
White Paper
OpenGL Volumizer™ 2

1

Experiments, simulations, and instrumentation

devices are continuously producing larger, more

complex, and more detailed volumetric data. Along

with this apparent increase in information, comes

a greater need for more powerful computational

tools to visualize such data. Volume visualization

provides a way to discern details within the data

while potentially revealing complex 3D

relationships. This paper presents

OpenGL Volumizer 2, a new application

programming interface (API) from SGI® for

interactive, high-quality, scalable volume

visualization.

Volume Visualization

There are a number of approaches for

visualization of volume data. Many of them use

data analysis techniques to find the contour

surfaces inside the volume of interest and then

render the resulting geometry with transparency.

The 3D-texture approach is a direct data

visualization technique using textured data slices

that an API or application combines successively

in a specific order using a blending operator

[Cabral, 1994; Drebin, 1988]. In this model, a 3D

texture becomes a voxel cache, and the graphics

hardware processes all rays simultaneously, one

2D slice at a time. Since an entire 2D slice of the

voxels is cast at one time, the resulting algorithm

is much faster with hardware-accelerated textures

than with ray casting. This technique takes

advantage of graphics hardware and resources by

using OpenGL® 3D texture rendering, which allows

applications to reach real-time performance and

makes this 3D texture-based approach the method

of choice for interactive and immersive

volume-visualization applications. The 3D-texture

approach is equivalent to ray casting and produces

similar results. Unlike ray casting, in which each

image pixel is built up ray by ray, this approach

takes advantage of spatial coherence. A

comparison of these techniques is shown in

Figure 1.
Eye Point
Figure 1 Ray Casting vs. 3D Texture Mapping
To help application programmers develop

interactive and immersive volume-visualization

methods that exploit hardware-accelerated 3D

texturing, SGI designed and implemented

OpenGL Volumizer, a revolutionary API providing

groundbreaking capabilities for traditional

volume-visualization applications and allowing

application developers to treat volumetric and

surface data equally.

OpenGL Volumizer 2 should be distinguished

from its predecessor, OpenGL Volumizer 1.

Although it has the same objectives as

OpenGL Volumizer 1, OpenGL Volumizer 2 is a

separate product with a newly designed API. The

new API is a high-level, C++, volume rendering

API that supports management and visualization

of large volume datasets. This white paper

addresses the characteristics and features of

OpenGL Volumizer 2, which is hereafter simply

referred to as OpenGL Volumizer.

2

Product Overview

Announced during SIGGRAPH 2001,

OpenGL Volumizer considerably simplifies the

programming model while offering new

capabilities and features. This makes

visualization of extremely large volumetric

datasets easier on multiple platforms. It provides

the following:

•A high-level, extensible, C++ API that

segments classes and methods based on the

corresponding procedural-versus-descriptive

nature of the component members. The core

API consists of a volumetric-shape description

API and a procedural 3D texture-based render

action.

•Thread safety, which allows implementation of

multithreaded applications that run on

multiple processors and graphics engines in

conjunction with APIs like OpenGL Multipipe™

SDK and OpenGL Performer™.

•Integrated shading capabilities to perform

volumetric shading which allows techniques

like multivolume blending and volumetric

lighting to improve realism and to implement

very high quality visualizations.

•Large data management capabilities, including

support for 3D clip textures, which allow

interactive visualization of extremely large

datasets.

•Examples that include a transfer function

editor, data loaders, and a volume rendering

application for multipipe systems, along with

sample integration with existing APIs.

•A container for volume rendering techniques.

Developers can integrate their own scene graph

parameters and rendering algorithms in the

API structure. The ability to incorporate such

custom-tailored parameters and renderers

gives the flexibility to advanced developers to

implement and experiment with new rendering

methods.

Figure 2 shows the various modules of the API. At

this time, all modules, with the exception of the

Shirley-Tuchman renderer, are included with the

OpenGL Volumizer distribution.
Multipipe
application

Scene graph
API 3D-texture

renderer

Large data
API

Shirley-Tuchman
renderer

Image loaders
Tools and utilities

LUT editor
Figure 2 Modular Architecture of OpenGL Volumizer

3

OpenGL Volumizer API

OpenGL Volumizer supports a hierarchical scene

graph structure to retain and organize

visualization parameters. The leaf node of the

volumetric scene graph is the shape node

(vzShape), which is a container for its geometry

and appearance. The volume’s geometry defines

the spatial attributes and a ROI, and the volume’s

appearance defines the visual attributes, such as

rendering parameters. The appearance itself

consists of a list of parameters that are specific to

the particular rendering technique being applied

to the shape. Appearance parameters act as data

containers for the render action. They typically

retain the volume data itself as well as other

shading parameters, such as light direction or

lookup tables (LUTs), if needed. Figure 3 shows a

sample shape node with the corresponding

geometry and appearance.
Parameter 1
Parameter 3

P
ar

am
et

er
 2

Render action Shape

Geometry Appearance

Texture data LightLUT
Figure 3 Shape Node and Its Associated Render Action
Render actions are implemented as a separate

class derived from vzRenderAction and hold all of

the components to render the shape. They

primarily implement different visualization

algorithms to render shape nodes. The render

action is also responsible for managing the

resources needed to render the nodes.

TMRenderAction is a 3D texture-based renderer

delivered with the API. The render action

polygonizes the shape’s volumetric geometry by

slicing it using viewport-aligned planes. It then

applies the other shading parameters, such as 3D

textures and a LUT. Separating the shape node’s

description from the rendering techniques allows

the possibility of implementing custom render

actions. Adding parameters, defining new

shaders, and deriving the right render action will

provide a custom rendering method.

The object classes (derived from vzObject) in the

API are thread and/or MP safe. This allows them

to be shared across multiple threads and/or

processes running in parallel to render the

shape(s) concurrently on several graphics

engines.

OpenGL Volumizer simplifies memory allocation

and deallocation of the objects. All objects in the

scene graph are reference-counted and

automatically deleted when the reference count

reaches zero. The vzObject class is derived from

the base class vzMemory, which allows the

application to specify memory allocation and

deletion callbacks. The vzMemory class can be

used for allocating memory from shared memory

arenas. This is essential for integration with APIs

that use a multiprocessed model of execution,

such as OpenGL Performer.

Volumetric Geometry

In OpenGL Volumizer, the ROI is represented as

the geometry component of the shape node and

described apart from the shape’s appearance.

Using this approach allows the separation of the

geometry or the spatial attributes of the shape

from the visual attributes. This separation is

important since the appearance is specific to the

rendering technique being applied to the shape.

Figure 4 shows an example of an appearance

applied to two shapes with different volumetric

geometries.

4

Figure 4 Different Volumetric Geometries for a Volume Dataset
OpenGL Volumizer allows specification of

arbitrary volumetric geometry through the use of

simple primitives ranging from axis-aligned

cubes to arbitrary tetrahedral meshes. Just as

triangles are base primitives used to describe

polygonal geometry, a tetrahedron is the base

primitive used to describe volumetric geometry.

Hence, the API uses the tetrahedron as the basic

primitive for all its operations by tessellating all

other geometric representations into tetrahedral

meshes. For example, a cube can be represented

with as few as five tetrahedra. This tessellation

process is transparent to the application for the

built-in geometry classes and allows applications

to write their own geometry classes by overriding

the appropriate virtual methods in the base class

vzVolumeGeometry.

Using geometric techniques to render volume

datasets gives the following flexibility offered by

traditional 3D-render engines:

•Perspective views can now be issued to

immerse the observer in the scene. By simply

specifying a different camera model,

applications can switch between parallel and

perspective projections. Perspective

transformations are an integral part of 3D

graphics languages and are accelerated by the

geometry and the texture mapping engines.

•Polygonal surfaces can be embedded in the

volume by rendering them first. The Z buffer,

hardware ensures that they correctly appear

to lie within the volume. For example, a

corona-prosthesis model can be easily

inserted in MRI- or CT-scanned data from a

patient.

•3D texture mapped polygonal surfaces can

show correlation between different data

attributes.

•Multiple volumes can be blended together to

provide better insight into the data set.

3D Texture Mapping
Render Action

The 3D texture-based renderer (TMRenderAction)

delivered with OpenGL Volumizer implements a

semitransparent plane-rendering technique. The

underlying method is composed of two parts.

First, the volume geometry is sliced with planes

parallel to the viewport and stacked

perpendicular to the direction of view. These

planes will be rendered as polygons clipped to the

geometry primitives’ boundaries. During each

frame, this polygonization phase generates a set

of polygons normal to the viewing direction. This

method of slicing is shown in Figure 5.

5

Figure 5 Tetrahedral Slicing
These clipped polygons are textured with the

volume data they intersect, and the resulting

images are alpha-blended together from back to

front toward the viewer’s position. Each polygon’s

pixels are successively drawn and blended into the

framebuffer to provide the appropriate

transparency or color effect. The polygonization

phase can be executed in parallel on the next

frame while the current frame is rendered.

To improve image quality while taking into

account rendering performance, the application

must specify an appropriate sampling rate. The

sampling rate controls the distance between the

adjacent slices of the polygonized geometry. The

number of slices to be used depends on the scene

complexity and the pixel-fill performance of the

hardware. This paper elaborates the tradeoff

between image quality and performance in the

section titled “Understanding the Texture

Mapping Render Action”.

Slicing with planes, as shown in Figure 5, is

common, but artifacts can appear when the

observer is very close to the model. As an

implementation alternative, spherical slicing

provides more accurate visualization in

perspective projection [McReynolds, 1998]. This

principle is illustrated in Figure 6.
Eye

me

Shells
Volu

Figure 6 Spherical Slicing
In this case, the polygonization process might

become the performance bottleneck. Using a

parallel algorithm to perform the polygonization

on multiple processors will help maintain a good

level of performance.

The advantages of TMRenderAction include the

following:

•Immediate-mode execution to prevent the

overhead of storing transient geometry from

polygonization.

6

•Optimized texture management for improved

texture download performance. (This includes

the case of texture memory oversubscription.)

•Support for custom volumetric shading

techniques along with built-in shaders for

volumetric lighting and tagging.

•Transparent bricking and interleaving of

texture data.

•Support for applications using multi-resolution

and volume roaming techniques.

Volumetric Shaders

OpenGL Volumizer introduces the concept of

volumetric shaders to apply specific rendering

techniques to generate desired visual effects using

the same rendering algorithm described earlier.

Each shader implements a particular technique by

setting the appropriate OpenGL state and using

multiple rendering passes if necessary.

TMRenderAction supports multiple built-in

shaders that accept parameters for the particular

technique being applied. Additionally, applications

can implement custom multipass shaders using

the vzTMShader class. Figure 7 shows the results

generated from three different shaders applied to

the same medical dataset. The first frame on the

left shows the original dataset rendered with 3D

texture mapping. The middle frame shows the use

of a sine-wave-shaped 3D-stencil buffer to mask

out volume data, and in the third frame volumetric

lighting was used to provide better depth

information and improve visual realism.
Figure 7 Volumetric Shading Examples
Transfer Functions

For effective visualization of datasets, the data

values often need to be mapped to different color

and opacity values [Levoy, 1990]. This mapping is

specified using transfer functions implemented

as LUTs supported in the graphics pipeline.

Different alpha values in volumetric data often

correspond to different materials in the volume

that is being rendered. A nonlinear transfer

function can be applied to the texels to help

analyze the volume data, highlighting particular

classes of volume data. By graphically

thresholding values, users can visually extract

surfaces in real time. OpenGL Volumizer

implements a lookup table (LUT) parameter,

mapping color and opacity values after texture

interpolation. To edit transfer functions, a simple

LUT editor is delivered with the product.

Understanding the Texture
Mapping Render Action

This section explains the details of the render

action and mentions a few techniques that can be

employed by application writers. Figure 8 shows

the pipeline used by a typical volume rendering

application using TMRenderAction.

7

Manage/
unmanage

shapes

Draw
shapes

Sort shapes/
set OpenGL

state
Figure 8 Pipeline Used by a Volume Rendering Application Using TMRenderAction
The application first computes the number of

shapes it needs to keep resident in texture

memory for the given frame. The list of shapes

might be the outcome of visibility culling in an

immersive application, the current frame index of

a time-varying simulation, and so on. Once the

application is done managing and unmanaging

the shapes for the current frame, it is ready to

draw them.

TMRenderAction does not perform any visibility

sorting of the rendered shapes; hence, it is the

application’s responsibility to sort them in the

correct order. After the sort, the application sets

the appropriate OpenGL state (such as enabling

blending and setting the appropriate blending

functions) for performing volume rendering.

TMRenderAction renders the polygonal geometry

in a back-to-front sorted order. The blending

function for the most common volume rendering

application is the over operator glBlendFunc

(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_

ALPHA) [McReynolds, 1998].

The flexibility in choosing the blending function

allows the application writer to implement other

techniques by setting the appropriate blending

equations. For example, maximum intensity

projection can be implemented by using

glBlendEquation(GL_MAX) [McReynolds, 1998].

At this point, the application notifies the render

action that it is ready to start drawing the shapes

by calling the beginDraw method. The

beginDraw method marks the end of the

texture management phase and the beginning of

the rendering phase. Inside the method, the

render action does the following:

•Computes the total resources required for the

list of managed shapes

•Performs the OpenGL state management

(pushes OpenGL state applications, stores

transformation matrices, and so on.)

•Performs the OpenGL resource management

(creates and downloads texture objects, LUTs,

and so on.)

Next, the application draws all of the shapes in

the visibility sorted order that was computed

earlier. Inside each draw method, the render

action does the following:

•Invokes the shader’s initialization routine,

which sets the appropriate OpenGL state (bind

texture objects, enable LUTs, and so on.)

•Polygonizes the volumetric geometry using the

transformation matrices

•Draws the polygonized geometry in a

back-to-front order

Note that the polygonized geometry is always

parallel to the viewport unless the application has

set slicing planes on the volumetric geometry.

The transformation matrices are queried directly

from OpenGL in the beginDrawmethod. These

matrices are stored and used for all the

subsequent draws before the next endDraw is

called. Finally, in the endDraw, the render

action restores the OpenGL state that it modified,

including texture-related settings, LUTs, and

pixel store.

In addition to rendering volumetric geometry, the

TMRenderAction can render arbitrary polygonal

geometry with the shape’s volume texture applied

to it. This is accomplished by using the

vzPolyGeometry class, derived from vzGeometry.

The class provides a virtual draw method, which

the derived class can override. This draw method

is invoked by the render action after enabling the

OpenGL state for the shape’s appearance, which

the application can then use to render arbitrary

polygonal geometry. This method can be used, for

example, to implement the spherical sampling

technique described earlier.

8

Understanding the texture management can help

you improve the performance of the rendering by

the render action in many common cases.

TMRenderAction computes the total amount of

resources required to render the given set of

managed shapes in the beginDrawmethod and

compares it to the amount available on the

graphics pipe. Depending on the outcome of the

comparison, the render action uses different

texture management schemes. One optimization

common to all the schemes is that the render

action tries to reuse OpenGL texture objects

whenever possible. Consider the sequence of

frames in Figure 9.
Figure 9 Shapes Managed and Unmanaged in a Sequence of Two Frames

Manage
shape 3

Unmanage
shape 2

Manage
shape 1

Frame 1

Frame 2

Manage
shape 2

Manage
shape 1
In the first frame, the render action would allocate

OpenGL texture objects for shape 1 and shape 2. In

the second frame, even though shape 2 is not

managed, the render action does not delete the

texture objects for it. Instead, it reuses the texture

objects for downloading and binding the textures

in shape 3. This scheme has two advantages. First,

reusing texture objects prevents fragmentation of

texture memory, since not all texture managers do

garbage collection immediately after the texture

object has been deleted. Also, for downloading the

textures in shape 3, the render action uses

glTexSubImage3D calls, which are considerably

faster than the corresponding glTexImage3D calls.

The preceding discussion assumes that the

textures in the shapes fit in texture memory and

have the same data region of interest (ROI) and

internal texture formats. Hence, if your

application uses multiple shapes and needs to

constantly manage and unmanage them in order to

improve the download performance of your

application, you should try to divide the whole

scene into multiple shapes such that the textures

in the shapes are all of equal sizes. Typical

examples of such applications are volume

roaming, multi-resolution volume rendering, and

time-varying volumes.

The sampling rate used to polygonize the

volumetric geometry controls the number of slices

that are used to render the shape. Theoretically,

the minimum data-slice spacing is computed by

finding the longest ray cast through the volume in

the view direction, then finding the highest

frequency component of the texel values and using

twice that number for the minimum number of

data slices for that view direction. Practically, the

rendering process tends to be pixel-fill limited

and, in many cases, choosing the number of data

slices to be equal to the volume’s dimensions,

measured in texels, works well. An application can

differentiate itself by trading off performance and

image quality.

Integration with Other
Toolkits

 OpenGL Volumizer is an API designed to handle

the volume rendering aspect of an application. You

can use other toolkits, such as OpenGL Performer

and Open Inventor™, to structure the other

elements of your application. The API allows

seamless integration with other

scene-graph-based APIs, because the shape node

can be used as the leaf nodes of such a scene

graph. Figure 10 illustrates a hypothetical scene

graph that contains polygonal data mixed with

volumetric data. In this case, the vzShape nodes

are used to represent the volumetric components

of the scene, whereas the other PolyNode is used

to represent polygonal geometry.

9

Figure 10 A Complex Scene Graph

vzShape 1

RootNode

HybridNode

VolumeNode PolyNode

vzShape 2vzShape 2
Mixing geometric objects with volume-rendered

data is a useful technique for many applications.

For opaque objects, the geometry is rendered first

using depth buffering, and then the volume data is

rendered with depth testing enabled. When using

APIs like OpenGL Performer or Open Inventor, the

scene-graph traversal should be done in the

appropriate order to ensure correct alpha

compositing. The application can ensure this by

marking the volumetric nodes as transparent so

that the scene traverser renders it after the

opaque geometry. In the case of OpenGL

Performer, this can be accomplished by creating

the appropriate pfGeoState and attaching it to the

volume node. Figure 11 shows a volumetric dataset

rendered along with opaque geometry using this

technique.
Figure 11 Volume and Opaque Geometry Integrated in a Single Scene
Using Multiple Graphics Pipes

OpenGL Volumizer objects are thread-safe. This

allows applications to scale the graphics

performance and other available resources by

sharing the volume data among multiple

rendering threads/processes. Figure 12 shows n
pipes rendering the same scene using one

thread/process per pipe.
Figure 12 Multipipe Architecture

Scene
graph

Pipe 1 Pipe 2 Pipe n

Draw Draw

D
ra

w

10
Rendering performance can be scaled using one of

several hardware or software compositing

schemes:

•Screen space (2D) decomposition, which scales

the fill rate trivially and the geometry rate

using view-frustum culling

•Database (DB) decomposition, which scales the

fill rate, texture memory size, and geometry

rate

•Time slice (DPLEX) decomposition, which

linearly scales the frame rate during

interaction by introducing latency

•Stereo (EYE) decomposition, which scales the

frame rate while in stereo mode

•Multi-level decomposition, which mixes the

above decomposition schemes using a

hierarchical composition network

OpenGL Multipipe SDK provides runtime

configurability and scalability to an application.

Figure 13 shows an example of database

decomposition across four graphics pipes. The 70

MB head dataset is decomposed into four bricks by

creating four shapes. Each shape is rendered on

one pipe using one render action per pipe to

generate partial images. These partial images are

composited in back-to-front visibility sorted order

to generate the final image.
Figure 13 Database Decomposition of Volume Data
Visualizing Large Data

As the power of computing platforms or

acquisition-device capabilities increases,

applications using numeric simulations or

data-acquisition techniques give more and more

data. Some examples of these applications are in

the scientific and energy domain. In this case,

“large data” refers to data larger than what the

local resources can handle. This data-resource

constraint means that the data to be visualized

will reside on slower and larger storage

peripherals, such as main memory, disks, or

others instead of on local graphics resources. This

data will have to migrate from one peripheral to

others within the frame rate constraint. From this

point of view, data migration becomes the main

bottleneck for visualization.

11
Figure 14 Large Data and Resource Management Across Multiple Devices

Main memory S

S

S = Shape

Texture memory

S
S

Manage

Unmanage

S S
To handle these issues, OpenGL Volumizer

benefits from the SGI® Onyx® 3000 series

architecture by exploiting the high bandwidths

and low latencies of such systems. The data

transfer process is supported by dividing the

whole volumetric data into smaller components

called bricks. In this context, a brick represents

one volume shape. The application controls the

frame rate by moving the data bricks to the local

texture memory from the various storage devices.

This control gives applications the capability to

visualize huge data located in memory or on

high-performance disks by paging them into

texture memory using intelligent schemes. In

addition, TMRenderAction automatically bricks

textures that are too big to fit in texture memory,

allowing them to be rendered using OpenGL. That

is, TMRenderAction handles all

texture-memory-management processes by hiding

all hardware-specific details, and therefore

making this task transparent to the application.

The following sections briefly describe techniques

that can implement large data visualization

applications for interactive rendering of data. The

last section of this paper describes the 3D clip

texture API, which is now built into

OpenGL Volumizer.

Time-Varying Volume
Rendering

Most computer simulations in the field of

computational sciences produce time-varying

datasets. OpenGL Volumizer renders those

datasets by allowing applications to control the set

of textures that can be resident in texture

memory. This allows users to run a volume movie

of the simulation to visualize animated fluid

dynamics or crash analysis data. The time-varying

volume rendering example that ships with

OpenGL Volumizer demonstrates how to render a

large, time-varying dataset using asynchronous

disk paging. Several techniques have been

proposed to improve the visualization of such

datasets. Examples of these techniques include

Time Space Partitioning trees and texture

compression.

Volume Roaming

Volume roaming allows the user to explore large

volumetric data by interactively moving a

volumetric probe inside the volume. The probe

allows users to navigate the dataset using a

viewing window and enables them to concentrate

on a specific section of the whole dataset.

Figure 15 illustrates the concept of volume

roaming. The figure on the left shows the concept

of volume roaming (figure courtesy TotalFinaElf).

The figure on the right is a snapshot of this

technology as applied to a seismic data set. The

key components of the technique are texture

bricking, intelligent texture memory management,

intelligent main memory management, and

asynchronous disk paging of volume data. The

application maintains a hierarchy of windows,

which are smaller subsets of the total volume data,

updated during user motion. Each window is

subdivided into multiple shapes, one for each

brick. As the window moves, the bricks are

updated with new texture data. All the window

management and data transfer between the

various peripherals is controlled by the

application in this case. The TMRenderAction

efficiently pages in the new data into texture

memory from main memory.

12
Figure 15 Volume Roaming with a 3D probe

Main memory window

Texture memory
window

Roaming window

Whole
data
Roaming allows an application to overcome fill

rate, texture memory, and main memory size

constraints, with the limitations of rendering only

a subsection of the whole volume data at a time,

and not providing constant frame rates during fast

user motion.

Multi-resolution Volume
Rendering

Multi-resolution volume rendering allows

applications to interactively render huge volume

data by assigning varying levels-of-detail (LOD),

thus making a tradeoff between performance and

image quality. Volume data is processed to

compute different levels-of-resolution of the

dataset by filtering and subsampling the original

data. Many researchers have worked on

multi-resolution techniques for interactive volume

rendering, typically using an octree

decomposition of the whole volume as in the

diagram on the left in Figure 16. The figure on the

right shows an example of brain data rendered

using the multi-resolution technique.
Figure 16 Brain Rendered Using Multi-Resolution Technique

res = n voxels/dim unit

LOD1

LOD2

LOD3

LOD4
LOD5

13
The key components of this technique are texture

bricking, intelligent texture memory management,

and proper computation of LOD levels. In this

case, a shape is used to represent each node in the

octree. TMRenderAction manages the texture data

and multiple LUTs used to compensate for the

different opacities at the LOD levels [LeMar, 1999;

Weiler, 2000]. Applications can improve the

performance by rendering low-resolution data at

nonleaf nodes during user interaction and then

improving the image quality as the interaction

stops. Low resolutions help improve rendering

performance by limiting texture memory and

fill-rate consumption of the application. One of

the primary limitations of this technique is that

the volume data, along with the LOD levels, needs

to be resident in main memory. This limits the

total size of the dataset that can be rendered using

this technique.

3D Clip Textures

OpenGL Volumizer has built-in support for 3D clip

textures, which allows applications to visualize

arbitrarily large volumetric data by merging the

advantages of volume roaming and

multi-resolution techniques. 2D clip textures have

been used successfully to provide interactive

navigation of very large terrain data [Tanner, 1998].

Clip textures are MIPmapped versions of the

original texture data with the exception that each

MIPmap level maintains a roaming window (a

physical memory window, as shown in Figure 17)

to limit the amount of texture data resident in

main memory. These clipped MIPmap levels are

called clip levels. The highest level of resolution in

the hierarchy corresponds to the original texture

data. The remaining levels are computed by

filtering and decimating the original data.
Figure 17 Clip Texture Hierarchy in 2-dimensions

Physical memory window

Highest level of resolution

Entire level in
main memory

14
The center of the physical memory window is

usually the viewer’s center of interest. As the

viewer moves, the center of interest is updated

and the texture data, which is no longer in the

window, is replaced by new data from disk. This

data is paged into slots vacated by data being

paged out of the window. This mapping ensures

constant memory usage during user interaction.

Lower resolutions of texture data fit completely in

main memory. During periods of fast user motion,

these low-resolution textures are rendered, while

high-resolution data is being paged in. As higher

resolution texture data is available, it is rendered

to improve the image quality of the visualization.

This mechanism provides the capability to

interactively visualize huge amounts of texture

data resident in main memory or on

high-performance disks.

The core of the OpenGL Volumizer large-data API

is the abstraction of a 3D clip texture and its

associated render action. Special OpenGL graphics

hardware, such as InfiniteReality® graphics, has

built-in support for clip textures but only in 2D.

The OpenGL Volumizer implements a software

emulation for 3D clip textures. 3D clip texture is

an extension of the 2D scheme to 3 dimensions. In

this case, the data transfer process is supported

by representing the whole clip texture hierarchy

as a collection of smaller 3D bricks at each level of

resolution. This combines the benefits of bricked

volume files, asynchronous disk-paging,

multi-resolution, and volume-roaming methods to

overcome memory and pixel-fill constraints.

The implementation of clip textures is exposed as

a new parameter class, vzParameterClipTexture,

and an associated render action,

vzClipRenderAction. Texture data is paged into

system main memory from storage devices using

asynchronous disk paging, which is implemented

in the clip texture emulation system. The

main-memory-to-texture-memory transfer is

performed by the clip-renderer, which employs

the texture management built into the

TMRenderAction.

Clip Texture Implementation
The new vzParameterClipTexture parameter class

provides an abstraction for the 3D clip texture

hierarchy. It maintains the set of clip levels and

manages the amount of physical memory used to

store the texture data. It handles bricking of

texture data and pages these bricks from disk,

depending on application provided parameters.

The following parameters are used to initialize the

clip texture hierarchy:

•Brick dimensions, which are used to compute

the number of clip levels and optimize the data

transfer on the underlying hardware

architecture.

•Physical memory size, which is used to limit

the amount of physical memory allowed to load

texture data. It controls the size of the physical

memory windows at each clip level.

•Data loader callback, which is invoked by the

clip texture to load texture data from disk.

Depending on the brick dimensions, the clip

texture initializes the various clip levels. Each clip

level is assigned a maximum physical memory

window, the size of which is computed from the

total physical memory allowed for the clip texture.

The application updates the following parameters

for the clip texture depending on the user

interaction:

•Center-of-interest is used to update the center

of the physical memory windows of the clip

levels and sort the load queue.

•Roaming window size, which is used to update

the size of the physical memory windows. The

actual physical memory window size is limited

by the total physical memory which can be

used.

The window management mechanism is

implemented using a 4D toroidal mapping

technique at each level in the hierarchy. As the

user moves, the physical memory window is

updated, and all the bricks that are no longer in

the window are pushed on the load queue to be

reloaded by loader threads. This toroidal mapping

scheme ensures constant memory usage and

exploits frame-to-frame coherence by reusing

cached texture data in subsequent frames.

Each clip level maintains a separate toroidal map,

which is updated independently. The disk paging

mechanism performs predictive loading of

textures depending on the user’s direction of

motion. The multithreading scheme is optimized

to get maximum usage of the disk bandwidth that

is available on the system.

15
Clip Texture Render Action
The large data API provides a new render action,

which is built as a layer on top of the existing

TMRenderAction. This render action implements

intelligent texture paging techniques to render the

clip texture hierarchy in a view-dependent fashion

using a depth-first traversal scheme. The render

action performs view-frustum as well as geometry

culling to discard bricks, which are not visible in

the current frame. The bricks are rendered in a

back-to-front visibility-sorted order. In addition,

bricks that are closer to the viewpoint are

rendered at a higher resolution than those farther

away.

The level of interaction and image quality of the

rendering process can be controlled using the

following parameters:

•Total texture memory, which is used to limit

the total texture memory usage. This is done to

allow other textures to be resident in texture

memory at the same time.

•Number of texels rendered per frame, which is

used to control the pixel fill overhead,

assuming that the sampling rate used is

proportional to the data dimensions of the

texture bricks.

•Number of texels downloaded per frame, which

is used to control the overhead incurred due to

the amount of textures downloaded from main

memory to texture memory during user

motion.

•LOD threshold value, which is used to trade off

image quality with rendering time during user

interaction.

The renderer maintains a list of bricks rendered in

the current frame. In subsequent frames, as the

user moves only the bricks that are no longer

rendered are reloaded into texture memory. This

mechanism is similar to the disk paging scheme

used by the clip texture implementation. In this

case, the texture download is efficiently

implemented in OpenGL Volumizer, using texture

subloads to provide better download performance.

The renderer allows applications to roam the clip

texture by modifying the volumetric geometry for

the shape. This geometry provides the ROI in the

volume data and can be moved around to navigate

the dataset interactively. In order to maintain

near-constant frame rates during user motion, the

render action performs predictive texture

downloads to distribute the overhead of the data

transfer over multiple frames. This is done using

the direction of motion of the probe and then

computing the differential of the current and

predicted positions and downloading this

difference over a sequence of multiple frames.

The clip texture can also be rendered using the

single-resolution mode. When using this mode,

only textures at the same level of resolution are

rendered. This is implemented by traversing the

hierarchy and finding the set of bricks of the

highest resolution possible, which can be

rendered under the given resource constraints.

The clip texture API has been utilized to

interactively visualize huge volumetric datasets.

Figure 18 and Figure 19 show the segmented and

classified version of the visible human dataset

rendered interactively using the clip texture

renderer on an Onyx system with InfiniteReality3™

graphics (256 MB texture memory). The total

dataset is 6.77 GB in size (1760x1024x1878

unsigned short) and only 1 GB was allowed to be

resident in main memory. The clip levels were

computed using a brick size of 4 MB (128x128x128)

to generate 5 clip levels (including the original

level) for the hierarchy. Figure 19 shows the whole

data rendered with volumetric lighting in

multi-resolution mode. The image on the left in

Figure 19 shows a zoomed-in view with

transparency and color for different organs.

Bricks farther away from the viewing point are

rendered at a lower resolution than the closer

bricks (notice the difference between the left and

right hands). The image on the right in Figure 19

shows the full resolution data rendered using the

roaming mode of clip render action to show the

left knee of the visible male. The frame rate for the

visualization varies from 2 fps to 30 fps,

depending on the total amount of texture memory

being used, rendering mode (multi-resolution

versus roaming), image resolution, shading

technique, and so on.

16
Figure 18 Whole Body with Volumetric Lighting

Figure 19 Left: Zoomed in to Show Transparency and Color. Right: Roaming Mode to Visualize the Left
Knee at Full Resolution.

17
A Simple Volume Rendering Example

The following segment of code shows a simple volume rendering example using the OpenGL Volumizer

API. This example creates a shape node and renders it using TMRenderAction.

// Create a loader for the volume data.
IFLLoader *loader = IFLLoader::open(fileName);

// Load the volume data
vzParameterVolumeTexture *volume = loader->loadVolume();

// Create a shader for the appearance
vzShader *shader = new vzTMSimpleShader();

// Create the shape’s appearance
vzAppearance *appearance = new vzAppearance(shader);

// Add the volume texture as a parameter to the appearance
appearance->setParameter(“volume”, volume);

// Initialize the geometry
vzGeometry *geometry = new vzBlock();

// Initialize the shape node. Gathering geometry and appearance
shape = new vzShape(geometry, appearance);

// Create a 3D-Texture-based render action
vzTMRenderAction renderAction = new vzTMRenderAction(0);

// Manage the shape
renderAction->manage(shape);

// Render the shape node
renderAction->beginDraw(VZ_RESTORE_GL_STATE_BIT);
renderAction->draw(shape);
renderAction->endDraw();

// Unmanage the shape
renderAction->unmanage(shape);

// Delete the render action
delete renderAction;

Download and Try It

The latest version of OpenGL Volumizer 2 is available free via download, providing application developers

with the necessary tools for implementing interactive, scalable, high-quality, volume-visualization

applications. The package can be downloaded from www.sgi.com/software/volumizer. You can find

complete documentation and resources on this web page.

18
References

Bhaniramka, P.; Demange, Y; OpenGL Volumizer: A Toolkit for High QualityVolume Rendering of Large

Data sets. Symposium on Volume Visualization and Graphics 2002 (to be published).

Cabral, B.; Cam, N.; and Foran, J.; “Accelerated Volume Rendering and Tomographic Reconstruction using

Texture Mapping Hardware,” Symposium on Volume Visualization, 1994.

Drebin, R.A; Carpenter, L.; and Hanrahan, P.; Volume rendering. In John Dill, editor, Computer Graphics

(SIGGRAPH 88 Proceedings), volume 22, pages 65--74, August 1988.

LaMar, E; Hamann, B; and Joy, K.I.; Multiresolution Techniques for Interactive Texture-Based Volume

Visualization. Proceedings of IEEE Visualization, 1999.

Levoy, M.; Efficient ray tracing of volume data, ACM Transactions on Graphics (TOG), Volume 9 Issue 3,

July 1990.

McReynolds, T.; and Blythe, D.; Advanced Graphics Programming Techniques Using OpenGL, SIGGRAPH

98 Course Notes, Orlando, FL, 1998.

Tanner, C.C.; Migdal, C.J.; Jones, M.T. “The Clipmap: A Virtual Mipmap.” Proceedings of SIGGRAPH 1998.

Weiler, M.; Westermann, R.; Chuck Hansen, C.; Zimmermann, K.; and Ertl, T.; Level-Of-Detail Volume

Rendering via 3D Textures. Volume Visualization & Graphics Symposium, 2000.

OpenGL Volumizer 2 Programmer’s Guide, http://www.sgi.com/software/volumizer/documents. html

OpenGL Volumizer 2 Reference Manual, http://www.sgi.com/software/volumizer/documents. html

OpenGL Volumizer 2 Release Notes, http://www.sgi.com/software/volumizer/documents. html
Corporate Office
1600 Amphitheatre Pkwy.
Mountain View, CA 94043
(650) 960-1980
www.sgi.com

North America (800) 800-7441
Latin America (650) 933-4637
Europe (44) 118.925.75.00
Japan (81) 3.5488.1811
Asia Pacific (65) 771.0290

©2002, Silicon Graphics, Inc. All rights reserved. Silicon Graphics, SGI, IRIX, and OpenGL are registered trademarks and InfiniteReality3, OpenGL
Multipipe, OpenGL Performer, OpenGL Volumizer, and Open Inventor are trademarks of Silicon Graphics, Inc.

007-4557-001

	Volume Visualization
	Product Overview
	OpenGL Volumizer API
	Volumetric Geometry
	3D Texture Mapping Render Action
	Volumetric Shaders
	Transfer Functions
	Understanding the Texture Mapping Render Action
	Integration with Other Toolkits
	Using Multiple Graphics Pipes
	Visualizing Large Data
	Time-Varying Volume Rendering
	Volume Roaming
	Multi-resolution Volume Rendering

	3D Clip Textures
	Clip Texture Implementation
	Clip Texture Render Action

	A Simple Volume Rendering Example
	Download and Try It
	References

