting Attribute Bindings

Three set...() methods in csGeoSet specify the attribute bindings for a csGeoSet object:

void setNormalBind(NormalBindEnum normalBind);
void setColorBind(ColorBindEnum colorBind);
void setTexCoordBind(TexCoordBindEnum texCoordBind);

There is a corresponding set of get...() methods that retrieve the attribute bindings for the
normals, colors, and texture coordinates, respectively.

Table 2-3 Attribute Bindings

OFF OVERALL PER_PRIMITIVE PER_VERTEX

colors yes yes yes yes

normals yes yes yes yes

texture coordinates yes no no yes

coordinates no no no yes

22

Chapter 2: Creating Geometries

The enumerated binding values that are valid for each of the attributes coincide with the
entries in Table 2-3.

enum NormalBindEnum
{
NO_NORMS,
OVERALL_NORMS,
PER_PRIM_NORMS,
PER_VERTEX_NORMS,
};

enum ColorBindEnum
{
NO_COLORS,
OVERALL_COLORS,
PER_PRIM_COLORS,
PER_VERTEX_COLORS,

 };
enum TexCoordBindEnum

{
NO_TEX_COORDS,
PER_VERTEX_TEX_COORDS
}

To set the color of all the primitives in a csGeoSet object to the same value, for example,
use the OVERALL_COLORS binding in code similar to the following:

csTriangleStripSet* myTriangleStrip = new csTriangleStripSet();
myTriangleStrip->setColorBind(csGeoSet::OVERALL_COLORS);

Setting Attributes

Now that you know how to set attribute bindings, you need to know how to set the
attributes themselves.

As shown in Figure 2-1, csGeoSet objects store their primitives in an array. The array
contains:

• Three attribute values in the Normal array.

• Three (or four) attribute values in the Color array.

• Two attribute values in the Texture Coordinate array.

• Three attribute values in the Coordinate array.

Setting Attributes

23

This pattern continues, as shown in Figure 2-2.

Figure 2-2 Sequential Specification of Attributes Per Primitive

Indexing Attributes

Another option is to index the attribute values so that primitives can access any attribute
value and more than one primitive can use the same attribute value, as shown in
Figure 2-3.

Array of
csGeoSet primitives

 primitives
 primitives
 primitives
 primitives
 primitives
 .
 .
 .

Array of
color values

 color value1
 color value2
 color value3
 color value4

 color value5
 color value6
 color value7
 color value8
 .
 .
 .

Array of
normal values

 normal value1
 normal value2
 normal value3

 normal value4
 normal value5
 normal value6
 .
 .
 .

Array of
attributes

attribute 1 color
attribute 1 normal
attribute 1 coord
attribute 1 tex coord

attribute 2 color
attribute 2 normal
attribute 2 coord
attribute 2 tex coord
 .
 .
 .

24

Chapter 2: Creating Geometries

Figure 2-3 Indexed Attributes

When to Index Attributes

For all primitives in a csGeoSet, you have to decide whether to use indexed or sequential
attributes; that is, all of the primitives within one csGeoSet must be referenced either
sequentially or by index. You cannot mix the two reference methods.

The governing principle for indexing attributes or not is how many vertices in a
geometry are shared. Consider the following two examples in Figure 2-4, where each dot
marks a vertex.

StripLengths
PrimCoords
ColorBind
MormalBind
TexCoordBind

CoordSet
ColorSet
NormalSet
TexCoordSet

CoordIndexSet
ColorIndexSet
NormalIndexSet
TextCoordIndexSet

< x, y, z >
.
.
.

< r, g, b >
.
.
.

< nx, ny, nz >
.
.
.

< x, y, z >
.
.
.

le1
le2
le3
.
.
.

i1
i2
i3
.
.
.

i1
i2
i3
.
.
.

i1
i2
i3
.
.
.

i1
i2
i3
.
.
.

csGeoSet

Setting Attributes

25

Figure 2-4 Deciding Whether to Index Attributes

In the triangle strip, each vertex is shared by two adjoining triangles. In the square, the
same vertex is shared by eight triangles. Consider the task that is required to move these
vertices when, for example, morphing the object. If the vertices were not indexed, in the
square, the application would have to look up and alter eight triangles to change one
vertex.

In the case of the square, it is much more efficient to index the attributes. On the other
hand, if the attributes in the triangle strip were indexed, since each vertex is shared by
only two triangles, the index look-up time would exceed the time it would take to simply
update the vertices sequentially. In the case of the triangle strip, rendering is improved
by handling the attributes sequentially.

The deciding factor governing whether or not to index attributes relates to the number
of primitives that share the same attribute: if attributes are shared by many primitives,
the attributes should be indexed; if attributes are not shared by many primitives, the
attributes should be handled sequentially.

“Indexing Attributes” on page 28 describes the methods you use to index attributes.

0 2 4

1 3 5

26

Chapter 2: Creating Geometries

Specifying Attributes

Whether you index your attributes or not, you must use the following set...() methods in
csGeoSet to specify the attributes in a specific csGeoSet object:

void setCoordsSet(csCoordSet* coords);
void setNormalsSet(csNormalSet* normals);
void setColorsSet(csColorSet* colors);
void setTexCoordsSet(csTexCoordSet* texCoords);

There is a corresponding set of get...() methods that retrieve the index settings for the
coordinates, normals, colors, and texture coordinates, respectively.

The set...() methods have the following arguments:

• coords is a three-dimensional array of coordinates representing the coordinates of
every vertex in every primitive in a csGeoSet object.

• normals is a three-dimensional array of normals for potentially every vertex in every
primitive in a csGeoSet object, depending on the binding.

• colors is a four-dimensional array of colors for potentially every vertex in every
primitive in a csGeoSet object, depending on the binding.

• texCoords is a two-dimensional array of coordinates representing the texture
coordinates of every vertex in every primitive in a csGeoSet object.

Using More Specific Attribute Arrays

Each of the four attributes has its own array. You must use one of the more
specifically-defined virtual array classes, as follows:

csCoordSet3f();
csNormalSet3f();
csColorSet3f();
csColorSet4f();
csTexCoordSet2f();

Each of these null constructors is overridden by a set of two constructors that are similar
in form to the following:

csCoordSet3f(int n);
csCoordSet3f(csData *array, short offset, short stride);

Setting Attributes

27

The first constructor allows you to specify the number of array primitives, n.

The second constructor allows you to reference an array, *array, of attribute values,
specify the offset, offset, if any, and the stride, stride.

The stride mechanism that lets an application choose to keep all data staggered in a
single array (or use two arrays). For example, you could combine color, vertex, and
coordinate data and access each type as needed using the stride number. Stride specifies
the byte offset between pointers to consecutive vertexes, in effect, stride is a relative
offset, as shown in Figure 2-5.

Figure 2-5 Stride and Offset Values

Set and Get Methods

Each of the virtual attribute-array classes, both the general and specific, have set and get
methods to set and return the values of the array. All set and get methods use the
following form:

void setCoordsSet(csCoordSet* coords);
csCoordSet* getCoordsSet();

data
offset 0
stride 12 X Y Z

R G B

Nx Ny Nz

Tx Ty

X Y Z

R G B

Nx Ny Nz

Tx Ty

CoordSet
(csData, offset, stride)

csData

data
offset 6
stride 12

NormalSet
(csData, offset, stride)

28

Chapter 2: Creating Geometries

Indexing Attributes

An indexed csGeoSet object uses a list of unsigned short integers to index an attribute
array. Four set...() methods in csGeoSet specify these indices:

void setCoordIndices(csIndexSet* coordIndices);
void setNormalIndices(csIndexSet* normalIndices);
void setColorIndices(csIndexSet* colorIndices);
void setTexCoordIndices(csIndexSet* texCoordIndices);

There is a corresponding set of get...() methods that retrieve the index settings for the
coordinates, normals, colors, and texture coordinates, respectively.

coordIndices is an array of coordinate indices. Each index points to a member in the
coordinate attribute array, as shown in Figure 2-3.

normalIndices is an array of normal indices. colorIndices is an array of color indices.
texCoordIndices is an array of texture coordinate indices.

Setting Attributes Example

Example 2-1 shows how to set attributes and their bindings.

Example 2-1 Setting Attributes

// Create a csGeoSet object
csTriStripSet *gset = new csTriStripSet;

// Allocate the attribute arrays
csCoordSet3f *vset = new csCoordSet3f(NumRings*RingVerts);
csNormalSet3f *nset = new csNormalSet3f(NumRings*RingVerts);
csIndexSet *iset = new csIndexSet((NumRings-1) *

2 * (RingVerts + 1));
csColorSet4f *cset = new csColorSet4f(NumRings-1);
csIndexSet *lengths = new csIndexSet(NumRings-1);

// Set the attributes
gset->setCoords(vset);
gset->setNormals(nset);
gset->setColors(cset);
// Set the attribute indices
gset->setCoordIndices(iset);
gset->setNormalIndices(iset);
gset->setPrimCount(NumRings-1);

Setting Attributes

29

// Set the attribute bindings
gset->setNormalBind(csGeoSet::PER_VERTEX_NORMS);
gset->setColorBind(csGeoSet::PER_PRIM_COLORS);

// Prepare to fill the Attribute and Indices arrays
csVec3f *coords = vset->coords()->edit();
csVec3f *norms = nset->normals()->edit();
int *indices = iset->indices()->edit();

Editing Attribute Arrays

Cosmo 3D allows you to modify the values in arrays using the csNormalSet3f::edit() and
csNormalSet3f::editDone() methods. Although you can modify the values, you cannot
change the number of values in the array.

edit() returns a pointer to the attribute array. editDone() notifies any engines or sensors
connected to this field that the array has changed.

It is illegal to call any other editing methods between edit() and editDone().

Example 2-2 shows an example of editing attribute arrays.

Example 2-2 Editing Attribute Arrays

// cube normals
 csNormalSet3f *nset = new csNormalSet3f(numCubeNorms);
 nset->vector()->edit();
#if 0
 for (i=0; i<numCubeNorms; i++)
 nset->vector()->set(i,
 csVec3f(cubeNorms[i][0], cubeNorms[i][1], cubeNorms[i][2]));
#else
 nset->vector()->setRange(0, numCubeNorms, (csVec3f *)cubeNorms);
#endif
 nset->vector()->editDone();

 gset->setNormalSet(nset);

30

Chapter 2: Creating Geometries

Cosmo 3D-Derived csGeoSet Objects

 Cosmo 3D provides the following csGeoSet collections. Each is a derivative of
csGeoSet.

• csPointSet—A collection of equally-sized points.

• csLineSet—A collection of lines of equal length.

• csIndexedLineSet—A set of indexed line strips.

• csLineStripSet—A collection of linestrips, also known as polylines.

• csTriSet—A collection of triangles.

• csTriFanStrip—A collection of triangles that share a common vertex.

• csTriStripSet—A collection of triangle strips.

• csPolySet—A collection of convex, coplanar polygons.

• csQuadSet—A collection of quadrilaterals.

• csIndexedFaceSet—A polygon with faces that are indexed.

The following sections describe each of these primitive collections.

All of the classes contain virtual draw() and calcBound() methods. The draw() method
specifies how a csGeoSet object is drawn. The calcBound() method specifies how the
bounding box is computed. Other fields are specific to their geometries.

Using csPointSet

A csPointSet object contains a collection of equally-sized points. Point size is the
diameter of each point in pixels.

csPointSet contains the following fields:

void setSize(csFloat size);
csFloat getSize();

The setSize() and getSize() methods allow you to specify and find out, respectively, the
diameter, in pixels, of all the points in a csPointSet object.

Cosmo 3D-Derived csGeoSet Objects

31

Using csLineSet

A csLineSet object contains a collection of lines of equal length. The fields allow you to
set and return the width of the lines used for drawing.

void setWidth(csFloat width);
csFloat getWidth();

Using csIndexedLineSet

A csIndexedLineSet object contains an indexed collection of lines of equal length. The
fields allow you to set and return the colors of the lines in the collection.

csMFInt* coordIndex() const;
csMFInt* colorIndex() const;
void setColorPerVertex(csBool colorPerVertex);
csBool getColorPerVertex();

Using csLineStripSet

A csLineStripSet object contains a collection of linestrips, otherwise known as polylines,
of equal width. Line width is specified in pixels.

csLineStripSet contains the following fields:

csMFInt* stripLength () const

void setWidth(csFloat width);
csFloat getWidth();

TheStripLength() method allows you to specify and find out, respectively, how many
line segments are in a csLineStripSet object.

The setWidth() and getWidth() methods allow you to specify and find out, respectively,
the width, in pixels, of each linestrip in a csLineStripSet object.

Using csTriSet

A csTriSet object contains a collection of triangles. This class serves as a class from which
csTriFanSet and csTriStripSet are derived.

32

Chapter 2: Creating Geometries

Using csTriFanSet

A csTriFanSet is a set of triangles all of which share one common vertex, as shown in
Figure 2-6.

Figure 2-6 TriFanSet

You use the following method to retrieve or set the number of triangles in the
csTriFanSet.

csMFInt* fanLength() const;

Using csTriStripSet

A csTriStripSet object contains a collection of triangle strips. A triangle strip is a series of
adjacent triangles that form a strip, as shown in Figure 2-7.

Figure 2-7 Triangle Strip

1

2 3

4

5

0

1 3 5 7 9

0 2 4 6 8

Cosmo 3D-Derived csGeoSet Objects

33

csTriStripSet contains the following field:

csMFInt* stripLength() const;

This field allows you to specify and find out how long each triangle strip is in a
csTriStripSet object. The length is expressed in the number of vertices per strip, for
example, three tristrips with individual lengths of 4, 6, and 8, would be represented by
an array of three integers:

csMFInt* length = [4, 6, 8];

Using csPolySet

A csPolySet object contains a collection of polygons. Polygons may have different
numbers of sides but must be convex and coplanar.

csPolySet contains the following methods:

csMFInt* polyLength () const;

This field allows you to specify and find out how many sides there are per polygon in a
csPolySet object.

Using csQuadSet

A csQuadSet object contains a collection of quadrilaterals.

Using csIndexedFaceSet

A csIndexedFaceSet object contains a collection of polyhedrons of equal size. The
member functions allow you to set and return the size of the polyhedrons in the
collection.

csMFInt* coordIndex() const;
csMFInt* colorIndex() const;
csMFInt* normalIndex() const;
csMFInt* texCoordIndex() const;

void setCCW(csBool ccw);
void setSolid(csBool solid);
void setConvex(csBool convex);

34

Chapter 2: Creating Geometries

void setCreaseAngle(csFloat creaseAngle);
void setColorPerVertex(csBool colorPerVertex);
void setNormalPerVertex(csBool normalPerVertex);

There is a corresponding get...() method for every set...() statement.

The first four fields contain arrays for storing the color.

setCCW() is true if the vertices of these faces wind counter-clockwise when viewed from
the front.

setSolid() is true if this set of faces forms a closed volume (“solid”); in that case, faces on
the side of the solid facing away from the viewpoint don’t need to be drawn.

setConvex() is true if the faces in this set are convex. (Currently ignored.)

setCreaseAngle() sets the crease angle. If the angle between two faces is more than the
crease angle, the faces are assumed to be part of a single surface and are smooth shaded.
(Currently ignored.)

coordIndex() sets a VRML 2.0-style vertex coordinate index set.

colorIndex() sets a VRML 2.0-style color index set.

texCoordIndex() sets a VRML 2.0-style texture coordinate index set.

normalIndex() sets a VRML 2.0-style normal index set.

setColorPerVertex() is true if colors are assigned per vertex, otherwise per face.

setNormalPerVertex() is true if normals are assigned per vertex, otherwise per face.

35

Chapter 3

3. Specifying the Appearance of Geometries

The geometry and appearance of a shape are independent of one another. The
appearance of a shape is the two-dimensional texture, such as the rind of an orange, that
is mapped onto a geometry.

This chapter describes how to specify the appearance of a geometry in the following
sections::

• “csContext Overview” on page 35.

• “Changing the Context” on page 39.

• “Using csAppearance” on page 40.

• “Applying Textures to Geometries” on page 42.

• “Material Settings” on page 51.

• “Shade Model Settings” on page 53.

• “Transparency Settings” on page 53.

• “Making the Screen One Color” on page 39.

csContext Overview

A csContext object maintains the OpenGL graphics state for a scene graph and therefore
contains all the default appearance values necessary to render a shape.

Appearance values, such as material and texture, can be specified per shape using
csAppearance. If csAppearance fields are not set, the shape inherits the default
appearance values set in csContext. For optimal performance, set as few csAppearance
object fields as possible by setting the global defaults in csContext to values that satisfy
the majority of geometries in a scene graph. This practice minimizes state changes while
rendering.

36

Chapter 3: Specifying the Appearance of Geometries

There is an inheritance mask in each csAppearance that specifies which appearance
values are inherited by csAppearance from csContext. csAppearance values
automatically override csContext default values on a per-shape basis, regardless of the
bit values in the inheritance mask.

State Machine

csContext maintains and manages OpenGL graphics state for the purpose of efficient
graphics pipeline state control. OpenGL is a state machine: you put it into various states
(or modes) that then remain in effect until you change them. For example, the current
color is a state variable. The Cosmo 3D context maintains two notions of state:

• Default state—is the global graphics state defined on a per-context basis and
maintained separately from the current state.

• Current state—represents the accumulation of the default state and the state set
when csAppearance nodes are encountered during a traversal.

State that is not explicitly set in a csAppearance via the appropriate csAppearance set()
methods is inherited from the default state. An inheritance mask, however, specifies
which csContext fields a shape inherits by default.

The effect of a set() method is immediate, as if you made the OpenGL calls directly. The
set() methods affect the current state but have no effect on the default state.

Inheritance Mask

Inheritance masks specify which csContext fields are inherited by csAppearance. Each
bit in the bitmask corresponds to a specific csAppearance field. All fields are inherited by
default.

Figure 3-1 demonstrates how the inheritance mask works as a result of the code in
Example 3-1.

Example 3-1 Inheritance Mask

csContext *ctx = new cscontext;

ctx->setCullFace(BACK);
ctx->setLightEnable(TRUE);
.

csContext Overview

37

.

.
csAppearance *app = new csAppearance;
app->setMaterial(mtl);
shape->setAppearance(app);

Figure 3-1 Inheritance Mask

All 0 bits indicate that the default value is used.

When you set a csAppearance value, its corresponding bit in the inheritance mask is set.

Accessing States

Applications can access the current state using the various get() methods. The primary
use of the get() method is to ask the system about its current state. Cosmo 3D makes this
state available so that a user callback can know the current state of the system and make
OpenGL calls appropriately.

csContext elements

csAppearance fields

csContext elements
(Current state)

(Default state)0 00 0 0 0 0

0 0 0 00000

0 0 0 111

1

1

00

1

0

Li
gh

t e
na

bl
e

M
at

er
ia

l

C
ul

lF
ac

e

38

Chapter 3: Specifying the Appearance of Geometries

Warning: It is critical that such a callback not alter the OpenGL state.

You can avoid altering the OpenGL state either by using csContext::set() calls or by
saving and restoring OpenGL state explicitly upon entry and exit of the callback.

What Modifies the Graphics State?

As a csDrawAction traverses the scene graph, the current state is modified when:

• Appearances a their draw methods are invoked.

• Calls users make to various set() methods in csContext invoke pre- and post-node
callbacks.

Traversal Order

The actual appearance of a csGeometry being drawn is independent of traversal order.
Only that csShape’s appearance and the default state affect the actual appearance. At no
time does Cosmo 3D depend on the traversal order of the draw action. No guarantees are
made about traversal order because the traversal order of the draw is subject to change.
Because applications cannot depend on draw traversal order to imply the state of the
context, methods to query the context for its current state are available.

csContext in Multi-threaded Programs

csContext can be used in a multi-threaded program. When makeCurrent() is called
within a given thread, that context is attached to the thread. Binding a thread to a context
allows multi-pipe or multi-window rendering in parallel using a single, shared copy of
the scene graph.

For more information about multi-threaded implementation, see Chapter 13,
“Multiprocessing.”

Changing the Context

39

Overriding Appearances and Geometry Properties with csContext

In general, csAppearance settings override csContext default values. You can, however,
override csAppearance settings using csContext::pushOverrideAppearance(). Only one
override appearance per context can be in place at a time.

You can override some properties that are not in csAppearance and are
geometry-specific through the use of pushOverrideGeoProp(). Currently, csCullFace,
csLineWidth, and csPointSize are the only geometry-specific properties that can be
overridden.

Making the Screen One Color

To change the screen to a specified color, use one of the following csContext methods:

static void clear(int which);
static void clear(int which, float r, float g, float b, float a);

where which is a bitmask specifying whether to clear the color planes, depth planes, or
both.

The first clear() method clears the screen to black. The second version allows you to set
a uniform color and transparency.

Changing the Context

You can create multiple csContext objects but only one can be active at a time. In this way,
in addition to changing field values in a context object, you can change the entire context
all at once using makeCurrent(). This method replaces the current context with the
csContext object specified in the argument, for example:

csContext* context1 = new csContext;
csContext* context2 = new csContext;

context1->makeCurrent(display, window);
context2->makeCurrent(display, window);

40

Chapter 3: Specifying the Appearance of Geometries

In this example, the second context replaces the first.

• display is a pointer to the X window display.

• window is the GLXDrawable in which the scene is displayed.

getCurrent() returns the context object on top of the context stack.

csWindow has a context and calls makeCurrent() automatically.

Using csAppearance

csAppearance fields define the appearance of a csGeometry object, for example, its
texture, material, or color. All of the fields in csAppearance are replicated in csContext.

Inheriting Appearance Values

To specify the appearance of a csGeometry, you can either

• Set all of the appearance fields in a csAppearance object.

• Use the inherited, global, default values from the current context, csContext.

• Use a combination of the first two options.

If you set all of the fields of an appearance object, the appearance object becomes the full
graphic context of the csShape. The more appearance fields you set, however, the slower
the application’s performance because you are triggering lots of state changes.

For maximum performance, set the appearance values in csContext to satisfy the
maximum number of shapes so that the fewest number of csAppearance fields are set on
a per-shape basis.

Setting Appearance Fields Locally

The only fields that you should set locally are those that change often, such as the field
values for material and texture. Changing a field value locally overrides any value
inherited from csContext.

Using csAppearance

41

The csAppearance class includes a series of set...() methods to define the appearance
characteristics of a geometry. A series of corresponding get...() methods provide access
to those values. The following set...() methods are described in greater detail in the rest
of this chapter:

void setTexture(csTexture* texture);
void setTexEnable(csBool texEnable);
void setTexMode(csContext::TexModeEnum texMode);
void setTexBlendColor(const csVec4f& texBlendColor);
void setTexBlendColor(csFloat v0, csFloat v1, csFloat v2, csFloat v3);
void setTexEnv(csContext::TexEnvEnum texEnv);
void setTexGen(csTexGen* texGen);
void setTexGenEnable(csBool texGenEnable);

void setMaterial(csMaterial* material);
void setLightEnable(csBool lightEnable);
void setShadeModel(csContext::ShadeModelEnum shadeModel);
void setTranspEnable(csBool transpEnable);
void setTranspMode(csContext::TranspModeEnum transpMode);
void setAlphaFunc(csContext::AlphaFuncEnum alphaFunc);
void setAlphaRef(csFloat alphaRef);
void setBlendColor(const csVec4f& blendColor);
void setBlendColor(csFloat v0, csFloat v1, csFloat v2, csFloat v3);
void setSrcBlendFunc(csContext::SrcBlendFuncEnum srcBlendFunc);
void setDstBlendFunc(csContext::DstBlendFuncEnum dstBlendFunc);
void setColorMask(const csVec4ub &colorMask);
void setColorMask(csUByte v0, csUByte v1, csUByte v2, csUByte v3);
void setDepthFunc(csContext::DepthFuncEnum depthFunc);
void setDepthMask(csUInt depthMask);
void setFogEnable(csBool fogEnable);
void setPolyMode(csContext::PolyModeEnum polyMode);

These method are separated into two groups:

• Methods containing the string “tex” modify textures.

• The remaining methods modify the appearance of geometries.

Lazy Updating of Appearance Values

csAppearance values are updated in a lazy way: a value is changed only when it is used.
For example, if a ball is currently displayed and you change its color using setColor(),
the ball would change color immediately on the screen. If, however, the ball is out of view
of the camera, the color of the ball would not be updated until it is seen by the camera.

42

Chapter 3: Specifying the Appearance of Geometries

Applying Textures to Geometries

One way to affect the appearance of a geometry is to apply a texture to it. A texture is a
rectangular 2D image, for example, a 2D map of the world. This rectangular texture is
scaled or repeated to fit on the surface of a 3D object, such as a sphere. The clamping and
repetition of a texture over a surface is programmatically controllable.

To create the image of an orange, for example, you first create the orange, pitted texture
of orange rind and then apply it to a sphere. The difference between using and not using
a texture, in this example, is the difference between rendering a generic sphere and a
realistic-looking orange.

Figure 3-2 Applying a Texture to a Geometry

Texture Map Coordinates

A texture map is always defined by the coordinates s, for the horizontal component, and
t, for the vertical component, each of which range in values from 0.0 to 1.0, as shown in
Figure 3-3.

Applying Textures to Geometries

43

Figure 3-3 Texture Coordinates

Texture coordinates are assigned to each vertex of a geometry either by you or by Cosmo
3D.

Applying a Texture

To apply a texture to a geometry, set the argument of the csAppearance::setTexEnable()
method to ON. If you do not want to apply a texture to a geometry, set the argument of
setTexEnable() to OFF.

Texture rendering uses the texture values specified in csContext by default. To set the
texture values locally, however, use the following methods in csAppearance:

setTexture() to specify the image used as the texture.

setTexMode() to specify the speed and quality of the rendered texture.

setTexBlendColor()
to specify the color to use in “blend” mode.

setTexEnv() to specify how texture colors are blended with the colors of a geometry.

setTexGen(), setTexGenEnable()
to generate, if enabled, texture coordinates automatically instead of
using the csGeoSet’s TexCoordSet.

The following sections describe these methods.

1.0

0.0 1.0

t

s

44

Chapter 3: Specifying the Appearance of Geometries

Specifying a Texture Image

To apply a texture to a geometry, supply a csTexture object in the argument of
setTexture(). csTexture is a class consisting of the following fields and default values:

csSFString filename “noName”
csMFRef imageLevel[]
csSFEnum format 0
csSFEnum repeat_S REPEAT
csSFEnum repeat_T REPEAT
csSFEnum minFilter FAST
csSFEnum magFilter FAST
csSFEnum source 0

imageLevel is an array of MIPmap levels for this texture of type csImages. If this field is
not set or has all NULL values, the texture is loaded from csSFString fileName instead.

format is the pixel format of the image. For more information about pixel format, see
“Color Components” on page 47.

repeat_S and repeat_T specify whether or not the texture is repeated in the s and t
directions on the geometry, respectively. If the texture is not repeated, it is clamped.

minFilter specifies what to do with texels that project smaller than a screen pixel.
Possible values include NEAREST_MIN, LINEAR_MIN, or MIPMAP.

magFilter specifies what to do with texels that project larger than a screen pixel. Possible
values include NEAREST_MAX or LINEAR_MAX.

Texture Mode Settings

The texture mode method allows you to specify texture rendering speed, quality, and
perspective where speed and quality, and speed and perspective are trade-offs.

You specify the mode of the texture rendering using setTexMode() with one of the
following arguments from csContext::TexModeEnum:

FAST_TEX for a low quality, more quickly-rendered texture.

NICE_TEX for a high quality, more slowly-rendered texture.

NON_PERSP_TEX
for a non-perspectively-correct, more quickly-rendered texture.

PERSP_TEX for a more slowly-rendered texture in perspective.

Applying Textures to Geometries

45

When you choose the NON_PERSP_TEX mode, Cosmo 3D applies the texture to a
geometry without proper perspective. For example, if you apply a texture to a plane
extending into the Z dimension, the pattern should not distort but just appear to recede
into the distance. In NON_PERSP_TEX mode, however, the pattern is distorted, as
shown in Figure 3-4.

Figure 3-4 Non-Perspective and Perspective Modes

If you enable texture rendering but do not set the texture mode in a csContext or
csAppearance object, the texture rendering mode is defined by the csTexture object in the
argument of csAppearance::setTexture() or csContext::setTexture(). A csTexture object
can specify one of the values in TexModeEnum.

Non Perspective Perspective

46

Chapter 3: Specifying the Appearance of Geometries

Texture Environment Settings

Texture environment variables specify how texture colors are blended with the colors of
a geometry; the texture color can replace, blend with, or subtract from the colors already
on the geometry.

To specify how texture colors are blended with the colors of a geometry, use the
setTexEnv() method with one of the following csContext::TexEnvEnum values as an
argument:

MODULATE_TENV
multiplies the shaded color of the geometry by the texture color. If the
texture has an alpha component, the alpha value modulates the
geometry’s transparency, for example, if a black and white texture, such
as text, is applied to a green polygon, the polygon remains green and the
writing appears as dark green lettering. MODULATE is the default
value.

BLEND_TENV
uses the texture color to blend together the blend color and the
underlying geometry’s color. In the above example, the lettering would
be a mixture of green, white, and black.

REPLACE_TENV
replaces the underlying geometry’s color with the texture color. If the
texture has an alpha component, the alpha value specifies the texture’s
transparency, allowing the geometry’s color to show through the
texture. In the above example, the lettering would be white and black.

ADD_TENV adds the underlying geometry’s color with the texture color.

DECAL_TENV replaces the underlying geometry’s color with the color of the texture.
When this token is used with RGBA values, the alpha value determines
the blending between the shape’s and texture’s color: when the alpha
value is 1.0, the color is only the texture’s; when the value is 0.0, the color
is only that of the shape’s.

Tip: If you use MODULATE, consider surrounding your texture images with a one-pixel
border of white pixels and set csTexture::setRepeatS() and csTexture::setRepeatT() to
CLAMP so the geometry’s color is used where the texture runs out.

Applying Textures to Geometries

47

Color Components

A texture image can have up to four components per texture element:

• A one-component image consists of a luminance value, Lt. One-component textures
are often referred to as intensity maps. For example, an image of a statue could use
polygons of different intensities to shade and provide detail.

• A two-component image consists of luminance, Lt, and transparency, At. For example,
you could create an architect’s diagram of a house using polygons of different
intensities to give detail to the building materials and then vary the transparency of
the polygons to see through the building materials.

• A three-component image consists of a set of RGB values, referred to as a color triplet,
Ct. For example, any color image is at least a three-component image.

• A four-component image consists of an RGB (or Ct) set of values, and transparency, At.
The “t” subscript denotes the transparency or the color of the texture. For example,
you could create an architect’s diagram of a house using a variety of colors and
transparencies.

The color components work with the texture environments in the following way:

• MODULATE works with any texture file.

• BLEND works with one- to four-component textures.

• REPLACE works with three- or four-component textures.

• ADD works with three- or four-component textures.

• DECAL works with three- or four-component textures.

Tip: MODULATE works best with bright materials because the texture intensity is
reduced by the factor of the geometry’s intensity.

48

Chapter 3: Specifying the Appearance of Geometries

Specifying Texture Coordinates

There are two ways to specify how a texture is applied to a geometry:

• Use the default. Cosmo 3D applies textures to geometries according to the
geometry.

• Use the texture coordinate function, setTexGen().

Using the Default

Cosmo 3D applies textures to geometries according to the geometry. For all geometries
subclassed from csGeometry, Cosmo 3D

• Computes the bounding box.

• Turns the texture so its longest side is in the horizontal (s) direction.

The horizontal (s) value ranges from 0.0 to 1.0 and the vertical component ranges from
0.0 to n, where n equals the ratio of the t dimension to the s dimension; this ratio
maintains the texture without distorting it.

Using the Texture Coordinate Function

The setTexGen() method generates texture coordinates by, in effect, projecting a texture
plane onto a geometry, as shown in Figure 3-5.

Figure 3-5 Texture Coordinate Function

Applying Textures to Geometries

49

The setTexGen() method specifies

• Whether or not the texture plane is repeated across the geometry.

• Whether the texture plane is stationary or moves in concert with the motion of the
geometry.

The setTexGen() method takes a csTexGen object for an argument. In a csTexGen object,
you set the

• Repetition of the texture image in three dimensions, s, t, and r.

• Mode of the texture in each of the dimensions.

For example, csTexGen::setPlaneS(2.5, 0, 0, 0) repeats the texture two-and-a-half
times in the s dimension.

Figure 3-6 shows how a texture plane is repeated across a geometry.

Figure 3-6 Repeated Texture on a Geometry

The default values of both s plane equations are (1,0,0,0), both t plane equations are
(0,1,0,0), and all r and q plane equations are (0,0,0,0).

50

Chapter 3: Specifying the Appearance of Geometries

Setting the csTexGen Mode

If you think of the texture plane as being projected onto the surface of a geometry rather
than being on the surface of a geometry, it is easy to understand how the mode settings
in csTexGen work. Either the plane is stationary and the geometry moves “under” it or
the plane moves in concert with the geometry. In the second case, the colors of the plane
appear to be part of the geometry when it moves; in the first case, the colors of the plane
appear to ride over the geometry when it moves.

You set the mode of each plane in csTexGen to one of the following values:

OFF Turns off the texture.

EYE_LINEAR Lets the geometry turn independently of the texture plane. In this case,
the colors of the plane appear to ride over the geometry when it moves.
This value is the default.

OBJECT_LINEAR
Lets the texture move in coordination with the geometry. In this case, the
texture appears to be on the surface of the geometry.

SPHERE_MAP
Lets the texture pattern remain stationary as the geometry moves thus
producing a mirror-like, circular reflection.

EYE_LINEAR_IDENT
Loads the identity matrix onto the modelview stack before loading the
plane equation.

Enabling Texture Generation

The setTexGen() function is enabled or disabled using setTexGenEnable() with an
argument of ON or OFF, respectively. Enabling the generation is, in effect, like turning on
the light which shines through the plane and onto a geometry. Disabling the generation
turns off the light.

The remaining sections apply to the appearance of the geometry itself.

Material Settings

51

Material Settings

The material field in csAppearance defines the surface qualities of a geometry, such as
how well it reflects light, what color it reflects, and what color it emits. The material field
is of type csMaterial, which has the following set...() methods:

void setAmbientIntensity(csFloat ambientintensity);
void setAmbientColor (const csVec3f& ambientColor);
void setDiffuseColor(const csVec3f& diffuseColor);
void setDiffuseColor(float v0, float v1, float v2);
void setSpecularColor(const csVec3f& specularColor);
void setSpecularColor(float v0, float v1, float v2);
void setEmissiveColor(const csVec3f& emissiveColor);
void setEmissiveColor(float v0, float v1, float v2);
void setAmbientIndex(csShort ambientIndex);
void setDiffuseIndex(csShort diffuseIndex);
void setSpecularIndex(csShort specularIndex);
void setShininess(csFloat shininess);
void setTransparency(csFloat transparency);

csMaterial also has a corresponding set of get...() methods.

Ambient color is the color of the light reflected from an object when lit by another ambient
object in the scene. The default value is [0.2, 0.2, 0.2]. Ambient intensity refers to the
strength of the reflection—a value between 0.0 and 1.0 where 1.0 is a strong reflection.
Ambient index refers to a color lookup table in which each ambient color is paired with
an index number for easy look-ups.

Diffuse color is an object’s base color. The default value is [0.8, 0.8, 0.8]. Diffuse index
refers to a color lookup table in which each diffuse color is paired with an index number
for easy look-ups.

Specular color is the reflected color of an object’s highlights. Specular intensity refers to
the strength of the reflection. The default value is [0.0, 0.0, 0.0]. Specular index refers to a
color lookup table in which each specular color is paired with an index number for easy
look ups.

Emissive color is the color emitted by an object. A lamp shade for example, might have a
base color of yellow. When the lamp is turned on, however, the emissive color might be
white. The default value is [0.0, 0.0, 0.0].

52

Chapter 3: Specifying the Appearance of Geometries

Shininess describes how much of the surroundings are reflected by an object, for example,
a mirror would have a large shininess value so that surrounding objects would be seen
in it. Values range from 0.0, for a very dull surface, to 1.0, for a highly polished surface.
The default value is 0.2.

Transparency describes how opaque or clear an object is, for example, water might be
more clear than opaque. Values range from 0.0, for opaque, to 1.0, for complete
transparency. The default value is 0.0.

Material Example

The following example shows the material settings for gold:

csMaterial *gold = new csMaterial;

gold->setAmbientColor(.3, .1, .1);
gold->setDiffuseColor(.8, .7, .2);
gold->setSpecularColor(.4, .3, .1);
gold->setShininess(.4);

Since gold is opaque, the default value, 0.0, for transparency suffices.

Filling Geometries

The setPolyMode() method specifies how to render the elementary polygons that
compose a geometry. The following values for the method are valid:

POINT_PMODE
The polygon is rendered as points.

LINE_PMODE
The polygon is rendered as a line. This option is equivalent to rendering
the geometry as a wireframe.

FILL_PMODE
The polygon is rendered as filled.

For example, if you use POINT_PMODE, a triangle would appear as three points.
LINE_PMODE would render a triangle as a set of three lines; FILL_PMODE would
render the triangle as filled.

Shade Model Settings

53

Shade Model Settings

You set the shading model using the setShadeModel() method with one of the following
csContext::ShadeModelEnum values as its argument:

FLAT_SHADE Each primitive, geometric polygon that comprises a geometry has the
same shade value. This option has the effect of making the primitive
geometric polygons visible.

SMOOTH_SHADE
Shade values are interpolated across primitive geometric polygons. This
option makes the primitive polygons look more like a curved surface.

Transparency Settings

To specify the transparency of a geometry locally, enable the transparency mode by
setting setTranspEnable() to ON and then specifying the transparency mode in the
argument of setTranspMode(). The possible transparency values include

FAST_TRANSP Produces as quickly-rendered, lower-quality transparent geometry.

NICE_TRANSP Produces a more slowly-rendered, higher-quality transparent geometry.

BLEND_TRANSP
Produces a smooth transparency between foreground and background
images.

SCREEN_DOOR_TRANSP
Produces a mottled transparency, as though every other pixel is
transparent.

Commonly, you use the setTranspMode() twice: you specify

• FAST_TRANSP or NICE_TRANSP

• BLEND_TRANSP or SCREEN_DOOR_TRANSP

Producing Transparency Without Blending

The setAlphaFunc() method sets the requirements for whether or not a pixel is rendered.
Not rendering some of the pixels in a geometry has the effect of making the geometry
partially transparent.

54

Chapter 3: Specifying the Appearance of Geometries

To use the setAlphaFunc() method, you first set the reference value against which you
measure the alpha value of the pixel to be drawn using setAlphaRef(), for example

setAlphaRef(10);

Then you supply, as an argument to setAlphaFunc(), one of the values of
csContext::AlphaFuncEnum:

• NEVER_AFUNC

• LESS_AFUNC

• EQUAL_AFUNC

• LEQUAL_AFUNC

• GREATER_AFUNC

• NOTEQUAL_AFUNC

• GEQUAL_AFUNC

• ALWAYS_AFUNC

For example, the following code

setAlphaRef(0.5);
setAlphaFunc(LESS_AFUNC);

is similar to the following lines of code:

if(Alpha < 0.5) {
//draw the pixel };

where Alpha is the alpha values of pixels to be drawn in a geometry.

The values have the following effects:

NEVER_AFUNC
The incoming pixel is never rendered. This function has the effect of
creating a totally transparent geometry.

LESS_AFUNC The incoming pixel is rendered only if its alpha value is less than the
reference value.

ALWAYS_AFUNC
The incoming pixel is always displayed. This function has the effect of
creating an opaque geometry.

55

Chapter 4

4. Scene Graph Nodes

A node is an object that can be part of or entirely comprise a scene graph. Typically, a node
is a collection of one or more fields and methods that together perform a specific
function, for example, a csShape node encapsulates all information about the shape and
appearance of a geometry.

Cosmo 3D nodes are divided into two types:

• group—associate other nodes.

• leaf— contain rendering information.

This chapter describes nodes and node types.

These are the sections in this chapter:

• “What Is a Node” on page 56.

• “Group Nodes” on page 58.

• “Leaf Nodes” on page 57.

• “Setting the Values in Scene Graph Nodes” on page 61.

56

Chapter 4: Scene Graph Nodes

What Is a Node

A node is a collection of one or more fields and methods. Each field is a C++ class with
data members and methods that get and set those member values. The fields set a variety
of parameters. For example, some of the fields in the csGeoSet are summarized in
Table 4-1.

Each node supplies default values for each of its fields.

Node Types

There are two types of nodes:

• Group—associates nodes into hierarchies.

• Leaf—sets the visual and audio values for a scene.

The following sections describe these node types.

Table 4-1 Examples of Fields in Nodes

Field
Type

Fields Description

SFRef COORDS Is a csCoordSet containing vertex coordinates.

SFRef NORMALS Is a csNormalSet containing normals for a geometry.

SFRef COLORS Is a csColorSet containing colors for a geometry.

SFRef TEX_COORDS Is a csTexCoord containing texture coordinates for a
geometry.

SFRef COORD_INDICES Is a csIndexSet providing indices into a csCoordSet.

SFRef NORMAL_INDICES Is a csIndexSet providing indices into a csNormalSet.

SFRef COLOR_INDICES Is a csIndexSet providing indices into a csColorSet.

SFRef TEX_COORD_INDICES Is a csIndexSet providing indices into a csTexCoordSet.

SFEnum CULL_FACE Specifies whether to cull back-facing polygons,
front-facing polygons, or no polygons.

Leaf Nodes

57

Leaf Nodes

Leaf nodes are responsible for defining the visual and aural elements portrayed in a
scene. Leaf nodes cannot have child nodes.

The following list shows all of the different types of Cosmo 3D leaf nodes; all are
derivatives of csLeaf.

• csShape—associates a csGeometry object with a csAppearance object.

• csLight—is an abstract base class for light sources.

• csDirectionalLight—is a directional light source whose origin is at infinity.

• csPointLight—is a point source of light that radiates equally in all directions.

• csSpotLight—is a conical spot light.

The following section describes csShape. All of the other nodes are described in
Chapter 8, “Lighting and Fog.”

csShape

A csShape node associates a csGeometry object with a csAppearance object. Together,
the csGeometry and csAppearance objects create a complete description of a shape.

To associate a csGeometry object with a csAppearance object, use the following
methods:

void setAppearance(csAppearance* appearance);
void setGeometry(csGeometry* geometry);

There is a corresponding set of get...() methods that return the current appearance and
geometry objects in the csShape object.

58

Chapter 4: Scene Graph Nodes

Group Nodes

Group nodes associate other nodes into a hierarchy known as a scene graph. Only group
nodes can have children. A group node, for example, might associate two csShape
nodes, as shown in Figure 4-1.

Figure 4-1 A Simple Grouping

Actions, such as a draw action, applied to a group node may be applied in no particular
order to some or all of its children. A group node, then, defines the scope of an action.

For more information about actions, see Chapter 7, “Traversing the Scene Graph.”

Group Node Types

The following list shows all of the different types of Cosmo 3D group nodes; all are
derivatives of csGroup:

• csSwitch—selects none, one, or all of its children, depending on its value. See
“Using csSwitch to Switch Between Nodes” on page 59.

• csBillboard—rotates its children to face the viewer at the same time. See “Using
csBillboard” on page 60.

Group
node

csShape
node

csShape
node

Group Nodes

59

• csLOD—(level-of-detail) is a switch that selects one of its children based on the
distance between the camera and the shape encapsulated by the csLOD; the closer
the shape, the greater the detail used when rendering the shape, the farther away
the shape, the less detailed the shape. For more information, see Chapter 14,
“Optimizing Rendering.”

• csTransform—positions and orients a shape in the coordinate system of the parent
node to csTransform. For more information, see Chapter 6, “Placing Shapes in a
Scene.”

• csEnvironment—is a grouping node which defines the scope of influence for the
effects provided by csLight. For more information, see Chapter 8, “Lighting and
Fog.”

Using csSwitch to Switch Between Nodes

The csSwitch node selects none, one, or all of its children. The constructor has the
following prototype:

csSwitch();

To specify whether none, one, or all of a csSwitch node’s children are selected, use the
following member function:

void setWhichChild(int which);

The possible values of which are

• NO_CHILDREN—to select no nodes

• an integer—to specify a child node

• ALL_CHILDREN—to select all of the children of the csSwitch node

Each child of a switch node is assigned an index number when added to the group node:
the first child added is index 0, the second child added is index 1, and so on.

You might use a csSwitch node to create an animation sequence. For example, if each of
the five child nodes of a csSwitch node contained the image of a character in different
stages of walking, your application could switch sequentially between the child nodes to
create a simple animation sequence.

60

Chapter 4: Scene Graph Nodes

Using csBillboard

csBillboard is a subclass of csGroup. It is used to rotate its children to face the viewer at
all times. csBillboard has the following fields:

csMFRef children (inherited from csGroup)
csEnum mode
csMFVec3f position
csVec3f axis

The mode field specifies one of three billboard modes: AXIAL, POINT_SCREEN, and
POINT_OBJECT. The mode defines how the billboard’s children should be rotated to
face the viewer. Specific descriptions of each mode follow:

• AXIAL: In this mode, the local +z axis is rotated about the billboard axis to face the
viewer (i.e. to match the negation of the view vector).

• POINT_SCREEN: In this mode, the local +z axis is rotated to face the viewer. The
local +y axis is aligned with the screen’s +y axis.

• POINT_OBJECT: In this mode, the local +z axis is rotated to face the viewer. The
remaining degree of freedom is used to minimize the angle between the local +y
axis and the billboard axis.

The position field specifies a position to which each child should be translated after it has
been rotated to face the viewer. There should be as many entries in the position field as
there are children.

The axis field is used in AXIAL and POINT_OBJECT modes.

Setting the Values in Scene Graph Nodes

61

Setting the Values in Scene Graph Nodes

Cosmo 3D allows you to set the values for nodes in two ways: either using the set()
method in each of the node’s fields, or by using tokens.

Setting the fields is different depending on whether or not the variable has a single or
multiple value. If the variable has a single value, the variable can be set directly; if it has
multiple values, the particular value in the set of values must be specified, as shown in
Figure 4-2.

Figure 4-2 Setting Single and Multiple-Value Variables

Using set() and get() Methods to Set and Get Single-Value Fields

Nodes are composed of one or more fields, each of which is a class containing set(), get(),
and, optionally, other methods. The csAppearance node, for example, contains many
fields, some of which are Shininess, Material, and TranspEnable (enable transparency).
To define one of these fields, you use the appropriate set() method, such as

csMaterial *mtl->setShininess(ShininessValue);

ShininessValue = mtl->getShininess();
color = mtl->getDiffuseColor();

ShininessValue is a float. The first line of code sets the shininess value of the csMaterial,
mtl. The following lines return an atomic, single value, ShininessValue, and a composite,
single value, color. A composite, single value is a set of numbers that represent a single
feature, for example, RGB values represent one feature: color

Single value field Multiple value field

Must specify
one of these
values to set

62

Chapter 4: Scene Graph Nodes

Using Tokens to Set and Get Single-Value Fields

To use tokens to set or get single-value fields, you

1. Get a handle to the field specified by the token.

2. Use the handle to set or get the field.

For example:

F = mtl->getField(SHININESS);
F->set(ShininessValue);

ShininessValue = F->get();
F->get(c);

ShininessValue is a float. The first line of code returns a handle, F, to the shininess field.
The second line then sets the value of that field.

The third line returns an atomic, single value. Since there is only one value, it does not
need to be specified in the argument. The last line returns a composite, single value, F.

Using set() and get() Methods to Set and Get Multiple-Value Fields

Multiple-value fields are arrays of variables. For example, the csMaterial field has a
number of values, including

sfFloat Shininess;
sfVec DiffuseColor;

To get or set a value in a csMaterial field, you must specify which of the values in the
field you are retrieving or setting, for example:

csGroup *g;
g->addChild(child);

child = g->getChild(1);

Child nodes of a group node are numbered, starting with zero. To retrieve the specific
child in the csGroup, you must specify in the argument of getChild() which child you
want returned; in this example, it is child number one.

Setting the Values in Scene Graph Nodes

63

Using Tokens to Set and Get Multiple-Value Fields

To use tokens to set or get multiple-value fields, you

1. Get a handle to the field specified by the token.

2. Use the handle to set or get values from a specific variable in the field.

For example:

csMFRef *F;
csGroup *g;

F = g->getField(CHILDREN);

F->append(child);
child = F->get(1);

To retrieve the specific child in the csGroup, the last line of code shows that you must
specify in the argument of get() which child you want returned; in this example, it is child
number one.

65

Chapter 5

5. Building a Scene Graph

A scene graph can be a single node or a hierarchy of nodes, as shown in Figure 5-1.

Figure 5-1 Scene Graph

The hierarchy specifies the order in which the nodes are acted upon when an action is
applied to the scene graph. The hierarchy is established by the order in which the group
nodes are added to the branches in a scene graph branch.

This chapter describes how to build and edit a scene graph.

myLight

myShape

myFog

Root

66

Chapter 5: Building a Scene Graph

This chapter includes the following sections:

• “Creating Scene Graphs” on page 66.

• “Diagramming Scene Graphs” on page 69.

• “Altering Scene Graphs” on page 73.

• “Loading a VRML Scene Graph” on page 74.

• “Saving Scene Graphs” on page 75.

• “Troubleshooting Scene Graph Construction” on page 75.

Creating Scene Graphs

The top node in a scene graph is called the root node; it must be a group-type node.
Actions applied to the root node visit all of the children nodes of the root node.

To create a scene graph, you start with the root node and add children to it using the
csGroup::addChild() method, as follows:

root->addChild(myLight);
root->addChild(myShape);

In this simple example, the myLight node is added first to the scene graph whose root
node is called root; the myShape node is added second. When a draw action is applied to
the root node, either of these nodes may be evaluated first.

To complete the scene graph, you add children to any child nodes of the root node that
are a group-type. You continue adding children to group-type nodes until the complete
scene is encapsulated in the scene graph.

Root Node

Most scene graphs have a root node of type csGroup. If you have a one-node scene
graph, for example, a csShape node, which is a leaf node, then the root node, the only
node, is a leaf node.

It is also possible to have multiple root nodes for a scene graph, as shown in Figure 5-2.

Creating Scene Graphs

67

Figure 5-2 Multiple Root Nodes

Applying Actions to Multiple Root Nodes

If a scene graph has multiple root nodes, an action applied to one of the roots would only
traverse the descendants of the specific root node. While this hierarchy of nodes is legal,
if your application is going to draw both scene graphs anyway, you should create a single
root node common to both scene graphs. In Figure 5-2, this could be done by adding a
group node above the root nodes shown, thus making them children of the single group
node. The advantage to this construction is that you do not have to apply the same action
repeatedly to different root nodes.

Actions applied to a root node flow (potentially) to all of the other nodes in the scene
graph. Passing the action from one node to another is called traversing. As an action
traverses a scene graph, variables set by the nodes in the scene graph change the
graphical context, which, in turn, changes the objects in the scene according to the node
values.

68

Chapter 5: Building a Scene Graph

Creating A Sample Scene Graph

Example 5-1 is a simple scene graph.

Example 5-1 A Simple Scene Graph

// create the root node of the scene graph
csGroup *root = new csGroup;

// create the nodes for the scene graph
csSpotLight *mySpotLight = new csSpotLight;
csShape *myShape1 = new csShape;
csShape *myShape2 = new csShape;

// Add the nodes to the group node to create a scene graph
root->addChild(mySpotLight);
root->addChild(myShape1);
root->addChild(myShape2);

In this example, a root node is created using the new directive and children nodes are
added to it using the csGroup::addChild() method. The order in which the children are
added to the root node is the order in which the nodes are acted upon when an action is
applied to the root node.

Diagramming Scene Graphs

69

Diagramming Scene Graphs

Diagramming a scene graph is helpful in visualizing the structure of a Cosmo 3D
application. Figure 5-3 shows a diagram representing the scene graph coded in
Example 5-1.

Figure 5-3 Simple Scene Graph

In diagrams of scene graphs, circles represent nodes and lines represent the node
hierarchy. The different types of circles represent the different types of nodes, for
example, root is a csGroup-type node whereas myShape is a csLeaf-type node. Notice
how the nodes are positioned: the three leaf nodes are children of the csGroup node and
the leaf nodes appear in the same order in which they were added to the root node in
Example 5-1. Remember, however, that actions may traverse these leaf nodes in any
order because these leaf nodes are at the same level.

Scene Graph Diagrams At A Glance

Diagrams of scene graphs provide an overview of the functionality of a Cosmo 3D
application without the bother of delving into the complexity of the code. A diagram of
a scene graph, for example, can show the number of data sets that can be rendered.

myLight

myShape

myFog

Root

70

Chapter 5: Building a Scene Graph

For more information about the order in which nodes are acted upon, see “The Order In
Which Actions Are Passed Between Nodes” on page 86.

There are no rules for constructing a scene graph, however, it is customary to organize it
in the following way:

• Reading the nodes left to right shows you the different geometries rendered in a
scene graph.

• Reading the nodes from top to bottom shows you the different parts that are
combined to form a larger geometry.

For example, reading horizontally, Figure 5-4 shows that the two subgraphs, Molecules
and Hydrogen bonds, are separate geometries that appear together in world space.

Figure 5-4 Two Sets of Data Rendered Differently

Molecules

Hydrogen
bonds

Root
node

Diagramming Scene Graphs

71

In the subgraph shown in Figure 5-5, you can see that the foot, leg, and torso nodes are
parts which, when rendered together, display the lower half of a body.

Figure 5-5 Torso Subgraph

Because the left leg looks different from the right leg, you need two different shape
nodes. If, however, you want to display the same geometry twice, but in different
locations, you can use two transformation nodes to place the same object in different
locations, as shown in Figure 5-6.

Torso
node

Leg
node

Foot
node

Leg
node

Foot
node

72

Chapter 5: Building a Scene Graph

Figure 5-6 Showing the Same Geometry in Two Locations

In this example, the scene graph makes it easy to see that a cube is rendered in two
locations by two csTransform nodes.

Cube

transforn
location 1

transforn
location 2

Root
node

Altering Scene Graphs

73

Altering Scene Graphs

After using csGroup::addChild() to create a scene graph, you can use the following
methods to edit it:

void removeChild(int i);
int removeChild(csNode *node);
int replaceChild(csNode *old, csNode *node);
void insertChild(int i, csNode *node);

These methods allow you to remove, replace, or insert a child node, respectively. For
example, to insert a node between two children, use the insertChild() method:

csShape *myShape = new csShape;
root->insertChild(2, myShape);

The children nodes are numbered starting with 0. The “2” in the argument of
insertChild() specifies that the myShape node should be inserted in the scene graph as
the number two node.

Note: Although leaf nodes attached to the same group node can be acted upon in any
order, the first node added to a group node is always node zero, the second node added
to the root node in the code is node one, and so forth.

csGroup also supplies the following methods for finding the number of a node in a scene
graph, returning the number of children in a scene graph, and setting the number of
nodes in a group, respectively.

int searchChild(csNode *node);
int getChildCount();
void setChildCount(int count);

In general, you use the searchChild() method to return the number of a node so you can
perform other functions on or around it, such as replacing it.

74

Chapter 5: Building a Scene Graph

Loading a VRML Scene Graph

Example 5-2 shows a portion of vrml.cxx. The example illustrates how to load a VRML
scene graph using vlDB::readFile().

Example 5-2 Loading a VRML Scene Graph

csGroup *vrml = new csGroup;

 for (int i=1; i<argc; i++)
 {
 csContainer *v;
 static char path[512];
 char *lastSlash;

 strcpy(path, argv[i]);
 lastSlash = strrchr(path, ‘/’);
 if (lastSlash != NULL)
 *lastSlash = ‘\0’;

 strcat(path, “:.”);
 csGlobal::setFilePath(path);

 if (vlDB::readFile(argv[i], v, viewPoints) && v != NULL)
 {
 printf(“Read %s was ok\n”, argv[i]);
 vrml->addChild((csNode*)v);
 }
 else
 printf(“Read %s was bad\n”, argv[i]);
 }

 new csWindow(“vrml”);

Saving Scene Graphs

75

Saving Scene Graphs

The data in the scene graph database is not necessarily static. You might, therefore, need
to save scene graph data into a file. To do so, you use the following method:

csGlobal::storeFile(NameOfFile, *dataStructure);

where NameOfFile is the name of the file where you want to store the data and
dataStructure is the Cosmo 3D in-memory data structure to store. The method returns
TRUE if the file is stored successfully, FALSE otherwise.

Note: storeFile() is used with Cosmo 3D-only applications. If you are writing an
Optimizer application, do not use storeFile().

Troubleshooting Scene Graph Construction

A common mistake in Cosmo 3D applications is forgetting to include a csLight or
csCamera node. The csDrawAction::setCamera() method specifies the camera and
points it at the shapes in the scene graph.

For more information about csLight or csCamera, see Chapter 8, “Lighting and Fog” and
Chapter 9, “Viewing the Scene,” respectively.

Another common error in Cosmo 3D applications is pointing the camera in the wrong
direction in which case the camera may produce a blank image.

77

Chapter 6

6. Placing Shapes in a Scene

When you create a geometry, it has a specified size, location, and orientation, as defined
in its own space. You place such a geometry

• In relationship to other shapes in the same scene.

• Into the coordinate system of the root node, known as world space.

This chapter describes how to perform each of those tasks.

The final transformation that affects the view of the user is that created with the camera.
Rotating the camera has an obvious affect on the view of the scene. To read more about
the camera transformation, see “Using a Camera to View a Scene” on page 98.

This chapter has the following sections:

• “Creating a Sense of Depth” on page 77.

• “Transforming Shapes to New Locations, Sizes, and Orientations” on page 79.

Creating a Sense of Depth

Geometries are layered by Cosmo 3D according to the order in which they are rendered.
For example, the first geometry rendered is usually covered by the second geometry if
they overlap.

78

Chapter 6: Placing Shapes in a Scene

Overriding the Default Order of Layering Shapes

To override this layering effect, you can use the csContext::setcsDepthFunc() method; it
determines the layering order of geometries in a scene according to values in the Z
dimension. To specify a layering method, use one of the tokens in
csContext::DepthFuncEnum.

NEVER_DFUNC

LESS_DFUNC

EQUAL_DFUNC

LEQUAL_DFUNC

GREATER_DFUNC

NOTEQUAL_DFUNC

GEQUAL_DFUNC

ALWAYS_DFUNC

Here are the effects of some of the arguments:

NEVER_DFUNC
the incoming pixel is never displayed on top of the current,
corresponding pixel in the buffer. This function has the effect of
reversing the normal order of layering: pixels are rendered behind the
pixels currently in the buffer.

LESS_DFUNC A pixel is displayed only if its Z component is less than the Z value of
the corresponding pixel currently in the buffer. This function presents
the intuitive representation of close objects appearing in front of distant
objects.

ALWAYS_DFUNC
The incoming pixel is always displayed on top of what is currently
displayed regardless of the Z component.

The default is LEQUAL_DFUNC.

Transforming Shapes to New Locations, Sizes, and Orientations

79

Transforming Shapes to New Locations, Sizes, and Orientations

The csTransform node

• Allows you to specify vertex coordinates of a shape in local space, using (0, 0, 0) as
the origin.

• Translates the local coordinates into the coordinates of its parent node.

If there is more than one csTransform node in a hierarchy of nodes, each csTransform
node translates the child node coordinates into coordinates of its parents all the way up
the hierarchy until a final csTransform node translates the coordinates of the shape into
those of the root node. The coordinate system of the root node is called world space
because all shapes in all parts of the scene graph are translated into that coordinate
system.

Placing Transform Nodes

Typically, csTransform nodes are placed between csShape or csGroup-type nodes and
the rest of the scene graph, as shown in Figure 6-1.

Figure 6-1 Placement of csTransform Nodes

Any node, however, can be the child of a transformation node.

Transfornation node

Shape node

Scene graph

80

Chapter 6: Placing Shapes in a Scene

Setting the Transformation

The csTransform node allows you to set the location (translation), rotation, and scale of
its children using the following methods:

void setTranslation(const csVec3f& translation);
void setTranslation(csFloat v0, csFloat v1, csFloat v2);

void setRotation(const csRotation& rotation);
void setRotation(csFloat v0, csFloat v1, csFloat v2, csFloat v3);

void setScale(const csVec3f& scale);
void setScale(csFloat v0, csFloat v1, csFloat v2);

void setScaleOrientation(const csRotation& scaleOrientation);
void setScaleOrientation(csFloat v0, csFloat v1, csFloat v2,

csFloat v3);

void setCenter(const csVec3f& center);
void setCenter(csFloat v0, csFloat v1, csFloat v2);
void setMatrix(Matrix4f mat)

There is a corresponding set of get...() methods for each of these methods.

Each method is overridden so that you can specify the arguments to the methods either
as objects or individual coordinates.

setTranslation() positions the children of the transform in the space of the node that is
the parent to csTransform.

setCenter() specifies the point around which an object rotates.

setRotation() rotates the children of the transform around the point specified in
setCenter().

setScale() specify the scale factor of the children of the transform along the X, Y, and Z
axes.

setScaleOrientation() specifies the orientation in which the scaling takes effect.
Figure 6-2 shows a shape scaled by a factor of 2 in two different orientations, 0 and 45
degrees, respectively.

Transforming Shapes to New Locations, Sizes, and Orientations

81

Figure 6-2 Scaling in Different Orientations

All of these methods invisibly set a transformation matrix to carry out their actions. If
you want to set the matrix directly, you can use the setMatrix() method.

Ordering Transformations

The order in which you perform transformations can effect the final result. Take, for
example, translating and rotating a model. If you perform the transformations in this
order, you end up with a rotated model translated, for example, down the X axis, as
shown in Figure 6-3.

Figure 6-3 Order of Transformations

x

z

y

x

z

y

x

y

1-Rotate

2-Translate

x

y

2-Rotate

1-Translate

82

Chapter 6: Placing Shapes in a Scene

When you reverse the order of the transformations, the end result is different. Since the
center of rotation is the origin, the rotation transformation lifts the object above the X
axis.

Placing Geometries in World Space

Multiple transformation nodes can orient and size all shapes in a scene graph into the
space of the root node. The space of the root node is called world space.

World space is the coordinate system of the root node in which all shapes in a scene graph
can reside. Local space is a coordinate system in a subsection of a scene graph.

 Cosmo 3D Matrices

Many geometry variables are defined in local space. To translate those values into the
world space you use a transformation matrix. The transformation matrix is a 4 × 4 matrix
of type csMatrix4f that contains scaling, translation, and rotation information. You can
set the matrix explicitly or, more easily, you can use class methods to generate a
transformation matrix.

 Cosmo 3D matrices are column major, which means their members are ordered in the
following way:

0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

You can set a transform matrix directly, or you can use csContext methods to scale and
orient a shape in world space.

83

Chapter 7

7. Traversing the Scene Graph

Once you create a scene graph, you apply an action to the root node to trigger the events
prescribed in the scene graph nodes. Most nodes include an overwritten apply() method
that triggers an appropriate response when a specific action is applied to the node.
Actions include rendering the scene (draw action) and playing sound files (sound
action).

This chapter describes how an action traverses a scene graph and the actions available in
Cosmo 3D.

This chapter has the following sections:

• “Scene Graph Actions” on page 83.

• “The Order In Which Actions Are Passed Between Nodes” on page 86.

Scene Graph Actions

An action is an operation that is carried out on one or more nodes in a scene graph. In
response to actions,

• csLeaf nodes set values.

• csGroup nodes pass actions from one child node to another.

For example, when a csDrawAction is applied to the root node of a scene graph, the
action operates on (potentially) all of the nodes in the scene graph so that all of the
csShape nodes in it are rendered.

84

Chapter 7: Traversing the Scene Graph

The action-specific responses taken by a node are implemented in the following node
functions:

• draw()—for csDrawAction

• isect()—for csIsectAction

• compile()—for csCompileAction

• sound()—for csSoundAction

When an action operates on one node after another, the action is said to be traversing the
scene graph.

Action Types

In Cosmo 3D, there are four kinds of actions:

• csDrawAction—Renders a scene graph.

• csIsectAction—Selects objects intersecting a ray.

• csCompileAction—Compiles a subgraph.

• csSoundAction—Plays spatialized (3D) sounds in a scene graph.

All of the actions are derived from csAction.

For more information about

• csIsectAction, see “Using csIsectAction” on page 140.

• csCompileAction, see “Compiling Part of a Scene Graph” on page 164.

csAction

csAction is a virtual class from which all actions are derived. An action is an operation
that is performed on some or all of the nodes in a scene graph, for example, a
csDrawAction, when applied to the root node, renders a scene graph.

csAction contains the following method:

virtual void apply(csNode *node) = 0;

Scene Graph Actions

85

You invoke an action by creating an instance of an action class and applying it to a node
(commonly the root node), for example:

csGroup* rootNode = new csGroup;
...
csDrawAction* renderAction = new csDrawAction;
renderAction->apply(rootNode);

In this example, a draw action, renderAction, is applied to the root node, rootNode, of a
scene graph.

When an action is applied to a node, each kind of node responds in its own way. When
a draw action is invoked on a leaf node, for example, it sets the values that describe a
shape. When a draw action is invoked on a group node, it applies the action to some or
all of its children.

Rendering the Scene

A csDrawAction causes leaf nodes to set the variables that affect the rendering of the
shapes in a scene graph and causes the shapes to be rendered.

A csDrawAction has the following get and set methods:

void reset();
virtual csTravDirective apply(csNode *node);

reset() resets the cull stack and transformation stack.

The virtual function apply() is the method you use to apply the draw action on a node in
a scene graph, for example:

renderAction->apply(rootNode);

where renderAction is a csDrawAction instance and rootNode is the root node of a scene
graph. A draw action can be applied to any node in a scene graph. If you apply a draw
action to a leaf node, the node may set a value but the action does not spread to any other
nodes.

86

Chapter 7: Traversing the Scene Graph

Playing Sound Files

csSoundAction plays sound files. The csSound node indirectly specifies—through
csAudioClip and csAudioSamples nodes—the sound file to play. The csSoundAction
places the listener (referred to as the microphone in Cosmo 3D) relative to the sound
source for spatial effects, such as volume based on the proximity of the listener to the
sound source.

void setMicrophone(Microphone mic);
Microphone getMicrophone();

When the csSoundAction traverses a scene graph, it creates a list of active sounds in the
scene graph and supplies that information to csContext internally. If any sounds are
active, csContext sends instructions to play the associated sound files for a specific
duration.

For more information about sounds, see Chapter 15, “Adding Sounds To Virtual
Worlds.”

The Order In Which Actions Are Passed Between Nodes

In a scene graph, group nodes are acted upon in a top-to-bottom sequence. Leaf nodes
under any one group node are acted upon in an unspecified order. While not every child
node may be visited, for example, under a csSwitch node, it is guaranteed that all parent
nodes are visited before their children nodes.

Top-Down Traversals

In diagrams of scene graphs, this order of node evaluation, called an in-order traversal,
is represented by the layout of the nodes so that actions traverse from the top to bottom
of the scene graph. For example, the numbers in Figure 7-1 show one order in which an
action might traverse the nodes in a scene graph.

The Order In Which Actions Are Passed Between Nodes

87

Figure 7-1 The Flow of an Action Through A Scene Graph

A top-down traversal means that a node can never affect a node “above” it. For example,
node 3 in Figure 7-1 cannot affect nodes 4 and 5, however, node 4 can affect node 5. So,
that branch of the scene graph is traversed in the following way when an action is
applied to the root node:

1. The action traverses from node 1 to any of its children.

2. When the action visits node 2, node 2 propagates the action to one of its children.

3. If the action propagates to node 3, the action takes effect and the attribute variables
are reset to their values prior to node 3 after which the action visits node four.

4. The action then traverses nodes 4 and 5 at which point the traversal state is reset to
its state prior to node 2.

5. The action then traverses to any of the other child nodes of node 1.

Each node can immediately change the image in the frame buffer according to the
content to the node.

Whether all of the children of a group node are evaluated depends on the group node
type. For example, in Figure 7-1, if the number 1 node is of type csSwitch, the traversal
may visit all, one, or none of nodes 2, 6, 7, 9, and 10.

1

2

3

4

5

6

7

8

9

10

Root node

89

Chapter 8

8. Lighting and Fog

This chapter discusses two features implemented by subclasses of csEnvironment,
lighting and fog.

• Lights illuminate shapes in a scene. Without lights, shapes are not visible.

To limit the range of a light, such as limiting the rays of a light to the room it is in,
you include the lights in the light array in csEnvironment.

• Fog makes an image appear more natural by fading objects in the distance. You
include fog in csEnvironment.

This chapter describes first how to use lights, change the shadow modeling, and change
the screen to one color. It then discusses how you can use fog for atmospheric effects such
as smoke, haze, or mist.

This chapter contains the following sections:

• “Using Lights in Scenes” on page 89.

• “Limiting the Scope of Lights” on page 92.

• “Using Fog in Scenes” on page 93.

Using Lights in Scenes

Cosmo 3D provides a variety of light types. This chapter describes the light types
presented in Cosmo 3D in addition to the virtual light class, csLight, from which you can
create your own light objects.

90

Chapter 8: Lighting and Fog

csLight

csLight is an abstract base class for light sources. It provides the following methods for
setting light values:

void setOn(csBool on);
void setIntensity(csFloat intensity);
void setAmbientIntensity(csFloat ambientIntensity);
void setColor(const csVec3f& color);
void setColor(csFloat v0, csFloat v1, csFloat v2);

There is a corresponding set of get...() methods that return each of the light settings.

setOn() turns on the csLight object.

setIntensity() sets the brightness of the csLight object.

setAmbientIntensity() sets the brightness of the ambient color. The ambient intensity is
how bright the light makes all objects appear.

setColor() sets the color of the csLight object.

csDirectionalLight

csDirectionalLight is a directional light source that approximates distant light sources,
such as the sun, and can improve rendering performance over local light sources, such
as csPointLight and csSpotLight. Use csDirectionalLight to set the direction of general
lighting for a scene using one of the following methods:

void setDirection(const csVec3f& direction);
void setDirection(csFloat v0, csFloat v1, csFloat v2);

There is a corresponding set of get...() methods that return the lighting direction.

A csDirectionalLight has no range limitations so it affects all children of a
csEnvironment object when included in a light array.

Note: A csDirectionalLight object’s direction is affected by all csTransform nodes above
it in the scene hierarchy.

Using Lights in Scenes

91

csSpotLight

csSpotLight is a directional light source. Because csSpotLight is subclassed from
csPointLight, csSpotLight can be positioned.

The light emanates as a cone; the axis of the cone specifies the direction of the spot light
and is defined in the following methods:

void setDirection (const csVec3f& direction)
void setDirection (csFloat v0, csFloat v1, csFloat v2)

The intensity distribution and the cut off angle of the light are set with the following
methods:

void setExponent(csFloat component);
void setCutOffAngle(csFloat cutOffAngle);

csPointLight

csPointLight is a point light source that radiates equally in all directions. The range of a
csPointLight’s effect is localized to a csEnvironment object when the csPointLight is
included in its light array.

All descendants of a csEnvironment object that lie within the csPointLight’s shining
radius are affected by the csPointLight. csTransform objects affect the location and
shining radius of each csPointLight.

Use the following methods to define a csPointLight.

void setLocation(const csVec3f& location);
void setLocation(csFloat v0, csFloat v1, csFloat v2);

void setRadius(csFloat radius);

void setAttenuation(const csVec3f& attenuation);
void setAttenuation(csFloat v0, csFloat v1, csFloat v2);

There is a corresponding set of get...() methods that return the current point light settings.

setLocation() defines the location of the csPointLight.

setRadius() defines the maximum range of the light.

setAttenuation() defines how quickly the intensity of the light declines over distance.

92

Chapter 8: Lighting and Fog

Limiting the Scope of Lights

csEnvironment defines the scope of environmental effects, such as how far light from a
csLight object can travel. When you create a virtual room, the goal is to make a lamp in
the room shine in the room only—not leak through walls into the hallway. When you
make a csLight part of the light array in csEnvironment, the lamp light stops at the walls
of the room.

Another application of csEnvironment is rendering headlights on a car. The goal is to
have the lights move with the car and extend only a couple of hundred feet in front of the
car. To do that, you add a csPointLight to the csEnvironment light array and limit the
csPointLight to several hundred feet.

The Scope of the Light Array

The csEnvironment node serves as the root node for the effects of all lights in its array.
csEnvironment uses an array of lights because you might have more than one csLight in
a room, but the light from all of the lamps should end at the walls of the room. All
csLights in the light array have the same range limitations.

csEnvironment Methods

csEnvironment contains the following method that specifies an array of lights:

csMFRef* light() const;

For example, if you wanted to add two lights but remove a third, you would use code
similar to the following:

// create an Environment
csEnvironment* park = new csEnvironment;
...

// find and remove light #3
csLight* badLight = park->getLight(3);
park->light()->remove(badLight);

//create two lights
csSpotLight* spot = new csSpotLight;
csPointLight* flood = new csPointLight;

Using Fog in Scenes

93

// add the lights to the environment light array
park->light()->append(3, spot);
park->light()->append(4, flood);

Using Fog in Scenes

Fog is generated by setting up a csFog node and adding it to the csEnvironment. This
fog description will affect all children of the csEnvironment. Subsequent csFog nodes
will override the current fog description. Fog should also be globally enabled via
csContext::setFogEnable() and can be overridden with csAppearance::setFogEnable().
If csContext::FogEnable is FALSE, it is disabled for the entire scene graph (unless
overridden by csAppearance::fogEnable regardless of the value of csFog::on.

This section discusses the following fog-related topics:

• “Uses of Fog in Cosmo 3D Applications” explores the different uses for fog and
reasons for using it.

• “How to Use Fog in Cosmo 3D Applications” explains how to use fog in a Cosmo
3D application.

• “How to Use Fog” is a code fragment illustrating the information from the
preceding section.

Uses of Fog in Cosmo 3D Applications

Computer images sometimes seem unrealistically sharp and well defined. You can make
an entire image appear more natural by adding fog, which makes objects fade into the
distance. Fog is a general term that describes similar forms of atmospheric effects; it can
be used to simulate haze, mist, smoke, or pollution. Fog is essential in visual-simulation
applications, where limited visibility needs to be approximated. It is often incorporated
into flight-simulator displays.

When fog is enabled, objects that are farther from the viewpoint begin to fade into the fog
color. You can control the density of the fog, which determines the rate at which objects
fade as the distance increases, as well as the fog’s color. Since fog is applied after matrix
transformations, lighting, and texturing are performed, it affects transformed, lit, and
textured objects. Note that with large simulation programs, fog can improve
performance because you can choose not to draw objects that would be too fogged to be
visible.

94

Chapter 8: Lighting and Fog

All types of geometric primitives can be fogged, including points and lines. Using the fog
effect on points and lines is also called depth-cuing and is popular in molecular modeling
and other applications.

How to Use Fog in Cosmo 3D Applications

Fog is generated by setting up a csFog node and adding it to the csEnvironment. The
csFog class has the following fields, which determine its effects:

The effects of the different fields are parallel to those of OpenGL glFog(), and can be
examined in the OpenGL Reference Manual or the glFog manpage.

Enabling Fog

There are three different fields that determine whether fog is enabled or not:

• csContext::fogEnable

• csAppearance::fogEnable

• csFog::on

Table 8-1 Fields in csFog

Type Name Enumerant Default

csSFBool on ON false

csSFEnum mode MODE FOG_EXP

csSFFloat density FOG_DENSITY 1.0

csSFFloat start FOG_START 0.0

csSFFloat end FOG_END 1.0

csSFFloat index FOG_INDEX 0.0

csSFVec4f color FOG_COLOR {0.0, 0.0, 0.0, 0.0}

Using Fog in Scenes

95

In general whoever is OFF has precedence.

• If csContext::fogEnable is OFF, no fog is drawn unless there is a csAppearance that
has fogEnable ON. In this case, fog is enabled for that shape only if it is within the
scope of a fog node that is turned on (that is, under a csEnvironment that has fog
enabled).

• If the csFog node is OFF, there will be no fog drawn in any circumstances, even if
the fogEnable in the csAppearance or csContext is TRUE.

The fog description will affect all children of the csEnvironment. Subsequent csFog
nodes override the current fog description.

How to Use Fog

The following code fragments from the csFog manpage illustrates how to use of fog:

static csVec4f fogClr(0.2f, 0.2f, 0.2f, 1.0f);

 <...>

 // Create environment node for scene
 csEnvironment *env = new csEnvironment;

 // Add enabled fog node to environment
 csFog* fog = new csFog;
 fog->setOn(TRUE);
 fog->setColor(fogClr);
 fog->setEnd(400.0f);
 fog->setMode(csFog::LINEAR_FOG);
 env->setFog(fog);

 // Enable fog for default state
 ctx->setFogEnable(TRUE);

 <...>

 // In frame function
 ctx->clear(csContext::COLOR_CLEAR | csContext::DEPTH_CLEAR,
 fogClr[0], fogClr[1], fogClr[2], fogClr[3]);

97

Chapter 9

9. Viewing the Scene

To view a scene, you must define:

• The size of the viewport.

• The position and the orientation of the camera.

This chapter describes how to set up the viewport and how to use cameras to view a
scene.

This chapter has the following sections:

• “Setting the Screen Display of the Scene” on page 97.

• “Using a Camera to View a Scene” on page 98.

Setting the Screen Display of the Scene

The viewport is the rectangular portal through which you view a scene. The viewport
can be as large as a csWindow, or it can be just a portion of a csWindow, as shown in
Figure 9-1.

98

Chapter 9: Viewing the Scene

Figure 9-1 Viewport

You set the size of the viewport using the following csContext method:

static void setViewport(csInt x, csInt y, csInt w, csInt h);

x and y are the coordinates of the lower, left corner of the viewport (where the lower, left
corner of the csWindow is (0. 0)).

w and h are the width and height of the viewport.

Using a Camera to View a Scene

Cosmo 3D provides a variety of cameras to position, orient, and delimit the view of the
shapes in the scene graph. This section describes the different cameras that are available,
including:

• “csCamera” on page 99.

• “csOrthoCamera” on page 101.

• “csPerspCamera” on page 101.

• “csFrustumCamera” on page 105.

Window

Monitor screen

Viewport

Scene

csCamera

99

csCamera

csCamera is an abstract base class from which all other cameras are derived. csCamera
defines the viewing volume. The viewing volume is bounded by the camera’s origin and
orientation, the far clip plane, and an aspect ratio. The aspect ratio is defined as the
image’s width divided by its height, as shown in Figure 9-2.

Figure 9-2 Aspect Ratio

The distances to the near and far clip planes are in the Z dimension in camera space. The
viewing frustum can be transformed into world space using the position and orientation
methods in csCamera.

Normally, the aspect ratio of the image matches that of the window. If the aspect ratio
does not match that of the window, the image is distorted: it is either expanded or
contracted along one or both axes, as shown in Figure 9-3.

wAspect Ratio =
h

Near clip plane

Far clip plane

wh

Frustum
Viewing volume

100

Chapter 9: Viewing the Scene

Figure 9-3 Changing the Window Without Changing the Image’s Aspect

It is important, therefore, to change the aspect of the image if the window is revised. To
do that, you use csWindow, as explained in Chapter 12, “User Interface Mechanisms.”
The aspect ratio can be set through methods of csOrthoCamera and csPerspCamera.

The following methods set the position and orientation of a camera.

void setPosition(const csVec3f& position);
void setPosition(csFloat v0, csFloat v1, csFloat v2);
void setOrientation(const csRotation& orientation);
void setOrientation(csFloat v0, csFloat v1, csFloat v2, csFloat v3);

There is a corresponding get...() field for each set...() field.

You use the setPosition() methods to locate the camera in the scene. Initially, it is pointing
along the Z axis. To rotate the camera use the setOrientation() field. You set the near and
far clip planes using the setNear() and setFar() methods.

csOrthoCamera

101

csOrthoCamera

csOrthoCamera defines an orthographic projection. An orthographic projection uses a
parallelepiped (box) frustum. Unlike the frustum in Figure 9-2, the size of the frustum
does not change from one end to the other. For this reason, the distance from the camera
to an object in the frustum does not affect the size of the object.

You use this type of camera when you do not want to view objects in perspective. For
example, when you create architectural blueprints and CAD models, it is important to
maintain the actual sizes of objects and angles between them when they are projected.

csOrthoCamera uses the following methods to define the viewing frustum:

void setWidth(csfloat width)
void setHeight(csfloat height)
void setCenter(const csVec2f* center)
void setCenter(csFloat v0, csFloat v1);
void setNearClip(csFloat nearClip);
void setFarClip(csFloat farClip);

There is a corresponding get...() field for each set...() field.

The width and height methods define the left, right, top, and bottom of the
parallelepiped (box) frustum. The setCenter() method points the csOrthoCamera at the
center of the scene you want to view.

csPerspCamera

A csPerspCamera creates a perspective view in which objects closer to the camera appear
larger than the same-sized objects located further from the camera. This type of camera
imitates normal vision. For example, train tracks and the distance between them appear
smaller the more distant they are.

You can understand why more distant objects appear smaller by looking at Figure 9-4.

102

Chapter 9: Viewing the Scene

Figure 9-4 Perspective Explained

If you compare the height of an object in the near clipping plane to the height of the near
clipping plane, you see that the ratio is larger than the ratio of the height of the same
object in the far clipping plane to the height of the far clipping plane.

Hobject Hobject

-------- > --------
Hnear Hfar

Consequently, when you compare the size of the object to its surroundings, it appears
smaller in the distance.

Setting the Frustum

The frustum is the truncated pyramidal volume depicted in Figure 9-2. It is defined by
four quantities, as shown in Figure 9-5:

• Distance to the near clip plane.

• Distance to the far clip plane.

• Horizontal field of view.

• Vertical field of view.

csPerspCamera

103

Setting the Clip Planes

You use the following fields to set the distance to the near and far clip planes:

void setNearClip(csFloat nearClip);
void setFarClip(csFloat farClip);

There is a corresponding get...() field for each set...() field.

Setting the Fields of View

You use the following fields to set the horizontal and vertical fields of view (FOV) of the
frustum. The arguments are the angles, in degrees, of the fields of view.

void setHorizFOV(csFloat horizFOV);
void setVertFOV(csFloat vertFOV);

There is a corresponding get...() field for each set...() field.

Offsetting the Fields of View

By default, the fields of view are centered around the –Z axis. csPerspCamera, however,
enables you to offset the fields of view both horizontally and vertically, as shown in
Figure 9-5.

104

Chapter 9: Viewing the Scene

Figure 9-5 Horizontal and Vertical Fields of View Offsets

The offset angles are measured starting at the -z axis, following the right-hand rule. For
example, the horizontal FOV offset angle shown in Figure 9-5 is positive.

To specify the offsets, use one or both of the following csPerspCamera methods:

void setHorizFOVOff(csFloat horizFOV);
void setVertFOVOff(rfcsFloat vertFOV);

There is a corresponding get...() field for each set...() field.

-z

z
x

-x

y

-y

Horizontal FOV

Horizontal
FOV offset

-z

z
x

-x

y

-y

Vertical FOV

Vertical
FOV offset

Far clip plane

Near clip plane

csFrustumCamera

105

csFrustumCamera

csFrustumCamera allows you to work directly with a frustum without worrying about
the specifics of a camera. You define the frustum using the csFrustumCamera’s only
method:

setFrustum(csFrustum * frustum)

For a definition of csFrustum, see csGeoMath.h.

107

Chapter 10

10. Scene Graph Engines

There are classes that work with scene graphs, but are not nodes; they cannot be part of
the scene graph, but they serve the vital function of enabling animation. csEngine is such
a class.

This chapter describes csEngine and the multiple subclasses derived from it.

These are the sections in this chapter:

• “Engines” on page 107.

• “Engines that Interpolate Values” on page 110.

• “Engines That Change Shapes” on page 117.

Engines

A csEngine performs a specified function on input data and outputs a result. These
results can be used, for example, to encapsulate scene graph behavior. If part of a scene
graph renders a car, you might, attach an engine to the transform node of each wheel to
animate its rotation. You might also tie the motion of the wheels to the motion of other
shapes in the scene so they appear to pass by when the car moves, or you might cycle the
car through a set of colors repeatedly.

csEngine is a derivative of csNode, but usually csEngines are not included as nodes in a
scene graph.

108

Chapter 10: Scene Graph Engines

Input and Output Fields

csEngine has input and output fields. csEngine updates its output fields according to the
function carried out by the csEngine. For example, a simple engine might take two
inputs and output the average of the two.

csEngine updates its output fields only under the following conditions:

• Output fields are read.

• Input fields have changed since the output fields were last read.

For example, the input fields might change twice, but if the output fields are read only
after the second change in the input fields, the output fields are updated only once.

Connecting Engines to Other Nodes

You connect an engine to other nodes or engines to create an animation, to cause a chain
reaction of motions, or to cycle through a set of attributes, such as color cycling. You use
csContainer::connect() to make the connections. For example, to make a color
interpolator engine change a specific field in a material, connect the engine’s output field
value to the specific field, as follows:

csColorInterpolator* myEngine = new csColorInterpolator;
csMaterial* rose = new csMaterial;

myEngine->connect(csColorInterpolator::VALUE, rose,
csMaterialDIFFUSE_COLOR);

In this example, myEngine is connected to the color field of the rose object.

Connecting Engines to Other Engines

The output of one engine may also be connected to the input of another engine. For
example, the output value of a csSpline might be connected to the input field of a
csMorphEng, as follows:

csMorphEng3f *morphEngine = new csMorphEng3f;
csSpline *splineEngine = new csSpline;

splineEngine->connect(csSpline::WEIGHT, morphEngine,
csMorphEng3f::WEIGHT);

Engines

109

Engine Types

Many engines interpolate between two values at specified increments. For example, a
rotation interpolator might take the beginning and ending rotation coordinates and the
incremental changes between the two. Its output might be a series of transformations
that move an object through a series of coordinates that rotate it from the beginning to
the ending coordinates.

Another example for using an engine is color cycling. You might take an interpolator
engine that takes a series of colors as inputs and outputs a color that gradually changes
to from one input color to the next.

The following csEngines interpolate data:

• csSpline—interpolates an arbitrary, non-uniform spline and outputs a weighted
array that defines a weight for each key in the spline.

• csSelectorEng—selects one coordinate from an array input as its single output.
Derived classes include csSelectorEng3f and csSelectorEng4f.

• csInterpolator—interpolates between keyframe values selected from the key array
by a floating point fraction, ranging from 0 to 1.

• csColorInterpolator—linearly interpolates among a set of colors.

• csCoordinateInterpolator—linearly interpolates among sets of coordinates,
possibly generating more than one output to help produce, for example, a
geometric morph.

• csNormalInterpolator—linearly interpolates among a set of normal vectors,
possibly generating more than one output to help produce, for example, a
geometric morph.

• csOrientationInterpolator—linearly interpolates among a set of rotations.

• csPositionInterpolator—linearly interpolates among a set of positions in space.

• csScalarInterpolator—linearly interpolates between a set of floats.

110

Chapter 10: Scene Graph Engines

csInterpolator is the base class for the following engines:

• csColorInterpolator

• csCoordinateInterpolator

• csNormalInterpolator

• csOrientationInterpolator

• csPositionInterpolator

• csScalarInterpolator

The following csEngines can be used to change the features of a shape:

• csMorphVec—produces a weighted sum of attribute sets. Derived classes include
csMorphVec3f and csMorphVec4f.

• csTransformEng—transforms attribute sets consisting of points or vectors
(homogeneous coordinate implicitly 1 or 0 respectively). Derived classes include
csTransformEng3f is derived from csTransformEng.

The following sections describe each of these nodes.

Engines that Interpolate Values

csInterpolator is an abstract base class that interpolates between keys, as shown in
Figure 10-1. The keys might be location, normal, or rotation values.

Figure 10-1 Keys and Key Values

K
ey values, attributes

Keys

Engines that Interpolate Values

111

Interpolator nodes are designed for linear, keyframed animation, that is, an interpolator
node defines a piecewise linear function, f(k), on the interval [-∞, ∞]. The piecewise linear
function is defined by n keys and n corresponding key values, f(k). The keys must be
monotonic and non-decreasing. An interpolator node evaluates f(k) given any value of k.

Interpolator Engine Terminology

Interpolator engines take one or more input values, perform a function on them, and
output a result. The relationship between the input and output values can be represented
by a graph where the x axis represents the input values and the y axis represents the
output values. Graphing the points (xn, yn) shows the shape of the engine’s function.

Interpolator engine methods use the following terminology:

• keys—input values represented on the x axis.

• key values—output values represented on the y axis.

• setFraction()—a method in interpolator engines that specifies a point on the y axis.

Figure 10-2 illustrates these terms.

Figure 10-2 Engine Terminology

x

y
K

ey values

Keys

setFraction()

112

Chapter 10: Scene Graph Engines

csInterpolator Fields

The fields in csInterpolator include:

void setFraction(float fraction);
float getFraction();

csMFFloat* key();

For an explanation of key() and setFraction(), see, “Interpolator Engine Terminology” on
page 111.

csSpline

A csSpline takes an array of keys as its input and outputs a set of weights. A key is one
or more pieces of data; a weight is a fractional scaling factor. How the output is weighted
depends on the order of the spline. Figure 10-3 shows two different splines that use the
same key values, but are of different orders: piecewise linear and cubic.

Figure 10-3 Spline

Note: Release 1.0 and 1.1 of Cosmo 3D only support the piecewise linear order.

Typically, the output of a csSpline is used as the input of a csMorphEng.

x

y

A
ttribute

Time

Piecewise linear
Cubic

Engines that Interpolate Values

113

Keys and Key Values

In Figure 10-3, the X axis represents keys, such as time, and the Y axis represents any
attribute or set of attributes, such as location, color, or transparency. Y axis values are
called key values. Notice that the interval between the key values is nonuniform. After
setting the key values, csSpline fills in the values between the key values.

The difference between the piecewise linear and cubic splines is created by the different
weight factors.

Values outside of the maximum and minimum keys are clamped to the maximum and
minimum keys and key values.

Key values, such as colors or coordinates, are not kept in a csSpline object. Consequently,
a single csSpline object can define the animation spline for many keys. Key values are
typically kept in a csMorphEng engine, which calculates the weighted sum of key values
to produce the final result.

csSpline Fields

The following fields set the spline values:

csMFFloat* key() const;
csMFFloat* weight() const;

void setFraction(csFloat fraction);
csFloat getFraction();

void setBasis(const csMatrix4f& basis);
void getBasis(csMatrix4f& basis);

For an explanation of key() and setFraction(), see, “Interpolator Engine Terminology” on
page 111.

weight() specifies the multiplication factor that changes the linear graph into a spline
curve.

setBasis() specifies the matrix by which you multiply the four key values (closest to the
fraction) to get the weight values.

Note: setBasis() is ignored in Cosmo 3D release 1.0 and 1.1. All splines are piecewise
linear.

114

Chapter 10: Scene Graph Engines

csColorInterpolator

This node interpolates among a set of key values in a csMFColor to produce a csSFColor
(RGB) color.

csColorInterpolator contains the following fields:

csMFVec3f* keyValue() const;
csSFVec3f value

keyValue() is the set of RGB color values over which you want to interpolate. The
number of colors in the keyValue() field must be equal to the number of keyframes in the
key field.

For a further explanation of keyValue(), see “Interpolator Engine Terminology” on
page 111.

csCoordinateInterpolator

This node linearly interpolates among a set of MFVec3f values. This would be
appropriate for interpolating coordinate positions for a geometric morph.

csCoordinateInterpolator contains the following fields:

csMFVec3f* keyValue() const;
csMFVec3f value

keyValue() contains sets of positions used for the coordinate interpolation. The number
of elements stored in the value field is equal to the number of elements in the keyValue()
field divided by the number of elements in the key field.

For a further explanation of keyValue(), see “Interpolator Engine Terminology” on
page 111.

csNormalInterpolator

csVec3f values can represent unit vectors normal to the surface of a unit sphere.
csNormalInterpolator interpolates between normals.

The output values for a linear interpolation from a point P on the unit sphere to a point
Q also on a unit sphere should lie along the shortest arc (on the unit sphere) connecting
points P and Q.

Engines that Interpolate Values

115

When P and Q are pointed in opposite directions, they are on opposite sides of the unit
sphere, and therefore all arcs connecting them on the unit sphere are the same length, so
an infinite number of arcs describe the shortest path between the two points. The
interpolation can be along any one of these arcs.

csNormalInterpolator contains the following fields:

csMFVec3f* keyValue() const;
csMFVec3f value

keyValue() contains the vectors used for the normal interpolation. The number of
elements stored in the value field is equal to the number of elements in the keyValue()
field divided by the number of elements in the key field.

For a further explanation of keyValue(), see, “Interpolator Engine Terminology” on
page 111.

csOrientationInterpolator

A csOrientationInterpolator interpolates between two rotations by computing the
shortest path on the unit sphere between the two rotations. The interpolation will be
linear in arc length along this path.

If two vectors are pointed in opposite directions, they are on opposite sides of the unit
sphere and therefore all arcs connecting them on the unit sphere are the same length, so
an infinite number of arcs describe the shortest path between the two points. The
interpolation can be along any one of these arcs.

csOrientationInterpolator contains the following fields:

csMFRotation* keyValue() const;
csSFRotation value

keyValue() contains the keys used for the coordinate interpolation. The number of
elements stored in the value field is equal to the number of elements in the keyValue()
field divided by the number of elements in the key field.

For more information about keyValue(), see, “Interpolator Engine Terminology” on
page 111.

116

Chapter 10: Scene Graph Engines

csPositionInterpolator

csPositionInterpolator linearly interpolates between sets of values in a SFVec3f. This is
appropriate for interpolating a translation. The vectors are interpreted as absolute
positions in local space. The keyValue field must contain exactly as many values as in the
key field.

csPositionInterpolator Fields

csPositionInterpolator contains the following field:

csMFVec3f* keyValue() const;
csSFVec3f value

keyValue() contains the float values used for the scalar interpolation. The number of
elements stored in the value field is equal to the number of elements in the keyValue()
field divided by the number of elements in the key field.

For more information about keyValue(), see, “Interpolator Engine Terminology” on
page 111.

csScalarInterpolator

csScalarInterpolator linearly interpolates between a set of csSFFloat values. This
interpolator is appropriate for any parameter that is defined with a single floating point
value, for example, width, radius, and intensity.

csScalarInterpolator contains the following fields:

csMFFloat keyValue[];
csSFFloat value;

For an explanation of keyValue(), see, “Interpolator Engine Terminology” on page 111.

Engines That Change Shapes

117

csSelectorEng3F and csSelectorEng4F

csSelectorEng3F and csSelectorEng4F sets the output value to the nth item in the input
array where n is the value of selector.

csMFVec3F input[];
csSFVec3F value;

csMFVec4F input[];
csSFVec4F value;

These classes are derived from the abstract, base class csSelectorEng, which provides the
following methods for setting the selector:

void setSelector (int selector);

Engines That Change Shapes

The following engines generally use as input the output of one of the interpolator
engines for the purpose of changing some feature of a csGeoSet.

csMorphEng

csMorphEng is an abstract class derived from csEngine that morphs a set of attributes
from one setting to another, such as you might expect when one value incrementally
changes to another. The output of this engine is a weighted sum of attributes, such as a
set of coordinates. Any number of variably-sized attribute sets, however, can be packed
into the single input field.

The input and output data are held in different vector arrays, such as a csMFVec3f,
according to the dimensions of the attribute data.

csMorphEng is an abstract class. Subclasses in Cosmo 3D include csMorphEng3f and
csMorphEng4f. The only difference between the classes is the number of attributes
transformed.

118

Chapter 10: Scene Graph Engines

csMorphEng Fields

csMorphEng contains the following fields:

csMFInt* count() const;
csMFInt* index() const;
csMFFloat* weight() const;

count() is an array of integer values.

Each value represents the number of input values which will be morphed based on the
corresponding weight value. If the value of count() is positive, the next coordinate is
chosen by dereferencing and incrementing the input array pointer. If the value of count()
is negative, the index of the next coordinate is chosen by dereferencing and incrementing
the index array pointer, and that index is used to choose the coordinate from the input
array.

weight() is an array of float values.

For each weight, abs(count()) coordinates are multiplied by weight and stored in the
output array.

index() is an optional carry of indices used to index into the input array when generating
output values.

See the description of count() above for more information.

csMorphEng3f and csMorphEng4f

csMorphEng3f and csMorphEng4f are derived from csMorphEng. Their input and
output values are csMFVec3f and csMFVec4f, respectively.

Example 10-1, taken from the test program, worm.cxx, shows how to build a
csMorphEng3f engine.

Engines That Change Shapes

119

Example 10-1 Building a Morph Engine: the Worm

// Build morph engine
 MorphCoords = new csMorphEng3f;
 // “Neutral” is non-indexed and always has weight of 1
 MorphCoords->input()->setRange(0, NumRings*RingVerts, coords);
 MorphCoords->count()->set(0, NumRings*RingVerts);
 MorphCoords->weight()->set(0, 1.0f);

// build the coordinate vectors for the rings on the worm
 for (k=0,i=0; i<NumRings; i++)
 {
 for (j=0; j<RingVerts; j++,k++)
 {
 csVec3f v(coords[k]);

 v.scale(.5f, v);

 // Set displacement vectors for “target” i
 MorphCoords->input()->set(k+NumRings*RingVerts, v);
 MorphCoords->index()->set(k, k);
 }
 // targets are indexed
 MorphCoords->counts()->set(i+1, -RingVerts);
 }
 MorphCoords->connectOutput(csMorphVec3f::OUTPUT,
 SkelCoords, csTransformEng3F::INPUT);

This engine moves the rings in the worm.

csTransformEng

csTransformEng is a csEngine that translates attribute sets consisting of points or
vectors. The csTransformEng output is a single array which may be used as a csGeoSet
attribute list, for example, csCoordSet3f, csNormalSet3f.

Any number of variably-sized attribute sets can be packed into the input field.

csTransformEng is an abstract class. Subclasses in Cosmo 3D include csTransformEng3f.
csTransformEng3f input and output values are csMFVec3fs.

120

Chapter 10: Scene Graph Engines

csTransformEng Fields

csTransformEng has the following fields:

void setTransformType(TransformTypeEnum transformType);
TransformTypeEnum getTransformType();

csMFInt* count() const;
csMFInt* index() const;
csMFMatrix4f* matrix() const;

transformType() specifies the input data type. If the transformType() value is

• POINT—the input is interpreted as points with a homogeneous value of 1.0.

• VECTOR—the input is interpreted as vectors with a homogeneous value of 0.0
which are transformed by the inverse transpose of the matrices in matrix().

matrix() is an array of matrix values. For each weight, abs(count()) coordinates are
multiplied by the weight and stored in the output array.

count() is an array of integer values. Each value represents the number of input values
which will be morphed based on the corresponding matrix value. If the value of count()
is positive, the next coordinate is chosen by dereferencing and incrementing the input
array pointer. If the value of count() is negative, the index of the next coordinate is chosen
by dereferencing and incrementing the index array pointer, and that index is used to
choose the coordinate from the input array.

Example 10-2 creates a sample csTransformEng3f.

Example 10-2 Creating a csTransformEng3f

// Build transform engine
SkelCoords = new csTransformEng3f;
SkelCoords->setTransformType(csTransformEng3f::POINT);
SkelCoords->input()->setRange(0, NumRings*RingVerts, coords);

This transformation engine positions and orients the rings on the worm in worm.cxx.

121

Chapter 11

11. Sensors

Sensors are used to detect one of the following:

• Time passing.

• Pointer device events.

Sensors are often implemented to perform one of the following tasks:

• Trigger an engine at a specified interval (csTimeSensor).

This task is most commonly used to animate geometries.

• Generate rotations based on pointer device events (csSphereSensor).

• Generate translations based on pointer device events (csPlaneSensor).

• Determine whether the pointer device cursor is over a geometry (csTouchSensor).

This chapter explains how to implement sensors in the following sections:

• “csTimeSensor” on page 122.

• “csSphereSensor” on page 126.

• “csPlaneSensor” on page 130.

• “csTouchSensor” on page 134.

122

Chapter 11: Sensors

csTimeSensor

csTimeSensor generates timer events either once or repeatedly for a specified interval. A
csTimeSensor is typically used to drive animations or periodic events.

A csTimeSensor has five inputs:

• enabled

• loop

• startTime

• stopTime

• cycleInterval

A csTimeSensor’s has four output events:

• cycleTime

• fractionChanged

• isActive

• time

Enabling csTimeSensor

To generate time sensor events, you must first enable csTimeSensor by setting the
argument of the following method to TRUE:

csTimeSensor::setEnabled();

If the argument evaluates FALSE, time sensor events are not generated.

To determine whether or not a csTimeSensor is enabled, use the following method:

csTimeSensor::getEnabled();

csTimeSensor

123

Updating csTimeSensor

csTimeSensors are not automatically evaluated. The following method triggers the
evaluation of all instantiated csTimeSensors:

csTimeSensor::updateSensors();

This method should be called at regular intervals, usually once per frame, for
csTimeSensors to function as expected.

Updating with csWindow

By default, if there are instantiated csTimeSensors, csWindow calls
csTimeSensor::updateSensors() at regular intervals; the default interval is 16
milliseconds. The frequency of updates can be modified using the following method:

csWindow::enableTimer(float ms);

where the argument, ms, specifies the frequency of updates in milliseconds. This method
enables a timer event, which is fired every ms milliseconds. When the timer event is
handled csWindow calls csTimeSensor::updateSensors().

The timer event can be disabled by calling:

csWindow::disableTimer();

Note: The Optimizer class, opViewer, also calls csTimeSensor::updateSensors() by
default if there are instantiated time sensors. opViewer also contains the methods
enableTimer() and disableTimer() for enabling and disabling timer events.

Setting the Start and Stop Times

csTimeSensor::startTime() and csTimeSensor::stopTime() are csTime values
representing the times at which the csTimeSensor should start and stop generating time
sensor events.

If stopTime is less than startTime, the csTimeSensor generates events indefinitely, or
terminates at the end of one cycle if csTimeSensor:loop() is FALSE. For more information
about loop(), see “Continuing Timer Events” on page 125.

124

Chapter 11: Sensors

You can, for example, trigger events based on the time of day using
csTime::getTimeOfDay(), which returns the current time of day. Your application can
then determine whether or not that time falls between startTime and stopTime.

The following methods are used to get and set the values of startTime and stopTime:

csTimeSensor::getStartTime();
csTimeSensor::setStartTime();
csTimeSensor::getStopTime();
csTimeSensor::setStopTime();

isActive

A csTimeSensor generates an isActive event when the csTimeSensor is first activated or
deactivated. A csTimeSensor is activated if:

• Time sensors are updated.

• The current time is between startTime and stopTime.

A csTimeSensor is deactivated when the current time is past stopTime or when the
argument of loop() is FALSE and the time sensor has completed one cycle.

You can retrieve the current value of isActive by calling:

csTimeSensor::getIsActive();

Setting Cycle Duration

cycleInterval is a float representing the duration of a single cycle in seconds.

For example, if csTimeSensor is driving an animation, a cycle generally represents the
number of times you want an animation to run. To run an animation once, set
cycleInterval to the length of the animation. To run an animation twice, set cycleInterval to
twice the length of the animation.

The following two methods are used to get and set the value of cycleInterval:

csTimeSensor::getCycleInterval();
csTimeSensor::setCycleInterval();

csTimeSensor

125

Continuing Timer Events

csTimeSensor::loop() takes a boolean value. If it is TRUE, the csTimeSensor continues
to generate events after the completion of one cycle. If the boolean value is FALSE,
csTimeSensor only generates events for a single cycle.

The following two methods are used to get and set the value of loop():

csTimeSensor::getLoop();
csTimeSensor::setLoop();

Cycle Time Event

A csTimeSensor generates a cycleTime event whenever the csTimeSensor begins a new
cycle. cycleTime is an absolute csTime value. If the csTimeSensor runs for only a single
loop, the cycleTime event is only generated at the beginning of the loop.

The current value of cycleTime can be retrieved by calling:

csTimeSensor::getCycleTime();

Fraction Changed Event

A csTimeSensor generates a fractionChanged event on every update while the
csTimeSensor is active. fractionChanged is a float value in the range [0.0, 1.0] representing
the percentage of the current cycle completed. If the argument of loop() is TRUE, at the
beginning of the first cycle the value of fractionChanged is 0.0. However, the beginning of
all subsequent cycles generate a value of 1.0. The different value is a result of the
beginning of one cycle coinciding with the end of the previous cycle.

The value of fractionChanged is returned using the following method:

csTimeSensor::getFractionChanged();

126

Chapter 11: Sensors

csSphereSensor

csSphereSensor maps the drag motion of a pointer device into a spherical rotation about
a virtual sphere. The rotation gives the impression that the geometry is attached to the
surface of a spinning sphere.

Virtual Sphere

The center of the virtual sphere is located at the center of either the local or world
coordinate system, based on whether the argument of csSphereSensor::coordFrame() is
LOCAL or WORLD, respectively.

The virtual sphere’s radius is determined by the distance between the center and the
initial point of intersection.

Offsetting the Rotation

You can offset the rotation of the virtual sphere using the following method:

csSphereSensor::setOffset(csRotation offset);

This method adds offset to the rotation value derived from the motion of the pointer
device.

setAutoOffet() sets the value of offset in setOffset() to the value of the rotation when the
csSphereSensor is deactivated.

To enable autoOffset, call the following method with an argument that evaluates TRUE:

csSphereSensor::setAutoOffet(csBool autoOffset);

In the case where a csSphereSensor is used to rotate its associated geometry, setting
autoOffset to TRUE keeps the geometry from snapping back to its original orientation
when the csSphereSensor is activated a second time.

csSphereSensor

127

csSphereSensor Events

A csSphereSensor begins generating events when both of the following conditions are
met:

• The pointer device cursor is depressed over geometry associated with a
csSphereSensor.

• csSphereSensors are updated to determine whether the pointer device cursor is
depressed while over a geometry associated with a csSphereSensor.

While the csSphereSensor is active, it generates rotation and trackPoint events. Rotation
events represent the orientation of a geometry on the virtual sphere. trackPoint
represents the position of the pointer device cursor on the virtual sphere, as shown in
Figure 11-1.

Figure 11-1 Rotation and trackPoint Representations

The csSphereSensor stops generating events when the pointer device is released.

-z

z x

-x

y

-y

Pointer device
cursor location

Geometry
orientation

128

Chapter 11: Sensors

Updating csSphereSensor

csSphereSensor is not updated automatically. You customarily update it explicitly when
pointer device events are detected, using one of the following methods:

csSphereSensor::updateSensors();
csWindow::updateSensors();

The difference between the methods is that the arguments to the csSphereSensor version
includes pointer device coordinates.

Note: csSphereSensor inherits updateSensors() from its abstract, base class,
csPickSensor.

Setting Up csSphereSensor

The typical use of a csSphereSensor is to connect it with a transformation node. The
effect of the sensor when combined with a transformation node is to rotate associated
geometries spherically in local or world space according to the dragging motion of a
pointer device: dragging the pointer device to the right spins the front of the geometry to
the right; dragging the pointer device up spins the front of the geometry up.

Scope of csSphereSensor

A csSphereSensor is associated with all geometry in the scene graph “below” the parent
node of the csSphereSensor, as shown in Figure 11-2.

csSphereSensor

129

Figure 11-2 Placing csSphereSensor in a Scene Graph

A csSphereSensor is activated when the pointer device is depressed over its associated
geometry. However, its output events, rotation and trackPoint, can be connected to any
field in a scene graph. The effects of csSphereSensor, therefore, are not limited to its
associated geometry.

Rotating Geometry Using csSphereSensor

To enable csSphereSensor to rotate geometry spherically, you must complete the
following two tasks:

1. Connect a csSphereSensor node to a csTransform node, as follows:

csSphereSensor *sphereSensor = new csSphereSensor;
csTransform *transform = new csTransform;

sphereSensor->connect(csSphereSensor::ROTATION, transform,
csTransform::ROTATION);

Rotation events are generated by csSphereSensor.

2. Add the csSphereSensor node as a child to the parent node of the transformation
node associated with the geometry to rotate, as shown in Figure 11-2.

csShape

csShape

csTransform

csGroup

csSphereSensor

130

Chapter 11: Sensors

csPlaneSensor

A csPlaneSensor maps the drag motion of a pointer device’s events into a translation in
the XY plane of the local or world coordinate space, depending on the value specified by
csPlaneSensor::coordFrame().

Setting Up csPlaneSensor

A typical use of csPlaneSensor is to connect its output event, translation, to a
transformation node. The effect of the sensor when combined with a transformation
node is to translate associated geometry in local or world space along the XY plane
according to the dragging motion of a pointer device: dragging the pointer device to the
right moves the geometry to the right; dragging the pointer device up moves the
geometry up.

To enable csPlaneSensor to translate geometry, you must complete the following two
tasks:

1. Connect a csPlaneSensor node to a csTransform node, as follows:

csPlaneSensor *planeSensor = new csPlaneSensor;
csTransform *transform = new csTransform;

planeSensor->connect(csPlaneSensor::TRANSLATION, transform,
csTransform::TRANSLATION);

Translation events are generated by csPlaneSensor.

2. Add the csPlaneSensor node as a child to the parent node of the transformation
node associated with the geometry to translate, as shown in Figure 11-2.

csPlaneSensor

131

Figure 11-3 Placing csPlaneSensor in a Scene Graph

Scope of csPlaneSensor

A csPlaneSensor translates all geometries in the scene graph “below” the parent node of
the csPlaneSensor.

A csPlaneSensor is activated when the pointer device is depressed over its associated
geometry. However, its output events, translation and trackPoint, can be connected to
any field in a scene graph. The effects of csPlaneSensor, therefore, are not limited to its
associated geometry.

csPlaneSensor Events

A csPlaneSensor begins generating events when both of the following conditions are met:

• The pointer device cursor is depressed over geometry associated with a
csPlaneSensor.

• csPlaneSensors are updated to determine whether the pointer device cursor is
depressed while over a geometry associated with a csPlaneSensor.

The csPlaneSensor stops generating events when the pointer device is released.

csShape

csShape

csTransform

csGroup

csPlaneSensor

132

Chapter 11: Sensors

Updating csPlaneSensor

csPlaneSensor is not updated automatically. You customarily update it explicitly when
pointer device events are detected, using one of the following methods:

csPlaneSensor::updateSensors();
csWindow::updateSensors();

The difference between the methods is that the csPlaneSensor version includes pointer
device coordinates.

Note: csPlaneSensor inherits updateSensors() from the abstract, base class,
csPickSensor.

Limiting Translations

While the csPlaneSensor is active, it generates translation and trackPoint events.
Translation events represent two-dimensional translations in the XY plane based on the
motion of the pointer device. The translation value is clamped to the range defined in the
following methods:

csPlaneSensor::minPosition();
csPlaneSensor::maxPosition();

If the X or Y component of maxPosition is equal to the corresponding component in
minPosition, that component is constrained to the specified value.

Unclamped Translations

You can create unclamped translations in two ways:

• Setting maxPosition component values less than minPosition values.

• Using trackPoint events.

If the X or Y component values of csPlaneSensor::maxPosition() are less than the
corresponding component values in csPlaneSensor::minPosition(), the translations in
that component’s direction are unclamped.

csPlaneSensor

133

TrackPoint events represent unclamped drag positions of the geometry in the XY plane
of local or world space, depending on the value set in csPlaneSensor::setCoordFrame().
For more information about setCoordFrame(), see “Local or World Translations” on
page 133

To return trackPoint events, use the following method:

csPlaneSensor::getTrackPoint();

Local or World Translations

The translation of geometry associated with a csPlaneSensor occurs either in local or
world space according to the value set in the following method:

csPlaneSensor::setCoordFrame();

The argument of the method can be either LOCAL or WORLD.

csPlaneSensor Offsets

You can offset the translation of the geometry using the following method:

csPlaneSensor::setOffset(csVec3f offset);

This method adds offset to the translation value derived from the motion of the pointer
device.

setAutoOffet() sets the value of offset in setOffset() to the value of the translation when
the csSphereSensor is deactivated.

To enable autoOffset, call the following method with an argument that evaluates TRUE:

csPlaneSensor::setAutoOffset(csBool autoOffset);

In the case where a csPlaneSensor is used to translate its associated geometry, setting
autoOffset to TRUE keeps the geometry from snapping back to its original position when
the csPlaneSensor is activated for a second time.

134

Chapter 11: Sensors

csTouchSensor

csTouchSensor tracks the location of the pointer device cursor and generates up to five
outputs when the cursor is over the geometry associated with csTouchSensor. If the
pointer device cursor passes over multiple geometry, events are generated based on the
geometry nearest the camera.

Associating csTouchSensor and Geometry

A geometry is associated with a csTouchSensor when the geometry and csTouchSensor
nodes are descendants of the same node, as shown in Figure 11-4.

Figure 11-4 Placing csTouchSensor in a Scene Graph

csShape

csShape

csTransform

csGroup

csTouchSensor

csTouchSensor

135

Scope of csTouchSensor

A csTouchSensor monitors all geometries in the scene graph “below” the parent node of
the csTouchSensor. Not only does it monitor the children of csTouchSensor’s parent
node, it also monitors all the descendants of the children.

csTouchSensor Output

csTouchSensor generates up to five of the following events, each with their own
preconditions:

• isOver

• hitPoint

• hitNormal

• hitTexCoord

• touchTime

isOver Event

isOver returns a boolean value indicating whether the pointing device is over a geometry
associated with a csTouchSensor. csTouchSensor generates the isOver event when the
isOver state has just changed.

The isOver state changes whenever the pointer device cursor first passes over geometry
associated with a csTouchSensor or whenever the pointer device first passes off of the
geometry it was previously over. The isOver event is not generated constantly while the
pointer device is over a geometry.

When the pointer device cursor is over an associated geometry, the following method
evaluates TRUE:

csTouchSensor::getIsOver();

136

Chapter 11: Sensors

Hit Events

csTouchSensor generates the following three hit events whenever the pointing device is
over a geometry associated with a csTouchSensor:

• hitPoint—represents the coordinates where the pointer device cursor intersects the
geometry.

• hitNormal—represents the surface normal vector where the pointer device cursor
intersects the geometry.

• hitTexCoord—represents the surface texture coordinates where the pointer device
cursor intersects the geometry.

touchTime Events

The touchTime event represents the current time. csTouchSensor generates touchTime
events when any of the following conditions are true:

1. The pointer device cursor is over the geometry when the pointer device button is
depressed.

2. The pointer device cursor is currently over the geometry and isOver is TRUE.

3. The pointer device button is released.

137

Chapter 12

12. User Interface Mechanisms

Cosmo 3D applications either appear within a csWindow object or a window object that
you create using X window code. The window provides an interface for users to interact
with the Cosmo 3D application.

Cosmo 3D also supports user interaction by enabling the selection of screen objects.

This chapter discusses how to implement user interaction using X window code,
csWindow, and selection mechanisms.

These are the sections in this chapter:

• “Creating a csWindow” on page 137.

• “Handling User Input” on page 139.

• “Selecting Screen Objects” on page 140

• “Creating Your Own Window” on page 143.

Creating a csWindow

All of the csWindow fields have default values. You may find that they satisfy the needs
of your application. worm.cxx, for example, uses all the default values.

If you want to change the initial position, size, and mode of the csWindow object, you
use the following methods:

static void initDisplayMode(unsigned long mode);
static void initPosition(int x, int y);
static void initSize(int width, int height);

138

Chapter 12: User Interface Mechanisms

To reposition or reshape the window after its initial display, use the following methods:

static void positionWindow(int x, int y);
static void reshapeWindow(int width, int height);

To specify the title of the window or its icon, use the following methods:

static void setWindowTitle(const char *title);
static void setIconTitle(const char *title);

Note: If the title is NULL, the window has no borders, except on the PC.

To show, hide, or iconify a window, use the following methods:

static void iconifyWindow(void);
static void showWindow(void);
static void hideWindow(void);

To create a full screen window, set the position to (0, 0) and the size to the size of the
screen. To get the screen dimensions, use csWindow::get().

Manipulating the Window Stack

You can create more than one csWindow object at a time. You control the display of the
csWindow objects by manipulating the window stack: the static csWindow methods
manipulate the csWindow that is on the top of the stack.

The following methods in csWindow manipulate the window stack:

• popWindow() raises the current window to top of the window stack.

• pushWindow() lowers the current window to bottom of the window stack.

Manipulating the Window Buffers

Cosmo 3D uses two buffers:

• Front buffer—contains the graphic information currently being displayed.

• Back buffer—stores the next image to be displayed.

When the rendered image is ready to be displayed, you switch the source of the graphic
information from one buffer to the other using either swapBuffers() or
swapThisWindowBuffers().

Handling User Input

139

Handling User Input

Events, such as mouse motion, key presses, and window resize, are converted to csEvent
objects and queued on their associated csWindow. When the application is ready to
process these events the getEvents() method of each csWindow can be called to get the
array of queued csEvent’s. After processing the events, the event array should be
discarded by calling the window’s resetEvents() method.

Using Callback Functions

Retrieving and handling user events using getEvents() requires constant polling by the
application, which can waste processor time. To avoid this polling, a Cosmo 3D
application typically sets event callbacks on csWindow objects and calls the static
csWindow::mainLoop() method to handle all event processing. Using callbacks, the
application is notified when events are waiting to be processed.

To set up event callbacks, an application can use either csWindow::setFrameFunc() or the
newer (recommended) methods, setEventFunc(), setRenderFunc(), and setFreeRun().

The user-defined, callback’s return value of setFrameFunc() controls the manner in
which events are processed. The return values include:

• BLOCK—the event processing loop blocks until another event occurs on some
window.

In BLOCK mode, the callback is called for every event, but not at all when no events
are generated.

• CONTINUE—the callback is called every time the main loop goes idle.

In CONTINUE mode, events are queued and delivered when things go idle. The
callback continues to be called even when no events are generated.

Each window has its own “frameFunc” and that function is called when there are events
on that window. This model gets confusing when multiple windows use the CONTNUE
mode.

setEventFunc() defines a per-window event callback similar to setFrameFunc(), but the
mode of event handling is controlled by csWindow::setFreeRun(). When there are no
more events to process a global callback, setRenderFunc() is called indicating the
windows should be re-rendered.

140

Chapter 12: User Interface Mechanisms

When csWindow::setFreeRun() is TRUE, callbacks are invoked only when the main loop
goes idle, similar to the CONTINUE mode. Otherwise, callbacks occur with every event
but nothing happens when the main loop is idle.

With the either of these event callback mechanisms, the event information, returned by
getEvents(), is extracted from the csEvent objects. The application, however, does not
need to call resetEvents(); it is called automatically.

Querying Devices

In addition to the above csEvent-centered model, you can use the methods getMouseX(),
getMouseY(), getMouseButtons(), and getDevice() to query the current value of each
user input device. This approach is discouraged.

Selecting Screen Objects

Cosmo 3D enables the selection of screen objects in the following ways:

• csIsectAction—selects the shape closest to the origin of a ray that is intersected by
that ray.

• csCamera::pick()—selects the shape closest to the camera based on window
coordinates.

These methods use a csHit object for storing the selected objects.

Using csIsectAction

csIsectAction, when applied to the root node selects all graphical objects intersected by
a ray stored in a csSeg, as shown in Figure 12-1.

Selecting Screen Objects

141

Figure 12-1 Ray Pick Action

The shape closest to the origin of the csSeg and intersected by the line segment is
recorded in a csHit object. For information about csHit, see “Storing Selected Screen
Objects” on page 142.

Using Pick()

csCamera::pick() uses window and viewport coordinates to select the screen object
closest to the ray connecting the camera to the point. You might supply the window
coordinates using the user input methods; see “Handling User Input” on page 139.

When you supply pick() with window coordinates, the method internally uses
csContext::getViewport() to convert the coordinates to viewpoint coordinates. The
method then calls csIsectAction to construct a ray from the camera to the coordinates.
The screen object closest the camera on the ray is recorded in a csHit object. For
information about csHit, see “Storing Selected Screen Objects” on page 142.

For information about csContext::getViewport(), see “Setting the Screen Display of the
Scene” on page 97.

S csPickPoints

142

Chapter 12: User Interface Mechanisms

Storing Selected Screen Objects

csHit objects hold pointers to objects selected using a variety of mechanisms. The
methods in csHit allow you to access the information held by csHit, including:

• The index number, geomPartNumber, of the triangle, quadrilateral, or polygon inside
a csGeoSet.

• The csGeometry that was intersected.

• The csShape that was intersected.

• The normal in local space at the intersection point. (The space of the geometry that
was intersected.)

• The intersection point in local space. (The space of the geometry that was
intersected.)

• The model view matrix for the csGeometry intersected. The model view is the
concatenation of the viewing matrix and all the matrices in all csTransform objects
above the csShape node.

• The normal in world space at the intersection point. (The space of the camera used
to calculate the hit.)

• The list of nodes leading from the root of the scene graph to the intersected
csGeometry.

• The intersection point in world space. (The space of the camera used to calculate the
hit.)

• Distance of the intersection from the csSeg origin, which is the same as the distance
from the csCamera object.

• The line segment, csSeg, expressed in three dimensions, that was used in the
intersection test.

Creating Your Own Window

143

Creating Your Own Window

Instead of using the window provided by Cosmo 3D, csWindow, you can create your
own window using X11 or WIN32 window code. In this case your application controls
the csContext, events, and window, as shown in Figure 12-2.

Figure 12-2 Creating Your Own Window

Sample Window Code

For sample code that shows you how to create your own window, see the demonstration
programs, cubex.cxx and cubew32.cxx.

Application

csContext

GLXContext

csEvent

X Windows

Window

145

Chapter 13

13. Multiprocessing

If you would like to display two views of the same scene graph, you need to use the
multiprocessing capabilities of Cosmo 3D. You might, for example, like to display a
ground-view and an over-head view of the same scene at the same time. You can
accomplish this by creating a thread for each view and connecting each to their own
csWindow and csContext, as shown in Figure 13-1.

Figure 13-1 Multiprocessing

This chapter describes how to implement multiprocessing in the following sections:

• “Implementing Multiprocessing” on page 146.

• “Thread Blocking” on page 148.

• “Multithreaded Example” on page 150.

Scene graph

csWindow 0

Graphics pipeline 0

Graphics pipeline 1

csWindow 1

Thread 0
csContext 0

Thread 1
csContext 1

146

Chapter 13: Multiprocessing

Implementing Multiprocessing

One rule that you must follow when implementing multiprocessing is the scene graph
cannot be modified during rendering. Cosmo 3D does not provide a mechanism for
concurrent scene graph modification and drawing.

The consequence of this rule is that you must implement semaphores to block the action
of the application or draw threads.

Note: OpenGL Optimizer provides the semaphore class, opBarrier.

The following sections describe how to implement threads.

Creating Threads

For each view of the scene graph you want to display, you use a different thread. Each
thread is bound to a csWindow and a csContext.

Threads must be created using csThread. Threads created in other ways produce
unpredictable results.

A thread can only have one context attached to it at a time. Conversely, each thread that
attempts to draw must have a separate context. Unpredictable results occur if you try to
share a context with more than one thread.

A context attached to one thread cannot be used by another thread until the first thread
releases it using csContext::releaseCurrent().

Implementing Multiprocessing

147

To create a thread and bind it appropriately, use the following procedure:

1. Create a thread, as follows:

csThread* drawThread = new csThread(drawThreadEntry, NULL);

2. Bind the thread to a csWindow and csContext using csContext::makeCurrent(), as
follows:

static void
drawThreadEntry(void* arg)
{

csWindow *theWindow;
csContext *theContext;

theContext = theWindow->getThisWindowContext();

theContext->makeCurrent(theWindow);
// Context is now current; scenes will be drawn in theWindow.

...
}

Starting Threads

Whether or not a thread runs immediately depends on the csThread constructor you use.
The first form, csThread(), does not start executing. This behavior allows you to load
thread-related parameters before using csThread::start() to actually start the thread.

The second form of the constructor, csThread(Entry* entryPoint, void* arg=NULL),
allows you to load thread-related parameters in the argument. For that reason, it begins
execution immediately.

148

Chapter 13: Multiprocessing

Thread Parameters

Thread-related parameters include the following csThread methods:

• numProcessors()—returns the number of usable processors on the system.

• setStackSize()—sets the stack size to be used for this thread when it starts.

Exiting Threads

A thread only terminates execution when it calls csThread::exit() on itself. Cosmo 3D
does not support termination of threads by other threads.

Additional Thread Controls

The following csThread methods control the execution of threads:

• sleep()—suspends the calling thread for the number of microseconds specified in
the argument.

• wait()—waits for this thread to terminate.

Thread Blocking

In general, a Cosmo 3D application has two kinds of threads:

• The application thread, which handles events and creates draw threads.

• Multiple draw threads, which render different views of the scene graph.

In general, when one kind of thread is active, the other must be blocked. So while the
application thread handles events and modifies the scene graph, the draw threads must
be blocked and, conversely, while the draw threads are active, the application thread
must be blocked from modifying the scene graph, as shown in Figure 13-2.

Thread Blocking

149

Figure 13-2 Blocking Action of Multiple Threads

The general order of events displayed in Figure 13-2 is as follows:

1. The application and draw threads are created and initialized.

2. The draw threads try to render but are stopped.

3. The application thread modifies the scene graph.

4. The scene graph is cleaned using csField::cleanFields().

5. The application thread enters the Draw Barrier (semaphore) when it is ready to
render the scenes.

6. The application thread tries to run but is stopped by the Swap Barrier until all draw
threads have run.

7. The remainder of the draw threads run.

8. The draw threads enter the Swap Barrier.

9. when all threads enter the Swap Barrier they are released. The draw threads
immediately enter the Draw Barrier and block.

10. The application thread modifies the scene graph.

11. The procedure repeats itself starting again at step 4.

T i m e

Modify
scene graph

Drawimage

Modify
scene graph

Drawimage

Draw barrier

Swap barrier

Draw
threads

Application
thread

150

Chapter 13: Multiprocessing

Cleaning the csContext Fields

Before rendering, the application thread must call csField::cleanFields() to clean the
csContext fields. This method forces the evaluation of all fields that have been dirty,
thereby circumventing the normal lazy evaluation of field values. Generally, in Cosmo
3D, fields are updated only when queried.

To use this method, tracking of dirty fields must be enabled. This method enables safe
traversal of a scene by parallel rendering threads; lazy evaluation is not thread-safe.

To clean the fields, you must:

1. Enable cleaning by using the following method:

csField::enableDirtyFieldTracking();

2. Clean the fields by calling the following method each frame:

csField::cleanFields();

To see if dirty field is enabled, use the following method:

csField::isDirtyFieldTrackingEnabled()

Multithreaded Example

For an example of a multi-threaded application, see twothread.cxx in
.../optimizer1.1/demos/optimizer/misc/.

151

Chapter 14

14. Optimizing Rendering

One of the greatest challenges developers face is optimizing application performance.
This chapter describes the Cosmo 3D nodes and programming techniques that can help
optimize your application’s performance.

The more vertices calculated and rendered, the slower the application’s performance. If
you can reduce calculations and rendering, you can improve application performance.

The following sections list means by which you can reduce the number of calculations
made and the number of vertices rendered:

• “Face Culling” on page 152.

• “Back Patch Culling” on page 152.

• “Level of Detail Reduced for Performance” on page 160.

• “Culling the View Frustum” on page 160.

• “Performance Programming Techniques” on page 163.

Note: For more information about performance tools, see the OpenGL Optimizer
Programming Guide.

152

Chapter 14: Optimizing Rendering

Face Culling

When solid, three-dimensional geometry is rendered, the side of it facing away from the
camera is normally hidden by the side that faces the camera. For example, when a sphere
is rendered, you normally only see its front side.

You can avoid rendering the back side of a geometry using the setCullFace() method,
defined in csContext and csGeoSet as follows:

void setCullFace(csContext::CullFaceEnum cullFace);

The argument in setCullFace() specifies how much of a geometry is rendered. The
possible argument values, enumerated in csContext::CullFaceEnum(), include

• NO_CULL—Both front and back sides of geometries are rendered.

• FRONT_CULL—Only the back sides of all geometries are rendered.

• BACK_CULL—Only the front sides of all geometries are rendered.

• BOTH_CULL—Geometries are not rendered.

getCullFace() returns one of these values, whichever is current.

Not rendering either the front or back side of a geometry improves rendering
performance.

Back Patch Culling

Back patch culling, like back face culling, eliminates from the rendering process parts of
a geometry. Whereas back face culling is based on triangles, back patch culling is based
on primitives, such as a tristrip or trifan. If, for example, you want to cull back faces:

• Back face culling prevents all triangles on the back side of a geometry from being
rendered.

• Back patch culling prevents all primitives wholly on the back of the geometry from
being rendered.

If any part of a primitive is on the front of the geometry, the entire primitive is
rendered, regardless of what part is on the front or back of the geometry.

To optimize the performance of your application, you would commonly back patch cull
and then back face cull your scene graph.

Back Patch Culling

153

Figure 14-1 shows the same geometry before and after back patch culling.

Figure 14-1 Before and After Back Patch Culling

Back Patch Culling Advantage

Back patch culling occurs before the primitives are processed by the graphics pipeline.
As a result, back patch culling off-loads some of the graphics pipeline work to the CPU,
yielding an added degree of parallelism between the two processors.

In back face culling, all of the triangles in a geometry are processed and then those on one
side of a geometry are discarded. The amount of processing can be significant, including

1. Sending vertex data across the bus.

2. Transforming the vertices from object coordinates to clip coordinates.

3. Clipping to the viewing frustum.

Not displaying back faces is only a small part of the face processing. Consequently,
culling back faces may not significantly enhance application performance.

In back patch culling, all primitives seen only on one side of a geometry are culled before
their triangles are processed by the graphics pipeline. Back patch culling often improves
application performance by not performing unnecessary processing.

154

Chapter 14: Optimizing Rendering

Back patch culling usually reduces the work done by the graphics hardware but it does
increase the workload of the host. Performance is enhanced when the time spent
performing back patch culling is roughly equal to the time spent processing culled
triangles in the graphics hardware.

When to Use Back Patch Culling

Back patch culling is most effective when:

• The primitives are composed of many elements.

• Most primitives are not on the front and back sides of geometric shapes.

If the primitives are short, the processing time of the back patch culling might
approximate the rendering time for no net gain in performance. If most of the primitives
wrap around to both sides of a geometry, few primitives are back patch culled.

Method of Calculation

To determine which side of a geometry an element of a primitive is on, the angle between
the viewing vector and the normal to each element of a primitive is calculated. If the
viewing angle is less than 90 degrees, the element is on the front of the geometry, as
shown in Figure 14-2.

Figure 14-2 Viewing Angle

View vector

Face Normal

Viewing angle

Back Patch Culling

155

Updating the View Vector

As long as you use csDrawAction::apply() to initiate the back patch culling, you never
need to calculate the view vector.

If you need greater control over the Draw process and use csDrawAction::draw(), you
need to update the view vector using csDrawAction::updateViewVector().
csDrawAction::getViewVector() returns the view vector.

Normals

Two types of normals can be used to calculate the viewing angle:

• Face normal—the normal to the surface of an element.

• Primitive normal—the normal to all of the vertices of the elements when the
PER_VERTEX_NORMAL binding is used, or the normal to the csGeoSet when any
other binding is used.

Figure 14-3 shows these two types of normals.

Figure 14-3 Face and Primitive Normals

Face normals can be calculated given the vertices; primitive normals must be provided
by the scene graph.

The direction of the face normal follows the right hand rule: your thumb points in the
direction of the normal when the fingers on your right hand wrap in the direction of the
ordered vertices, as shown in Figure 14-4.

Face normal

Primitive normal

Primitive normal

Primitive normal

156

Chapter 14: Optimizing Rendering

Figure 14-4 Direction of Normals

Choosing the Type of Normal

The csGeoSet method, setBPCullVertNormModeEnable(), sets the type of normal used
to calculate the viewing angle: if the argument to the method evaluates TRUE, primitive
normals are used, if the argument evaluates FALSE, face normals are used.

There is often a performance hit associated with face normals because they are calculated
whereas primitive normals are provided by the scene graph. This performance hit occurs
only when the back patch culling data is dynamically rebuilt, as explained in “Building
Back Patch Culling Data for a csGeoSet” on page 158. The data is not rebuilt unless the
primitive’s coordinates or normals are changed.

csGeoSet::getBPCullPrimNormModeEnable() returns TRUE or FALSE, depending on
whether the mode is primitive normals or face normals, respectively.

Primitive normals are used by default with the following primitive types:

• csLineSet

• csLineStripSet

• csPointSet

Normal goes into page Normal comes out of page

0
1

2

0

1

2

Back Patch Culling

157

Face normals are used by default with the following primitive types:

• csPolySet

• csQuadSet

• csTriFanSet

• csTriSet

• csTriStripSet

If normals are not provided for a csGeoSet and the primitive normal mode is enabled,
the csGeoSet is never back patch culled.

Using Back Patch Culling

There are two steps you take to implement back patch culling:

• Enable back patch culling.

• Build back patch culling data.

Enabling Back Patch Culling

You enable back patch culling by setting csDrawAction::setBPCullMode() with one of
the following arguments:

• NONE—Disables back patch culling.

• DRAW_FRONT_FACING—Culls all primitives wholly on the back side of a
geometry.

• DRAW_BACK_FACING—Culls all primitives wholly on the front side of a
geometry.

csDrawAction::getBPCullMode() returns the back patch culling mode.

Once back patch culling is set, it is carried out whenever an apply() method is invoked
with a csDrawAction.

158

Chapter 14: Optimizing Rendering

Building Back Patch Culling Data for a csGeoSet

Before calling a csDrawAction, which triggers back patch culling, you must first build
back patch culling data for the csGeoSets of the scene. You only need to call
csGeoSet::buildBPCullData() once; afterwards, the data can be automatically
recomputed.

If back patch data does not exist for a csGeoSet, nothing is culled by back patch culling.
You can check to see if back patch data exists for a csGeoSet by using
csGeoSet::existsBPCullData().

Back patch data is written to, and read from .csb files.

You can delete back patch data using csGeoSet::deleteBPCullData().

Building Back Patch Culling Data for a Scene Graph

csGeoSet::buildBPCullData() builds the back patch culling data for a csGeoSet. It is the
job of the application, however, to recursively go down through the scene graph and
build back patch culling data for all of the csGeoSet nodes in a scene graph.

Updating Back Patch Culling Data

As the coordinates or the normals of primitives are changed, whether or not a primitive
should be culled might also change. Optimizer, by default, automatically updates back
patch culling data and culls the primitives correctly.

You can, however, turn off this automatic updating by setting
csGeoSet::setBPCullDynamicBuildMode() to FALSE. Setting the argument to TRUE
enables the automatic updating of back patch culling data.

csGeoSet::getBPCullDynamicBuildMode() returns TRUE if back patch culling data is
automatically recomputed when csGeoSets change their coordinates or normals.

Back Patch Culling

159

Back Patch Culling Code

Now that you understand all the facets of back patch culling, Example 14-1 presents the
series of calls your application must make to implement back patch culling.

Example 14-1 Implementing Back Face Culling

// Create a draw action.
csDrawAction *drawAction = new csDrawAction;
...

// Set the back patch culling mode.
drawAction->setBPCullMode(csDrawAction::DRAW_FRONT_FACING);

// Build scene graph.
csNode *scene = new csNode;
...

// Build back patch culling data for scene graph by using
// csGeoSet::buildBPCullData() in the following developer-supplied
// method.
buildBPCullSceneData(scene);

// Apply the draw action to the scene graph.
drawAction->apply(scene);

160

Chapter 14: Optimizing Rendering

Culling the View Frustum

View frustum culling eliminates from the rendering list all of those shapes not in the
viewing frustum.

View frustum culling works best if the objects in a csGroup node are close together, for
example, all of the nodes representing a body are linearly hierarchical. When this is the
case, the CULL process only needs to visit the top of the body subgraph. If the body
nodes were distributed horizontally, the CULL process would have to visit at least some
of the other body nodes.

View frustum culling also works best when the csShapes are small compared to the full
database size.

Objects that are roughly the same length in each of the three dimensions cull better than
long, thin objects. An object that spans the database, for example, a beam across the
ceiling of the building, cannot be culled as easily as two halves of the beam. It may be
useful to divide up objects that can be easily divided.

OpenGL Optimizer provides tools to group together in the scene graph nodes whose
shapes close together in world space.

Level of Detail Reduced for Performance

The children of a level of detail (csLOD) node each encapsulate a shape at a different
level of detail. The factor of resolution between children of a csLOD is often one quarter;
so when a lower resolution child replaces the current csLOD child displayed, only one
quarter of the current number of vertices need to be rendered. The maximum reduction
of detail is when all of the vertices of the highest-resolution image are reduced to a single
pixel.

The csLOD (level of detail) node is a subclass of csSwitch. csLOD switches between its
children nodes based on the proximity of an object to the camera.The further a shape is
from the viewer, the less resolution needed to display it. Cosmo switches between the
children automatically, based on range, to display a shape at the correct level of detail.

Level of Detail Reduced for Performance

161

csLOD allows you to reach a compromise between performance and the level of detail
rendered. For high quality images, a shape close to the camera should be rendered in
high detail. When a shape recedes from the camera, the same level of detail is not
necessary. Reducing the level of image detail reduces the number of vertices required to
render a shape, which results in improved performance.

OpenGL Optimizer can create the csLOD child nodes.

Choosing a Child Node Based on Range

The distance, called the range, that determines which child of the csLOD is displayed is
defined as the distance between a camera and a shape’s center. Each child node of a
csLOD node is associated with a range of distance values. The range is computed during
the traversal of the scene graph. You set the range value using csLOD methods:

void setCenter(const csVec3f& c);
void getCenter(csVec3f &c) const;

void setRange(int index, float nearDistance,float farDistance);
void setRangeNear(int child,float distance);
void setRangeFar(int child,float distance);

int getNumRanges() const {return numRanges; }
float getRangeNear(int child) const;
float getRangeFar(int child) const;

The setCenter() method specifies the center of the LOD. The center point aids in
calculating the range between the camera and the shape.

The setRange() method specifies the ranges over which a child node of the csLOD node
is selected for display. The number of ranges must correspond to the number of csLOD
child nodes. If that is not the case:

• If too few ranges are specified, the highest-order child nodes are ignored.

• If too many ranges are specified, the extra ranges are ignored.

Instead of using setRange(), you can use setRangeNear() together with setRangeFar() to
specify the range over which a child node of a csLOD node is selected for display.

162

Chapter 14: Optimizing Rendering

The camera may disregard range values and

• Display an already-fetched level of detail while a higher level of detail is
downloaded from disk.

• Adjust the level of detail displayed to maintain a constant frame rate; this is always
the case if you leave the range() field empty.

• Disregard the range values for any other implementation-dependent reason.

Tip: For best results, specify ranges only where necessary; give browsers as much
freedom as possible to choose levels of detail based on performance.

Transitioning Between Levels of Detail

The transition() method specifies the range over which one csLOD child changes into
the next, as shown in Figure 14-5.

Figure 14-5 csLOD Ranges

High resolution image

Low resolution image

Transition region

Range 1

Range 2

Performance Programming Techniques

163

Performance Programming Techniques

The following sections provide programming tips for improving the performance of
your application:

• “Minimize Use of csAppearance Fields” on page 163.

• “Minimize Use of csAppearance Modes” on page 163.

• “Indexing csGeoSet Attributes” on page 164.

• “Setting the Transformation Matrix Directly” on page 164.

• “Compiling Part of a Scene Graph” on page 164.

Minimize Use of csAppearance Fields

Many of the fields in csContext set the appearance of a geometry. The fields in
csAppearance match those in csContext. Setting a csAppearance field overrides the
values of the same fields set in csContext. Overriding csContext values, however,
reduces performance because the field has to be reevaluated every time the
csAppearance object is applied.

To maximize performance:

• Set csContext fields to values that satisfy a majority of the shapes in a scene.

• Set the inherit field in csAppearance to inherit, not apply, those fields.

In this way, you set the minimum number of csAppearance fields.

Minimize Use of csAppearance Modes

Some of the fields set in csAppearance are much more graphics-intensive than others. In
particular, the blending, texture, and lighting fields require larger amounts of CPU time.
To improve performance, it is better not to turn on these modes if your application does
not need them.

164

Chapter 14: Optimizing Rendering

Indexing csGeoSet Attributes

You can specify the appearance of all the csGeoSet elements making up a geometry
either individually or collectively. You have the option of specifying the attribute values
sequentially, so that the first element is described by the first csAttribute values or you
can use an index system.

Choosing to index the attribute values (or not) can dramatically affect application
performance. The general rule to remember when indexing or not is to determine
whether many elements share the same vertices, or not. If many elements share the same
vertex, index the attribute values; if a vertex is not shared by many elements, specify the
attribute values of the elements sequentially.

For more information about indexing, see “Indexing Attributes” on page 23.

Setting the Transformation Matrix Directly

Whether you set the transformation matrix explicitly or you use the csContext methods
that set the transformation matrix for you, rendering performance is optimized for the
following reason: a shape can be translated, scaled, and rotated. Rather than computing
these methods every time a shape is drawn, the transformation matrix represents the
product of all three methods. Likewise, when a transformation matrix node is the parent
of many shape nodes, the transformation for all of the children shape nodes is captured
in a single transformation matrix.

Compiling Part of a Scene Graph

Although there are no restrictions on the way in which you create a scene graph, it is
customary to find that pieces deep in a scene graph branch add to pieces above them,
which add to pieces above them until an entire object is described. For example, the
lowest node in a branch might be a toe, the node above it might be the foot, the node
above that the leg, the node above that the body; taken together, the nodes describe one
side of the lower half of a body, as shown in Figure 14-6.

Performance Programming Techniques

165

Figure 14-6 Arranging Scene Graph Nodes

When an action traverses a scene graph, the more nodes it visits, the longer it takes to
execute the action. If scene graph branches are deep, the traversal can become expensive.
To correct this problem, if you find that the elements in a branch do not change often, you
can precompile that branch using csCompileAction. This action compiles a specified
subgraph into a data structure, which optimizes setting the traversal state.

To compile a subgraph, create a csCompileAction object and apply it to the root node of
the scene graph, as follows

csCompileAction *compileIt = new csCompileAction;
compileIt->apply(node_name);

node_name is the name of the node below which you want to precompile.

Torso
node

Leg
node

Foot
node

Leg
node

Foot
node

167

Chapter 15

15. Adding Sounds To Virtual Worlds

You can incorporate sound into your virtual worlds by including at least one csSound
node in a scene graph and by invoking a csSoundAction. The csSoundAction plays the
sound file specified in the csSound node. This node also includes parameters, such as
volume, for playing the sound.

This chapter describes how to set and play sound using Cosmo 3D.

These are the sections in this chapter:

• “Overview” on page 168.

• “How to Play a Sound File” on page 173.

• “Specifying Audio Files” on page 174.

• “Playing Sound in Immediate Mode” on page 177.

168

Chapter 15: Adding Sounds To Virtual Worlds

Overview

A csSound node contains the location of a sound file and the parameters used for playing
it. To play a sound file in a virtual world, attach one or more csSound objects to a scene
graph and apply a csSoundAction to it. To associate a specific sound to a specific shape,
make the csSound object and shape nodes children of the same group nodes.

A csSound node references a csAudioClip node and a csAudioClip node references a
csAudioSamples node, as shown in Figure 15-1.

Figure 15-1 Sound Classes

A csAudioSamples node contains the raw sound data. A csAudioClip node specifies
how a sound file should be played.

For more information about csAudioClip, see “How to Play a Sound File” on page 173.
For more information about csAudioSamples, see “Specifying Audio Files” on page 174.

csSound

csAudioClip

csAudioSamples

Overview

169

csSound Fields

The fields in csSound specify the sound source to play by specifying a csAudioClip
object. csSound can optionally specify the location, the direction of the sound, and the
spatial characteristics of the sound.

void setSource(csAudioClip* audioClip);
void setSpatialize(csBool spatialize);

void setControl(ControlEnum control);

void setLocation(const csVec3f& location);
void setLocation(csFloat v0, csFloat v1, csFloat v2);
void setDirection(const csVec3f& direction);
void setDirection(csFloat v0, csFloat v1, csFloat v2);

void setIntensity(csFloat intensity);
void setMaxIntensity(csFloat maxIntensity);
void setCullIntensity(csFloat cullIntensity);

void setCurrentFrame(csFloat currentFrame);
void setPriority(csFloat priority);

void setMinFront(csFloat minFront);
void setMaxFront(csFloat maxFront);
void setMinBack(csFloat minBack);
void setMaxBack(csFloat maxBack);
const csIntArray& getEvents();

The following sections describe these fields.

Choosing Sound Samples to Play

To specify how to play a sound file, pass a csAudioClips object to setSource(). The
csAudioClips object identifies a csAudioSample object, which contains the sound file to
play. For more information about csAudioClips, see “How to Play a Sound File” on
page 173.

A sound file commonly contains more than one sound sample. Some samples may
contain more than one sound channel per sound interval to create, for example, stereo.

170

Chapter 15: Adding Sounds To Virtual Worlds

To choose a starting location in a sound file, pass the starting frame to the
setCurrentFrame() field. A frame is equal to (1/SampleRate) of a second. The sample rate
might be, for example, 44KHz, or 44,000 Hz. If, for example, you pass 44000.0 into the
setCurrentFrame() field, the sound would begin playing one second (44000 × 1/44000 =
1) into the sound file.

Sound Priority

Your application can play only a limited number of sounds at the same time. The factors
that determine whether or not a sound is heard include

• The proximity of the listener to the source.

• The priority level of the sound.

Higher priority sounds are heard instead of lower priority sounds if too many sounds
could possibly be heard by the listener at the same time. Set the priority level of a sound
in the setPriority() method.

Playing the Sound File

The setControl() field provides an intuitive interface for playing the sound sample in
sound files. You pass into setControl() any of the ControlEnum values, including PLAY,
PAUSE, REWIND, FASTFORWARD, and STOP.

Locating and Directing the Sound

To enable all of the other effects implemented by the fields in the csSound node, covered
in the next section, pass a non NULL value to setSpatialize(). If you pass a NULL value
to the field, the volume is a constant value throughout the scene. This choice is
appropriate, for example, for background music.

To locate the sound source in a scene, pass its coordinates to the setLocation() field.

Cosmo 3D gives you a great deal of control over how sound propagates from the source.
When you supply a vector describing the direction of the sound, the sound propagates
in all directions, but attenuates least in specified direction. The attenuation of the sound
over distance is characterized by an ellipse, as shown in Figure 15-2.

Overview

171

Figure 15-2 Sound Direction

In this figure, (1.0, 1.0, 0.0) is passed as the direction vector to setDirection(). The ellipse
tips, accordingly, at a 45 degree angle.

Note: A transformation node can reorient the sound’s location and direction.

Cosmo 3D provides the following limiting tools to fashion the attenuation of the sound
over the ellipse:

• Maximum intensity—defines the maximum possible volume regardless of how
close the listener is to the sound source.

• Minimum intensity—defines the lowest possible volume of a sound. In practice,
since this value is often set to zero, the minimum intensity perimeter defines the
range of the sound.

The setIntensity() field specifies the volume of the sound at its source. The
setMaxIntensity() field specifies the maximum volume of a sound. If a maximum
intensity is set, as is the case in Figure 15-2, the intensity of the sound within the
maximum intensity perimeter does not attenuate and is equal to the volume specified by
setIntensity(). The maxFront() field specifies the maximum intensity perimeter within
which the listener hears the maximum volume of the sound.

Sou
nd

 d
ire

cti
on

Sound source Minimum forward sound
intensity perimeter

Maximum forward sound
intensity perimeter

172

Chapter 15: Adding Sounds To Virtual Worlds

Outside of the maximum intensity perimeter, the intensity of the sound attenuates over
distance until it reaches the minimum intensity perimeter. Beyond the minimum
intensity perimeter, the volume of the sound source is constant, defined by the
setCullIntensity() field.

Reverse Direction Sound

Cosmo 3D also provides a complimentary set of fields that allow you to define the
propagation and attenuation of the same sound in the opposite direction, as shown in
Figure 15-3.

Figure 15-3 Forward and Reverse Sound Propagation

The minimum and maximum intensities in the reverse direction are the same as those in
the forward direction. The minimum and maximum intensity perimeters, however, are
specified separately with the minBack(), and maxBack() fields.

How to Play a Sound File

173

How to Play a Sound File

You use csAudioClip to specify how to play the sound files referenced in the
csAudioSamples node.

csAudioClip contains the following fields:

csMFString* url() const;
void setSamples(csAudioSamples* samples);
void setPitch(csFloat pitch);
void setStartTime(csTime startTime);
void setStopTime(csTime stopTime);
void setDoppler(csBool doppler);
void setLoop(csBool loop);
void setDescription(const csString& description);
csTime getDuration();
csBool getIsActive();

These set() fields have corresponding get() fields. Table 15-1 describes how these fields
are used.

Table 15-1 csAudioClip Fields

Field Description

url Specifies a WWW URL where the sound source file can be found.

setSamples Attaches the csAudioClip object to a csAudioSamples object.

setPitch Adjusts the pitch of a sound sample.

setStartTime Specifies a beginning time for the sound sample to begin playing. Time here
is an expression of clock time.

setStopTime Specifies an ending time for the sound sample to stop playing. Time here is
an expression of clock time.

setDoppler Enables the doppler effect, which is the attenuation of a sounds pitch based
on the velocity of the sound source relative to the listener, for example, when
a sound source, like a train whistle, approaches a listener rapidly, the pitch
sounds higher; when the same sound source passes the listener, the pitch
lowers.

setLoop Allows a sound file to keep playing.

setDescription Provides a description in the node of the sound source.

174

Chapter 15: Adding Sounds To Virtual Worlds

Example 15-1 sets all of the fields in a csAudioSamples node.

Example 15-1 Setting the Fields in a csAudioClip Object

// create a csAudioClip object
csAudioClip* clip = new csAudioClip();

// attach the audio clip to a csAudioSamples object
clip->setSamples(csAudioSamples truck_horn);

// Set the parameters of the csAudioClip object
clip->setPitch(1.0);
clip->setIntensity(1.0);
clip->setMaxIntensity(4.0);
clip->setLoop(TRUE);
clip->setDescription(“Truck horn”);

Specifying Audio Files

You use the csAudioSamples node to specify the source of the audio files and a variety
of parameters that describe those sound samples. To use the audio files specified by this
node, pass a csAudioSamples object as the argument to csAudioClip::setSamples(), for
example,

csAudioSamples* truck_horn_file = new csAudioSamples;
csAudioClip* truck_horn_style = new csAudioClip;

truck_horn_style->setSamples(truck_horn_file);

In this example, the truck_horn_file is used as the audio file for the truck_horn_style object.

getDuration Returns the duration of the playing of the sound source; subtracts
setStartTime from setStopTime.

getIsActive Returns whether or not the sound should be played.

Table 15-1 (continued) csAudioClip Fields

Field Description

Specifying Audio Files

175

csAudioSamples has the following fields:

void setFileName(const csString& fileName);
void setNumFrames(csInt numFrames);
void setSampleRate(csFloat sampleRate);
void setSampleSize(csInt sampleSize);
void setSampleType(SampleTypeEnum sampleType);
void setNumChannels(csInt numChannels);
void setSampleScale(csFloat scale);
void setLoadStatus(LoadStatusEnum loadStatus);
LoadStatusEnum getLoadStatus();
csMFByte* samples() const;

These set() fields have corresponding get() fields. Table 15-2 describes how these fields
are used.

Table 15-2 Fields of csSoundSamples

Field Description

setFileName Attaches the csAudioSample node to a specific sound source file.

 setNumFrames Is the equivalent to the sampling rate of the sound sample, for example,
44 KHz.

 setSampleRate Specifies the sampling rate of the sound sample.

setSampleSize Specifies the size of the source sound files.

setSampleType Specifies the format of the sampling rate. Valid values include
UNSIGNED_INT_SAMPLE_TYPE or FLOAT_SAMPLE_TYPE.

setNumChannels Specifies the number of channels for each sound, for example, stereo has
two channels, quad sound has four channels.

setSampleScale Scales the overall volume of the sound sample. If if sound sample was
recorded to loud or soft compared to other sound samples, you can scale
the volume of the sound file so that its volume matches that of the other
sound files.

setLoadStatus Returns the status of whether or not the sound file loaded; valid values
include LOAD_NEEDED, LOAD_FAILED, LOAD_PENDING, and
LOAD_COMPLETE.

samples Returns the multivalued array field that contains the actual audio
samples.

176

Chapter 15: Adding Sounds To Virtual Worlds

Manipulating the Audio Samples Directly

csAudioSample::samples() returns the multivalued array field that contains the actual
audio samples. This handle allows you to directly manipulate the array field. For
example, to set a sound value, use the following code:

samples->set(index, value);

To set the number of samples and then edit the array directly, use the following code:

samples->setCount(16*44400);
char *samps = samples->edit();
for(i=0;i<16*44400);i++)
 samps[i]=DETERMINE_SAMPLE(i);
samples->editDone();

Example Setting a csAudioSamples Node

Example 15-2 sets all of the fields in a csAudioSamples node.

Example 15-2 Setting the Fields in an csAudioSamples Object

// create an audio sample node
csAudioSamples* horn = new csAudioSamples;

// attach the audio sample node to a specific file
horn->setFileName(“truck_horn.xxx”);

// Set the parameters for the source sound file
horn->setNumFrames(44000.0);
horn->setSampleRate(44000.0);
horn->setSampleSize(2000);
horn->setSampleType(UNSIGNED_INT_SAMPLE_TYPE);
horn->setNumChannels(2);
horn->setSampleScale(1.0);
...

// Load the sound sample by setting the audiosample filename
horn->load();

// Make sure the sound loaded successfully
if (horn->getLoadStatus() == LOAD_FAILED)

abort();

When load() is called, Cosmo 3D reads the samples in the file into the sample field directly.

Playing Sound in Immediate Mode

177

Playing Sound in Immediate Mode

When a csSoundAction is invoked on a scene graph, the action traverses the scene graph
and gathers a list of active csSound nodes. The action notifies csContext internally of this
list of nodes. When the context is applied to the rendering pipeline, the sounds specified
in the associated csAudioSamples nodes are played.

You can also play a sound file immediately. Instead of using a csSoundAction to trigger
the playing of the sound file, you use a csSoundPlayer node.

All of the code used to play sounds, either using csSoundAction or csSoundPlayer, is
encapsulated in csSoundPlayer. Consequently, all of the field settings discussed
previously in this chapter also need to be specified in csSoundPlayer.

csSoundPlayer Methods

csSoundPlayer methods provide sophisticated control over the sound source and the
“microphone” recording the sound. Some of those controls include:

• Position of the sound source and microphone.

• Motion of the sound source and microphone; helpful in simulating a Doppler shift.

• Scaling of the sound source intensity and frequency.

• Number of recording channels.

167

Chapter 15

15. Adding Sounds To Virtual Worlds

You can incorporate sound into your virtual worlds by including at least one csSound
node in a scene graph and by invoking a csSoundAction. The csSoundAction plays the
sound file specified in the csSound node. This node also includes parameters, such as
volume, for playing the sound.

This chapter describes how to set and play sound using Cosmo 3D.

These are the sections in this chapter:

• “Overview” on page 168.

• “How to Play a Sound File” on page 173.

• “Specifying Audio Files” on page 174.

• “Playing Sound in Immediate Mode” on page 177.

168

Chapter 15: Adding Sounds To Virtual Worlds

Overview

A csSound node contains the location of a sound file and the parameters used for playing
it. To play a sound file in a virtual world, attach one or more csSound objects to a scene
graph and apply a csSoundAction to it. To associate a specific sound to a specific shape,
make the csSound object and shape nodes children of the same group nodes.

A csSound node references a csAudioClip node and a csAudioClip node references a
csAudioSamples node, as shown in Figure 15-1.

Figure 15-1 Sound Classes

A csAudioSamples node contains the raw sound data. A csAudioClip node specifies
how a sound file should be played.

For more information about csAudioClip, see “How to Play a Sound File” on page 173.
For more information about csAudioSamples, see “Specifying Audio Files” on page 174.

csSound

csAudioClip

csAudioSamples

Overview

169

csSound Fields

The fields in csSound specify the sound source to play by specifying a csAudioClip
object. csSound can optionally specify the location, the direction of the sound, and the
spatial characteristics of the sound.

void setSource(csAudioClip* audioClip);
void setSpatialize(csBool spatialize);

void setControl(ControlEnum control);

void setLocation(const csVec3f& location);
void setLocation(csFloat v0, csFloat v1, csFloat v2);
void setDirection(const csVec3f& direction);
void setDirection(csFloat v0, csFloat v1, csFloat v2);

void setIntensity(csFloat intensity);
void setMaxIntensity(csFloat maxIntensity);
void setCullIntensity(csFloat cullIntensity);

void setCurrentFrame(csFloat currentFrame);
void setPriority(csFloat priority);

void setMinFront(csFloat minFront);
void setMaxFront(csFloat maxFront);
void setMinBack(csFloat minBack);
void setMaxBack(csFloat maxBack);
const csIntArray& getEvents();

The following sections describe these fields.

Choosing Sound Samples to Play

To specify how to play a sound file, pass a csAudioClips object to setSource(). The
csAudioClips object identifies a csAudioSample object, which contains the sound file to
play. For more information about csAudioClips, see “How to Play a Sound File” on
page 173.

A sound file commonly contains more than one sound sample. Some samples may
contain more than one sound channel per sound interval to create, for example, stereo.

170

Chapter 15: Adding Sounds To Virtual Worlds

To choose a starting location in a sound file, pass the starting frame to the
setCurrentFrame() field. A frame is equal to (1/SampleRate) of a second. The sample rate
might be, for example, 44KHz, or 44,000 Hz. If, for example, you pass 44000.0 into the
setCurrentFrame() field, the sound would begin playing one second (44000 × 1/44000 =
1) into the sound file.

Sound Priority

Your application can play only a limited number of sounds at the same time. The factors
that determine whether or not a sound is heard include

• The proximity of the listener to the source.

• The priority level of the sound.

Higher priority sounds are heard instead of lower priority sounds if too many sounds
could possibly be heard by the listener at the same time. Set the priority level of a sound
in the setPriority() method.

Playing the Sound File

The setControl() field provides an intuitive interface for playing the sound sample in
sound files. You pass into setControl() any of the ControlEnum values, including PLAY,
PAUSE, REWIND, FASTFORWARD, and STOP.

Locating and Directing the Sound

To enable all of the other effects implemented by the fields in the csSound node, covered
in the next section, pass a non NULL value to setSpatialize(). If you pass a NULL value
to the field, the volume is a constant value throughout the scene. This choice is
appropriate, for example, for background music.

To locate the sound source in a scene, pass its coordinates to the setLocation() field.

Cosmo 3D gives you a great deal of control over how sound propagates from the source.
When you supply a vector describing the direction of the sound, the sound propagates
in all directions, but attenuates least in specified direction. The attenuation of the sound
over distance is characterized by an ellipse, as shown in Figure 15-2.

Overview

171

Figure 15-2 Sound Direction

In this figure, (1.0, 1.0, 0.0) is passed as the direction vector to setDirection(). The ellipse
tips, accordingly, at a 45 degree angle.

Note: A transformation node can reorient the sound’s location and direction.

Cosmo 3D provides the following limiting tools to fashion the attenuation of the sound
over the ellipse:

• Maximum intensity—defines the maximum possible volume regardless of how
close the listener is to the sound source.

• Minimum intensity—defines the lowest possible volume of a sound. In practice,
since this value is often set to zero, the minimum intensity perimeter defines the
range of the sound.

The setIntensity() field specifies the volume of the sound at its source. The
setMaxIntensity() field specifies the maximum volume of a sound. If a maximum
intensity is set, as is the case in Figure 15-2, the intensity of the sound within the
maximum intensity perimeter does not attenuate and is equal to the volume specified by
setIntensity(). The maxFront() field specifies the maximum intensity perimeter within
which the listener hears the maximum volume of the sound.

Sou
nd

 d
ire

cti
on

Sound source Minimum forward sound
intensity perimeter

Maximum forward sound
intensity perimeter

172

Chapter 15: Adding Sounds To Virtual Worlds

Outside of the maximum intensity perimeter, the intensity of the sound attenuates over
distance until it reaches the minimum intensity perimeter. Beyond the minimum
intensity perimeter, the volume of the sound source is constant, defined by the
setCullIntensity() field.

Reverse Direction Sound

Cosmo 3D also provides a complimentary set of fields that allow you to define the
propagation and attenuation of the same sound in the opposite direction, as shown in
Figure 15-3.

Figure 15-3 Forward and Reverse Sound Propagation

The minimum and maximum intensities in the reverse direction are the same as those in
the forward direction. The minimum and maximum intensity perimeters, however, are
specified separately with the minBack(), and maxBack() fields.

How to Play a Sound File

173

How to Play a Sound File

You use csAudioClip to specify how to play the sound files referenced in the
csAudioSamples node.

csAudioClip contains the following fields:

csMFString* url() const;
void setSamples(csAudioSamples* samples);
void setPitch(csFloat pitch);
void setStartTime(csTime startTime);
void setStopTime(csTime stopTime);
void setDoppler(csBool doppler);
void setLoop(csBool loop);
void setDescription(const csString& description);
csTime getDuration();
csBool getIsActive();

These set() fields have corresponding get() fields. Table 15-1 describes how these fields
are used.

Table 15-1 csAudioClip Fields

Field Description

url Specifies a WWW URL where the sound source file can be found.

setSamples Attaches the csAudioClip object to a csAudioSamples object.

setPitch Adjusts the pitch of a sound sample.

setStartTime Specifies a beginning time for the sound sample to begin playing. Time here
is an expression of clock time.

setStopTime Specifies an ending time for the sound sample to stop playing. Time here is
an expression of clock time.

setDoppler Enables the doppler effect, which is the attenuation of a sounds pitch based
on the velocity of the sound source relative to the listener, for example, when
a sound source, like a train whistle, approaches a listener rapidly, the pitch
sounds higher; when the same sound source passes the listener, the pitch
lowers.

setLoop Allows a sound file to keep playing.

setDescription Provides a description in the node of the sound source.

174

Chapter 15: Adding Sounds To Virtual Worlds

Example 15-1 sets all of the fields in a csAudioSamples node.

Example 15-1 Setting the Fields in a csAudioClip Object

// create a csAudioClip object
csAudioClip* clip = new csAudioClip();

// attach the audio clip to a csAudioSamples object
clip->setSamples(csAudioSamples truck_horn);

// Set the parameters of the csAudioClip object
clip->setPitch(1.0);
clip->setIntensity(1.0);
clip->setMaxIntensity(4.0);
clip->setLoop(TRUE);
clip->setDescription(“Truck horn”);

Specifying Audio Files

You use the csAudioSamples node to specify the source of the audio files and a variety
of parameters that describe those sound samples. To use the audio files specified by this
node, pass a csAudioSamples object as the argument to csAudioClip::setSamples(), for
example,

csAudioSamples* truck_horn_file = new csAudioSamples;
csAudioClip* truck_horn_style = new csAudioClip;

truck_horn_style->setSamples(truck_horn_file);

In this example, the truck_horn_file is used as the audio file for the truck_horn_style object.

getDuration Returns the duration of the playing of the sound source; subtracts
setStartTime from setStopTime.

getIsActive Returns whether or not the sound should be played.

Table 15-1 (continued) csAudioClip Fields

Field Description

Specifying Audio Files

175

csAudioSamples has the following fields:

void setFileName(const csString& fileName);
void setNumFrames(csInt numFrames);
void setSampleRate(csFloat sampleRate);
void setSampleSize(csInt sampleSize);
void setSampleType(SampleTypeEnum sampleType);
void setNumChannels(csInt numChannels);
void setSampleScale(csFloat scale);
void setLoadStatus(LoadStatusEnum loadStatus);
LoadStatusEnum getLoadStatus();
csMFByte* samples() const;

These set() fields have corresponding get() fields. Table 15-2 describes how these fields
are used.

Table 15-2 Fields of csSoundSamples

Field Description

setFileName Attaches the csAudioSample node to a specific sound source file.

 setNumFrames Is the equivalent to the sampling rate of the sound sample, for example,
44 KHz.

 setSampleRate Specifies the sampling rate of the sound sample.

setSampleSize Specifies the size of the source sound files.

setSampleType Specifies the format of the sampling rate. Valid values include
UNSIGNED_INT_SAMPLE_TYPE or FLOAT_SAMPLE_TYPE.

setNumChannels Specifies the number of channels for each sound, for example, stereo has
two channels, quad sound has four channels.

setSampleScale Scales the overall volume of the sound sample. If if sound sample was
recorded to loud or soft compared to other sound samples, you can scale
the volume of the sound file so that its volume matches that of the other
sound files.

setLoadStatus Returns the status of whether or not the sound file loaded; valid values
include LOAD_NEEDED, LOAD_FAILED, LOAD_PENDING, and
LOAD_COMPLETE.

samples Returns the multivalued array field that contains the actual audio
samples.

176

Chapter 15: Adding Sounds To Virtual Worlds

Manipulating the Audio Samples Directly

csAudioSample::samples() returns the multivalued array field that contains the actual
audio samples. This handle allows you to directly manipulate the array field. For
example, to set a sound value, use the following code:

samples->set(index, value);

To set the number of samples and then edit the array directly, use the following code:

samples->setCount(16*44400);
char *samps = samples->edit();
for(i=0;i<16*44400);i++)
 samps[i]=DETERMINE_SAMPLE(i);
samples->editDone();

Example Setting a csAudioSamples Node

Example 15-2 sets all of the fields in a csAudioSamples node.

Example 15-2 Setting the Fields in an csAudioSamples Object

// create an audio sample node
csAudioSamples* horn = new csAudioSamples;

// attach the audio sample node to a specific file
horn->setFileName(“truck_horn.xxx”);

// Set the parameters for the source sound file
horn->setNumFrames(44000.0);
horn->setSampleRate(44000.0);
horn->setSampleSize(2000);
horn->setSampleType(UNSIGNED_INT_SAMPLE_TYPE);
horn->setNumChannels(2);
horn->setSampleScale(1.0);
...

// Load the sound sample by setting the audiosample filename
horn->load();

// Make sure the sound loaded successfully
if (horn->getLoadStatus() == LOAD_FAILED)

abort();

When load() is called, Cosmo 3D reads the samples in the file into the sample field directly.

Playing Sound in Immediate Mode

177

Playing Sound in Immediate Mode

When a csSoundAction is invoked on a scene graph, the action traverses the scene graph
and gathers a list of active csSound nodes. The action notifies csContext internally of this
list of nodes. When the context is applied to the rendering pipeline, the sounds specified
in the associated csAudioSamples nodes are played.

You can also play a sound file immediately. Instead of using a csSoundAction to trigger
the playing of the sound file, you use a csSoundPlayer node.

All of the code used to play sounds, either using csSoundAction or csSoundPlayer, is
encapsulated in csSoundPlayer. Consequently, all of the field settings discussed
previously in this chapter also need to be specified in csSoundPlayer.

csSoundPlayer Methods

csSoundPlayer methods provide sophisticated control over the sound source and the
“microphone” recording the sound. Some of those controls include:

• Position of the sound source and microphone.

• Motion of the sound source and microphone; helpful in simulating a Doppler shift.

• Scaling of the sound source intensity and frequency.

• Number of recording channels.

179

Appendix A

A. Cosmo Basic Types

This chapter discusses all of the basic types that are used in other Cosmo 3D classes. The
basic class types fall into the following categories:

• Array storage—stores data.

• Vector classes—stores vectors.

• Bounding shapes—creates a volume around a specified shape.

• Field classes—specifies the classes for the node fields: single value.

• Other math classes—miscellaneous math classes.

This chapter examines each of these class categories.

These are the sections in this chapter:

• “Array Storage Class Types” on page 180.

• “Vector Classes” on page 183.

• “Bounding Volumes” on page 187.

• “Field Classes” on page 188.

• “Other Math Classes” on page 191.

180

Appendix A: Cosmo Basic Types

Array Storage Class Types

The array classes store data.

• csData—stores raw data.

• csArray—is a virtual array class.

• Array-derived classes—are derivations of csArray.

The following sections describe each of these array classes.

Data Class

The csData class is similar to malloc: it stores raw data. You can use the csData class
directly, such as in storing data in arrays, but it is more common to derive your own class
from it.

The methods in the class set and delete the amount of storage necessary for the data
being stored:

void* getData () const;
int getSize () const;
void operator delete (void* ptr);
void* operator new (size_t nbytes);

getData() returns a pointer to the raw bytes of the csData.

getSize() returns the size of the data.

new() creates a new csData containing nbytes bytes.

delete() deallocates the object created by the new() method.

Array Storage Class Types

181

Array Classes

csArray is a virtual array class from which all other array classes are derived. Arrays are
used as storage vehicles for a variety of types. Cosmo 3D provides a wealth of
csArray-derived array classes for different types, including:

• csPtrArray—An array of pointers often used to point to values in other arrays.

• csFieldArray—An array of fields.

• csByteArray—An array of bytes.

• csIntArray—An array of integers.

• csFloatArray—An array of floats.

• csVec2fArray—An array of Vec2f classes.

• csVec3fArray—An array of Vec3f classes.

• csVec3sArray—An array of Vec3s classes.

• csVec4fArray—An array of Vec4f classes.

• csMatrix4fArray—An array of Matrix4f classes.

• csRotationArray—An array of rotation vectors.

• csStringArray—An array of strings.

• csShortArray—An array of shorts.

• csFieldInfoArray—An array of field descriptions.

• csRefArray—An array of pointers to containers.

• csEventArray—An array of events; an event is a user action, such as a mouse click.

The methods in all of the array classes are similar, as described in the following section.

Array Methods

The methods in csArray and all of the derived array classes are similar; the differences
stem from the different types filling the arrays. The following example explains the
methods in csIntArray but you can easily apply the same descriptions to all of the other
array classes.

182

Appendix A: Cosmo Basic Types

To fill an array, or to retrieve values from an array, use one of the set() or get() methods
in the class, respectively, replacing <type> with the base type of the array.

void set(int i, csInt t);
void get(int i, csInt& t) const;
<type> get(int i) const;
void set(const csIntArray &l);

• i is the position of the value in the array.

• tis the value of that element in the array.

The second version of the set() method allows you to copy the contents of one array to
another.

You can fill an array by setting groups of values using the following methods:

void setRange(int i, int count, csInt vals[]);
void getRange(int i, int count, csInt vals[]);
void fillRange(int i, int count, csInt vals[]);

• i is the position in the array where you want to begin setting values.

• count is the number of array elements you want to set.

• vals[] is an array of values that you want to enter into the array.

The fillRange() method sets all of the values in an array to the value passed in the
argument.

The operator, [], assigns values.

<type> operator[](int i) const;

The following methods manipulate the values in the array:

void append(<type> elt);
void insert(int index, <type> elt);
int replace(csInt old, <type> elt);
int remove(<type> elt);
void removeIndex(int i);
int fastRemove(<type> elt);
void fastRemoveIndex(int i);
int find(<type> elt) const;
void write(csOutput *out);

Vector Classes

183

• Use the append() method to add a value after the last value in an array.

• Use the insert() method to insert a value at a specified index location.

• Use the replace() method to replace one value with another.

• Use the remove() method to remove the first value it finds that matches its
argument.

• Use the removeIndex() method to remove a specific value or a value located at a
specific index.

You can also remove array elements more quickly: fastRemove() removes the array
element, elt, and replaces it with the last element of the array, whereas remove() moves
all the remaining elements down one. Also, you can remove the array element, elt, by
passing in the index value, i, to fastRemoveIndex().

You can find the index of a specific value in an array using the find() method. You can
also write the contents of the array to the csOutput passed using the write() method.

Returning Array Data

To return a pointer directly to the array data, use the following method:

<type>* getArray() const;

Vector Classes

Cosmo 3D provides a wealth of vector math classes. Vectors of different dimensions
allow for data categorization according to need, for example, a color value could include
four component values. In this case, a four component vector would be used: csVec4f.

The following sections describe the vector classes and their transformation class.

184

Appendix A: Cosmo Basic Types

Vector Math

Vectors are used in a variety of ways in Cosmo 3D. Commonly, they are used to define
orientation, rotation, and transformations. Cosmo 3D provides the following
multi-dimensional vectors.

• csVec2f— represents a two-element floating point vector.

• csVec3f— represents a three-element floating point vector.

• csVec3s— represents a three-element short-integer vector.

• csVec4f— represents a four-element floating point vector, often used as a
homogenous space coordinate.

• csVec4ub— represents a four-element unsigned byte vector, most often used as a
color value. The elements range from 0 to 255, inclusive.

Vector Methods

The methods in the csVec2f, csVec3f, csVec3s, csVec4f, classes are similar; the differences
between them stem only from additional argument members that account for the
different dimensions of the classes. The following discussion describes the csVec4f class,
but can easily be extended to the other classes as well.

The classes use the following overridden get() and set() methods to return and define,
respectively, the vectors.

void set(float a, float b, float c, float d);
void get(float *a, float *b, float *c, float *d) const;
void set(int i, float f);
float get(int i) const;
void set(const csVec4f &v);
void get(csVec4f &v) const;

For the csVec2f and csVec3f classes, only two or three arguments, respectively, are
passed to the set and get methods.

Vector Classes

185

The classes contain the following methods:

csBool equal(const csVec4f& v) const;
csBool almostEqual(const csVec4f& v, float tol) const;
void negate(const csVec4f& v);
float dot(const csVec4f& v) const;
void add(const csVec4f& v1, const csVec4f& v2);
void sub(const csVec4f& v1, const csVec4f& v2);
void scale(float s, const csVec4f& v);
void addScaled(const csVec4f& v1, float s, const csVec4f& v2);
void combine(float a, const csVec4f& v1, float b, const,

csVec4f& v2);
float sqrDistance(const csVec4f& v) const;
float normalize();
float length() const;
float distance(const csVec4f& v) const;
void xformPt(const csVec4f& v, const csMatrix4f& m);
void xformVec(const csVec4f& v, const csMatrix4f& m);

The methods have the following functionality:

• almostEqual()—returns TRUE if the values are within tol of each other.

• negate()—negates the vector, which, in effect, reverses its direction.

• scale()—enlarges or reduces a vector by the multiplier passed in.

• addScaled()—adds to a vector the scaled vector passed in.

• combine()—performs the vector addition of two vectors.

• sqrDistance()—provides the distance squared.

• normalize()—makes the vector orthogonal to its original direction.

• distance()—determines the distance between two vectors.

• xformPt()—transforms the point by the matrix passed in.

• xformVec()—transforms the vector by the matrix passed in.

186

Appendix A: Cosmo Basic Types

The classes also provide the following write and operator methods:

void write(csOutput *out);

csVec4f& operator=(const csVec4f &v);
csVec4f& operator=(float v);
float& operator[](int i);
float operator[](int i) const;
csBool operator==(const csVec4f &v) const;
csBool operator!=(const csVec4f &v) const;

The write() method prints the vector to the device or file defined by out.

The operator() method defines an operation that can be performed on two vectors. The
first two operator methods are assignment operators, the second two are access
operators, and the last two are equality operators. For example,

csVec2f *myVec = new csVec2f();
csVec2f *yourVec = new csVec2f();
...

if (myVec == yourVec) {...}

csVec3s

The methods in csVec3s are the same as those in the csVec3f class.

csVec4ub Methods

The csVec4ub class contains a subset of the above methods, including the set(), get(),
equal(), write(), and operator() methods for two-, three-, and four-dimensional ubyte
quantities. For example, the four-dimensional definition is

csVec4ub(ubyte a, ubyte b, ubyte c, ubyte d);

Transforming csVec3f Vectors

csVec3f vectors are commonly used to specify the placement and orientation of objects
in world space. There are two ways to transform a csVec3f when passing a csMatrix4f
into xform():

Bounding Volumes

187

• A csVec3f::xformPt(const csVec3f& v, const csMatrix4f& m) transform vector sets a
csVec3f vector, v, to be the first three components of (v,1) * m where v is treated as a
row vector.

• A csVec3f::xformVec(const csVec3f& v, const csMatrix4f& m) transform point sets
this vector to be v, thought of as a row vector, times the 3X3 submatrix formed by
the first 3 rows and first three columns of m. This is most useful for non-projective
transformations.

Bounding Volumes

Bounding volumes provide an efficient means of determining which shapes are in and
out of the view frustum. The bounding volume for all csNodes is a sphere, as shown in
Figure A-1.

Figure A-1 Bounding Sphere

188

Appendix A: Cosmo Basic Types

Cosmo 3D provides two bounding shapes as well as an abstract class from which you can
derive your own bounding shapes.

• csBound— is the abstract base class from which bounding objects are derived.

• csBoxBound—prescribes the minimum-sized box that can enclose an object.

• csSphereBound—prescribes the minimum-sized sphere that can enclose an object.

csBound provides methods to compute a bounding object around a group of points,
boxes, or spheres, and to extend an existing bounding object by any of these. In addition,
there are methods to determine if a point, bounding box, or bounding sphere is contained
entirely within a bounding object. Methods are also provided to transform bounding
objects using a matrix, test it for emptiness, or test it for intersection with a line segment.

csNodes use csSphereBound for efficient bounding updates and checking.

csGeoSets contain a csBoxBound because it provides a tighter bound around the
vertices.

Field Classes

Together, fields and methods comprise a scene graph node. A field is a class with set()
and get() methods that set and return the values of the field. Fields can also have other
methods that perform other operations related to setting or returning the field value.

Cosmo 3D contains the following Field classes:

• csField— represents a simple data type, such as float, csVec3f, and arrays of simple
types.

• csFieldInfo—maintains information about the fields of a class including string
name, integer id, default value, and a pointer to a member in csContainer.

• csMField— is an abstract class containing some of the functionality common to
arrays.

• csAtomField<Type>—is a single-valued atomic field type.

• csArrayField<Type>—is a single-valued array field type.

You can substitute for <Type> any character type, such as Int, Short, or Field. The
following sections describe each of these field classes.

Field Classes

189

csField

csField is the abstract class from which all of the other field classes are derived. Because
it does not have a constructor, you cannot use it directly. See “The csField Class” on
page 5 for additional information on csField.

csFieldInfo

csFieldInfo maintains information about the fields of a class, including the string name,
integer id, default value, and storage offset from class instance, all of which you set in the
constructor:

csFieldInfo(const char *name, short id, char csContainer::*offset);

The class methods provide means of obtaining the argument values.

const char* getName();
short getId();
char csContainer::* getOffset();

csFieldInfo also provides methods that allow you to create an enumeration by pairing
an integer with a string, and to create an alias for the field.

void addEnum(int e, const char *str);
void addAlias(const char *alias);

csMField

csMField is an abstract class containing some of the functionality common to arrays,
including a container object, an index, and a storage value, as defined by the constructor:

csMField(csContainer *p, short i);

The set and get methods in the class define array-type functionality, including returning
an offset value in the array where Cosmo 3D starts reading the array. The stride function
allows you to step through the values in the array at increments of two or more values at
a time, for example, if the stride is two, Cosmo 3D uses every other value in the array.

The count and size methods set and return the number of elements in the object, such as
the number of values in an array, and the total number of elements allocated for the
object.

190

Appendix A: Cosmo Basic Types

The editDone() method allows you to signal when you have finished manipulating the
csMField object so that, for example, you can allow its values to take effect.

short getOffset() const;
short getStride() const;

void setCount(int n);
int getCount();

void setSize(int n);
int getSize();
void editDone();

csAtomField

csAtomField is a single-valued composite field type. A single value field can be
something as simple as an integer or a csVec4f.

csAtomField<Val>(csContainer *p, short i, Val *stor);

csArrayField

csArrayField is a multiple-valued array field type. It is commonly used as the type for
array class fields.

csArrayField<ValType, ValRef>(csContainer *p, short i,
csGenArray<ValType, ValRef> *stor);

The class’s set() and get() methods provide the means of setting and returning these
values.

void set(int i, ValRef t);
void get(int i, ValType& t);
ValRef get(int i);
void set(const csGenArray<ValType, ValRef> &l);

void setRange(int i, int count, const ValType vals[]);
void getRange(int i, int count, ValType vals[]);
void fillRange(int i, int count, ValRef val);

ValRef operator[](int i);

Other Math Classes

191

You can fill an array by setting groups of values using the following methods:

void setRange(int i, int count, csInt vals[]);
void getRange(int i, int count, csInt vals[]);
void fillRange(int i, int count, csInt vals[]);

• i is the position in the array where you want to begin setting values.

• count is the number of array elements you want to set.

• vals[] is an array of values that you want to enter into the array.

The fillRange() method sets all of the values in an array to the value passed in the
argument, vals[]

The operator, [], assigns values.

csInt operator[](int i) const;

Other Math Classes

Cosmo 3D includes the following classes used for mathematical calculations.

• csSeg— encapsulates a line segment.

• csPlane—encapsulates a plane.

• csFrustum— encapsulates a viewing frustum.

The following sections explain these classes.

csSeg

csSeg encapsulates a line segment in 3-space as an origin, a normalized direction vector,
and a length.

The methods in the class allow you to

• Construct a line from a pair of points.

• Create a vector given a point and polar coordinates.

• Clip a segment out of a line.

192

Appendix A: Cosmo Basic Types

csPlane

csPlane represents a half space with a normal and an offset, which together form the
parameters of the traditional Ax + By + Cz = D plane equation.

The methods in the class allow you to

• Determine the closest point on the plane to a point in space.

• Determine whether or not it intersects with a csSeg.

• Construct a plane from three points.

• Construct a plane from a point and the plane normal at a point.

• Transform the orientation of the plane.

csFrustum

csFrustum is a truncated, possibly asymmetric pyramid for the purposes of testing
objects against view volumes.

The methods in the class allow you to

• Determine if a point or shape is in the frustum.

• Copy the contents of the frustum.

• Set and return the near and far clipping planes of the frustum.

• Create an orthogonal frustum.

• Transform the frustum.

• Return the aspect of the frustum and the position of the camera.

193

Appendix B

B. Cosmo 3D Sample Application

This appendix discusses a simple Cosmo 3D application, called cube.cxx. The files are in
the following locations:

In cube.cxx, two cubes, one red the other green, slowly revolve, as shown (statically) in
Figure B-1.

This chapter helps you understand the basic structure of a Cosmo3D application, and
explores some of the functionality you can implement in your own applications. The
remaining chapters in the book describe the classes and concepts presented in this
chapter in greater detail.

Source Executable

UNIX /usr/share/Optimizer/src/apps/Cosmo3D
directory

/usr/sbin

NT C:\Program Files\Silicon
Graphics\Optimizer\src\apps\cosmo3D

C:\Program
Files...\Optimizer\bind

194

Appendix B: Cosmo 3D Sample Application

These are the sections in this chapter:

• “Cube.cxx Explained” on page 195.

• “Understanding the Different Parts of Cube.cxx” on page 202.

• “Scene Graph for Cube.cxx” on page 203.

Figure B-1 Cube Application

Cube.cxx Explained

195

Cube.cxx Explained

Example B-1 shows the cube.cxx application. It also includes embedded comments (not
found in the cube.cxx file) that explain the functionality of each section of cube.cxx. The
sections that follow Example B-1 explain the structure and functionality of the code in
more generic terms, so that you can understand the principles of programming Cosmo
3D applications.

Example B-1 cube.cxx

#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <Cosmo3D/csField.h>
#include <Cosmo3D/csWindow.h>
#include <Cosmo3D/csColorSet.h>
#include <Cosmo3D/csNormalSet.h>
#include <Cosmo3D/csCoordSet.h>
#include <Cosmo3D/csQuadSet.h>
#include <Cosmo3D/csContext.h>
#include <Cosmo3D/csAppearance.h>
#include <Cosmo3D/csPerspCamera.h>
#include <Cosmo3D/csOrthoCamera.h>
#include <Cosmo3D/csTransform.h>
#include <Cosmo3D/csDrawAction.h>
#include <Cosmo3D/csShape.h>
#include <Cosmo3D/csPointLight.h>
#include <Cosmo3D/csMaterial.h>
#include <Cosmo3D/csEnvironment.h>

static csGroup* makeCube();

static csTransform* fgTransform;
static csTransform* bgTransform;
static csAppearance* highlight;
static csGroup* root;
static csDrawAction* da;
static csContext* ctx;

static int doFlash = 0;
static int doBorders = 1;

int frame(void*);

196

Appendix B: Cosmo 3D Sample Application

//Start the application here

int
main(int argc, char *argv[])
{

int doOrthoCam = 0, doFullScreen = 0;

if(argc > 1)
{

argv++;
argc--;

while(argc > 0)
{

if(argv[0][0] == '-')
switch(argv[0][1])

{
case 'f':

doFlash = 1;
break;
case 'F':

doFullScreen = 1;
doBorders = 0;
break;
case 'o':

doOrthoCam = 1;
break;

}

argv++;
argc--;

}
}
// Initialize Cosmo3D
csObject::initClasses();

// define scene
root = makeCube();

Cube.cxx Explained

197

// define render window
if (doFullScreen) {

csWindow::initPosition(0, 0);
csWindow::initSize(csWindow::get(csWindow::SCREEN_WIDTH),

 csWindow::get(csWindow::SCREEN_HEIGHT));
}
new csWindow("cube");

// define rendering context
csContext *ctx = csWindow::getContext();
ctx->setDepthEnable(TRUE);
ctx->setDepthFunc(csContext::LEQUAL_DFUNC);
ctx->setCullFace(csContext::BACK_CULL);

//Set up the camera

csCamera *cam;
if (doOrthoCam)
{
csOrthoCamera *orthoCam = new csOrthoCamera;

orthoCam->setWidth(4.0f);
orthoCam->setHeight(4.0f);
cam = orthoCam;

}
else
{
csPerspCamera *perspCam = new csPerspCamera;

cam = perspCam;
}

da = new csDrawAction;
da->setCamera(cam);

cam->draw(da);

csWindow::setFrameFunc(&frame, da);
csWindow::mainLoop();

return 0;
}

198

Appendix B: Cosmo 3D Sample Application

int
frame(void*)
{

static int frame = 0;

const csEventArray &elist = csWindow::getCurrent()->getEvents();
for (int i=0; i<elist.getCount(); i++)
{
if (elist[i]->id == csEvent::KEY_PRESS) {

switch (elist[i]->key) {
case 'b':

doBorders = !doBorders;
csWindow::setWindowTitle(doBorders? "cube" : NULL);

break;
case 's':
csWindow::reshapeWindow(300, 300);

break;
case 'S':
csWindow::reshapeWindow(600, 600);

break;
case 27: // ESC

exit(1);
}

}
}

if(frame % 30 == 0 && doFlash)
ctx->pushOverrideAppearance(highlight);
else if(frame % 30 == 15 && doFlash)
ctx->popOverrideAppearance();

// clear the window
ctx->clear(csContext::COLOR_CLEAR | csContext::DEPTH_CLEAR);

// update cube rotations
bgTransform->setRotation(1.0f, 1.0f, 0.0f, CS_DEG2RAD(frame));
fgTransform->setRotation(0.5f, 0.1f, 1.0f, CS_DEG2RAD(frame));

// draw the scene
da->apply(root);

Cube.cxx Explained

199

// swap buffers
csWindow::swapBuffers();
frame++;

return csWindow::CONTINUE;
}

//Create a cube; the cube will be rendered twice.

static csGroup*
makeCube()
{

// int i;
static float cubeCoords[24][3] =
{
{-1.0f, -1.0f, 1.0f}, { 1.0f, -1.0f, 1.0f}, // +Z
{ 1.0f, 1.0f, 1.0f}, {-1.0f, 1.0f, 1.0f}, // +Z
{-1.0f, -1.0f, -1.0f}, {-1.0f, 1.0f, -1.0f}, // -Z
{ 1.0f, 1.0f, -1.0f}, { 1.0f, -1.0f, -1.0f}, // -Z
{ 1.0f, -1.0f, 1.0f}, { 1.0f, -1.0f, -1.0f}, // +X
{ 1.0f, 1.0f, -1.0f}, { 1.0f, 1.0f, 1.0f}, // +X
{-1.0f, -1.0f, 1.0f}, {-1.0f, 1.0f, 1.0f}, // -X
{-1.0f, 1.0f, -1.0f}, {-1.0f, -1.0f, -1.0f}, // -X
{-1.0f, 1.0f, 1.0f}, { 1.0f, 1.0f, 1.0f}, // +Y
{ 1.0f, 1.0f, -1.0f}, {-1.0f, 1.0f, -1.0f}, // +Y
{-1.0f, -1.0f, 1.0f}, {-1.0f, -1.0f, -1.0f}, // -Y
{ 1.0f, -1.0f, -1.0f}, { 1.0f, -1.0f, 1.0f} // -Y
};
static int numCubeCoords =

sizeof(cubeCoords)/sizeof(cubeCoords[0]);

static float cubeNorms[6][3] =
{
{ 0.0f, 0.0f, 1.0f}, // +Z
{ 0.0f, 0.0f, -1.0f}, // -Z
{ 1.0f, 0.0f, 0.0f}, // +X
{-1.0f, 0.0f, 0.0f}, // -X
{ 0.0f, 1.0f, 0.0f}, // +Y
{ 0.0f, -1.0f, 0.0f} // -Y
};
static int numCubeNorms = sizeof(cubeNorms)/sizeof(cubeNorms[0]);

// Specify the data attributes

// specify cube as 6 quads

200

Appendix B: Cosmo 3D Sample Application

csQuadSet *gset = new csQuadSet;

// cube vertices
csCoordSet3f *cset = new csCoordSet3f(numCubeCoords);
cset->point()->edit();

#if 0
for (i=0; i<numCubeCoords; i++)

cset->point()->set(i,
csVec3f(cubeCoords[i][0], cubeCoords[i][1], cubeCoords[i][2]));

#else
cset->point()->setRange(0, numCubeCoords, (csVec3f *)cubeCoords);

#endif
cset->point()->editDone();
gset->setCoordSet(cset);

// cube normals
csNormalSet3f *nset = new csNormalSet3f(numCubeNorms);
nset->vector()->edit();

#if 0
for (i=0; i<numCubeNorms; i++)

nset->vector()->set(i,
csVec3f(cubeNorms[i][0], cubeNorms[i][1], cubeNorms[i][2]));

#else
nset->vector()->setRange(0, numCubeNorms, (csVec3f *)cubeNorms);

#endif
nset->vector()->editDone();
gset->setNormalSet(nset);

gset->setPrimCount(6);
gset->setNormalBind(csGeoSet::PER_PRIM_NORMAL);

//Specify the appearance and material attributes.

// highlight, yellow.
csMaterial *hlMaterial = new csMaterial;
hlMaterial->setSpecularColor(0.0f, 0.0f, 0.0f);
hlMaterial->setDiffuseColor(1.0f, 1.0f, 0.0f);
hlMaterial->setShininess(.0078125 *16.0f);
hlMaterial->setTransparency(0.0f);

Cube.cxx Explained

201

highlight = new csAppearance;
highlight->setMaterial(hlMaterial);
highlight->setLightEnable(1);
// red cube
csMaterial *redMaterial = new csMaterial;
redMaterial->setSpecularColor(1.0f, 1.0f, 1.0f);
redMaterial->setDiffuseColor(0.8f, 0.1f, 0.1f);
redMaterial->setShininess(.0078125 *16.0f);
redMaterial->setTransparency(0.5f);

csAppearance *redAppearance = new csAppearance;
redAppearance->setMaterial(redMaterial);
redAppearance->setLightEnable(1);
redAppearance->setTranspMode(csContext::BLEND_TRANSP);
redAppearance->setTranspEnable(1);

csShape *redShape = new csShape;
redShape->setAppearance(redAppearance);
redShape->setGeometry(0, gset);

bgTransform = new csTransform;
bgTransform->setTranslation(0.0f, 0.0f, -5.0f);
bgTransform->addChild(redShape);

// green cube
csMaterial *greenMaterial = new csMaterial;
greenMaterial->setDiffuseColor(0.1f, 0.8f, 0.1f);
greenMaterial->setShininess(.0078125 *16.0f);
greenMaterial->setTransparency(0.5f);

csAppearance *greenAppearance = new csAppearance;
greenAppearance->setMaterial(greenMaterial);
greenAppearance->setLightEnable(1);
greenAppearance->setTranspMode(csContext::BLEND_TRANSP);
greenAppearance->setTranspEnable(1);

csShape *greenShape = new csShape;
greenShape->setAppearance(greenAppearance);
greenShape->setGeometry(0, gset);

fgTransform = new csTransform;
fgTransform->setTranslation(0.5f, 0.1f, -6.0f);
fgTransform->addChild(greenShape);

202

Appendix B: Cosmo 3D Sample Application

// environment
csPointLight *lt = new csPointLight;
csEnvironment *environment = new csEnvironment;
environment->light()->append(lt);
environment->addChild(fgTransform);
environment->addChild(bgTransform);

return environment;
}

Understanding the Different Parts of Cube.cxx

The embedded comments in Example B-1 call out the different functional parts of
cube.cxx, which include:

• Include statements and global method declarations.

• Create a window in which the application runs and with which a user can interact
with the application. For more information, see Chapter 12, “User Interface
Mechanisms.”

• Instantiate and setup a camera. For more information, see Chapter 9, “Viewing the
Scene.”

• Create a scene graph. For more information, see Chapter 4, “Scene Graph Nodes.”

• Draw and rotate the cubes represented by the data in the scene graph. For more
information, see Chapter 6, “Placing Shapes in a Scene.”

Scene Graph for Cube.cxx

203

Scene Graph for Cube.cxx

Scene graphs provide the structure for Cosmo 3D applications. Cosmo 3D applications
use scene graphs to specify the objects rendered. Figure B-2 shows the scene graph used
for cube.cxx.

Figure B-2 Cube Scene Graph

csShape nodes define a shape; they associate a csAppearance, which describes the look
of a shape (such as its color), with a csGeometry, which defines the dimensions of the
geometry (such as whether the geometry is a cube or sphere).

Pointlight

Transform lxf

Transform xf

Geometry

Appearance

Shape

Appearance

Shape

Group

204

Appendix B: Cosmo 3D Sample Application

In cube.cxx, csGeometry defines a cube and the csAppearance nodes specify the green
and red colors of the cubes.

Note: Neither csGeometry nor csAppearance are nodes; they are classes associated by a
csShape node.

Relating Local Space to World Space

Once you define the orientation of a shape, you use csTransform nodes to place and
orient the shape in a different coordinate system. World space is the coordinate system of
the root node. If all the shapes in a scene graph are transformed into world space, a
csCamera object attached to the root node can view all the shapes in the scene graph
together in one coordinate system.

Objects in world space are rendered when a draw action is applied to the root node of the
scene graph. Objects in local space are rendered when a draw action is applied to a
subsection of the scene graph. The same object rendered in these two spaces may appear
different, for example, a shape in world space may appear smaller than in local space
because it is farther from the viewer; it might also be rotated and positioned differently.

Generally, there are many transformation nodes in a scene graph and a shape is often
transformed more than once, as shown in Figure B-3.

Scene Graph for Cube.cxx

205

Figure B-3 Two Transformations Into World Space

In Figure B-3, after the leaf node is transformed twice, it is placed in world space.

In cube.cxx, two transformation nodes transform the shapes into world space.

Group node

Leaf node

Group node

Transform node

Transform node

206

Appendix B: Cosmo 3D Sample Application

Creating the User Interface

csWindow encapsulates the user interface: it includes the methods you use to construct
a window in which a Cosmo 3D application runs. csWindow manages a csContext object
to control the graphics context as well as a csEvent object that handles user actions, like
mouse events.

csWindow is replete with default values that satisfy most application needs. cube.cxx, for
example, uses all of the default values except for the title of the window, which is
specified with the InitWindow() method.

Cosmo 3D also allows you to construct your own window using X window code. This
option gives you complete control over the look and functionality of the window.

For a complete description of csWindow and using X window code, see Chapter 12,
“User Interface Mechanisms.”

Rendering World Space

To render a scene graph, the csDrawAction::apply() method is applied to the root node
of the scene graph, as follows:

da->apply(root);

where da is a csDrawAction object.

Scene Graph for Cube.cxx

207

Summary

The following procedure summarizes the steps you take to create and render a very
simple scene graph.

1. Create csAppearance and csGeometry containers to define the appearance and the
geometry of an object. For more information on setting csAppearance values, see
Chapter 3, “Specifying the Appearance of Geometries.” For more information on
setting csGeometry values, see Chapter 2, “Creating Geometries.”

2. Relate the csAppearance and csGeometry nodes in a csShape node. For more
information on setting csShape values, see Chapter 2, “Creating Geometries.”

3. Add the csShape nodes as children of the csTransform nodes. The csTransform
node orients and positions the csShape objects in world space. For more
information on setting csTransform values, see Chapter 6, “Placing Shapes in a
Scene.”

Note: A csShape node by itself can be a complete scene graph. Typically, however,
scene graphs have many csShape nodes, most of which are connected to other parts
of the scene graph with a csTransform nodes.

4. Add the csTransform nodes to the scene graph. For more information about adding
nodes to scene graphs, see Chapter 6, “Placing Shapes in a Scene.”

5. Create a window, csWindow, in which to view and interact with the application.

6. Set the current graphical context, csContext.

7. Draw all of the shapes in world space by applying a csDrawAction to the root of the
scene graph. For more information about draw actions, see Chapter 7, “Traversing
the Scene Graph.”

209

Appendix C

C. Cosmo 3D Class Hierarchy

The following list shows the class hierarcy in Cosmo 3D.

csActionFunTable
csArray

csByteArray
csFloatArray
csIntArray
csMatrix4fArray
csPtrArray

csEventArray
csFieldArray
csFieldInfoArray
csRefArray

csRotationArray
csShortArray
csStringArray
csVec2fArray
csVec3fArray
csVec3sArray
csVec4fArray

csBitMask
csBound

csBoxBound
csSphereBound

csCloneTable
csDict
csDictEntry

210

Appendix C: Cosmo 3D Class Hierarchy

csField
csMField

csMFByte
csMFFloat
csMFInt
csMFMatrix4f
csMFRef
csMFRotation
csMFString
csMFVec2f
csMFVec3f
csMFVec3s
csMFVec4f

csSFBitMask
csSFBoxBound
csSFDouble
csSFEnum
csSFFloat
csSFInt
csSFMatrix4f
csSFName
csSFRef
csSFRotation
csSFShort
csSFSphereBound
csSFString
csSFTime
csSFUByte
csSFUInt
csSFVec2f
csSFVec3f
csSFVec3s
csSFVec4f
csSFVec4ub

211

csFieldInfo
csMFByteInfo
csMFFloatInfo
csMFIntInfo
csMFMatrix4fInfo
csMFRefInfo
csMFRotationInfo
csMFStringInfo
csMFVec2fInfo
csMFVec3fInfo
csMFVec3sInfo
csMFVec4fInfo
csSFBitMaskInfo
csSFBoxBoundInfo
csSFDoubleInfo
csSFEnumInfo
csSFFloatInfo
csSFIntInfo
csSFMatrix4fInfo
csSFNameInfo
csSFRefInfo
csSFRotationInfo
csSFShortInfo
csSFSphereBoundInfo
csSFStringInfo
csSFTimeInfo
csSFUByteInfo
csSFUIntInfo
csSFVec2fInfo
csSFVec3fInfo
csSFVec3sInfo
csSFVec4fInfo
csSFVec4ubInfo

csFrustum
csGlobal
csMatStack4f
csMatrix4f
csName
csNameEntry

212

Appendix C: Cosmo 3D Class Hierarchy

csObject
csAction

csCompileAction
csTransformAction

csIsectAction
csSoundAction
csVFCullAction

csDrawAction
csContainer

csAppearance
csAudio
csAudioClip
csAudioSamples
csCamera

csFrustumCamera
csOrthoCamera
csPerspCamera

csColorSet
csColorSet3f
csColorSet4f

csCoordSet
csCoordSet3f

csGeometry
csBox
csCone
csCylinder
csGeoSet

csLineSet
csLineStripSet

csIndexedLineSet
csPointSet
csPolySet

csIndexedFaceSet
csQuadSet
csTriFanSet
csTriSet
csTriStripSet

csScreenAlignedText
csSphere

csImage
csIndexSet
csMaterial
csMicrophone

213

csNode
csEngine

csInterpolator
csColorInterpolator
csCoordinateInterpolator
csNormalInterpolator
csOrientationInterpolator
csPositionInterpolator
csScalarInterpolator

csMorphEng
csMorphEng3f
csMorphEng4f

csSelectorEng
csSelectorEng3f
csSelectorEng4f

csSpline
csTransformEng

csTransformEng3f
csFog
csGroup

csBillboard
csCollision
csEnvironment
csSwitch
csSwitch csInline
csSwitch csLOD
csTransform

csLight
csDirectionalLight
csPointLight

csSpotLight
csPickSensor

csPlaneSensor
csSphereSensor
csTouchSensor

csShape
csSound
csTimeSensor

csNormalSet
csNormalSet3f
csNormalSet3s

csSoundPlayer

214

Appendix C: Cosmo 3D Class Hierarchy

csTexCoordSet
csTexCoordSet2f

csTexGen
csTexture

csImageTexture
csContext
csData
csDispatch
csEvent
csHit
csOverrideGeoProp
csWindow

csOgl
csOutput
csPrivate
csPtrArray2D
csRotation
csSeg
csString
csStringDict
csStringDictEntry
csThread
csTime
csType
csVec2f
csVec3f
csVec4f
csVec4ub
csdFile_csb
vlDB
vlDebugError
vlGeom
vlInput
vlReadError

215

A

actions, 67, 83
addChild(), 66
ambient color, 51
animate, 121
animation, creating, 124
application, simple, 193
aspect ratio, 99
atmospheric effects, See fog
attribute, 17, 20

indexing, 23
setting, 21
specifying, 26

B

base classes, 2
binding, 21
BLEND, 53
BLEND_TENV, 46
bounding shape, 187

C

camera, 99
ortho, 101
perspective, 101

cleanFields(), 150

clip plane, 103
compile, scene graph, 164
coordIndices, 28
Cosmo 3D, 1
csAction, 84
csAppearance, 11, 15, 163, 203
csArray, 181
csArrayField, 190
csAtomField, 190
csAudioClip, 173
csAudioSamples, 168, 174
csBillboard, 58
csBound, 188
csBox, 16
csCamera, 99
csColorInterpolator, 109, 114
csCompileAction, 84, 165
csCone, 13, 16
csContainer, 5
csContext, 12, 15, 35, 145, 163
csCoordinateInterpolator, 109, 110, 114
csCube, 16
csCylinder, 16
csData, 180
csDepthFunc(), 78
csDirectionalLight, 57, 90
csDrawAction, 84, 85, 206
csEngine, 107

Index

216

Index

csEnvironment, 12, 59, 92
csFog, 94

csField, 5, 189
csFieldInfo, 189
csFog, 94

fields, 94
csFrustum, 105, 192
csFrustumCamera, 105
csGeoMath.h, 105
csGeometry, 11, 13, 15, 40, 203
csGeoSet, 13, 17, 30, 164
csGroup, 8, 66
csHit, 142
csIndexedFaceSet, 33
csIntArray, 181
csInterpolator, 109, 110
csIsectAction, 84, 140
csLight, 57, 90
csLineSet, 31
csLineStripSet, 20, 31
csLOD, 59, 160

transition between child nodes, 162
csMaterial, 51
csMatrix4f, 82
csMField, 189
csMorphEng, 117
csMorphEng3f, 118
csMorphEng4f, 118
csMorphEngine, 113
csMorphVec3f, 110
csNode, 6
csNormalInterpolator, 109, 110, 114
csObject, 3

csOrientationInterpolator, 109, 110, 115
csOrthoCamera, 101
csPerspCamera, 101
csPlane, 192
csPlaneSensor, 130
csPlaneSensor, limiting, 132
csPlaneSensor, offset, 133
csPlaneSensor, updating, 132
csPlaneSensor event, 131
csPointLight, 57, 91
csPointSet, 20, 30
csPolySet, 20, 33
csPositionInterpolator, 109, 110, 116
csQuadSet, 33
csScalarInterpolator, 109, 110, 116
csSeg, 191, 192
csSelectorEng, 117
csShape, 11, 57, 203
csSound, 167

fields, 169
csSoundAction, 84, 86, 167
csSoundPlayer, 177

methods, 177
csSphere, 13, 16
csSphereBound, 188
csSphereSensor, 126
csSphereSensor, scope, 128
csSphereSensor, updating, 128
csSpline, 109, 112
csSpotLight, 57
csSwitch, 58, 59
csTexGen, 50
csTexture, 44

217

Index

csThread, 146
csTimeSensor, 122
csTimeSensor, active or not, 124
csTimeSensors, updating, 123
csTouchSensor, 134
csTouchSensor, scope of, 135
csTransform, 9, 59, 79
csTransformEng, 109, 110, 119
csTriSet, 31
csTriStripSet, 20, 31, 32
csVec2f, 184
csVec3f, 184
csVec3s, 184, 186
csVec4f, 184
csVec4ub, 186
csWindow, 137, 145, 206

using a portion of, 97
csWindow, updating sensors, 123
cube.cxx, 193
cull, 152

sides of geometries, 152
view frustum, culling, 160

D

depth, sense of, 77
depth-cuing, See fog
DepthFuncEnum, 78
diffuse, 51
dirty fields, 150

E

emissive color, 51
enableDirtyFieldTracking(), 150
engine, 107
engine, connecting, 108
engine, input and output, 108
engine, terminology, 111

event
touchTime, 135

event, hitNormal, 135
event, hitPoint, 135
event, hitTexCoord, 135
event, isOver, 135
event, rotation and trackPoint, 127
event, trackPoint, 133
exit(), 148
EYE_LINEAR, 50

F

far clip plane, 103
FAST, 53
FAST_TEX, 44
field, multiple values, 6
field, single value, 6
field classes, 188
fields, 5

setting, 61
fields, dirty, 150
fields of view, 103
FILL_PMODE, 52
FLAT_TEX, 53

218

Index

flight simulation
fog, use of, 93

fog, 93-??, 94
example program, 95

FOV, 104
fractionChanged, 125
frustum, 160, 192
frustum culling, 160

G

geometry, 35
placing in a scene, 77
ready-made, 16

graphics state, 36
group node, 58

H

haze, See fog
hitNormal event, 135
hitPoint event, 135
hitTexCoord event, 135

I

insertChild(), 73
interface, 137
isOver event, 135

K

key, 111, 113
key value, 111, 113

L

layering shapes, 78
level of detail, 160
light, setting boundaries for, 92
LINE_PMODE, 52
line segment, 191
line strip sets, 20
loading a scene graph, 74
local space, 82, 133

M

makeCurrent(), 39
material, 51
MODULATE_TENV, 46
multiple-value field, 62
multiprocessing, 145
multi-thread, 12
multi-threaded program, 38
multi-threading, 145

N

near clip plane, 103
NICE, 53
NICE_TEX, 44
node, 55, 56

group, 58
NON_PERSP_TEX, 44
normalIndices, 28

219

Index

O

OBJECT_LINEAR, 50
offset, rotation, 126
opBarrier, 146
OpenGL, 37
OpenGL Optimizer, 1
optimize, 151
optimize,setCullFace(), 152
optimizing performance, 151
orthographic projection, 101

P

parts of a Cosmo application, 202
performance tips, 163

fog, 93
performance tools, 151
PERSP_TEX, 44
perspective, 45
pick(), 141
playing sounds without using an action, 177
POINT_PMODE, 52
pointer device event, 121, 130
point sets, 20
polysets, 20

R

range(), 161
ready-made geometries, 16
reference, and unreference, 4
reference counting, 3
rendering, 206

optimized, 164

REPLACE_TENV, 46
resolution, 160
root node, 66, 67
rotate, 80
rotation, using sensors, 126
rotation event, 127
routines

pfGetRef(), 4
pfRef(), 4
pfUnref(), 4

runtime type, 4

S

saving a scene graph, 75
scale, 80
scene graph, 2, 55, 203

at a glance, 65
common mistakes, 75
compiling part of, 164
diagram, 69
editing, 73
loading, 74
saving, 75
transversal order of nodes, 86

scene graph, steps to create, 13
scope, of lighting, 92
screen, make one color, 39
screen objects, storing, 142
selecting screen objects, 140
semaphore, 146
Sensor, 121
setAlphaFunc(), 53
setCullFace(), 152
setFarClip(), 103
setHorizFOV(), 103

220

Index

setMatrix(), 81
setNearClip(), 103
setPolyMode(), 52
setPosition(), 100
setScaleOrientation(), 80
setTexGen(), 50
setting fields, 61
setTranslation(), 80
setVertFOV(), 103
shading model, 53
shininess, 52
single-value field, 62
sleep(), 148
smoke, See fog
SMOOTH_TEX, 53
sound, 167

locating and directing, 170
playing, 170
priority, 170
reverse direction, 172
spatialized, 170

sound file
specifying, 169

specular, 51
SPHERE_MAP, 50
start(), 147
state, accessing, 37
state, changing, 38
state, current, 37
state machine, 36
store data, classes that, 180
storing selected screen objects, 142

T

texture, 43
texture coordinates, 43
thread, 145
thread, application, 148
thread, blocking, 148
thread, controling, 148
thread, creating, 146
thread, draw, 148
thread, exiting, 148
thread, parameters, 148
thread, starting, 147
timed events, 122
time of day, 124
token, 62
touchTime event, 135
TrackPoint event, 133
trackPoint event, 127
transformation, 205
transform nodes, 79
transition

between csLOD child nodes, 162
translate geometry, using sensors, 130
transparency, 52, 53
traversal, 86
traversal, order, 38
tri strip set, 20
troubleshooting, scene graphs, 75

U

updateSensors(), 123
user interface, 137, 206

221

Index

V

view
using camera, 98

viewport, 97
virtual sphere, 126
visual simulation

fog, use of, 93
VRML, 74

W

wait(), 148
window, creating your own, 143
world space, 9, 79, 82, 133, 204

X

X window, 143

Tell Us About This Manual

As a user of Silicon Graphics products, you can help us to better understand your needs
and to improve the quality of our documentation.

Any information that you provide will be useful. Here is a list of suggested topics:

• General impression of the document

• Omission of material that you expected to find

• Technical errors

• Relevance of the material to the job you had to do

• Quality of the printing and binding

Please send the title and part number of the document with your comments. The part
number for this document is 007-3445-002.

Thank you!

Three Ways to Reach Us

• To send your comments by electronic mail, use either of these addresses:

– On the Internet: techpubs@sgi.com

– For UUCP mail (through any backbone site): [your_site]!sgi!techpubs

• To fax your comments (or annotated copies of manual pages), use this
fax number: 650-932-0801

• To send your comments by traditional mail, use this address:

Technical Publications
Silicon Graphics, Inc.
2011 North Shoreline Boulevard, M/S 535
Mountain View, California 94043-1389

