Open Inventor™ C++ Reference Manua

The Official Reference Document
for Open Inventor, Release 2

Open Inventor Architecture Group

A
vy

Addison-Wesley Publishing Company
Reading, Massachusetts Menlo Park, California
New York Don Mills, Ontario Wokingham, England
Amsterdam Bonn Sydney Singapore Tokyo Madrid
San Juan Paris Seoul Milan Mexico City Taipei

Silicon Graphics, the Silicon Graphicslogo, and IRIS are registered trademarks and Open
Inventor, OpenGL, and IRIS Graphics Library are trademarks of Silicon Graphics, Inc. X
Window System is atrademark of Massachusetts I nstitute of Technology. Display PostScriptisa
registered trademark of Adobe Systems Incorporated.

The authors and publishers have taken care in preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of
the information or programs contained herein.

Library of Congress Cataloging-in-Publication Data

Copyright © 1994 by Silicon Graphics, Inc.
ISBN 0-201-62491-5

All rightsreserved. No part of this publication may be reproduced, stored in aretrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, without the prior written permission of the publisher. Printed in the United States of
America. Published simultaneously in Canada.

Copy Editor: Arthur Evans

Sponsoring Editor: Keith Wollman

Project Editor: Joanne Clapp Fullagar

Cover Image: Rikk Carey

Cover Design: Jean Seal

Text Design: Electric Ink, Ltd., and Kay Maitz

Set in 10-point Stone Serif

Addison-Wesley books are available for bulk purchases by corporations, institutions, and other
organizations. For more information, please contact the Corporate, Government and Special
Sales Department at

(617) 944-3700 x2915.

First Printing, July 1994

123456789-CRS-9796959493

Contents

PN o Lo UL A I g TEST = X Yo] LR \%
What ThiS BOOK CONAINS......ccciieieierieieeieeeiteeseeeiesseeessresesssseessbeesssssessssesesssreesas Vi
Conventions Used in TRISBOOKcccuiiviiieeiic et s vi
Key to Scene Graph DiagramsS........ccoceererereniere e Vi

O O =13 I = <Y 1

2. REFEreNCE PAgESccoiiiiiiee e 9

About This Book

Open Inventor C++ Reference Manual includes reference pages for the public C++
classes and member functions in the Open Inventor Toolkit, alibrary of objects and
methods used for interactive 3D graphics. These pages are also available online with
the Open Inventor product.

For further information about programming with Open Inventor, see The Inventor
Mentor and The Inventor Toolmaker. The Inventor Mentor introduces graphics
programmers and application devel opers to Open Inventor. The Inventor Tool maker
describes how to create new classes and how to customize existing classesin the Open
Inventor Toolkit. Both books include detailed program examplesin C++.

Many Inventor classes and member functions are labeled as SOEXTENDER, which
means they are available to programmers who wish to extend the toolkit. Note that
these classes and functions are not documented in the Open Inventor C++ Reference
Manual. Refer to header files and The Inventor Toolmaker for information on them.

Other classes and methods are labeled as SOINTERNAL. These are used solely within
the Open Inventor library and should not be used in applications. The labels
SoEXTENDER and SolNTERNAL are for documentation purposes only and are not
checked by the compiler.

Vi

What This Book Contains

This book contains reference pages, in aphabetical order, for al public classesin the
Open Inventor Toolkit.

Open Inventor C++ Reference Manual contains the following chapters:

e Chapter 1, “Class Trees,” shows key portions of the Open Inventor classtree.

¢ Chapter 2, “Reference Pages,” which forms the bulk of this manual, contains
descriptions of the Open Inventor classes and methods, including file format and
default values. Enums, typedefs, and #defines, if any, are listed in the “Include
File" section for each class. Each nodekit class listsits catalog partsin a separate
section. For the sake of brevity, these parts, which are written out as fields, are not
repeated in the “File Format” section for nodekit classes.

Conventions Used in This Book

This book uses boldface text font for all Inventor classes, methods, and field names:
SoNode, SoMaterial, getValue(), setVaue(), ambientColor, and center. Parentheses
indicate methods. Includefilesarein Couri er font.

Key to Scene Graph Diagrams

Figure 1-1 shows the symbols used in the scene graph diagrams that appear throughout
this guide.

About This Book

®
S

Transform Light

©

Manipulator

= >
2 3
g 5]
g 2
s 8
<3 8
o
«Q
<

‘ :
o
o

o ©
=
2

Property (Misc.) SoSelection
Shape Callback

O
|

Group Path

O

Separator Render Area/Component
gy \

Engine S;t;ér:a;

0, =

Switch Field

Camera realTime Global Field

Figure I-1 Scene Graph Symbols

Conventions Used in This Book Vii

Chapter 1

Class Trees

Thefiguresin this chapter show key portions of the Open Inventor classtree. Node
classes are divided into the following categories:

e Shapes

e Properties
e Groups

e Cameras

e Lights
Class trees for the following classes are aso included in this chapter:
e Actions

e Highlights
* Events

e Detals

e Sensors

e Engines

e Nodekits
* Draggers

e Manipulators
e Components
e Errors

Theicons used in these figures are explained in the section “ About This Book.”

SoBase

SoFieldContainer

SoNode —@ SoShape—

Figure 1-1

— SoCone
— SoCube

— SoCylinder

— SolndexedNurbsCurve

+— SolndexedNurbsSurface

— SoNurbsCurve
— SoNurbsSurface
— SoSphere

— SoText2

— SoText3

— SoVertexShape ———— SolndexedShape

Shape-Node Classes

— SoNonIndexedShape —

— SolndexedFaceSet
—SolndexedLineSet

—SolndexedTriangleStripSet

— SoFaceSet
— SoLineSet
—SoPointSet

—SoQuadMesh

—SoTriangleStripSet

Solfase

SoFieldContainer

SoNode

Figure 1-2

— @ SoBaseColor
— @ SoColorindex
I @ SoComplexity
— @ SoCoordinate3

 — @SoLightModel
— @SoMateriaI
I @SoMa&eriaIBinding
S @ SoMateriallndex
S @SoNormaI

— @ SoNormalBinding

— @SoPaCkedColor
I OSoPickStyle
— @SoProfile 4E

@ SoProfileCoordinate2

— @ SoProfileCoordinate3

S O SoShapeHints
S @ SoTexture2

S @ SoTexture2Transform

— @ SoTextureCoordinate2

— @ SoTextureCoordinateBinding

— @ SoTextureCoordinateFunction

— @ SoTransformation —————
I O SoUnknownNode

Property-Node Classes

SolLinearProfile

SoNurbsProfile

SoTextureCoordinateDefault
SoTextureCoordinateEnvironment
SoTextureCoordinatePlane
SoAntiSquish
SoMatrixTransform
SoResetTransform

SoPendulum
SoRotation {

SoRotor
SoRotationXYZ
SoScale
SoSurroundScale
SoTransform
SoTranslation SoShuttle

SoUnits

SoTransformManip ...

— SoArray
— SoLevelOfDetail
— SoMultipleCopy
— SoPathSwitch
SoBase SoFieldContainer SoNode SoGroup i
[@ SoSeparator { SoAnnotation
SoSelection
— SoSwitch ———— SoBlinker
— SoTransformSeparator
Figure 1-3 Group-Node Classes
SoOrthographicCamera
SoBase SoFieldContainer SoNode SoCamera{
SoPerspectiveCamera
Figure 1-4 Camera-Node Classes
SoBase
SoFieId‘Container SoDirectionalLight SoDirectionalLightManip
SoNode SoLight SoPointLight —————— SoPointLightManip
SoSpotLight —————— SoSpotLightManip

Figure 1-5 Light-Node Classes

SoCallbackAction - X
SoBoxHighlightRenderAction

SoGLRenderAction
SoLineHighlightRenderAction

SoGetBoundingBoxAction

SoGetMatrixAction

SoAction SoHandleEventAction

SoPickAction ——— — SoRayPickAction

SoSearchAction

SoWriteAction

Figure 1-6 Action Classes

Class Trees

X . SoBoxHighlightRenderAction
SoAction SoGLRenderAction {
SoLineHighlightRenderAction

Figure 1-7 Highlight Classes

SoKeyboardEvent
SoButtonEvent {SoMouseButtonEvent
So Even% Solocation2Event SoSpaceballButtonEvent

SoMotion3Event
Figure 1-8 Event Classes

SoConeDetail

SoCubeDetail

SoCylinderDetail

SoDetail SoFaceDetail

SoLineDetail

SoNodeKitDetail

SoPointDetail

SoTextDetail

Figure 1-9 Detail Classes

SoFieldSensor
SoDataSensor SoNodeSensor
SoDelayQueueSensor SoldleSensor SoPathSensor

SoOneShotSensor
SoSensor

SoAlarmSensor
SoTimerQueueSensor {
SoTimerSensor

Figure 1-10 Sensor Classes

|

SoBase SoFieldContainer I_I" SoEngine—— SoBoolOperation

— SoCalculator

— SoComposeMatrix

— SoComposeRotation

— SoComposeRotationFromTo

— SoComposeVec2f

— SoComposeVec3f

— SoComposeVec4f

— SoComputeBoundingBox

— SoConcatenate

— SoCounter

— SoDecomposeMatrix

— SoDecomposeRotation

— SoDecomposeVec2f

— SoDecomposeVec3f

— SoDecomposeVec4f

— SoElapsedTime

— SoGate

— Solnterpolate SolnterpolateFloat
— SoOnOff SolnterpolateRotation
— SoOneShot SolnterpolateVec2f
— SoSelectOne SolnterpolateVec3f
— SoTimeCounter SolnterpolateVec4f
— SoTransformVec3f

— SoTriggerAny

“— SoUnknownEngine

Figure 1-11 Engine Classes

Class Trees

SoBase — SoFieldContainer — SoNode — O SoBaseKit —

Figure 1-12

SoBase
|
SoFieldContainer
|
SoNode
|

SoBaseKit
|

SolnteractionKit — SoDragger —

Figure 1-13 Dragger Classes

 SoAppearanceKit

— SoCameraKit

— SolnteractionKit SoDragger ...
SoShapeKit

— SoSeparatorKit {
SoWrapperKit

|— SoLightKit

— SoSceneKit

Node-kit Classes

T SoCenterballDragger

— SoDirectionalLightDragger
— SoDragPointDragger

— SoHandleBoxDragger

— SoJackDragger

— SoPointLightDragger

— SoRotateCylindricalDragger
— SoRotateDiscDragger

— SoRotateSphericalDragger
— SoScalelDragger

— SoScale2Dragger

— SoScale2UniformDragger
— SoScaleUniformDragger
— SoSpotLightDragger

— SoTabBoxDragger

— SoTabPlaneDragger

— SoTrackballDragger

— SoTransformBoxDragger
— SoTranslatelDragger

— SoTranslate2Dragger

SoBase
|

SoFieldContainer
|

SoNod SoLight SoDirectionaILight—@SoDirectionaILightManip
— SoPointLight —— SoPointLightManip
—SoSpotLight —— SoSpotLightManip
SoTransformation — SoTransform ———— @ SoTransformManip SoCenterballManip

SoHandleboxManip
SoJackManip
SoTabBoxManip
SoTrackballManip

SoTransformBoxManip

Figure 1-14 Manipulator Classes

ﬂj SoXtComponent

SoXtDirectionalLightEditor

SoXtGLWidget —— SoXtRenderArea SoXtViewer SoXtFullViewer
SoXtMaterialEditor
SoxtMaterialList SoXtConstrainedViewer
SoXtPrintDialog SoXtFlyViewer
SoXtSliderSetBase —— SoXtSliderSet Soxtwalkviewer
SoXtExaminerViewer
SoXtLightSliderSet SoXtPlaneViewer

SoXtMaterialSliderSet

SoXtTransformSliderSet

Figure 1-15 Component Classes

SoDebugError

SoError SoMemoryError

SoReadError

Figure 1-16 Error Classes

Class Trees

Open Inventor
C++ Reference Pages

This chapter contains the reference pages, in aphabetical order, for all
public Open Inventor classes.

SbBool

SbBox2f

SbBox2s

SbBox3f

SbColor

SbCylinder
SbCylinderPlaneProjector
SbCylinderProjector
SbCylinderSectionProjector
SbCylinderSheetProjector
SbLine

SbLineProjector
SbMatrix

SbName

SbPlane
SbPlaneProjector

SbPList

SbProjector

SbRotation

SbSphere
SbSpherePlaneProjector
SbSphereProjector
SbSphereSectionProjector
SbSphereSheetProjector
SbString

SbTime

SbVec2f

SbVec2s

SbVec3f

SbVecaf
ShViewportRegion
SbhViewVolume
SbXfBox3f

SoAction

SoAlarmSensor
SoAnnotation

Open Inventor C++ Reference Pages

SoAntiSquish
SoAppearanceKit
SoArray

SoBase
SoBaseColor
SoBaseKit
SoBaseList
SoBlinker

SoBool Operation
SoBoxHighlightRenderAction
SoButtonEvent
SoByteStream

SoCal culator
SoCallback
SoCallbackAction
SoCallbackList
SoCamera
SoCameraKit
SoCenterballDragger
SoCenterbalIManip
SoClipPlane
SoColorindex
SoComplexity
SoComposeMatrix
SoComposeRotation
SoComposeRotationFromTo
SoComposeVec2f
SoComposeVec3f
SoComposeVec4f
SoComputeBoundingBox
SoConcatenate
SoCone
SoConeDetail
SoCoordinate3
SoCoordinated
SoCounter

SoCube
SoCubeDetail
SoCylinder
SoCylinderDetall
SoDataSensor

SoDB

SoDebugError
SoDecomposeMatrix
SoDecomposeRotation
SoDecomposeVec2f
SoDecomposeVec3f
SoDecomposeVec4f
SoDelayQueueSensor
SoDetail

SoDetailList
SoDirectionalLight
SoDirectional LightDragger
SoDirectionalLightManip
SoDragger
SoDragPointDragger
SoDrawStyle
SoElapsedTime
SoEngine
SoEngineList
SoEngineOutput
SoEngineOutputList
SoEnvironment
SoError

SoEvent
SoEventCallback
SoFaceDetail
SoFaceSet

SoField
SoFieldContainer
SoFieldList
SoFieldSensor

SoFile

SoFont

SoGate
SoGetBoundingBoxAction
SoGetMatrixAction
SoGL RenderAction
SoGroup
SoHandleBoxDragger
SoHandleBoxManip
SoHandleEventAction
SoldleSensor

Sol ndexedFaceSet
SolndexedLineSet
SolndexedNurbsCurve
SolndexedNurbsSurface
SolndexedShape
SolndexedTriangleStripSet
Solnfo

Sol nput

Solnteraction
SolnteractionKit
Solnterpolate

Sol nterpol ateFl oat
Solnterpol ateRotation
Solnterpol ateVec2f

Sol nterpol ateVec3f
Solnterpol ateVecaf
SoJackDragger
SoJackManip

SoK eyboardEvent

SolL abel

SoL evel Of Detail
SoLight

SoLightKit
SoLightModel
SoLinearProfile

11

12

SolLineDetail SoNodeKitDetail

SoLineHighlightRenderAction SoNodeKitListPart
SoLineSet SoNodeKitPath

SoL ocation2Event SoNodeList
SoMaterial SoNodeSensor
SoMaterial Binding SoNonlndexedShape
SoMateriallndex SoNormal
SoMatrixTransform SoNormalBinding
SoMemoryError SoNurbsCurve
SoMFBitMask SoNurbsProfile
SoMFBool SoNurbsSurface
SoMFColor SoOffscreenRenderer
SoMFEnum SoOneShot
SoMFFloat SoOneShotSensor
SoMField SoOnOff

SoMFLong SoOrthographicCamera
SoMFMatrix SoOutput
SoMFName SoPackedColor
SoMFNode SoPath

SoMFPath SoPathList
SoMFPlane SoPathSensor
SoMFRotation SoPathSwitch
SoMFShort SoPendulum
SoMFString SoPerspectiveCamera
SoMFTime SoPickAction
SoMFULong SoPickedPoint
SoMFUShort SoPickedPointList
SoM FVec2f SoPickStyle

SoM FVec3f SoPointDetail

SoM FVecaf SoPointLight
SoMotion3Event SoPointLightDragger
SoMouseButtonEvent SoPointLightManip
SoMultipleCopy SoPointSet

SoNode SoPrimitiveVertex
SoNodeKit SoProfile
SoNodekitCatalog SoProfileCoordinate2

Open Inventor C++ Reference Pages

SoProfileCoordinate3
SoQuadMesh
SoRayPickAction
SoReadError
SoResetTransform
SoRotateCylindrical Dragger
SoRotateDiscDragger
SoRotateSpherical Dragger
SoRotation
SoRotationXYZ
SoRotor

SoScale
SoScalelDragger
SoScale2Dragger
SoScale2UniformDragger
SoScaleUniformDragger
SoSceneKit
SoSceneManager
SoSearchAction
SoSelection
SoSelectOne

SoSensor

SoSeparator
SoSeparatorKit
SoSFBitMask

SoSFBool

SoSFColor

SoSFEnum

SoSFFloat

SoSField

SoSFImage

SoSFLong

SoSFMatrix

SoSFName

SoSFNode

SoSFPath

SoSFPlane

SoSFRotation

SoSFShort

SoSFString

SoSFTime

SoSFTrigger

SoSFUL ong

SoSFUShort

SoSFVec2f

SoSFVec3f

SoSFVec4f

SoShape

SoShapeHints

SoShapeKit

SoShuttle
SoSpacebal|ButtonEvent
SoSphere

SoSpotLight
SoSpotLightDragger
SoSpotLightManip
SoSurroundScale

SoSwitch

SoTabBoxDragger
SoTabBoxManip
SoTabPlaneDragger

SoText2

SoText3

SoTextDetail

SoTexture2
SoTexture2Transform
SoTextureCoordinate2
SoTextureCoordinateBinding
SoTextureCoordinateDefault
SoTextureCoordinateEnvironment
SoTextureCoordinateFunction
SoTextureCoordinatePlane

13

14

SoTimeCounter
SoTimerQueueSensor
SoTimerSensor
SoTrackball Dragger
SoTrackbalIManip
SoTranReceiver
SoTranSender
SoTransform
SoTransformation
SoTransformBoxDragger
SoTransformBoxManip
SoTransformManip
SoTransformSeparator
SoTransformVec3f
SoTranslatelDragger
SoTranslate2Dragger
SoTrandation
SoTriangleStripSet
SoTriggerAny

SoType

SoTypeL.ist

SoUnits
SoVertexShape
SoWrapperKit
SoWriteAction

SoXt

SoXtClipboard
SoXtComponent
SoXtConstrainedViewer
SoXtDevice
SoXtDirectional LightEditor
SoXtExaminerViewer
SoXtFlyViewer
SoXtFullViewer
SoXtGLWidget
SoXtlnputFocus

Open Inventor C++ Reference Pages

SoXtKeyboard
SoXtLightSliderSet
SoXtMateria Editor
SoXtMaterialList
SoXtMaterial SliderSet
SoXtMouse
SoXtPlaneViewer
SoXtPrintDialog
SoXtRenderArea
SoXtResource
SoXtSliderSet
SoXtSliderSetBase
SoXtSpaceball
SoXtTransformSliderSet
SoXtViewer
SoXtWalkViewer

SbBool

NAME
SbBool — a Boolean type

INHERITS FROM
SbBool

DESCRIPTION
This typedef is used to represent the Boolean values TRUE and FALSE. SbBool is not
a class and does not have any methods or variables.

INCLUDE FILE
#i ncl ude <l nventor/ SbBasi c. h>

15

SbBox2f

NAME

SbBox2f — 2D box class

INHERITS FROM

SbBox2f

DESCRIPTION

2D box which has planes parallel to the major axes and is specified by two points
(specified as floating point) on a diagonal. This class is part of the standard Inventor
datatype classes and is used as input and output to geometry operations.

METHODS

16

SbBox2f()
SbBox2f(float xmin, float ymin, float xmax float ymax)
SbBox2f(const SbVec2f &min, const SbVec2f &max)
void ~SbBox2f()
Constructors and destructor for a 2D float box. xmin, ymin, xmax, and ymax
are the bounds of the box. min and max are the corners of the diagonal that
define the box.

const SbVec2f & getMin()
const SbVec2f & getMax()
Returns the minimum and maximum points of the box.

SbVec2f getCenter()
Returns the center of the box.
void extendBy(const SbVec2f &point)
void extendBy(const SbBox2f &box)
Extends this box (if necessary) to contain the specified point or other box.
SbBool intersect(const SbVec2f &point)
SbBool intersect(const SbBox2f &box)
Returns TRUE if the specified point or box intersects this box.
void setBounds(float xmin, float ymin, float xmax, float ymax)
void setBounds(const SbVec2f &min, const SbVec2f &max)
Sets the corners of the box.
void getBounds(float &xmin, float &ymin, float &xmax, float
&ymax)
void getBounds(SbVec2f &min, SbVec2f &max)

Gets the corners of the box.

Open Inventor C++ Reference Pages

SbBox2f

void getOrigin(float &x0, float &y0)
Gets box origin.
void getSize(float &x, float &y)
Gets box size.
float getAspectRatio()
Gets box aspect ratio.
void makeEmpty()
Makes an empty box.
SbBool isEmpty()
Returns TRUE if the box is empty, and FALSE otherwise.
SbBool hasArea()
Returns TRUE if both dimensions of the box have positive size, and FALSE
otherwise.
INCLUDE FILE

#i ncl ude <l nvent or/ ShBox. h>

SEE ALSO
SbBox3f, SbXfBox3f, SbBox2s, SbVec3f, SbVec2f, SbVec2s, SbMatrix

17

SbBox2s

NAME

SbBox2s — 2D box class

INHERITS FROM

SbBox2s

DESCRIPTION

2D box which has planes parallel to the major axes and is specified by two points
(specified with short integers) on a diagonal. This class is part of the standard
Inventor datatype classes and is used as input and output to geometry operations.

METHODS

18

SbBox2s()
SbBox2s(short xmin, short ymin, short xmax, short ymax)
SbBox2s(const SbVec2s & min, const SbVec2s &_max)
void ~SbBox2s()
Constructors and destructor for a 2D integer box. xmin, ymin, xmax, and
ymax are the bounds of the box. min and max are the corners of the diagonal
that define the box.

const SbVec2s & getMin() const
const SbVec2s & getMax() const
Returns the minimum and maximum points of the box.

void extendBy(const SbVec2s &point)
void extendBy(const SbBox2s &box)
Extends this box (if necessary) to contain the specified point or other box.
SbBool intersect(const SbVec2s &point) const
SbBool intersect(const SbBox2s &box) const

Returns TRUE if the specified point or box intersects this box.

void setBounds(short xmin, short ymin, short xmax, short ymax)
void setBounds(const SbVec2s & min, const SbVec2s &_max)
Sets the corners of the box.

void getBounds(short &xmin, short &ymin, short &xmax, short
&ymax) const
void getBounds(SbVec2s & min, SbVec2s & max) const

Gets the corners of the box.

void getOrigin(short &originX, short &originY) const
Returns origin (minimum point) of box.

Open Inventor C++ Reference Pages

SbBox2s

void

float

void

int
int

INCLUDE FILE

getSize(short &sizeX, short &sizeY) const
Returns box size.

getAspectRatio() const
Returns aspect ratio (ratio of width to height) of box.

makeEmpty()
Makes an empty box.

operator ==(const SbhBox2s &b1, const SbBox2s &b2)
operator !=(const SbBox2s &b1, const SbBox2s &b2)
Equality comparisons.

#i ncl ude <l nvent or/ ShBox. h>

SEE ALSO

SbBox3f, SbXfBox3f, SbBox2f, SbVec3f, SbVec2f, SbVec2s, SbMatrix

19

SbBox3f

NAME

SbBox3f — 3D box class

INHERITS FROM

SbBox3f

DESCRIPTION

3D box which has planes parallel to the major axes and is specified by two points on
a diagonal. This class is part of the standard Inventor datatype classes and is used as
input and output to geometry operations (see SoGetBoundingBoxAction).

METHODS

20

SbBox3f()
SbBox3f(float xmin, float ymin, float zmin float xmax, float
ymax, float zmax)
SbBox3f(const SbVec3f &min, const SbVec3f &max)
void ~SbBox3f()

Constructors and destructor for a 3D float box. xmin, ymin, zmin, xmax, ymax
and zmax are the bounds of the box. min and max are the corners of the
diagonal that define the box.

const SbVec3f & getMin()

const SbVec3f & getMax()
Returns the minimum and maximum points of the box. The minimum
point is the corner of the box with the lowest X, Y, and Z values. The
maximum point is the corner of the box with the highest X, Y, and Z values.

SbVec3f getCenter()
Returns the center of the box.
void extendBy(const SbVec3f &point)
void extendBy(const SbBox3f &box)
Extends this box (if necessary) to contain the specified point or other box.
SbBool intersect(const SbVec3f &point)
SbBool intersect(const SbBox3f &box)
Returns TRUE if the specified point or box intersects this box.
void setBounds(float xmin, float ymin, float zmin, float xmax, float
ymax, float zmax)
void setBounds(const SbVec3f &min, const SbVec3f &max)

Sets the corners of the box.

Open Inventor C++ Reference Pages

SbBox3f

void

void

void

void

void

SbBool

SbBool

void

void

float

INCLUDE FILE

getBounds(float &xmin, float &ymin, float &zmin, float
&xmax, float &ymax, float &zmax)
getBounds(SbVec3f &min, SbVec3f &max)
Gets the corners of the box.

getOrigin(float &x0, float &y0, float &z0)
Gets box origin which is the same as the minimum corner of the box.

getSize(float &x, float &y, float &z)
Gets box size.

makeEmpty()
Makes an empty box.

isEmpty()
Returns TRUE if the box is empty, and FALSE otherwise.

hasVolume()
Returns TRUE if all three dimensions of the box have positive size, and
FALSE otherwise.

getSpan(SbVec3f &dir, float &dMin, float &dMax)
Finds the span of a box along a specified direction. The span is the total
distance the box occupies along a given direction. The total distance is
returned in the form of a minimum and maximum distance from the origin
of each of the corners of the box along the given direction. The difference
between these two values is the span.

transform(const SbMatrix &mx)
Transforms box by matrix, enlarging box to contain result.

getVolume()
Returns the volume of the box.

#i ncl ude <l nvent or/ ShBox. h>

SEE ALSO

SbXfBox3f, SbBox2f, SbBox2s, SbVec3f, SbVec2f, SbVec2s, SbMatrix,
SoGetBoundingBoxAction

21

SbColor

NAME
SbColor — color vector class

INHERITS FROM
SbVec3f

DESCRIPTION
This class is used to represent an RGB color. Each component of the vector is a
floating-point number between 0.0 and 1.0. There are routines to convert back and
forth between RGB and HSV.

METHODS
SbColor(const SbVec3f vec3f)
SbColor(const float rgb[3])
SbColor(float r, float g, float b)
Constructors for color vector.
SbColor & setHSVValue(float h, float s, float v)
Sets value of color vector from 3 HSV (Hue, Saturation, and Value)
components. Value is the same as brightness of the color.
SbColor & setHSVValue(const float hsv[3])
Sets value of color vector from array of 3 HSV components
void getHSVValue(float &h, float &s, float &v) const
Returns 3 individual HSV components
void getHSVValue(float hsv[3]) const
Returns an array of 3 HSV components
SbColor & setPackedValue(unsigned long rgba)
RGBA Packed integer color routines. The color format expressed in
hexadecimal is Oxaabbggrr, where
aa is the alpha value
bb is the blue value
gg is the green value
rr is the red value
RGBA component values range from 0 to OxFF (255). Sets value from RGBA
packed color. Alpha value is ignored.
unsigned long getPackedValue() const

Returns RGBA packed color. Alpha color is always set to OxFF (255).

22 Open Inventor C++ Reference Pages

SbColor

Methods from class SbVec3f:

cross, dot, equals, getClosestAxis, getValue, getValue, length, negate,
normalize, setValue, setValue, setValue, operator [], operator [], operator *=,
operator /=, operator +=, operator -=, operator -, operator *, operator *,
operator /, operator +, operator -, operator ==, operator !=

INCLUDE FILE
#i ncl ude <l nvent or/ SbhCol or. h>

23

SbCylinder

NAME
SbCylinder — class for representing a cylinder

INHERITS FROM
SbCylinder

DESCRIPTION
This class defines a simple cylinder datatype. It is used by the Inventor toolkit for
arguments or return values.

METHODS
SbCylinder()
SbCylinder(const SbLine &a, float r)
Constructors. One takes an axis and radius.
void setValue(const SbLine &a, float r)
Change the axis and radius.
void setAxis(const SbLine &a)
void setRadius(float r)

Set just the axis or radius.

const SbLine & getAxis() const
float getRadius() const
Return the axis and radius.

SbBool intersect(const SbLine &I, SbVec3f &intersection) const
SbBool intersect(const SbLine &I, SbVec3f &enter, SbVec3f &exit)
const

Intersect line and cylinder, returning TRUE if there is an intersection.

INCLUDE FILE
#i ncl ude <l nventor/ SbLi near. h>

SEE ALSO
SbVec3f, SbLine, SbPlane, SbSphere, SoCylinder

24 Open Inventor C++ Reference Pages

SbCylinderPlaneProjector

NAME
SbCylinderPlaneProjector — cylinder-plane projector

INHERITS FROM
SbProjector > SbCylinderProjector > SbCylinderSectionProjector >
SbCylinderPlaneProjector

DESCRIPTION
SbCylinderPlaneProjector projects a window space point (usually based on the
mouse location) onto a surface defined by a cylinder and plane cutting through the
cylinder. Two projected points can produce a rotation along the cylinder’s axis.
When the mouse position projects onto the plane, the rotations will be as if the
plane is being dragged, causing the cylinder to roll beneath it.

Incremental changes (delta rotation) can be computed during interactive sessions.
Cylinder projectors are typically used to write interactive 3D manipulators and
viewers.

METHODS
SbCylinderPlaneProjector(float edgeTol = .9, SbBool
orientToEye = TRUE)
SbCylinderPlaneProjector(const SbCylinder &cyl, float
edgeTol = .9, SbBool orientToEye = TRUE)
Constructors. The first uses a default cylinder aligned with the Y axis with
radius 1.0; the cylinder is supplied in the second. The position of the plane is
specified as a fraction of the cylinder radius with the parameter edgeTol. A
tolerance value of 1.0 positions the plane down the center of the cylinder. A
tolerance value of 0.5 defines the longitudinal plane halfway between the
center and the outside edge of the cylinder. The default value is .9, so that
almost half the cylinder is in front of the plane. The orientToEye parameter
determines whether the plane is perpendicular to the eye, or perpendicular
to the cylinder’s Z axis. Setting that parameter to TRUE (the default) specifies
that the plane be perpendicular to the eye, which is most often the desired
behavior.

The default view volume is undefined, and the working space is identity.

“SbCylinderPlaneProjector()
Destructor.

Methods from class SbCylinderSectionProjector:
setTolerance, getTolerance, isWithinTolerance

25

SbCylinderPlaneProjector

Methods from class SbCylinderProjector:

projectAndGetRotation, getRotation, setCylinder, getCylinder,
setOrientToEye, isOrientToEye, setFront, isFront, isPointinFront

Methods from class SbProjector:

project, setViewVolume, getViewVolume, setWorkingSpace,
getWorkingSpace, copy

INCLUDE FILE
#i ncl ude <I nventor/projectors/ SbCylinderPl aneProjector. h>

SEE ALSO
SbCylinderSheetProjector, SbLineProjector, SbPlaneProjector,
SbSpherePlaneProjector, SbSphereProjector, SbSphereSectionProjector,
SbSphereSheetProjector

26 Open Inventor C++ Reference Pages

SbCylinderProjector

NAME
SbCylinderProjector — cylinder projector

INHERITS FROM
SbProjector > SbCylinderProjector

DESCRIPTION
SbCylinderProjector is an abstract base class for projectors that use a cylinder in
their projection. The getRotation() method for an SbCylinderProjector will always
return a rotation that is about the axis of the cylinder. Cylinder projectors are
typically used to write interactive 3D manipulators and viewers.

METHODS

“SbCylinderProjector()
Destructor.

SbVec3f projectAndGetRotation(const SbVec2f &point, SbRotation
&rot)
Apply the projector using the given point, returning the point in three
dimensions that it projects to. This also returns in rot a rotation about the
axis of the cylinder from the last projected point to this one. The passed
point should be normalized (i.e. lie in the range [0.0,1.0]), with (0,0) at the
lower-left.

virtual SbRotation
getRotation(const SbVec3f &pointl, const SbVec3f &point2)
Get a rotation given two points on this cylinder projector. The rotation will
be about the axis of the cylinder.

void setCylinder(const SbCylinder &cyl)
const SbCylinder &

getCylinder() const
Set and get the cylinder on which to project points. The default cylinder is
aligned with the Y axis and has radius 1.0.

void setOrientToEye(SbBool orientToEye)

SbBool isOrientToEye() const
Set and get whether the projector should always be oriented towards the eye.
Set to FALSE if the tolerance should be evaluated in working space.

27

SbCylinderProjector

void setFront(SbBool isFront)
SbBool isFront() const
SbBool isPointinFront(const SbVec3f &point) const

Set and get whether the projector should intersect the half of the cylinder
that faces the eye. Set to FALSE if the projector should intersect with the rear
half.

Methods from class SbProjector:

project, setViewVolume, getViewVolume, setWorkingSpace,
getWorkingSpace, copy

INCLUDE FILE
#i ncl ude <I nventor/projectors/SbCylinderProjector. h>

SEE ALSO
SbCylinderPlaneProjector, SbCylinderSectionProjector, SbCylinderSheetProjector,
SbLineProjector, SbPlaneProjector, SbSpherePlaneProjector, SbSphereProjector,
SbSphereSectionProjector, SbSphereSheetProjector

28 Open Inventor C++ Reference Pages

SbCylinderSectionProjector

NAME

SbCylinderSectionProjector — cylinder-section projector

INHERITS FROM

SbProjector > SbCylinderProjector > SbCylinderSectionProjector

DESCRIPTION

SbCylinderSectionProjector projects a window space point (usually based on the
mouse location) onto the section of a cylinder that has been sliced by a plane. Two
projected points can produce a rotation along the cylinder’s axis. The tolerance
slice can be specified as a fraction of the radius of the cylinder. The projection point
will not extend beyond the sliced portion of the cylinder.

Incremental changes (delta rotation) can be computed during interactive sessions.
Cylinder projectors are typically used to write interactive 3D manipulators and
viewers.

METHODS

void
float

SbCylinderSectionProjector(float edgeTol = .9, SbBool
orientToEye = TRUE)
SbCylinderSectionProjector(const SbCylinder &cyl, float
edgeTol = .9, SbBool orientToEye = TRUE)
Constructors. The first uses a default cylinder aligned with the Y axis with
radius 1.0; the cylinder is supplied in the second. The position of the plane
which slices the cylinder into a section is specified as a fraction of the
cylinder radius with the parameter edgeTol. A tolerance value of 1.0
positions the plane down the center of the cylinder. A tolerance value of 0.5
defines the longitudinal plane halfway between the center and the outside
edge of the cylinder. The default value is .9, so that almost half the cylinder
is in front of the plane. The orientToEye parameter determines whether the
plane is perpendicular to the eye, or perpendicular to the cylinder’s Z axis.
Setting that parameter to TRUE (the default) specifies that the plane be
perpendicular to the eye, which is most often the desired behavior.

The default view volume is undefined, and the working space is identity.

~SbCylinderSectionProjector()
Destructor.

setTolerance(float edgeTol)

getTolerance() const
Set and get the edge tolerance as a fraction of the radius of the cylinder. If
this is 1.0, the projector is a half cylinder. If this is .1, the projector is a slice
of the cylinder with radius .1*radius. Default is .9.

29

SbCylinderSectionProjector

SbBool iswithinTolerance(const SbVec3f &point)
Find whether this point on the cylinder or tolerance plane is within
tolerance.

Methods from class SbCylinderProjector:

projectAndGetRotation, getRotation, setCylinder, getCylinder,
setOrientToEye, isOrientToEye, setFront, isFront, isPointinFront

Methods from class SbProjector:

project, setViewVolume, getViewVolume, setWorkingSpace,
getWorkingSpace, copy

INCLUDE FILE
#i ncl ude <Inventor/projectors/ SbCylinder Secti onProjector. h>

SEE ALSO
SbCylinderPlaneProjector, SbCylinderSheetProjector, SbLineProjector,
SbPlaneProjector, SbSpherePlaneProjector, SbSphereProjector,
SbSphereSectionProjector, SbSphereSheetProjector

30 Open Inventor C++ Reference Pages

SbCylinderSheetProjector

NAME
SbCylinderSheetProjector — cylinder-sheet projector

INHERITS FROM
SbProjector > SbCylinderProjector > SbCylinderSheetProjector

DESCRIPTION
SbCylinderSheetProjector projects a window space point (usually based on the
mouse location) onto the surface of a cylinder with a hyperbolic sheet draped over
it. This allows smooth transitions onto and off of the cylinder. Two projected points
can produce a rotation along the cylinder’s axis. When the mouse position projects
on to the sheet, the rotations will be as if the sheet is being dragged, causing the
cylinder to roll beneath it.

Incremental changes (delta rotation) can be computed during interactive sessions.
Cylinder projectors are typically used to write interactive 3D manipulators and
viewers.

METHODS
SbCylinderSheetProjector(SbBool orientToEye = TRUE)
SbCylinderSheetProjector(const SbCylinder &cyl, SbBool
orientToEye = TRUE)
Constructors. The first uses a default cylinder aligned with the Y axis with
radius 1.0; the cylinder is supplied in the second. The orientToEye
parameter determines whether the sheet is perpendicular to the eye, or
perpendicular to the cylinder’s Z axis. Setting that parameter to TRUE (the
default) specifies that the plane be perpendicular to the eye, which is most
often the desired behavior.

The default view volume is undefined, and the working space is identity.

~SbCylinderSheetProjector()
Destructor.

Methods from class SbCylinderProjector:

projectAndGetRotation, getRotation, setCylinder, getCylinder,
setOrientToEye, isOrientToEye, setFront, isFront, isPointinFront

Methods from class SbProjector:

project, setViewVolume, getViewVolume, setWorkingSpace,
getWorkingSpace, copy

31

SbCylinderSheetProjector

INCLUDE FILE
#i ncl ude <I nventor/ projectors/ SbCylinder Sheet Proj ector. h>

SEE ALSO
SbCylinderSectionProjector, SbCylinderPlaneProjector, SbLineProjector,
SbPlaneProjector, SbSpherePlaneProjector, SbSphereProjector,
SbSphereSectionProjector, SbSphereSheetProjector

32 Open Inventor C++ Reference Pages

SbLine

NAME
SbLine — directed line in 3D

INHERITS FROM
SbLine

DESCRIPTION
Represents a directed line in 3D. This is a basic Inventor datatype that is used for
representing a 3D line. It is used as input and output by a variety of Inventor classes.

METHODS
SbLine()
SbLine(const SbVec3f &p0, const SbVec3f &pl)
Constructors. To construct a line from a position and direction, use:
SbLine(p0, p0 + dir). The line is directed from p0 to p1l.

void setValue(const SbVec3f &p0, const SbVec3f &pl)
Sets line to pass through points pO and p1.

SbBool getClosestPoints(const SbLine &line2, SbVec3f &ptOnThis,
SbVec3f &ptOnLine2) const
Finds the two closest points between this line and line2, and loads them into
ptOnThis and ptOnLine2. Returns FALSE if the lines are parallel (results
undefined), and returns TRUE otherwise.

SbVec3f getClosestPoint(const SbVec3f &point) const
Returns the closest point on the line to the given point.

const SbVec3f & getPosition() const

const SbVec3f & getDirection() const
Returns position of line origin point and direction vector of line.

INCLUDE FILE
#i ncl ude <l nventor/ SbLi near. h>

SEE ALSO
SbVec3f, SbPlane

33

SbLineProjector

NAME
SbLineProjector — line projector

INHERITS FROM
SbProjector > SbLineProjector

DESCRIPTION
SbLineProjector projects a 2D point, typically the location of the cursor, onto a 3D
line.
METHODS
SbLineProjector()
~SbLineProjector()
Constructor and destructor. The default line passes through the origin and is
aligned with the Y axis.
void setLine(const SbLine &line)

const SbLine & getLine() const
Set and get the line on which to project 2D points.

virtual SbVec3f getVector(const SbVec2f &mousePositionl, const SbVec2f
&mousePosition?2)
Get a vector on this line given two normalized mouse points.

virtual SbVec3f getVector(const SbVec2f &mousePosition)
Get a vector given the current mouse point. Uses the last point on this
projector from the previous call to getVector() or setStartPostion(). Do not
use this if the working space transform is changing since the new point will
be in a different space than the old one.

void setStartPosition(const SbVec2f &mousePosition)
Set the initial position from a mouse position.

void setStartPosition(const SbVec3f &point)
Set the initial position from a point on the projector.

Methods from class SbProjector:

project, setViewVolume, getViewVolume, setWorkingSpace,
getWorkingSpace, copy

INCLUDE FILE
#i ncl ude <I nventor/projectors/SbLi neProjector. h>

34 Open Inventor C++ Reference Pages

SbLineProjector

SEE ALSO
SbCylinderProjector, SbCylinderPlaneProjector, SbCylinderSectionProjector,
SbCylinderSheetProjector, SbPlaneProjector, SbSpherePlaneProjector,
SbSphereProjector, SbSphereSectionProjector, SbSphereSheetProjector

35

SbMatrix

NAME
SbMatrix — 4x4 matrix class

INHERITS FROM
SbMatrix

DESCRIPTION
4x4 matrix class/datatype used by many Inventor node and action classes. The
matrices are stored in row-major order.

METHODS

SbMatrix()

SbMatrix(float all, float al2, float al3, float al4, float a21,
float a22, float a23, float a24, float a31, float a32, float a33,
float a34, float a41, float a42, float a43, float a44)

SbMatrix(const SbMat &m)

Constructors.
void setValue(const SbMat &m)
Sets value from 4x4 array of elements.
void getValue(SbMat &m) const
const SbMat & getValue() const
Returns 4x4 array of elements.
void makeldentity()
Sets matrix to be identity.
static SbMatrix identity()
Returns an identity matrix.
void setRotate(const SbRotation &q)
Sets matrix to rotate by given rotation.
void setScale(float s)
Sets matrix to scale by given uniform factor.
void setScale(const SbVec3f &s)
Sets matrix to scale by given vector.
void setTranslate(const SbVec3f &t)

Sets matrix to translate by given vector.

36 Open Inventor C++ Reference Pages

SbMatrix

void setTransform(const SbVec3f &t, const SbRotation &r, const
SbVec3f &s)

void setTransform(const SbVec3f &t, const SbRotation &r, const
SbVec3f &s, const SbRotation &s0)

void setTransform(const SbVec3f &translation, const SbRotation

&rotation, const SbVec3f &scaleFactor, const SbRotation
&scaleOrientation, const SbVVec3f ¢er)
Composes the matrix based on a translation, rotation, scale, orientation for
scale, and center. The center is the center point for scaling and rotation. The
scaleOrientation chooses the primary axes for the scale.

void getTransform(SbVec3f &t, SbRotation &r, SbVec3f &s,
SbRotation &so) const
Return translation, rotation, scale, and scale orientation components of the
matrix.

float det3(int rl, int r2, int r3, int c1, int c2, int ¢3) const
Returns determinant of 3x3 submatrix composed of given row and column
indices (0-3 for each).

float det3() const
Returns determinant of upper-left 3x3 submatrix.

float det4() const
Returns determinant of entire matrix.

SbBool factor(SbMatrix &r, SbVec3f &s, SbMatrix &u, SbVec3f &t,
SbMatrix &proj) const
Factors a matrix m into 5 pieces: m =r sr” u t, where r” means transpose of
r, and r and u are rotations, s is a scale, and t is a translation. Any projection
information is returned in proj.

SbMatrix inverse() const
Returns inverse of matrix. Results are undefined for singular matrices. Uses
LU decomposition.

SbBool LUDecomposition(int index[4], float &d)
Perform in-place LU decomposition of matrix. index is index of rows in
matrix. d is the parity of row swaps. Returns FALSE if singular.

void LUBackSubstitution(int index[4], float b[4]) const

Perform back-substitution on LU-decomposed matrix. Index is permutation
of rows from original matrix.

37

SbMatrix

SbMatrix transpose() const
Returns transpose of matrix.

SbMatrix & multRight(const SbMatrix &m)
SbMatrix & multLeft(const SbMatrix &m)
Multiplies matrix by given matrix on right or left.

void multMatrixVec(const SbVec3f &src, SbVec3f &dst) const
Multiplies matrix by given column vector, giving vector result.

void multVecMatrix(const SbVec3f &src, SbVec3f &dst) const
Multiplies given row vector by matrix, giving vector result.

void multDirMatrix(const SbVec3f &src, SbVec3f &dst) const
Multiplies given row vector by matrix, giving vector result. src is assumed to
be a direction vector, so translation part of matrix is ignored.

void multLineMatrix(const SbLine &src, SbLine &dst) const
Multiplies the given line’s origin by the matrix, and the line’s direction by
the rotation portion of the matrix.

void print(FILE *fp) const
Prints a formatted version of the matrix to the given file pointer.

float * operator float*()
Cast: returns pointer to storage of first element.

SbMat operator SbMat &()
Cast: returns reference to 4x4 array.

float * operator [](int i)

const float * operator [](int i) const

Make it look like a usual matrix (so you can do m[3][2]).

SbMatrix & operator =(const SbMat &m)
Sets value from 4x4 array of elements.

SbMatrix & operator =(const SbMatrix &m)
Set the matrix from another SbMatrix.

SbMatrix & operator =(const SbRotation &q)
Set the matrix from an SbRotation.

38 Open Inventor C++ Reference Pages

SbMatrix

SbMatrix & operator *=(const SbMatrix &m)
Performs right multiplication with another matrix.
SbMatrix operator *(const SbMatrix &m1, const SbMatrix &m?2)
Binary multiplication of matrices.
int operator ==(const SbMatrix &m1, const SbMatrix &m?2)
int operator !=(const SbMatrix &m1, const SbMatrix &m2)

Equality comparison operators.

SbBool equals(const SbMatrix &m, float tolerance) const
Equality comparison within given tolerance, for each component.

INCLUDE FILE
#i ncl ude <l nventor/ SbLi near. h>

SEE ALSO
SbVec3f, SbRotation

39

SbName

NAME

SbName — character string stored in a hash table

INHERITS FROM

SbName

DESCRIPTION

This class of strings stores the string in a hash table. It is used by the Inventor toolkit
for keywords and other unique names. It is not recommended for general use (only
in the context of Inventor objects). When a string is stored in this table, a pointer
to the storage is returned. Two identical strings will return the same pointer. This
means that comparison of two SbNames for equality can be accomplished by
comparing their identifiers. SbNames are used for strings which are expected to
show up frequently, such as node names.

METHODS
SbName()
SbName(const char *s)
SbName(const SbString &s)
SbName(const SbName &n)
~“SbName()
Constructors and destructor.
const char * getString() const
Returns pointer to the character string.
int getLength() const
Returns length of string.
static SbBool isldentStartChar(char c)
Returns TRUE if given character is a legal starting character for an identifier.
static SbBool isldentChar(char c)
Returns TRUE if given character is a legal nonstarting character for an
identifier.
int operator !() const
Unary "not" operator; returns TRUE if string is empty (").
int operator ==(const char *s, const SbName &n)
int operator ==(const SbName &n1, const SbName &n2)
int operator ==(const SbName &n, const char *s)
Equality operator for SbName/char* and SbName/SbName comparison.
40 Open Inventor C++ Reference Pages

SbName

int operator !=(const char *s, const SbName &n)
int operator !=(const SbName &n1, const SbName &n2)
int operator !=(const SbName &n, const char *s)

Inequality operator for SbName/char* and SbName/SbName comparison.

INCLUDE FILE
#i ncl ude <l nventor/SbString. h>

SEE ALSO
SbString

41

SbPlane

NAME

INHERITS FROM

42

SbPlane — oriented plane in 3D

SbPlane

DESCRIPTION
Represents an oriented plane in 3D. This is a lightweight class/datatype that is used
for arguments to some Inventor objects.

METHODS

void

SbBool

void

SbBool

SbPlane()
SbPlane(const SbVec3f &p0, const SbVec3f &pl, const SbVec3f
&p2)

SbPlane(const SbVec3f &normal, float distance)

SbPlane(const SbVec3f &normal, const SbVec3f &point)
Constructors. p0, pl, and p2 represent three points in the plane. normal is a
normal vector, distance is distance from origin to plane along normal vector,
and point is a point in 3-space for the plane to pass through.

offset(float d)
Offset a plane by a given distance.

intersect(const SbLine &I, SbVec3f &intersection) const
Intersect line and plane, returning TRUE if there is an intersection, FALSE if
line is parallel to plane.

transform(const SbMatrix &matrix)
Transforms the plane by the given matrix.

isinHalfSpace(const SbVec3f &point) const
Returns TRUE if the given point is within the half-space defined by the
plane.

const SbVec3f & getNormal() const

float

int
int

Returns normal vector to plane.

getDistanceFromOrigin() const
Returns distance from origin to plane.

operator ==(const SbPlane &p1, const SbPlane &p2)

operator !=(const SbPlane &p1, const SbPlane &p2)
Equality/inequality comparison operators.

Open Inventor C++ Reference Pages

SbPlane

INCLUDE FILE
#i ncl ude <l nventor/ SbLi near. h>

SEE ALSO
SbVec3f, SbLine

43

SbPlaneProjector

NAME

SbPlaneProjector — plane projector

INHERITS FROM

SbProjector > SbPlaneProjector

DESCRIPTION

SbPlaneProjector projects the mouse onto a plane. This is typically used to write
interactive 3D manipulators and viewers.

METHODS
SbPlaneProjector(SbBool orient = FALSE)
Constructor. The default plane passes through the origin and is oriented
perpendicular to the Z axis.
SbPlaneProjector(const SbPlane &plane, SbBool orient =
FALSE)
Constructor which is passed a plane. If orient to eye is TRUE, the plane will
be reoriented to the eye.
“SbPlaneProjector()
Destructor.
void setPlane(const SbPlane &plane)

44

const SbPlane & getPlane() const
Set and get the plane to use.

void setOrientToEye(SbBool orientToEye)

SbBool isOrientToEye() const
Set and get whether the projector should be oriented towards the eye. If
orientToEye is set to TRUE, the given plane’s direction is ignored, and the
plane will be oriented to the eye. It will pass through the same point from
the origin defined by the original dir * dist. Set to FALSE if the plane’s
direction should remain in working space.

virtual SbVec3f getVector(const SbVec2f &mousePositionl, const SbVec2f
&mousePosition?2)
Get a vector on this plane given two normalized mouse positions.

virtual SbVec3f getVector(const SbVec2f &mousePosition)
Get a vector given the current mouse point. Uses the last point on this
projector from the previous call to getVector() or setStartPostion(). Do not
use this if the working space transform is changing since the new point will
be in a different space than the old one.

Open Inventor C++ Reference Pages

SbPlaneProjector

void setStartPosition(const SbVec2f &mousePosition)
Set the initial mouse position.

void setStartPosition(const SbVec3f &point)
Set the initial position from a point on the projector.

Methods from class SbProjector:

project, setViewVolume, getViewVolume, setWorkingSpace,
getWorkingSpace, copy

INCLUDE FILE
#i ncl ude <l nventor/ proj ectors/ ShPl aneProj ector. h>

SEE ALSO
SbCylinderProjector, SbCylinderPlaneProjector, SbCylinderSectionProjector,
SbCylinderSheetProjector, SbLineProjector, SbSpherePlaneProjector,
SbSphereProjector, SbSphereSectionProjector, SbSphereSheetProjector

45

SbPList

NAME

SbPList — list of generic (void *) pointers

INHERITS FROM
SbPList

DESCRIPTION

This class manages a dynamic list of generic void * pointers. This class allows
random access, insertion, and removal.

METHODS

void

int

void

void

int

void

void

SbPList()

SbPList(const SbPList &pl)

SbPList(int initSize)

~SbPL.ist()
Constructors and destructor. initSize specifies an initial size for the list,
which is useful as an optimization if you can estimate the length of the list
before you construct it. If another SbPList is given, it returns a copy of that
list.

append(void * ptr)
Adds given pointer to end of list.

find(const void *ptr) const
Returns index of given pointer in list, or -1 if not found.

insert(void *ptr, int addBefore)
Inserts given pointer in list before pointer with given index.

remove(int which)
Removes pointer with given index.

getLength() const
Returns number of pointers in list.

truncate(int start)
Removes all pointers after one with given index, inclusive.

copy(const SbPList &pl)
Copy a list.

SbPList & operator =(const SbPList &pl)

46

Assignment operator; copies list into this list.

Open Inventor C++ Reference Pages

SbPList

void *& operator [](int i) const
Returns pointer with given index.

int operator ==(const SbPList &pl) const

int operator !=(const SbPList &pl) const
Equality and inequality operators.

INCLUDE FILE
#i ncl ude <l nventor/ SbPLi st. h>

47

SbProjector

NAME
SbProjector — base class for representing projectors

INHERITS FROM
SbProjector

DESCRIPTION
SbProjector is the base class for all projector classes. Projector classes are used to
convert from window space (usually based on the mouse location) into a 3D point.
This is done by projecting the window coordinate as a 3D vector onto a geometric
function in 3-space, and computing the intersection point. Most projectors actually
compute incremental changes and produce incremental rotations and translation as
needed. Projectors are used to write 3D interactive manipulators and viewers.

METHODS
virtual SbVec3f project(const SbVec2f &point)
Apply the projector using the given point, returning the point in three
dimensions that it projects to. The point should be normalized (lie in the
range [0.0,1.0]), with (0,0) at the lower-left.

virtual void setViewVolume(const SbViewVolume &vol)
const SbViewVolume &
getViewVolume() const
Set and get the view volume to use for the projection. This is typically
supplied from SoCamera::getViewVolume().

virtual void setWorkingSpace(const SbMatrix &space)
const SbMatrix &
getWorkingSpace() const
Set and get the transform space to work in. This matrix should transform
working space coordinates into world space. The default matrix is identity,
meaning that the default working space is world space.

virtual SbProjector *
copy() const
Creates and returns an exact copy of the projector.

INCLUDE FILE
#i ncl ude <I nventor/ projectors/ SbProjector. h>

SEE ALSO
SbCylinderProjector, SbCylinderPlaneProjector, SbCylinderSectionProjector,
SbCylinderSheetProjector, SbLineProjector, SbPlaneProjector,
SbSpherePlaneProjector, SbSphereProjector, SbSphereSectionProjector,
SbSphereSheetProjector

48 Open Inventor C++ Reference Pages

SbRotation

NAME
SbRotation — class for representing a rotation

INHERITS FROM
SbRotation

DESCRIPTION
Object that stores a rotation. There are several ways to specify a rotation: quaternion
(4 floats), 4x4 rotation matrix, or axis and angle. All angles are in radians and all
rotations are right-handed.

METHODS
SbRotation()
SbRotation(const float v[4])
SbRotation(float g0, float q1, float g2, float g3)
SbRotation(const SbMatrix &m)
SbRotation(const SbVec3f &axis, float radians)
SbRotation(const SbVec3f &rotateFrom, const SbVec3f
&rotateTo)
Constructors for rotation. Matrix constructor requires a valid rotation
matrix. Rotation constructor defines rotation that rotates from one vector
into another. The rotateFrom and rotateTo vectors are normalized by the
constructor before calculating the rotation.
const float * getValue() const
Returns pointer to array of 4 components defining quaternion.
void getValue(float &q0, float &q1l, float &q2, float &q3) const
Returns 4 individual components of rotation quaternion.
SbRotation & setValue(float O, float q1, float g2, float q3)
Sets value of rotation from 4 individual components of a quaternion.
void getValue(SbVec3f &axis, float &radians) const
Returns corresponding 3D rotation axis vector and angle in radians.
void getValue(SbMatrix &matrix) const
Returns corresponding 4x4 rotation matrix.
SbRotation & invert()
Changes a rotation to be its inverse.
SbRotation inverse() const

Returns the inverse of a rotation.

49

SbRotation

50

SbRotation & setValue(const float g[4])
Sets value of rotation from array of 4 components of a quaternion.

SbRotation & setValue(const SbMatrix &m)
Sets value of rotation from a rotation matrix.

SbRotation & setValue(const SbVec3f &axis, float radians)
Sets value of vector from 3D rotation axis vector and angle in radians.

SbRotation & setValue(const SbVec3f &rotateFrom, const SbVec3f &rotateTo)
Sets rotation to rotate one direction vector to another. The rotateFrom and
rotateTo arguments are normalized before the rotation is calculated.

SbRotation & operator *=(const SbRotation &q)
Multiplies by another rotation; results in product of rotations.

int operator ==(const SbRotation &q1l, const SbRotation &q?2)
int operator !=(const SbRotation &q1l, const SbRotation &q?2)
Equality comparison operators.

SbBool equals(const SbRotation &r, float tolerance) const
Equality comparison within given tolerance — the square of the length of
the maximum distance between the two quaternion vectors.

SbRotation operator *(const SbRotation &q1l, const SbRotation &q2)
Multiplication of two rotations; results in product of rotations.

void multVec(const SbVec3f &src, SbVec3f &dst) const
Multiplies the given vector by the matrix of this rotation.

void scaleAngle(float scaleFactor)
Keep the axis the same. Multiply the angle of rotation by the amount
scaleFactor.

static SbRotation slerp(const SbRotation &rot0, const SbRotation &rot1, float t)
Spherical linear interpolation: as t goes from 0 to 1, returned value goes from
rotO to rotl.

static SbRotation identity()
Returns a null rotation.

Open Inventor C++ Reference Pages

SbRotation

INCLUDE FILE
#i ncl ude <l nventor/ SbLi near. h>

NOTES
Rotations are stored internally as quaternions.

SEE ALSO
SbVec3f, SbMatrix

51

SbSphere

NAME

SbSphere — class for representing a sphere

INHERITS FROM

SbSphere

DESCRIPTION

Represents a sphere in 3D. This is a lightweight datatype that is used for arguments
or return values in the Inventor toolkit. See SoSphere for a database sphere (used for
rendering, picking, etc.).

METHODS
SbSphere()
SbSphere(const SbVec3f ¢er, float radius)
Constructors.
void setValue(const SbVec3f ¢er, float radius)
Change the center and radius.
void setCenter(const SbVec3f ¢er)
void setRadius(float radius)

Set just the center or radius.

const SbVec3f & getCenter() const
float getRadius() const
Return the center and radius.

void circumscribe(const SbBox3f &box)
Return a sphere containing a given box.

SbBool intersect(const SbLine &I, SbVec3f &intersection) const
SbBool intersect(const SbLine &I, SbVec3f &enter, SbVec3f &exit)
const

Intersect line and sphere, returning TRUE if there is an intersection. The line
is treated as a ray.

INCLUDE FILE

#i ncl ude <l nventor/ SbLi near. h>

SEE ALSO

52

SbVec3f, SbLine, SoSphere

Open Inventor C++ Reference Pages

SbSpherePlaneProjector

NAME
SbSpherePlaneProjector — sphere-plane projector

INHERITS FROM
SbProjector > SbSphereProjector > SbSphereSectionProjector >
SbSpherePlaneProjector

DESCRIPTION
SbSpherePlaneProjector projects a window space point (usually based on the mouse
location) onto a surface defined by a sphere and plane cutting through the sphere.
Two projected points can produce a rotation about the sphere’s center. When the
mouse position projects onto the plane, the rotations will be as if the plane is being
dragged, causing the sphere to roll beneath it.

Incremental changes (delta rotation) can be computed during interactive sessions.
Sphere projectors are typically used to write interactive 3D manipulators and
viewers.

METHODS
SbSpherePlaneProjector(float edgeTol = .9, SbBool orientToEye
= TRUE)
SbSpherePlaneProjector(const ShSphere &sph, float edgeTol =
.9, SbBool orientToEye = TRUE)
Constructors. The first uses a default sphere centered at the origin with
radius 1.0; the sphere is supplied in the second. The position of the plane is
specified as a fraction of the sphere radius with the parameter edgeTol. A
tolerance value of 1.0 positions the plane down the center of the sphere. A
tolerance value of 0.5 defines the longitudinal plane halfway between the
center and the outside edge of the sphere. The default value is .9, so that
almost half the sphere is in front of the plane. The orientToEye parameter
determines whether the plane is perpendicular to the eye, or perpendicular
to the sphere’s Z axis. Setting that parameter to TRUE (the default) specifies
that the plane be perpendicular to the eye, which is most often the desired
behavior.

The default view volume is undefined, and the working space is identity.

“SbSpherePlaneProjector()
Destructor.

Methods from class SbSphereSectionProjector:

setTolerance, getTolerance, setRadialFactor, getRadialFactor,
iswithinTolerance

53

SbSpherePlaneProjector

Methods from class SbSphereProjector:

projectAndGetRotation, getRotation, setSphere, getSphere, setOrientToEye,
isOrientToEye, setFront, isFront, isPointinFront

Methods from class SbProjector:

project, setViewVolume, getViewVolume, setWorkingSpace,
getWorkingSpace, copy

INCLUDE FILE
#i ncl ude <I nventor/ projectors/ SbSpherePl anePr oj ect or. h>

SEE ALSO
SbCylinderProjector, SbCylinderPlaneProjector, SbCylinderSectionProjector,
SbCylinderSheetProjector, SbLineProjector, SbPlaneProjector,
SbSphereSheetProjector

54 Open Inventor C++ Reference Pages

SbSphereProjector

NAME
SbSphereProjector — sphere projector

INHERITS FROM
SbProjector > SbSphereProjector

DESCRIPTION
SbSphereProjector is an abstract base class for projectors that use a sphere in their

projection. Sphere projectors are typically used to write interactive 3D manipulators
and viewers.

METHODS
SbVec3f projectAndGetRotation(const SbVec2f &point, SbRotation
&rot)
Apply the projector using the given point, returning the point in three
dimensions that it projects to. This also returns in rot a rotation on the
surface of the sphere from the last projected point to this one. The passed
point should be normalized (i.e. lie in the range [0.0,1.0]), with (0,0) at the
lower-left.

virtual SbRotation
getRotation(const SbVec3f &pointl, const SbVec3f &point2)
Get a rotation given two points on this sphere projector. The rotation will be
on the surface of the sphere.

void setSphere(const SbSphere &sph)
const SbSphere &
getSphere() const
Set and get the sphere on which to project points. The default sphere has
radius 1.0.

void setOrientToEye(SbBool orientToEye)

SbBool isOrientToEye() const
Set and get whether the projector should always be oriented towards the eye.
Set to FALSE if the tolerance should be evaluated in working space.

void setFront(SbBool isFront)
SbBool isFront() const
SbBool isPointinFront(const SbVec3f &point) const

Set and get whether the projector should intersect the half of the sphere that
faces the eye. Set to FALSE if the projector should intersect with the rear
half.

55

SbSphereProjector

Methods from class SbProjector:

project, setViewVolume, getViewVolume, setWorkingSpace,
getWorkingSpace, copy

INCLUDE FILE
#i ncl ude <I nventor/projectors/ SbSphereProjector. h>

SEE ALSO
SbCylinderProjector, SbCylinderPlaneProjector, SbCylinderSectionProjector,
SbCylinderSheetProjector, SbLineProjector, SbPlaneProjector,
SbSpherePlaneProjector, SbSphereSectionProjector, SbSphereSheetProjector

56 Open Inventor C++ Reference Pages

SbSphereSectionProjector

NAME

SbSphereSectionProjector — sphere-section projector

INHERITS FROM

SbProjector > SbSphereProjector > SbSphereSectionProjector

DESCRIPTION

SbSphereSectionProjector projects a window space point (usually based on the
mouse location) onto the section of a sphere that has been sliced by a plane. Two
projected points can produce a rotation about the sphere’s center. The tolerance
slice can be specified as a fraction of the radius of the sphere. The projection point
will not extend beyond the sliced portion of the sphere.

Incremental changes (delta rotation) can be computed during interactive sessions.
Sphere projectors are typically used to write interactive 3D manipulators and
viewers.

METHODS

void
float

SbSphereSectionProjector(float edgeTol = .9, SbBool
orientToEye = TRUE)
SbSphereSectionProjector(const SbSphere &sph, float edgeTol
=.9, SbBool orientToEye = TRUE)
Constructors. The first uses a default sphere centered at the origin with
radius 1.0; the sphere is supplied in the second. The position of the plane
which slices the sphere into a section is specified as a fraction of the sphere
radius with the parameter edgeTol. A tolerance value of 1.0 positions the
plane down the center of the sphere. A tolerance value of 0.5 defines the
longitudinal plane halfway between the center and the outside edge of the
sphere. The default value is .9, so that almost half the sphere is in front of
the plane. The orientToEye parameter determines whether the plane is
perpendicular to the eye, or perpendicular to the sphere’s Z axis. Setting that
parameter to TRUE (the default) specifies that the plane be perpendicular to
the eye, which is most often the desired behavior.

The default view volume is undefined, and the working space is identity.

~SbSphereSectionProjector()
Destructor.

setTolerance(float edgeTol)

getTolerance() const
Set and get the edge tolerance as a fraction of the radius of the sphere. If this
is 1.0, the projector is a hemisphere. If this is .1, the projector is a slice of the
sphere with radius .1*radius. Default is .9.

57

SbSphereSectionProjector

void setRadialFactor(float radialFactor = 0.0)

float getRadialFactor() const
Set and get the radial rotation factor. When the mouse is dragged off the
edge of the sphere, the mouse motion can be classified as either tangential
(moving in a circle around the sphere) or radial (moving toward or away
from the center). The tangential motion will always map to a rotation
around the center, (like the hands of a clock). The radial motion, by default,
has no effect. But if you set the radialFactor to be > 0.0, this motion will
make the sphere rotate as if the mouse is pulling the top of the sphere out
toward the mouse. If radialFactor = 1.0, then pulling has a ‘normal’ feel
(that is, the mouse motion causes the same amount of rotation as if you had
rotated by hitting the actual surface of the sphere). Default is 0.0

SbBool iswithinTolerance(const SbVec3f &point)
Find whether this point on the sphere or tolerance plane is within tolerance.

Methods from class SbSphereProjector:

projectAndGetRotation, getRotation, setSphere, getSphere, setOrientToEye,
isOrientToEye, setFront, isFront, isPointinFront

Methods from class SbProjector:

project, setViewVolume, getViewVolume, setWorkingSpace,
getWorkingSpace, copy

INCLUDE FILE
#i ncl ude <I nventor/projectors/ SbSphereSecti onProjector. h>

SEE ALSO
SbCylinderProjector, SbCylinderSectionProjector, SbCylinderPlaneProjector,
SbCylinderSheetProjector, SbLineProjector, SbPlaneProjector,
SbSpherePlaneProjector, SbSphereSheetProjector

58 Open Inventor C++ Reference Pages

SbSphereSheetProjector

NAME

SbSphereSheetProjector — sphere-sheet projector

INHERITS FROM

SbProjector > SbSphereProjector > SbSphereSheetProjector

DESCRIPTION

SbSphereSheetProjector projects a window space point (usually based on the mouse
location) onto the surface of a sphere with a hyperbolic sheet draped over it. This
allows smooth transitions onto and off of the sphere. Two projected points can
produce a rotation about the sphere’s center. When the mouse position projects on
to the sheet, the rotations will be as if the sheet is being dragged, causing the sphere
to roll beneath it.

Incremental changes (delta rotation) can be computed during interactive sessions.
Sphere projectors are typically used to write interactive 3D manipulators and
viewers.

METHODS

SbSphereSheetProjector(SbBool orientToEye = TRUE)
SbSphereSheetProjector(const SbSphere &sph, SbBool
orientToEye = TRUE)

Constructors. The first uses a default sphere centered at the origin with
radius 1.0; the sphere is supplied in the second. The orientToEye parameter
determines whether the sheet is perpendicular to the eye, or perpendicular
to the sphere’s Z axis. Setting that parameter to TRUE (the default) specifies
that the sheet be perpendicular to the eye, which is most often the desired
behavior.

The default view volume is undefined, and the working space is identity.

~SbSphereSheetProjector()
Destructor.

Methods from class SbSphereProjector:

projectAndGetRotation, getRotation, setSphere, getSphere, setOrientToEye,
isOrientToEye, setFront, isFront, isPointinFront

Methods from class SbProjector:

project, setViewVolume, getViewVolume, setWorkingSpace,
getWorkingSpace, copy

59

SbSphereSheetProjector

INCLUDE FILE
#i ncl ude <I nventor/ projectors/ SbSpher eSheet Proj ect or. h>

SEE ALSO
SbCylinderProjector, SbCylinderPlaneProjector, SbCylinderSectionProjector,
SbCylinderSheetProjector, SbLineProjector, SbPlaneProjector,
SbSpherePlaneProjector

60 Open Inventor C++ Reference Pages

SbString

NAME
SbString — class for smart character strings

INHERITS FROM
SbString

DESCRIPTION
Strings which have many convenience methods to make string manipulation easier.

METHODS

SbString()

SbString(const char *str)

SbString(const char *str, int start, int end)

SbString(const SbString &str)

SbString(int digitString)

~SbString()
Constructors and destructor. Constructors take a character string, the subset
of a character string from start to end (inclusive), or an integer to be turned
into a string. For example, SbString(1234) creates the string "1234".
SbString("Testing",1,3) creates the string "est".

u_long hash()
Returns a reasonable hash key for string.

int getLength() const
Returns length of string.

void makeEmpty(SbBool freeOld = TRUE)
Sets string to be the empty string (™). If freeOld is TRUE (default), any old
storage is freed up.

const char * getString() const
Returns pointer to the character string.

SbString getSubString(int startChar, int endChar = -1) const
Returns new string representing sub-string from startChar to endChar,
inclusive. If endChar is -1 (the default), the sub-string from startChar until
the end is returned.

void deleteSubString(int startChar, int endChar = -1)
Deletes the characters from startChar to endChar, inclusive, from the string.
If endChar is -1 (the default), all characters from startChar until the end are
deleted.

61

SbString

SbString & operator =(const char *str)

SbString & operator =(const SbString &str)
Assignment operators for character string, SbString.

SbString & operator +=(const char *str)

SbString & operator +=(const SbString &str)

Concatenation operators "+=" for string, SbString.

int operator !() const
Unary "not" operator; returns TRUE if string is empty ().

int operator ==(const char *s, const SbString &str)
int operator ==(const SbString &str, const char *s)
int operator ==(const SbString &strl, const SbString &str2)

Equality operator for SbString/char* and SbString/SbString comparison.

int operator !=(const char *s, const SbString &str)
int operator !=(const SbString &str, const char *s)
int operator !=(const SbString &strl, const SbString &str2)

Inequality operator for SbString/char* and SbString/SbString comparison.

INCLUDE FILE
#i ncl ude <l nventor/ SbString. h>

SEE ALSO
SbName

62 Open Inventor C++ Reference Pages

SbTime

NAME
SbTime — class for representation of a time

INHERITS FROM
SbTime

DESCRIPTION
This class represents and performs operations on time. Operations may be done in
seconds, seconds and microseconds, or using a struct timeval (defined in
/usr/include/sys/time.h).

METHODS

SbTime()

SbTime(double sec)

SbTime(long sec, long usec)

SbTime(const struct timeval *tv)
Constructors taking seconds, seconds and microseconds, or a struct timeval.
NOTE that an integer parameter will not automatically cast to a double to
invoke the constructor taking seconds; that is, SbTime(1) will result in a
compilation error — SbTime(1.0) must be used instead. This is to avoid
errors in upgrading from an earlier release, in which SbTime(1) had
different semantics. In future releases, this distinction will be eliminated,
and the effect of SbTime(1.0) and that of SbTime(1) will be identical.

static SbTime getTimeOfDay()
Get the current time (seconds since Jan 1, 1970).

void setToTimeOfDay()
Set to the current time (seconds since Jan 1, 1970).

static SbTime zero()
Get a zero time.

static SbTime max()
Get a time far, far into the future.

void setValue(double sec)
Set time from a double (in seconds).

void setValue(long sec, long usec)
Set time from seconds + microseconds.

void setValue(const struct timeval *tv)
Set time from a struct timeval.

63

SbTime

void setMsecValue(unsigned long msec)
Set time from milliseconds.

double getValue() const
Get time in seconds as a double.

void getValue(long &sec, long &usec) const
Get time in seconds and microseconds.

void getValue(struct timeval *tv) const
Get time in a struct timeval.

unsigned long getMsecValue() const
Get time in milliseconds (for Xt).

SbString format(const char *fmt = "%S.%i") const
Convert to a string. The default format is seconds with 3 digits of fraction
precision. fmt is a character string that consists of field descriptors and text
characters, in a manner analogous to cftime (3C) and printf (3S). Each field
descriptor consists of a % character followed by another character which
specifies the replacement for the field descriptor. All other characters are
copied from fmt into the result. The following field descriptors are
supported:

% the ‘%’ character

D total number of days

H total number of hours

M total number of minutes

S total number of seconds

I total number of milliseconds

U total number of microseconds

h hours remaining after the days (00-23)

m minutes remaining after the hours (00-59)

s seconds remaining after the minutes (00-59)

i milliseconds remaining after the seconds (000-999)
u microseconds remaining after the seconds (000000-999999)

The uppercase descriptors are formatted with a leading ‘—’ for negative
times; the lowercase descriptors are formatted fixed width, with leading
zeros. For example, a reasonable format string might be

"elapsed time: %M minutes, %s seconds". The default value of fmt, "%S.%i",
formats the time as seconds with 3 digits of fractional precision.

64 Open Inventor C++ Reference Pages

SbTime

SbString formatDate(const char *fmt = "%A, %D %r") const
Convert to a date string, interpreting the time as seconds since Jan 1, 1970.
The default format gives "Tuesday, 01/26/93 11:23:41 AM". See the cftime()
reference page for explanation of the format string.

SbTime operator +(const SbTime &t0, const SbTime &t1)

SbTime operator -(const SbTime &t0, const SbTime &t1)
Addition and subtraction of two times.

SbTime & operator +=(const SbTime &tm)

SbTime & operator -=(const SbTime &tm)

Addition and subtraction of two times which modifies the time structure.

SbTime operator -() const
Unary negation.

SbTime operator *(double s, const SbTime &tm)
SbTime operator *(const SbTime &tm, double s)
SbTime operator /(const SbTime &tm, double s)

Multiplication and division by scalar.

SbTime & operator *=(double s)
SbTime & operator /=(double s)
Destructive multiplication and division by scalar.

double operator /(const SbTime &tm) const
Division by another time.

SbTime operator %(const SbTime &tm) const
Modulus for two times (remainder when timel is divided by time2).

int operator ==(const SbTime &tm) const
int operator !=(const SbTime &tm) const
Equality operators.

SbBool operator <(const SbTime &tm) const
SbBool operator >(const SbTime &tm) const
SbBool operator <=(const SbTime &tm) const
SbBool operator >=(const SbTime &tm) const

Relational operators.

65

SbTime

INCLUDE FILE
#i ncl ude <l nventor/ SbTi ne. h>

SEE ALSO
cftime

66 Open Inventor C++ Reference Pages

SbVec2f

NAME
SbVec2f — 2D vector class

INHERITS FROM
SbVec2f

DESCRIPTION
2D vector class used to store 2D vectors and points. This class is used throughout
Inventor for arguments and return values.

METHODS
SbVec2f()
Default constructor.
SbVec2f(const float v[2])
SbVec2f(float x, float y)
Constructor given vector components.
float dot(const SbVec2f &v) const
Returns dot (inner) product of vector and another vector.
SbBool equals(const ShVec2f v, float tolerance) const
Equality comparison within given tolerance — the square of the length of
the maximum distance between the two vectors.
const float * getValue() const
void getValue(float &x, float &y) const
Returns vector components.
float length() const
Returns geometric length of vector.
void negate()
Negates each component of vector in place.
float normalize()
Changes vector to be unit length.
SbVec2f & setValue(const float v[2])
SbVec2f & setValue(float x, float y)

Sets the vector components.

67

SbVec2f

float & operator [](int i)
const float & operator [](int i)
Accesses indexed component of vector.

SbVec2f & operator *=(float d)
SbVec2f & operator /=(float d)
Component-wise scalar multiplication and division operators.
SbVec2f & operator +=(const SbVec2f &u)
SbVec2f & operator -=(const SbVec2f &u)

Component-wise vector addition and subtraction operators.

SbVec2f operator -() const
Nondestructive unary negation — returns a new vector.

SbVec2f operator *(const SbVec2f &v, float d)
SbVec2f operator *(float d, const SbVec2f &v)
SbVec2f operator /(const SbVec2f &v, float d)

Component-wise binary scalar multiplication and division operators.
SbVec2f operator +(const SbVec2f &v1, const SbVec2f &v2)
SbVec2f operator -(const SbVec2f &v1, const SbVec2f &v2)

Component-wise binary vector addition and subtraction operators.
int operator ==(const SbVec2f &v1, const SbVec2f &v2)
int operator !=(const SbVec2f &v1, const SbVec2f &v?2)

Equality comparison operators.

INCLUDE FILE
#i ncl ude <l nventor/ SbLi near. h>

SEE ALSO
SbVec3f, SbVec4f, SbVec2s, SbRotation

68 Open Inventor C++ Reference Pages

SbVec2s

NAME
SbVec2s — 2D vector class

INHERITS FROM
SbVec2s

DESCRIPTION
2D vector class used to store 2D integer vectors and points. This class is used
throughout Inventor for arguments and return values.

METHODS
SbVec2s()

Default constructor.

SbVec2s(const short v[2])
SbVec2s(short x, short y)

Constructor given 2 components.
long dot(const SbVec2f &v) const

Returns dot (inner) product of vector and another vector.
const short * getValue() const
void getValue(short &x, short &y) const

Returns vector components.
void negate()

Negates each component of vector in place.
SbVec2s & setValue(const short v[2])
SbVec2s & setValue(short x, short y)

Sets vector components.
short & operator [](int i)
const short & operator [](int i)

Accesses indexed component of vector.
SbVec2s & operator *=(int d)

SbVec2s & operator *=(double d)
SbVec2s & operator /=(int d)
SbVec2s & operator /=(double d)

Component-wise scalar multiplication and division operators.

69

SbVec2s

SbVec2s & operator +=(const SbVec2s &u)
SbVec2s & operator -=(const SbVec2s &u)
Component-wise vector addition and subtraction operators.

SbVec2s operator -() const
Nondestructive unary negation — returns a new vector.

SbVec2s operator *(const SbVec2s &v, int d)

SbVec2s operator *(const SbVec2s &v, double d)

SbVec2s operator *(int d, const SbVec2s &vV)

SbVec2s operator *(double d, const SbVec2s &v)

SbVec2s operator /(const SbVec2s &v, int d)

SbVec2s operator /(const SbVec2s &v, double d)
Component-wise binary scalar multiplication and division operators.

SbVec2s operator +(const SbVec2s &v1, const SbVec2s &v?2)

SbVec2s operator -(const SbVec2s &v1, const SbVec2s &v2)
Component-wise binary vector addition and subtraction operators.

int operator ==(const SbVec2s &v1, const SbVec2s &v2)

int operator !=(const SbVec2s &v1, const SbVec2s &v?2)

Equality comparison operators.

INCLUDE FILE
#i ncl ude <l nventor/ SbLi near. h>

SEE ALSO
SbVec3f, SbVec4f, SbVec2f

70 Open Inventor C++ Reference Pages

SbVec3f

NAME
SbVec3f — 3D vector class

INHERITS FROM
SbVec3f

DESCRIPTION
3D vector class used to store 3D vectors and points. This class is used throughout
Inventor for arguments and return values.

METHODS
SbVec3f()
Default constructor.

SbVec3f(const float v[3])
SbVec3f(float x, float y, float z)
Constructor given vector components.

SbVec3f(SbPlane &p0, SbPlane &pl, SbPlane &p2)
Constructor given 3 planes.

SbVec3f cross(const SbVec3f &v) const
Returns right-handed cross product of vector and another vector.

float dot(const SbVec3f &v) const
Returns dot (inner) product of vector and another vector.

SbBool equals(const SbVec3f v, float tolerance) const
Equality comparison within given tolerance — the square of the length of
the maximum distance between the two vectors.

SbVec3f getClosestAxis() const
Returns principal axis that is closest (based on maximum dot product) to
this vector.

const float * getValue() const
void getValue(float &x, float &y, float &z) const
Returns vector components.

float length() const
Returns geometric length of vector.

void negate()
Negates each component of vector in place.

71

SbVec3f

float normalize()
Changes vector to be unit length, returning the length before normalization.

SbVec3f & setValue(const float v[3])
SbVec3f & setValue(float x, float y, float z)
Sets the vector components.

SbVec3f & setValue(const SbVec3f &barycentic, const SbVec3f &vO0, const
SbVec3f &v1, const SbVec3f &v2)
Sets value of vector as the weighted average of 3 other vectors.

float & operator [](int i)
const float & operator [](int i)
Accesses indexed component of vector.

SbVec3f & operator *=(float d)
SbVec3f & operator /=(float d)
Component-wise scalar multiplication and division operators.
SbVec3f & operator +=(const SbVec3f &u)
SbVec3f & operator -=(const SbVec3f &u)
Component-wise vector addition and subtraction operators.
SbVec3f operator -() const
Nondestructive unary negation — returns a new vector.
SbVec3f operator *(const SbVec3f &v, float d)
SbVec3f operator *(float d, const SbVec3f &v)
SbVec3f operator /(const SbVec3f &v, float d)
Component-wise binary scalar multiplication and division operators.
SbVec3f operator +(const ShVec3f &v1, const SbVec3f &v2)
SbVec3f operator -(const SbVec3f &v1, const SbVec3f &v2)
Component-wise binary vector addition and subtraction operators.
int operator ==(const SbVec3f &v1, const SbVec3f &v2)
int operator !=(const SbVec3f &v1, const SbVec3f &v2)

Equality comparison operators.

INCLUDE FILE

#i ncl ude <l nventor/ SbLi near. h>

SEE ALSO

72

SbVec2f, SbVec4f, SbVec2s, SbRotation

Open Inventor C++ Reference Pages

SbVec4f

NAME
SbVec4f — 4D vector class

INHERITS FROM
SbVecaf

DESCRIPTION
4D vector class used to store homogeneous coordinates. This class is used in
Inventor for arguments and return values.

METHODS
SbVec4f()
Default constructor.
SbVec4f(const float v[4])
SbVec4f(float x, float y, float z, float w)
Constructor given vector components.

float dot(const SbVec4f &v) const
Returns dot (inner) product of vector and another vector.

SbBool equals(const ShVec4f v, float tolerance) const
Equality comparison within given tolerance — the square of the length of
the maximum distance between the two vectors.

void getReal(SbVec3f &v) const
Returns the real portion of the vector by dividing by the fourth value.

const float * getValue() const

void getValue(float &x, float &y, float &z, float &w) const
Returns vector components.

float length() const
Returns geometric length of vector.

void negate()

Negates each component of vector in place.
normalize()
Changes vector to be unit length.
SbVec4af & setValue(const float v[4])
SbVec4f & setValue(float x, float y, float z, float w)

Sets the vector components.

73

SbVec4af

float & operator [](int i)
const float & operator [](int i)
Accesses indexed component of vector.

SbVecaf & operator *=(float d)
SbVecaf & operator /=(float d)
Component-wise scalar multiplication and division operators.
SbVecaf & operator +=(const SbVec4f &u)
SbVecaf & operator -=(const SbVec4f &u)

Component-wise vector addition and subtraction operators.

SbVecaf operator -() const
Nondestructive unary negation — returns a new vector.

SbVecaf operator *(const SbVec4f &v, float d)
SbVecaf operator *(float d, const SbVec4f &v)
SbVecaf operator /(const SbVec4f &v, float d)

Component-wise binary scalar multiplication and division operators.
SbVecaf operator +(const SbVec4f &v1, const SbVecaf &v2)
SbVecaf operator -(const SbVec4f &v1, const SbVecadf &v2)

Component-wise binary vector addition and subtraction operators.
int operator ==(const SbVec4f &v1, const SbVec4f &v2)
int operator !=(const SbVec4f &v1, const SbVecadf &v?2)

Equality comparison operators.

INCLUDE FILE
#i ncl ude <l nventor/ SbLi near. h>

SEE ALSO
SbVec2f, SbVec3f, SbVec2s, SbRotation

74 Open Inventor C++ Reference Pages

SbViewportRegion

NAME

SbViewportRegion — class for representing a viewport

INHERITS FROM

SbViewportRegion

DESCRIPTION

This class represents the active viewport region in a display window. It contains the
screen-space size of the window as well as the origin and size of the viewport within
the window. By default, the viewport is the same as the full window. Methods allow
the viewport to be set either in terms of screen-space pixels or as normalized
coordinates, where (0,0) is the lower-left corner of the window and (1,1) is the
upper-right corner.

METHODS

void

void

void

void

void

void

SbViewportRegion()

SbViewportRegion(short width, short height)

SbViewportRegion(SbVec2s winSize)

SbViewportRegion(const SbViewportRegion &vpReg)
Constructors of various kinds.

setWindowsSize(short width, short height)
Changes window size to given width and height in pixels.

setWindowsSize(SbVec2s winSize)
Changes window size to given width and height in pixels, given as SbVec2s.

setViewport(float left, float bottom, float width, float height)
Sets viewport to given region, specified as normalized window coordinates:
(0,0) is the lower-left corner, (1,1) is the upper-right.

setViewport(SbVec2f origin, SbVec2f size)
Sets viewport to region with given origin (lower-left corner) and size, given
as normalized coordinate vectors.

setViewportPixels(short left, short bottom, short width, short
height)
Sets viewport to given region, specified as pixel coordinates in window: (0,0)
is the lower-left corner.

setViewportPixels(SbVec2s origin, SbVec2s size)

Sets viewport to region with given origin (lower-left corner) and size, given
as pixel coordinates.

75

SbViewportRegion

const SbVec2s & getWindowsSize() const
Returns window size in pixels.

const SbVec2f & getViewportOrigin() const
Returns viewport origin in normalized coordinates.

const SbhVec2s & getViewportOriginPixels() const
Returns viewport origin in pixels.

const SbVec2f & getViewportSize() const
Returns viewport size in normalized coordinates.

const SbhVec2s & getViewportSizePixels() const
Returns viewport size in pixels.

float getViewportAspectRatio() const
Returns aspect ratio (width/height) of viewport.

void scaleWidth(float ratio)

void scaleHeight(float ratio)
Scales viewport within window to be the given ratio of its current width or
height, leaving the resulting viewport centered about the same point as the
current one.

void setPixelsPerInch(float ppi)

float getPixelsPerlnch() const
Sets/returns the pixel-per-inch ratio for the display device the viewport is
part of. The default value is 72 (1 pixel per printer’s point).

float getPixelsPerPoint() const
Convenience function that returns number of pixels per printer’s point.

friend int operator ==(const SbViewportRegion ®l, const
SbViewportRegion ®?)
Equality comparison operator.

INCLUDE FILE

#i ncl ude <I nventor/ SbVi ewport Regi on. h>

SEE ALSO

76

SbVec2f, SbVec2s

Open Inventor C++ Reference Pages

SbViewVolume

NAME

SbViewVolume — 3D viewing volume class

INHERITS FROM

SbViewVolume

DESCRIPTION

Class used to represent a 3D viewing volume. This class is used to represent viewing
frusta and picking volumes. For perspective projection, the view volume is a
frustum. For orthographic (parallel) projection, the view volume is a rectangular

prism.

METHODS

void

SbViewVolume()
“SbViewVolume()
Constructor and destructor.

getMatrices(SbMatrix &affine, SbMatrix &proj) const
Returns two matrices corresponding to the view volume. The first is a
viewing matrix, which is guaranteed to be an affine transformation. The
second is suitable for use as a projection matrix in OpenGL.

SbMatrix getMatrix() const

Like the method above, but returns the affine and projection parts together
in one matrix (i.e., affine.multRight(proj)).

SbMatrix getCameraSpaceMatrix() const

void
void

void

SbPlane

Returns a matrix that transforms the view volume into camera space: it
translates the view volume so the viewpoint is at the origin, and rotates it so
the view direction is along the negative z axis.

projectPointToLine(const SbVec2f &pt, SbLine &line) const
projectPointToLine(const SbVec2f &pt, SbVec3f &line0,
SbVec3f &linel) const
Maps a 2D point (in 0 <= x,y <= 1) to a 3D line.

projectToScreen(const SbVec3f &src, SbVec3f &dst) const
Maps the 3D point in world coordinates to a 2D point in normalized screen
coordinates (0 <= x,y,z <=1, 0 <= z <= 1). The z-screen coordinate represents
the homogenized z coordinate which goes (nonlinearly) from 0 at the near
clipping plane to 1 at the far clipping plane.

getPlane(float distFromEye) const

Returns a plane parallel to the near (or far) plane of the view volume at a
given distance from the projection point (eye).

77

SbViewVolume

SbVec3f getSightPoint(float distFromEye) const
Returns the point along the line of sight at the given distance from the
projection point (eye).

SbVec3f getPlanePoint(float distFromEye, const SbVec2f &normPoint)
const
Returns the projection of a given point in normalized screen coordinates (see
projectToScreen()) onto the plane parallel to the near plane that is at
distFromEye units from the eye.

SbRotation getAlignRotation(SbBool rightAngleOnly = FALSE) const
Returns a rotation that would align a viewed object so that its positive x-axis
(of its object space) is to the right in the view and its positive y-axis is up. If
rightAngleOnly is TRUE, it will come as close as it can to this goal by using
only 90 degree rotations.

float getWorldToScreenScale(const SbVec3f &worldCenter, float
normRadius) const
Returns a scale factor that would scale a unit sphere centered at worldCenter
so that it would appear to have the given radius in normalized screen
coordinates when projected onto the near plane.

SbVec2f projectBox(const SbBox3f &box) const
Projects the given 3D bounding box onto the near plane and returns the size
(in normalized screen coordinates) of the rectangular region that encloses it.

SbViewVolume narrow(float left, float bottom, float right, float top) const
Given a view volume, narrows the view to the given sub-rectangle of the
near plane. The coordinates of the rectangle are between 0 and 1, where
(0,0) is the lower-left corner of the near plane and (1,1) is the upper-right
corner.

SbViewVolume narrow(const SbBox3f &box) const
Narrows a view volume by the given box. The box must lie inside the unit
cube, and the view will be shrunk according to the size of the box.

void ortho(float left, float right, float bottom, float top, float near,
float far)
Sets up an orthographic view volume with the given sides. The parameters
are the same as for the OpenGL glOrtho() routine.

78 Open Inventor C++ Reference Pages

SbViewVolume

void perspective(float fovy, float aspect, float near, float far)
Sets up a perspective view volume with the given field of view and aspect
ratio. The parameters are the same as for the OpenGL gluPerspective()
routine, except that the field of view angle is specified in radians.

void rotateCamera(const SbRotation &Q)
Rotate the camera view direction. Note that this accomplishes the reverse of
doing an OpenGL glRotate() command after defining a camera, which
rotates the scene viewed by the camera.

void translateCamera(const SbVec3f &v)
Translate the camera viewpoint. Note that this accomplishes the reverse of
doing an OpenGL glTranslate() command after defining a camera, which
translates the scene viewed by the camera.

SbVec3f zVector() const
Returns the positive z axis in eye space. In this coordinate system, the z
value of the near plane should be GREATER than the z value of the far plane.

SbViewVolume zNarrow(float near, float far) const
Returns a narrowed view volume which contains as tightly as possible the
given interval on the z axis (in eye space). The returned view volume will
never be larger than the current volume, however. near and far are given in
terms of zVector(): this means that near > far must hold.

void scale(float factor)
Scales width and height of view volume by given factor.

void scaleWidth(float ratio)

void scaleHeight(float ratio)
Scales view volume to be the given ratio of its current width or height,
leaving the resulting view volume centered about the same point (in the
near plane) as the current one.

ProjectionType getProjectionType() const

const SbVec3f & getProjectionPoint() const

const SbVec3f & getProjectionDirection() const
Returns projection information.

float getNearDist() const
Returns distance from projection point to near plane.

79

SbViewVolume

float getWidth() const
float getHeight() const
float getDepth() const

Returns bounds of viewing frustum.

INCLUDE FILE
#i ncl ude <l nventor/ SbLi near. h>

enum ProjectionType {
SbViewVolume::ORTHOGRAPHIC
Orthographic projection
SbViewVolume::PERSPECTIVE
Perspective projection

SEE ALSO
SbVec3f, SbVec2f, SbBox3f, SbMatrix, SbRotation

80 Open Inventor C++ Reference Pages

SbXfBox3f

NAME
SbXfBox3f — 3D box with an associated transformation matrix

INHERITS FROM
SbBox3f > SbXfBox3f

DESCRIPTION
A 3D box with an arbitrary transformation applied. This class is useful when a box
will be transformed frequently; if an SbBox3f is used for this purpose it will expand
each time it is transformed in order to keep itself axis-aligned. Transformations can
be accumulated on an SbhXfBox3f without expanding the box, and after all
transformations have been done, the box can be expanded to an axis-aligned box if
necessary.

METHODS
SbXfBox3f()
SbXfBox3f(const SbVec3f &_min, const SbVec3f & max)
SbXfBox3f(const SbBox3f &box)
“SbXfBox3f()
Constructors and destructor.

void setTransform(const SbMatrix &m)
Sets the transformation on the box.

const SbMatrix &
getgetXf() const
const SbMatrix &
getlnverse() const
Gets the transformation on the box, and its inverse.

SbVec3f getCenter() const
Returns the center of the box.

void extendBy(const SbVec3f &pt)
Extends the box (if necessary) to contain the given 3D point.

void extendBy(const SbBox3f &bb)
Extends the box (if necessary) to contain the given SbBox3f.

void extendBy(const SbXfBox3f &bb)
Extends the box (if necessary) to contain the given SbXfBox3f.

SbBool intersect(const SbVec3f &pt) const
Returns TRUE if intersection of given point and this box is not empty.

81

SbXfBox3f

82

SbBool

intersect(const SbBox3f &bb) const
Returns TRUE if intersection of given box and this box is not empty.

void setBounds(float xmin, float ymin, float zmin, float xmax, float
ymax, float zmax)
void setBounds(const SbVec3f &_min, const SbVec3f &_max)
void getBounds(float &xmin, float &ymin, float &zmin, float
&xmax, float &ymax, float &zmax) const
void getBounds(SbVec3f & min, SbVec3f & max) const
Set and get the bounds of the box.
void getOrigin(float &originX, float &originY, float &originZz)
Returns origin (minimum point) of the box.
void getSize(float &sizeX, float &sizeY, float &sizeZ)
Returns size of the box.
float getVolume() const
Gives the volume of the box (0 for an empty box).
void makeEmpty()
Sets the box to contain nothing.
SbBool isEmpty() const
Checks if the box is empty (degenerate).
SbBool hasVolume() const
Checks if the box has volume; i.e., all three dimensions have positive size.
void getSpan(const SbVec3f &direction, float &dMin, float &dMax)
const
Finds the extent of the box along a particular direction.
void transform(const SbMatrix &m)
Transforms the box by the given matrix.
SbBox3f project() const
Projects an SbXfBox3f to an SbBox3f
int operator ==(const SbXfBox3f &b1, const SbXfBox3f &b2)
int operator !=(const SbXfBox3f &b1, const SbXfBox3f &b2)

Equality comparisons.

Open Inventor C++ Reference Pages

SbXfBox3f

Methods from class SbBox3f:
getMin, getMax

INCLUDE FILE
#i ncl ude <l nvent or/ ShBox. h>

SEE ALSO
SbBox3f, SbBox2f, SbBox2s, SbVec3f, SbVec2f, SbVec2s, SbMatrix,
SoGetBoundingBoxAction

83

SoAction

NAME
SoAction — abstract base class for all actions

INHERITS FROM
SoAction

DESCRIPTION
SoAction is the abstract base class for all actions. Classes derived from SoAction
define operations to be applied at each node encountered during traversal of a scene
graph. The function that gets called to implement the action for a particular node
type is determined by a lookup table in the global database.

METHODS
virtual ~SoAction()
Destructor.
virtual void apply(SoNode *node)
virtual void apply(SoPath *path)
virtual void apply(const SoPathList &pathList, SbBool obeysRules = FALSE)
Initiates an action on the graph defined either by a node, path, or list of
paths. TRUE can be passed for the obeysRules flag if the given path list has
the following 4 properties:
1 - All paths have the same head node
2 - Paths are sorted in traversal order
3 - If one path ends at node A, no other path
continues through A
4 - No two paths are the same
These rules will be obeyed by path lists returned by picking and by searches
for non-group nodes.
static SoType getClassTypeld()
Returns the type identifier for this class.
virtual SoType getTypeld()
Returns the type identifier for a specific instance.
virtual SbBool isOfType(SoType type)

Returns TRUE if this instance is of the type specified in type or is derived
from that type. Otherwise, it returns FALSE. For example,

actionPtr->isOfType(SoGetMatrixAction::getClassTypeld())

84 Open Inventor C++ Reference Pages

SoAction

returns TRUE if actionPtr is an instance of SoGetMatrixAction or one of its
subclasses.

virtual void invalidateState()
Invalidates the current traversal state in the action, forcing it to be recreated
when the action is next applied. This is typically unnecessary in most
applications.

INCLUDE FILE
#i ncl ude <l nventor/actions/ SoAction. h>

SEE ALSO
SoNode, SoPath, SoPathList, SoCallbackAction, SOGLRenderAction,
SoGetBoundingBoxAction, SoGetMatrixAction, SoHandleEventAction,
SoPickAction, SoRayPickAction, SoSearchAction, SoWriteAction

85

SoAlarmSensor

NAME

INHERITS FROM

DESCRIPTION

86

SoAlarmSensor — triggers a callback once sometime in the future

SoSensor > SoTimerQueueSensor > SoAlarmSensor

This type of sensor can be used to schedule a one-time callback for some time in the
future. The sensor is not guaranteed to be called at exactly that time, but will be
called sometime after the specified time.

METHODS

void

void

SoAlarmsSensor()

SoAlarmsSensor(SoSensorCB *func, void *data)
Creation methods. The second method takes the callback function and data
to be called when the sensor is triggered.

“SoAlarmSensor()
Destroys the sensor, freeing up any memory associated with it after
unscheduling it.

setTime(const SbTime &absTime)
Sets the sensor to go off at the specified time. You must also call schedule()
for the sensor to be triggered. If the sensor is already scheduled, it must be
unscheduled and then rescheduled for the change in the trigger time to take
effect.

setTimeFromNow(const SbTime &relTime)
Sets the sensor to go off the given amount of time from now. You must also
call schedule() for the sensor to be triggered. If the sensor is already
scheduled, it must be unscheduled and then rescheduled for the change in
the trigger time to take effect.

const SbTime & getTime() const

Returns the time at which the sensor is set to be triggered. This is similar to
the getTriggerTime method, but returns the time even if the sensor has not
yet been scheduled.

Methods from class SoTimerQueueSensor:

getTriggerTime, schedule, unschedule, isScheduled

Methods from class SoSensor:

setFunction, getFunction, setData, getData

Open Inventor C++ Reference Pages

SoAlarmSensor

INCLUDE FILE
#i ncl ude <l nventor/sensors/ SoAl ar nSensor . h>

SEE ALSO
SoOneShotSensor, SoTimerSensor, SoTimerQueueSensor, SbTime

87

SoAnnotation

NAME

SoAnnotation — Annotation group node

INHERITS FROM

SoBase > SoFieldContainer > SoNode > SoGroup > SoSeparator > SoAnnotation

DESCRIPTION

FIELDS

This group node delays rendering its children until all other nodes have been
traversed, turning off depth buffer comparisons first. The result is that the shapes
under the annotation node are rendered on top of the rest of the scene. This node is
derived from SoSeparator, so it saves and restores traversal state for all actions.

Note that if more than one annotation node is present in a graph, the order in
which they are traversed determines the stacking order — later nodes are rendered
on top of earlier ones. Also note that since depth buffer comparisons are disabled,
complex 3D objects may not be rendered correctly when used under annotation
nodes.

Fields from class SoSeparator:
renderCaching, boundingBoxCaching, renderCulling, pickCulling

METHODS
SoAnnotation()
Creates an annotation node with default settings.
static SoType getClassTypeld()

88

Returns type identifier for this class.

Methods from class SoSeparator:
setNumRenderCaches, getNumRenderCaches

Methods from class SoGroup:
addChild, insertChild, getChild, findChild, getNumChildren, removeChild,
removeChild, removeAllChildren, replaceChild, replaceChild

Methods from class SoNode:
setOverride, isOverride, copy, affectsState, getByName, getByName

Methods from class SoFieldContainer:

setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, set, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Open Inventor C++ Reference Pages

SoAnnotation

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

ACTION BEHAVIOR
SoGLRenderAction
Delays rendering its children until all other nodes have been traversed,
turning off depth buffer comparisons first.

SoCallbackAction, SoGetBoundingBoxAction, SoGetMatrixAction,
SoRayPickAction, SoSearchAction
Same as SoSeparator

FILE FORMAT/DEFAULTS
Annot ation {

r ender Cachi ng AUTO
boundi ngBoxCachi ng AUTO
render Cul l'i ng AUTO
pi ckCul i ng AUTO
}
INCLUDE FILE

#i ncl ude <l nvent or/ nodes/ SoAnnot ati on. h>

89

SoAntiSquish

NAME
SoAntiSquish — transformation node that undoes non-uniform 3D scales

INHERITS FROM
SoBase > SoFieldContainer > SoNode > SoTransformation > SoAntiSquish

DESCRIPTION
This node removes nonuniform 3D scaling from the current transformation matrix
when traversed by an action. It is used by draggers such as the SoTrackballDragger
that need to stay uniformly scaled no matter where they are located in the scene
graph.

The magnitude of the new scale is determined by the current transformation matrix
and the sizing field. This node does not change the translation or rotation in the
matrix.

FIELDS
SOSFEnum sizing
Determines which of the algorithms enumerated by the type Sizing will be
used to select the new scale when the x,y, and z scales are not equal.

METHODS
SoAntiSquish()
Creates an anti-squish node with default settings.

static SoType getClassTypeld()
Returns type identifier for this class.

Methods from class SoNode:
setOverride, isOverride, copy, affectsState, getByName, getByName

Methods from class SoFieldContainer:
setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, set, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled
Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

ACTION BEHAVIOR
SoGLRenderAction, SoCallbackAction, SoGetBoundingBoxAction,
SoGetMatrixAction, SoRayPickAction
Replaces the current transformation with an unsquished one.

90 Open Inventor C++ Reference Pages

SoAntiSquish

FILE FORMAT/DEFAULTS
Ant i Squi sh {
sizing AVERAGE DI MENSI ON
}

INCLUDE FILE
#i ncl ude <l nventor/ nodes/ SoAnti Squi sh. h>

enum Sizing {

SoAntiSquish::AVERAGE_DIMENSION

uses average of 3 scales in the matrix
SoAntiSquish::BIGGEST_DIMENSION

uses biggest of 3 scales in the matrix
SoAntiSquish::SMALLEST_DIMENSION

uses smallest of 3 scales in the matrix
SoANntiSquish::LONGEST_DIAGONAL

accounts for shearing; transforms a cube by the matrix and then

uses length of longest diagonal

SEE ALSO
SoCenterballDragger, SoJackDragger, SoTrackballDragger, SoTransformation,
SoTransformBoxDragger

91

SoAppearanceKit

NAME

SoAppearanceKit — appearance nodekit class

INHERITS FROM

SoBase > SoFieldContainer > SoNode > SoBaseKit > SoAppearanceKit

DESCRIPTION

PARTS

92

The SoAppearanceKit is used to create a group of property nodes that will be used
to affect subsequent shape nodes or nodekits in the scene graph.

This nodekit defines seven new parts: lightModel, environment, drawStyle, material,
complexity, texture2, and font. Note that it does not include binding nodes such as
SoMaterialBinding.

SoAppearanceKit is derived from SoBaseKit and thus also includes a callbackList
part for adding callback nodes.

(SoLightModel) lightModel
An SoLightModel node that affects any shapes that follow this nodekit in
the scene graph. This part is NULL by default.

(SoEnvironment)
environment
An SoEnvironment node that affects any nodes that follow this nodekit in
the scene graph. This part is NULL by default.

(SoDrawsStyle) drawsStyle
An SoDrawsStyle node that affects any shapes that follow this nodekit in the
scene graph. This part is NULL by default.

(SoMaterial) material
An SoMaterial node that affects any shapes that follow this nodekit in the
scene graph. This part is NULL by default.

(SoComplexity) complexity
An SoComplexity node that affects any shapes that follow this nodekit in
the scene graph. This part is NULL by default.

(SoTexture2) texture2

An SoTexture2 node that affects any shapes that follow this nodekit in the
scene graph. This part is NULL by default.

Open Inventor C++ Reference Pages

SoAppearanceKit

(SoFont) font
An SoFont node that affects any text nodes that follow this nodekit in the
scene graph. This part is NULL by default.

Parts from class SoBaseKit:
callbackList

METHODS
SoAppearanceKit()
Constructor.

static const SoNodekitCatalog *
getClassNodekitCatalog() const
Returns the SoNodekitCatalog for this class

static SoType getClassTypeld()
Returns type identifier for this class.

Methods from class SoBaseKit:
getNodekitCatalog, getPart, getPartString, createPathToPart, setPart, set, set,
isSearchingChildren, setSearchingChildren

Methods from class SoNode:
setOverride, isOverride, copy, affectsState, getByName, getByName

Methods from class SoFieldContainer:
setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled
Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

MACROS
Macros from class SoBaseKit:

SO_GET_PART, SO_CHECK_PART

93

SoAppearanceKit

CATALOG PARTS

All parts
NULL by
Part Name Part Type Default Type Default
callbackList NodeKitListPart -- yes
lightModel LightModel - yes
environment Environment -- yes
drawsStyle DrawsStyle -- yes
material Material -- yes
complexity Complexity -- yes
texture2 Texture2 -- yes
font Font -- yes
Extra information for list parts from above table

Part Name Container Type Permissible Types
callbackList Separator Callback, EventCallback

FILE FORMAT/DEFAULTS
Appear anceKit {

}

INCLUDE FILE
#i ncl ude <l nventor/ nodekit s/ SoAppearanceKit. h>

NOTE
Note that SoSeparatorKit includes an SoAppearanceKit as a part.

SEE ALSO
SoBaseKit, SoCameraKit, SoLightKit, SoNodeKit, SoNodeKitDetail,
SoNodeKitListPart, SoNodeKitPath, SoNodekitCatalog, SoSceneKit, SoSeparatorKit,
SoShapeKit, SoWrapperKit

94 Open Inventor C++ Reference Pages

SoArray

NAME

SoArray — group node that creates a regular IxJxK array of copies of its children

INHERITS FROM

SoBase > SoFieldContainer > SoNode > SoGroup > SoArray

DESCRIPTION

This group node traverses its children, in order, several times, creating a regular 3D
array of copies of them. The number of copies in each of the three directions is
specified by fields, as are the vectors used to separate the copies in each of the three
dimensions.

For example, an SoArray node can be used to create a 2x3x4 array of copies of its
children, where the separation vectors between adjacent copies in the three array
dimensions are (1,2,3), (-4,-5,-6), and (7,8,9), respectively. The base point of the
array can be set to one of several values, as described in the origin field.

Copies are traversed so that the first dimension cycles most quickly, followed by the
second, and then the third. This order is important because SoArray sets the current
switch value to N before traversing the children for the Nth time (for use with
inherited switch values - see SoSwitch).

FIELDS
SoSFShort numElementsl
SoSFShort numElements2
SoSFShort numElements3
Number of elements in each of the three array dimensions.
SoSFVec3f separationl
SoSFVec3f separation2
SoSFVec3f separation3
Separation vector in each of the three array dimensions.
SOSFEnum origin
Defines the base point from which copies are distributed.
METHODS
SoArray()
Creates an array node with default settings.
static SoType getClassTypeld()

Returns type identifier for this class.

95

SoArray

Methods from class SoGroup:

addChild, insertChild, getChild, findChild, getNumChildren, removeChild,
removeChild, removeAllChildren, replaceChild, replaceChild

Methods from class SoNode:
setOverride, isOverride, copy, affectsState, getByName, getByName

Methods from class SoFieldContainer:

setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, set, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

ACTION BEHAVIOR
SoGLRenderAction, SoCallbackAction, SoGetBoundingBoxAction,
SoRayPickAction
Traverses all children for each array element, saving and restoring state
before and after each traversal.

SoSearchAction
Traverses all children once, setting the inherited switch value to
SO_SWITCH_ALL first.

FILE FORMAT/DEFAULTS
Array {

nunkl emrent s1
nunkl ement s2
nunkl emrent s3
separati onl
separati on2
separ ati on3
origin

MTOORRRERE

JTOor o
(ﬂpoo

96 Open Inventor C++ Reference Pages

SoArray

INCLUDE FILE
#i ncl ude <l nvent or/ nodes/ SoArray. h>

enum Origin {
SoArray::FIRST First copy is rendered at the current local origin; all other copies
are distributed relative to it
SoArray::CENTER Copies are distributed relative to the center of the array
SoArray::LAST Last copy is rendered at the current local origin; all other copies
are distributed relative to it

}

SEE ALSO
SoMultipleCopy, SoSwitch

97

SoBase

NAME
SoBase — base class for all nodes, paths, and engines

INHERITS FROM
SoBase

DESCRIPTION
Abstract base class for Inventor node, path, and engine classes. This class handles
reference counting, notification, and naming.

METHODS

void ref()

void unref() const

void unrefNoDelete() const
Adds and removes a reference to an instance. Instances should be referenced
when they will be used outside of the routine in which they were initialized.
(A typical example of this is maintaining a pointer to the root of a graph.)
Whenever the reference count for an instance is decremented to 0, the
instance is automatically destroyed by the database (unless unrefNoDelete()
is used to unref it). The reference count of a node is automatically
incremented when the node is added as a child of another node or when a
path points to the node. Likewise, the reference count is automatically
decremented when the node is removed as a child or when a path that
points to the node is changed or destroyed.

unrefNoDelete() should be called when it is desired to decrement the
reference count, but not delete the instance if this brings the reference
count to zero. This is most useful in returning an object to a zero-reference-
count state, like it was when it was created by new.

void touch()
Marks an instance as modified, simulating a change to it. This will notify
auditors (parent nodes, connected engines, and so on) of a change to this
object and cause attached sensors to be triggered.

static SoType getClassTypeld()
Returns type identifier for this class.

virtual SoType getTypeld() const
Returns the type identifier for a specific instance.

98 Open Inventor C++ Reference Pages

SoBase

SbBool isOfType(SoType type) const
Returns TRUE if this object is of the type specified in type or is derived from
that type. Otherwise, it returns FALSE. For example:

nodePtr->isOfType(SoGroup::getClassTypeld())
returns TRUE if nodePtr is an instance of SoGroup or one of its subclasses.

virtual void setName(const SbName &name)
Sets the name of an instance. Object names are preserved when objects are
written to or read from files.

virtual const SbName &
getName() const
Returns the name of an instance. If the instance has not been named, an
empty SbName is returned. Objects that are named can be looked up using
the getByName() methods of SoNode, SOEngine, or SoPath.

INCLUDE FILE
#i ncl ude <l nventor/ m sc/ SoBase. h>

SEE ALSO
SoFieldContainer, SoNode, SoPath, SoEngine, SoDB

99

SoBaseColor

NAME
SoBaseColor — node that defines an object’s base color

INHERITS FROM
SoBase > SoFieldContainer > SoNode > SoBaseColor

DESCRIPTION
This node defines the base color (or colors) of subsequent shape nodes in the scene
graph. SoBaseColor sets only the diffuse color(s) of the current material and has no
effect on the material’s other attributes.

FIELDS
SoMFColor rgb
RGB color(s).

METHODS
SoBaseColor()
Creates a base color node with default settings.

static SoType getClassTypeld()
Returns type identifier for this class.

Methods from class SoNode:
setOverride, isOverride, copy, affectsState, getByName, getByName

Methods from class SoFieldContainer:

setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, set, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

ACTION BEHAVIOR
SoGLRenderAction, SoCallbackAction
Sets the current base color in the state.

FILE FORMAT/DEFAULTS
BaseCol or {
rgb 0.8 0.8 0.8
}

100 Open Inventor C++ Reference Pages

SoBaseColor

INCLUDE FILE
#i ncl ude <l nvent or/ nodes/ SoBaseCol or. h>

SEE ALSO
SoMaterial, SoPackedColor

101

SoBaseKit

NAME

SoBaseKit — base class for all node kits

INHERITS FROM

SoBase > SoFieldContainer > SoNode > SoBaseKit

DESCRIPTION

102

This is the base class from which all nodekit nodes are derived. Nodekits provide a
convenient mechanism for creating groups of scene graph nodes with some larger
meaning. When you create a shape node such as an indexed face set, for example,
you almost always precede it with a coordinate node. You may also want to add a
transform node or specify properties with material, drawing style, material binding,
etc. Instead of creating each of these nodes individually and then arranging them
into a subgraph, you can use a nodekit of the appropriate type (in this case,
SoShapeKit).

Each class of nodekit has a nodekit catalog (SoNodekitCatalog) that describes the
nodes in the subgraph, referred to as parts. The catalog has an entry for each part,
with information such as the partName, partType, and nullByDefault (if FALSE the
constructor creates it). The catalog also describes the arrangement of parts in the
subgraph. (Other information is described below; a complete description is in the
SoNodekitCatalog reference page.)

If we regard the scene graph arrangement as a branching tree, then the top node
(root) of the arrangement is always the nodekit itself. The leaf nodes are those at the
bottom (containing no children). Some leaves of the tree are defined in the catalog
to be public parts, while other leaves are private. All non-leaf parts are considered
internal to the nodekit structure and are marked private. Public parts are accessible;
they may be requested, changed, or set by the programmer with member functions
such as getPart(). Private parts are not accessible, so methods such as getPart() will
have no effect on them. For example, if you call getPart() to retrieve a private part,
NULL will be returned even when the part exists.

Every nodekit reference page has a Parts section describing the function of each
public part it adds to those inherited from its parent class. Also, a Catalog Parts
section has tables of often-needed information from the catalog (part type, etc.).
These tables include all public parts, both new and inherited. Only the public parts
of a nodekit are described in the reference pages. Nodekits take care of the rest for
you; they automatically arrange the subgraph, creating and deleting the private
parts when necessary. (The SoNodekitCatalog reference page has methods for
finding out the part names and arrangement of all parts, both public and private.)

The nodekit catalog is a template shared by all instances of a class. They use the
shared catalog as a guide when creating parts (i.e., constructing actual nodes), but

Open Inventor C++ Reference Pages

SoBaseKit

each instance stores its own parts separately. Moreover, nodekits are not SoGroup
nodes, and parts are added as hidden children; you can only access parts with the
methods of SoBaseKit and its derived classes.

Any public part may be retrieved with getPart(), installed with setPart(), or
removed by giving a NULL argument to setPart(). Paths from the nodekit down to a
part can be created by createPathToPart().

By default, parts are not created until the user requests or sets them. This keeps the
subgraph uncluttered and efficient for traversal. Additionally, removing a part
(setting it to NULL) has the extra effect of removing any internal parts that are no
longer needed.

Since nodekits hide their children, any SoPath containing nodekits will end at the
topmost nodekit. However, since nodekits may be nested within other nodekits, you
may wish to cast an (SoPath *) into an (SoNodeKitPath *). The methods of
SoNodeKitPath allow you to view all nodekits that lie on the path (see the reference
page for SoNodeKitPath).

Public parts in the nodekit catalog fall into three categories:
[1] regular nodes

[2] nodekits, or nested nodekits (which may nest recursively). Any node which is
public in a nested nodekit is accessible to the higher level nodekit(s) that contains it.
The description of getPart() below shows how to refer to nested parts by name (e.g.,
"appearance.material"). This works for any nodekit method that takes a part name for
an argument.

[3] lists, or list parts. These parts group together children (list elements) of a particular
type or types. As with nested nodekits, you can refer to individual elements using
notation described in getPart() (e.g., "childList[0]", or if the list elements are in turn
nodekits, "childList[2].transform").

When the catalog denotes that a part is a list, the part itself is always a node of type
SoNodeKitListPart. The catalog specifies a set of permissible listitemTypes and a
listContainerType for that part. It gives this information to the SoNodeKitListPart
when it creates it. From then on, the list part will enforce type checking. So even if
you retrieve the SoNodeKitListPart with getPart(), you will not be able to add
illegal children. (See the SoNodeKitListPart reference page for more information).
As an example, the callbackList part of SoBaseKit has an SoSeparator container and
allows only SoCallback and SoEventCallback nodes in the list. Children may be

103

SoBaseKit

PARTS

added, retrieved, and removed from an SoNodeKitListPart node using methods that
parallel those of SoGroup. However, type-checking is strictly enforced.

Note that, although all public parts are leaves in the nodekit catalog, you are free to
add children to them (assuming that they are groups, nodekits, or list parts). A part’s
status as a leaf in the catalog just means that the nodekit will not manage the part’s
children. For example, SoWrapperKit has a part called contents with a part type of
SoSeparator. You can put whatever you want underneath the separator, as long as
contents itself is an SoSeparator.

Thus, a nodekit only controls a section of the scene graph. Above and below that
section, anything goes.

However, when nodekits are nested, they effectively create a larger ‘known’ section
of the scene graph. For example, the appearance part of the SoSeparatorKit is a leaf
node in the SoSeparatorKit catalog. But appearance is in turn an SoAppearanceKit,
containing parts such as material and drawStyle. The two nodekits combine to make
an even larger template, which the SoSeparatorKit can examine by looking at the
catalogs for both classes. So an SoSeparatorKit can successfully return a part named
"material”; first it finds (or creates) the appearance part, then it gets the material by
calling getPart() on the appearance.

When the catalog defines the listitemTypes of a list part to be nodekits, the name-
able space expands further. For example, SoSeparatorKit has a part childList which
permits only SoSeparatorKits, so each list element can be further searched. Hence
the name "childList[0].childList[1].childList[2].material" is perfectly legal.

(SoNodeKitListPart)
callbackList
This is the only part that the base class SoBaseKit creates. It is a public part
that is inherited by all nodekits. It provides an easy way to add callbacks for
a nodekit to use during action traversal (e.g. SoHandleEventAction). Itis a
list part and may contain humerous SoCallback and/or SoEventCallback

nodes.
METHODS
SoBaseKit()
Constructor.
104 Open Inventor C++ Reference Pages

SoBaseKit

static const SoNodekitCatalog *
getClassNodekitCatalog() const
Returns the SoNodekitCatalog for the class SoBaseKit.

virtual const SoNodekitCatalog *
getNodekitCatalog() const
Returns the SoNodekitCatalog for this instance of SoBaseKit. While each
instance of a given class creates its own distinct set of parts (which are actual
nodes), all instances share the same catalog (which describes the parts but
contains no actual node pointers).

virtual SoNode * getPart(const SbName &partName, SbBool makelfNeeded)
Searches the nodekit catalog (and those of all nested nodekits) for the part
named partName. Returns a pointer to the part if a match is found, the part is
public, and the part has already been built. If no match is found, or if the part
is private, NULL is returned. If partName is in the catalog (or that of one of its
nested nodekit parts), but the part has not been built yet, the argument
makelfNeeded determines the course of action. When makelfNeeded is FALSE,
NULL is returned; when makelfNeeded is TRUE, getPart() will create the part
(as well as any necessary intermediary parts), put it in the correct place, and
return a pointer to the newly created part.

Elements of list parts and parts within nested nodekits can all be retrieved
with getPart() The full syntax for legal partName arguments is given below.

Part name BNF notation:

partName = singleName | compoundName

compoundName = singleName | compoundName.singleName

singleName = singlePartName | singleListElementName

singlePartName = the name of any single part in the catalog (including those
that are lists or nodekits), or in the recursively nested catalogs of any of its
parts.

singleListElementName = singleListName[index]

singleListName = the name of any single list-type part in the catalog, or in
the recursively nested catalogs of any of its parts.

index = integer

105

SoBaseKit

Examples of valid part names are:

"transform", "appearance.material”, "childList[2].drawStyle", "foot",
"bird.leftLeg.foot", "octopus.leg[4].suctionCup[2].material"

SbString getPartString(const SoBase *part)

Given a node or a path to a node, checks if the part exists in the nodekit, in
a nested nodekit, or an element of a list part. If so, returns a string describing
the part name; otherwise, returns an empty string ().

virtual SoNodeKitPath *

createPathToPart(const SbName &partName, SbBool
makelfNeeded, const SoPath *pathToExtend = NULL)
Returns a path that begins at this nodekit and ends at partName. Searching
for the part is the same as in getPart(). NULL is returned if partName cannot
be found, or if makelfNeeded is FALSE and the part is not yet built. If the the
part is retrieved and the argument pathToExtend is NULL, the path returned
begins at this and ends at partName. If pathToExtend is not NULL, the path
created is a copy of pathToExtend with entries appended all the way down to
partName. It is okay for pathToExtend to go beyond the nodekit; extra nodes
will be popped off the tail before continuing from this down to partName.

virtual SbBool setPart(const SbName &partName, SoNode *newPart)

106

Inserts the given node (not a copy) as the new part specified by partName.
See getPart() for the syntax of partName. This method adds any extra nodes
needed to fit the part into the nodekit’s catalog. For example, if you call:

mySepKit->setPart("childList[0]", myNewChild);

the kit may need to create the part childList before it can install myNewChild.
Run-time type checking verifies that the node type of newPart matches the
type called for by partName. For example, if partName was a material for an
SoSeparatorKit, but newPart was an SoTransform node, then the node
would not be installed, and FALSE would be returned.

If newPart is NULL, then the node specified by partName is removed. If this
renders any private parts useless (as occurs when you remove the last child
of an SoGroup node), they will also be removed. Hence nodekits do not
retain unnecessary nodes.

TRUE is returned on success, and FALSE upon error.

Open Inventor C++ Reference Pages

SoBaseKit

SbBool set(char *partName, char *parameters)

SbBool set(char *nameValuePairs)
These functions allow field values of parts (nodes) to be set. If partName and
parameters are used, then a single part is specified by partName; the field
values are specified in parameters. The format of paramaters is the Inventor
File Format syntax. For example,

mySepKit->set("material”, "diffuseColor 1 0 0 shininess 0.6");

sets the part material to the values "diffuseColor 1 0 0 shininess 0.6". The
values used in parameters must of course be appropriate for the node-type to
which partName belongs. In this case, the nodekit SoSeparatorKit has a part
named material which is of type SoMaterial.

The nameValuePairs syntax can be used to set the field values in several
different parts simultaneously. In this case, the argument string,
nameValuePairs contains name-value pairs: "partNamel { parametersl } ...
partNameN { parametersN }".

For example,

mySepKit->set("material { diffuseColor 111}
transform { translation 4 3 .6 }");
mySepKit->set("childList[0].material { ambientColor .5 .5 .5}";

static SbBool isSearchingChildren()

static void setSearchingChildren(SbBool newVal)
Sets and queries if nodekit children are searched during SoSearchAction
traversal. By default, they are not.

static SoType getClassTypeld()
Returns type identifier for this class.

Methods from class SoNode:
setOverride, isOverride, copy, affectsState, getByName, getByName

Methods from class SoFieldContainer:

setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

107

SoBaseKit

MACROS
SO_GET_PART(kit, partName, partClass)
Calls getPart() with makelfNeeded set to TRUE, then casts the result to the
type partClass. Note that in the debug library, this macro checks to see if the
part is of type partClass, while the regular library does no type checking.

SO_CHECK_PART(kit, partName, partClass)
Calls getPart(), but with makelfNeeded set to FALSE, then casts the result to
the type partClass. Note that in the debug library, this macro checks to see if
the part is of type partClass, while the regular library does no type checking.

ACTION BEHAVIOR
SoGLRenderAction, SoCallbackAction, SoGetBoundingBoxAction,
SoHandleEventAction
Behaves like an SoGroup. Traverses each child in order.

SoRayPickAction
Traverses each child in order. Then, for any pick containing the kit on its
path, makes an SoNodeKitDetail as follows: Sets the "detailNodeKit"
(retrievable with SoNodeKitDetail::getNodeKit()) to be a pointer to itself.
Sets the "detailPart” (retrievable with SoNodeKitDetail::getPart()) to be a
pointer to the kit’s leaf-most part that lies on the pickPath. Sets the
"detailPartName" (retrievable with SoNodeKitDetail::getPartName()) to be
the partName of that part, as found in the catalog.

Does not descend into nested nodekits. Each nodekit along the path is the
"detailPart” in its parent’s detail. However, if the pick path goes through a
list part, a pointer to the child is used for the "detailPart”, and
"detailPartName" is of the form "listName[i]".

SoGetMatrixAction
Behaves like an SoGroup. Does nothing unless the kit is in the middle of the
path chain the action is being applied to. If so, the children up to and
including the next node in the chain are traversed.

SoSearchAction
First, searches itself like an SoNode. Then, checks the value of
isSearchingChildren(). If TRUE, traverses the children in order. If FALSE,
returns.

SoWriteAction

Begins by writing out regular fields, then writes out the parts. A nodekit does
not write out its parts the way an SoGroup writes out its children. Instead, it

108 Open Inventor C++ Reference Pages

SoBaseKit

writes each part as an SoSFNode field. First the partName is written, then
the node being used for that part.

To keep the files terse, nodekits write out as few parts as possible. However,
nodekits always write a part if another instance or a path is writing it. If this
is not the case, parts are left out according to the following rules:

[1] NULL parts only write if the catalog states they are created by default.

[2] Empty SoGroup and SoSeparator nodes do not write.

[3] Non-leaf parts only write if they have non-default field values.

[4] List parts only write if they have children or if the container node has
non-default field values.

[5] Nested nodekit parts only write if they need to write one or more parts,
or if they have non-default field values.

CATALOG PARTS

All parts
NULL by
Part Name Part Type Default Type Default
callbackList NodeKitListPart -- yes

Extra information for list parts from above table
Part Name Container Type Permissible Types

callbackList Separator Callback, EventCallback

FILE FORMAT/DEFAULTS
BaseKit ({

}

INCLUDE FILE

#i ncl ude <l nvent or/ nodeki ts/ SoBaseKit. h>

SEE ALSO

SoAppearanceKit, SoCameraKit, SoLightKit, SoNodeKit, SoNodeKitDetail,
SoNodeKitListPart, SoNodeKitPath, SoNodekitCatalog, SoSceneKit, SoSeparatorKit,
SoShapeKit, SoWrapperKit

109

SoBaseList

NAME
SoBaseList — maintains a list of pointers to instances of the SoBase classes

INHERITS FROM
SbPList > SoBaseL.ist

DESCRIPTION
This subclass of SbPList holds lists of pointers to instances of classes derived from
SoBase (an abstract class). A flag indicates whether adding an instance pointer to
the list should add a reference to the instance. If this flag is TRUE, then adding and
removing pointers from the list updates reference counts in the corresponding
instances.

METHODS
SoBaseL.ist()
Constructor.

SoBaseList(int size)
Constructor that pre-allocates storage for size pointers.

SoBaseList(const SoBaseList &I)
Constructor that copies the contents of another list.

~SoBaseL.ist()
Destructor.

void append(SoBase *ptr)
Adds a pointer to the end of the list.

void insert(SoBase *ptr, int addBefore)
Inserts given pointer in list before pointer with given index.

void remove(int which)
Removes pointer with given index.

void truncate(int start)
Removes all pointers after one with given index, inclusive.

void copy(const SoBaseL.ist &I)
Copies a list, keeping all reference counts correct.

SoBaseL.ist & operator =(const SoBaseL.ist &I)
Copies a list, keeping all reference counts correct.

110 Open Inventor C++ Reference Pages

SoBaseList

SoBase * operator [](int i) const
Accesses an element of a list.

void set(int i, SoBase *ptr)
Sets an element of a list.

void addReferences(SbBool flag)
Indicates whether to call ref() and unref() for bases in the list when
adding/removing them. The default value is TRUE.

Methods from class SbPL.ist:
find, getLength, operator ==, operator !=

INCLUDE FILE
#i ncl ude <l nventor/ SoLi sts. h>

SEE ALSO
SoBase, SoNodeList, SoPathList

111

SoBlinker

NAME

SoBlinker — animated cycling switch node

INHERITS FROM

SoBase > SoFieldContainer > SoNode > SoGroup > SoSwitch > SoBlinker

DESCRIPTION

FIELDS

The SoBlinker class is derived from SoSwitch, so it selects one of its children to
traverse. Using engines connected to the realTime global field, the whichChild
field is animated over time. If the node has only one child, whichChild toggles
between SO_SWITCH_NONE and 0, causing the child to be switched on and off
repeatedly. If the node has more than one child, they are cycled through
continuously.

SoSFFloat speed
Defines the speed of the blinker, in cycles per second.
SoSFBool on

Allows applications to enable or disable the blinking easily.

Fields from class SoSwitch:

whichChild
METHODS
SoBlinker()
Creates a blinker node with default settings.
static SoType getClassTypeld()

112

Returns type identifier for this class.

Methods from class SoGroup:
addChild, insertChild, getChild, findChild, getNumChildren, removeChild,
removeChild, removeAllChildren, replaceChild, replaceChild

Methods from class SoNode:
setOverride, isOverride, copy, affectsState, getByName, getByName

Methods from class SoFieldContainer:

setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, set, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

Open Inventor C++ Reference Pages

SoBlinker

ACTION BEHAVIOR
SoGLRenderAction, SoCallbackAction, SoGetBoundingBoxAction,
SoGetMatrixAction, SoHandleEventAction, SoRayPickAction, SoSearchAction
Same as for SoSwitch.

FILE FORMAT/DEFAULTS

Bl i nker {
whi chChild O
speed 1
on TRUE
}
INCLUDE FILE

#i ncl ude <l nventor/nodes/ SoBl i nker. h>

113

SoBoolOperation

NAME
SoBoolOperation — performs Boolean operations

INHERITS FROM
SoBase > SoFieldContainer > SoEngine > SoBoolOperation

DESCRIPTION
This engine performs a Boolean operation on two inputs, and returns both the result
of the operation and its inverse.

The input fields can have multiple values, allowing the engine to perform several
Boolean operations in parallel. One input may have more values than the other. In
that case, the last value of the shorter input will be repeated as necessary.

INPUTS
SoMFBool a
First argument to the Boolean operation.
SoMFBool b
Second argument to the Boolean operation.
SOMFEnum operation
The Boolean operation.
OUTPUTS
(SoMFBool) output
Result of the Boolean operation applied to the inputs.
(SoMFBool) inverse
Inverse of output.
METHODS

SoBoolOperation()
Constructor.

Methods from class SoEngine:

getClassTypeld, getOutputs, getOutput, getOutputName, copy, getByName,
getByName

Methods from class SoFieldContainer:

setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, set, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

114 Open Inventor C++ Reference Pages

SoBoolOperation

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

FILE FORMAT/DEFAULTS
Bool Operation {

a FALSE

b FALSE

}
INCLUDE FILE

#i ncl ude <I nventor/engi nes/ SoBool Oper ati on. h>

operation A

enum Operation {

SEE ALSO

SoBoolOperation::
SoBoolOperation::
SoBoolOperation::
SoBoolOperation::
SoBoolOperation::
SoBoolOperation::
SoBoolOperation::
SoBoolOperation::
SoBoolOperation::
SoBoolOperation::
SoBoolOperation::
SoBoolOperation::
SoBoolOperation::
SoBoolOperation::

SoBoolOperation
SoBoolOperation

CLEAR
SET

A

NOT_A

B

NOT B

A OR B
NOT_A_OR B

A OR_NOT B
NOT_A_OR_NOT B
A _AND B
NOT_A_AND_B

A _AND_NOT B
NOT_A_AND_NOT B
A EQUALS B

A _NOT_EQUALS_B

SoEngineOutput, SoCalculator

115

SoBoxHighlightRenderAction

NAME

SoBoxHighlightRenderAction — a selection highlight style

INHERITS FROM

SoAction > SoGLRenderAction > SoBoxHighlightRenderAction

DESCRIPTION

SoBoxHighlightRenderAction is a render action which renders the specified scene
graph, then renders wireframe boxes surrounding each selected object. Selected
objects are specified by the first SoSelection node in the scene to which this action
is applied. If an SoGetBoundingBoxAction applied to a selected object produces an
empty bounding box, no highlight is rendered for that object. A highlight render
action can be passed to the setGLRenderAction() method of SoXtRenderArea to
have an effect on scene graphs.

METHODS
SoBoxHighlightRenderAction()

Constructor.

virtual void apply(SoNode *node)
This renders the passed scene graph, and also renders wireframe boxes
around selected objects as specified by the first SoSelection node found in
the scene graph.

void setVisible(SbBool b)
This provides a convenient mechansim for turning highlights off or on.
When FALSE is passed, subsequent calls to apply() render the scene graph
without rendering highlights. The application is responsible for forcing a
redraw of the scene after changing this state. The default visibility is on.

SbBool isVisible() const
Returns whether highlights will be rendered or not.

void setColor(const SbColor &c)

SbColor & getColor()
Set and get the color of the highlight. Default is red (1,0,0). Application is
responsible for forcing a redraw of the scene to see the effects of this change.

void setLinePattern(unsigned short pattern)

unsigned short getLinePattern()
Set and get the line pattern of the highlight. Default is solid, Oxffff. The
pattern of bits in the passed variable specifies the pattern of the line. See
SoDrawsStyle for a description. Application is responsible for forcing a
redraw of the scene to see the effects of this change.

116 Open Inventor C++ Reference Pages

SoBoxHighlightRenderAction

void setLineWidth(float width)

float getLineWidth()
Set and get the line width of the highlight. Default is 3. Application is
responsible for forcing a redraw of the scene to see the effects of this change.

Methods from class SoGLRenderAction:

setViewportRegion, getViewportRegion, setUpdateArea, getUpdateArea,
setAbortCallback, setTransparencyType, getTransparencyType,
setSmoothing, isSmoothing, setNumPasses, getNumPasses, setPassUpdate,
isPassUpdate, setPassCallback, setCacheContext, getCacheContext

Methods from class SoAction:
getClassTypeld, getTypeld, isOfType, invalidateState

INCLUDE FILE

#i ncl ude <Inventor/actions/ SoBoxHi ghl i ght Render Acti on. h>

EXAMPLE

Here is an example of how a box highlight can be specified for a particular selection
node and render area.

SoXtRenderArea *myRenderArea;
SoSelection *mysSelection;

// Set the highlight render action
myRenderArea->setGLRenderAction(
new SoBoxHighlightRenderAction());

// Automatic redraw on selection changes
myRenderArea->redrawOnSelectionChange(mysSelection);

SEE ALSO

SoLineHighlightRenderAction, SoGLRenderAction, SoSelection, SoXtRenderArea,
SoDrawsStyle, Solnteraction

117

SoButtonEvent

NAME
SoButtonEvent — base class for all button events

INHERITS FROM
SoEvent > SoButtonEvent

DESCRIPTION
SoButtonEvent represents generic button press and release events in the Inventor
event model. It is the base class for device-specific button events, namely
SoKeyboardEvent, SoMouseButtonEvent, and SoSpaceballButtonEvent. This class
stores the down/up state of the button when the event occurred.

METHODS
SoButtonEvent()
Constructor.

static SoType getClassTypeld()
Return the type id for the SoButtonEvent class.

void setState(SoButtonEvent::State s)
SoButtonEvent::State

getState() const
Set and get the state of the button.

Methods from class SoEvent:

getTypeld, isOfType, setTime, getTime, setPosition, getPosition, getPosition,
getNormalizedPosition, setShiftDown, setCtrIDown, setAltDown,
wasShiftDown, wasCtrIDown, wasAltDown

INCLUDE FILE
#i ncl ude <l nventor/events/ SoButtonEvent. h>

enum State {
SoButtonEvent::UP
Button up event
SoButtonEvent::DOWN
Button down event
SoButtonEvent::UNKNOWN
Button in unknown state

}
SEE ALSO
SoEvent, SoKeyboardEvent, SoLocation2Event, SoMotion3Event,

SoMouseButtonEvent, SoSpaceballButtonEvent, SoHandleEventAction,
SoEventCallback, SoSelection, Solnteraction, SoXtDevice

118 Open Inventor C++ Reference Pages

SoByteStream

NAME
SoByteStream — converts scene graph objects to character byte streams

INHERITS FROM
SoByteStream

DESCRIPTION
This class creates a byte stream representation of a scene graph, using an
SoWriteAction to write path lists to an in-memory buffer. Byte streams are
commonly used to transfer data in copy and paste operations. (The SoXtClipboard
class passes SoByteStream data during copy and paste.)

METHODS
SoByteStream()
~SoByteStream()
Constructor and destructor.
void convert(SoNode *node, SbBool binaryFormat = TRUE)
void convert(SoPath *path, SbBool binaryFormat = TRUE)
void convert(SoPathList *pathList, SbBool binaryFormat = TRUE)
These convert the passed scene graph object(s) into a byte stream. The caller
may specify whether the byte stream is written in binary (TRUE) or ASCII
(FALSE) format, and can pass the object(s) by node, path, or pathList.
void * getData()
unsigned long getNumBytes()

These return the data and number of bytes from the last convert()
operation. This byte stream format is well suited to data transfers, like copy
and paste.

static SoPathList *
unconvert(SoByteStream *byteStream)
static SoPathList *
unconvert(void *data, unsigned long numBytes)
These take byte stream data and unconvert it back to scene graph objects.
The objects are returned in a path list.

INCLUDE FILE
#i ncl ude <l nventor/ m sc/ SoByt eSt ream h>

SEE ALSO
SoXtClipboard

119

SoCalculator

NAME

SoCalculator — a general-purpose calculator

INHERITS FROM

SoBase > SoFieldContainer > SoEngine > SoCalculator

DESCRIPTION

120

This engine is a general-purpose calculator. The calculator operates on floating-point
values and 3D floating-point vectors. The engine takes up to eight inputs of each
type (SoMFFloat and SoMFVec3f), and produces up to four outputs of each type.

Each input field (a-h, A-H) can have multiple values, allowing the engine to
evaluate the expression with different values in parallel. Some inputs may have
more values than others. In such cases, the last value of the shorter inputs will be
repeated as necessary.

The expression input string specifies the expression to be evaluated. An expression
can consist of multiple subexpressions. Several subexpressions can be specified in
one string, separated by semicolons (;). Alternatively, the subexpressions can be
stored in separate strings in the multiple-valued input field.

Each subexpression is of the form:
<lhs> = <rhs>

The <lhs> can be any one of the outputs or a temporary variable. The engine
provides 8 temporary floating-point variables (ta, tb, tc, td, te, tf, tg, and th), and 8
temporary vector variables (tA, tB, tC, tD, tE, tF, tG, and tH). You can assign a value
to one component of a vector output (A-H) or a vector variable (tA-tH) by using the
[1 operator. For example, oA[0] = <rhs>, will evaluate the right hand side and assign
the value to the first component of the output vector oA.

The <rhs> supports arithmetic, logical and conditional operators. They are:
(unary) |, -
(binary) +1] *1 /1 %! <! > <:! >:| == !:! &&! ”

(ternary) ?:

The ternary operator is a conditional operator. For example, a ? b : c evaluates to b if
a!=0, and to c if a==0.

Valid operands for the <rhs> include the inputs, outputs, temporary variables, and

their components (e.g. 0A[0]). Operands can also be numeric constants (e.g. 1.0),
pre-defined named constants, or pre-defined functions.

Open Inventor C++ Reference Pages

SoCalculator

The named constants are:

MAXFLOAT
MINFLOAT

M_E

M_LOG2E

M_LOG10E

M_LN2

M_LN210

M_PI

M_SQRT2 =sqrt(2)
M_SQRT1 2 =sqrt(1/2)

Most of the pre-defined functions come from the math library:

cos, sin, tan,

acos, asin, atan, atan2,
cosh, sinh, tanh,

sqrt, pow, exp, log, log10,
ceil, floor, fabs, fmod.

Other functions are defined by SoCalculator. They are:

rand(f) - Random number generator

cross(vl, v2) - Vector cross product

dot(vl, v2) - Vector dot product

length(v) - Vector length

normalize(v) - Normalize vector

vec3f(fl, f2, f3) - Generate a vector from 3 floats

The subexpressions are evaluated in order, so a variable set in the <lhs> of an earlier
expression may be used in the <rhs> of a later expression.

Note, when the input has multiple values, all the subexpressions specified in the
expression are applied to all the multiple input values. This is unlike the
SoBoolOperation engine, where each operation is applied only to the
corresponding entries of the input data. Note also, that even though the inputs and
outputs can have multiple values the [] operator is only for indexing into the values
of a single vector. It does not index into the multiple values of a field. For example,
if the floating-point input field a has two values: 1.0, and 2.0, then the expression

"0A[0]=a; oA[1]=a; 0A[2]=0.0"

will produce two output vectors in 0A: (1.0, 1.0, 0.0) and (2.0, 2.0, 0.0).

121

SoCalculator

Examples of expressions:

"ta = oA[O]*floor(a)"

"tb = (a+b)*sin(M_PI)"

"0A = vec3f(ta, tb, ta+tb)"

"oB = normalize(oA)"

"ta = a; tb = sin(ta); oA = vec3f(ta, tb, 0)"

INPUTS
SoMFFloat a
SoMFFloat b
SoMFFloat C
SoMFFloat d
SoMFFloat e
SoMFFloat f
SoMFFloat g
SoMFFloat h
Inputs a-h are the floating-point values.
SoMFVec3f A
SoMFVec3f B
SoMFVec3f C
SoMFVec3f D
SoMFVec3f E
SoMFVec3f F
SoMFVec3f G
SoMFVec3f H
Inputs A-H are the vectors.
SoMFString expression
The expression to be evaluated.
OUTPUTS
(SoMFFloat) oa
(SoMFFloat) ob
(SoMFFloat) oc
(SoMFFloat) od

Outputs oa-od are the floating-point values.

122 Open Inventor C++ Reference Pages

SoCalculator

(SoMFVec3f) OA
(SoMFVec3f) oB
(SoMFVec3f) oC
(SoMFVec3f) oD

Outputs oA-oD are the vectors.

METHODS
SoCalculator()
Constructor

Methods from class SoEngine:
getClassTypeld, getOutputs, getOutput, getOutputName, copy, getByName,
getByName

Methods from class SoFieldContainer:
setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, set, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

FILE FORMAT/DEFAULTS
Cal cul ator {

IOTMMOOT>»SQ "0 Q20T
oNejNoNeNeNoNeNeoNoNeNoNoNeNoNoNal

[cNeoNeoNolololNoNol
[cNeoNeoNolololNoNol

expr essi on

123

SoCalculator

INCLUDE FILE
#i ncl ude <I nventor/engi nes/ SoCal cul at or. h>

SEE ALSO
SoEngineOutput, SoBoolOperation

124 Open Inventor C++ Reference Pages

SoCallback

NAME
SoCallback — provides custom behavior during actions

INHERITS FROM
SoBase > SoFieldContainer > SoNode > SoCallback

DESCRIPTION
This node provides a general mechanism for inserting callback functions into a
scene graph. The callback function registered with the node is called each time the
node is traversed while performing any scene graph action. The callback function is
passed a pointer to the action being performed and a user data pointer registered
with the callback function. You can use this node to make nonstandard OpenGL

calls while rendering. If you do, be careful not to interfere with Inventor’s use of
OpenGL.

If you use a callback node for GL rendering, you should be careful to follow render
caching rules. If your callback node can make different rendering calls each time it
is traversed, it cannot be cached. In such a case, the node should invalidate any
open caches, as in the following example:

void
myCallbackFunc(void *d, SoAction *action) {
if (action->isOfType(SoGLRenderAction::getClassTypeld())) {
// Make my custom GL calls
((MyClass *) d)->myRender();

// Invalidate the state so that a cache is not made
SoCacheElement::invalidate(action->getState());

}
}
METHODS
SoCallback()

Creates a callback node with default settings.

void setCallback(SoCallbackCB *func, void *userData = NULL)
Sets pointer to callback function and user data. By default, the function
pointer in the node is NULL and does nothing.

static SoType getClassTypeld()

Returns type identifier for this class.

125

SoCallback

Methods from class SoNode:
setOverride, isOverride, copy, affectsState, getByName, getByName

Methods from class SoFieldContainer:
setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, set, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled
Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

ACTION BEHAVIOR
SoGLRenderAction, SoBoundingBoxAction, SoPickAction
Calls the specified callback function for all actions.

FILE FORMAT/DEFAULTS
Cal | back {

}

INCLUDE FILE
#i ncl ude <l nvent or/ nodes/ SoCal | back. h>

typedef void SoCallbackCB(void *userData, SoAction *action)

SEE ALSO
SoAction, SoCallbackAction, SoEventCallback

126 Open Inventor C++ Reference Pages

SoCallbackAction

NAME
SoCallbackAction — performs a generic traversal of the scene graph

INHERITS FROM
SoAction > SoCallbackAction

DESCRIPTION
This action defines a generic traversal of the scene graph. The user can specify
callback functions for node types or paths; when those node types or paths are
encountered during traversal, the user’s callback function is called.

In addition, callback functions can be registered for primitives generated by shapes
in the scene graph. Most shape types can generate primitives that represent or
approximate their geometries. Triangle primitives are used for all surfaces (such as
cubes, face sets, or 3D text), line segment primitives are used for line shapes, and point
primitives are used for point shapes. Note that the type of primitives generated for a
shape is the same, regardless of drawing style or other properties.

Most of the methods on this class access information from the traversal state. They
should be called only by callback functions that are invoked during traversal, so
there is a valid state to work with.

METHODS
SoCallbackAction()
The constructor.
void addPreCallback(SoType type, SoCallbackActionCB *cb, void
*data)
void addPostCallback(SoType type, SoCallbackActionCB *cb, void
*data)
These add a callback function to call when a node of the given type is
encountered during traversal. The PreCallback is called just before the node
is traversed, and the PostCallback is called just after. The value returned by a
callback function indicates whether the action should continue with the
traversal.
void addPreTailCallback(SoCallbackActionCB *cb, void *data)
void addPostTailCallback(SoCallbackActionCB *ch, void *data)

These can be used to set up callback functions to call when the action is
applied to a path. The functions are called just before or after the node at
the tail of the path is traversed.

127

SoCallbackAction

128

void addTriangleCallback(SoType type, SoTriangleCB *cb, void
*data)

void addLineSegmentCallback(SoType type, SoLineSegmentCB *cb,
void *data)

void addPointCallback(SoType type, SoPointCB *cb, void *data)

Routines to add callbacks for generated primitives (triangles, line segments,
and points) for all shapes of the given type. The callback function will be
called for each primitive generated for all shapes of or derived from that

type.

float getComplexity() const
SoComplexity::Type
getComplexityType() const
Returns complexity information from the state.

long getNumCoordinates() const

const SbVec3f & getCoordinate3(int index) const

const SbVec4f & getCoordinate4(int index) const
Returns the current coordinates from the state.

SoDrawsStyle::Style
getDrawsStyle() const

unsigned short getLinePattern() const
float getLineWidth() const
float getPointSize() const

Returns the current drawing style information from the state.

const SbName & getFontName() const
float getFontSize() const
Returns the current font information from the state.

SoLightModel::Model
getLightModel() const
const SbVec3f & getLightAttenuation() const
Returns the current lighting model information from the state.

Open Inventor C++ Reference Pages

SoCallbackAction

void getMaterial(SbColor &ambient, SbColor &diffuse, SbColor
&specular, SbColor &emission, float &shininess, float
&transparency, int mtlindex = 0) const
SoMaterialBinding::Binding
getMaterialBinding() const
Returns the current material information from the state. Providing a
mtlindex will return the material defined for that index.

long getNumNormals() const
const SbVec3f & getNormal(int index) const
SoNormalBinding::Binding
getNormalBinding() const
Returns the current normal information from the state.

long getNumProfileCoordinates() const
const SbVec2f & getProfileCoordinate2(int index) const
const SbVec3f & getProfileCoordinate3(int index) const
const SoNodeList &
getProfile() const
Returns the current profiles and their coordinates from the state.

SoShapeHints::VertexOrdering
getVertexOrdering() const
SoShapeHints::ShapeType
getShapeType() const
SoShapeHints::FaceType
getFaceType() const
float getCreaseAngle() const
Returns the current shape hints from the state.

long getNumTextureCoordinates() const
const SbVec2f & getTextureCoordinate2(int index) const
const SbVec4f & getTextureCoordinate4(int index) const
SoTextureCoordinateBinding::Binding
getTextureCoordinateBinding() const
const SbColor & getTextureBlendColor() const
const unsigned char *
getTexturelmage(SbVec2s &size, int &numComps) const
Returns texture information from the state. getNumTextureCoordinates()
returns O if texture coordinates are generated by a function.
getTexturelmage() returns NULL if no texture is enabled.

129

SoCallbackAction

const SbMatrix & getTextureMatrix() const
SoTexture2::Model getTextureModel() const
SoTexture2::\Wrap getTextureWrapS() const
SoTexture2::Wrap getTextureWrapT() const
Returns the current texture mapping information from the state.

const SbMatrix & getModelMatrix() const

SoUnits::Units getUnits() const
Returns the current modeling transformation and the current units from the
state.

float getFocalDistance() const

const SbMatrix & getProjectionMatrix() const
const SbMatrix & getViewingMatrix() const
const SbViewVolume &
getViewVolume() const
Returns the current camera and viewing information from the state.

SoPickStyle::Style getPickStyle() const
Returns the current picking style.

long getSwitch() const
Returns the current switch value.

Methods from class SoAction:
apply, apply, apply, getClassTypeld, getTypeld, isOfType, invalidateState

INCLUDE FILE
#i ncl ude <l nventor/actions/SoCal | backActi on. h>

typedef void SoTriangleCB(void *userData,
SoCallbackAction *action,
const SoPrimitiveVertex *v1,
const SoPrimitiveVertex *v2,
const SoPrimitiveVertex *v3)

typedef void SoLineSegmentCB(void *userData,
SoCallbackAction *action,
const SoPrimitiveVertex *v1,
const SoPrimitiveVertex *v2)

typedef void SoPointCB(void *userData,
SoCallbackAction *action,
const SoPrimitiveVertex *v)

130 Open Inventor C++ Reference Pages

SoCallbackAction

typedef SoCallbackAction::Response
SoCallbackActionCB(void *userData,
SoCallbackAction *action,
const SoNode *node)

enum Response {
SoCallbackAction::CONTINUE
Continue traversal as if nothing happened
SoCallbackAction::ABORT
Abort traversal
SoCallbackAction::PRUNE
Do not traverse node’s children, but continue traversal

SEE ALSO
SoCallback, SoEventCallback, SoShape

131

SoCallbackList

NAME

SoCallbackList — manages a list of callback functions and associated data

INHERITS FROM

SoCallbackList

DESCRIPTION

This class manages a list of callback functions and user data. The user can add a
callback function to the list, along with user data. When the callback is invoked, it is
passed this user data, along with callback data specified by the invoking routine.

The type of this callback data is determined by the invoking routine.

METHODS

void

void

void

int

void

INCLUDE FILE

SoCallbackList()
~SoCallbackList()
Constructor and destructor.

addCallback(SoCallbackListCB *f, void *userData = NULL)
removeCallback(SoCallbackListCB *f, void *userData = NULL)
Adds a function to or removes a function from the list of callback functions.

clearCallbacks()
Clears all callback functions from the list.

getNumcCallbacks() const
Returns the number of callback functions in the list.

invokeCallbacks(void *callbackData)
Invokes each callback function in the list, passing each function the user
data supplied when they were registered here, and callbackData, the
callback-specific data supplied by the caller.

#i ncl ude <l nventor/ m sc/ SoCal | backLi st. h>

typedef void SoCallbackListCB(void *userData, void *callbackData)

132

Open Inventor C++ Reference Pages

SoCamera

NAME

SoCamera — abstract base class for camera nodes

INHERITS FROM

SoBase > SoFieldContainer > SoNode > SoCamera

DESCRIPTION

FIELDS

This is the abstract base class for all camera nodes. It defines the common methods
and fields that all cameras have. Cameras are used to view a scene. When a camera
is encountered during rendering, it sets the projection and viewing matrices and
viewport appropriately; it does not draw geometry. Cameras should be placed before
any shape nodes or light nodes in a scene graph; otherwise, those shapes or lights
cannot be rendered properly. Cameras are affected by the current transformation, so
you can position a camera by placing a transformation node before it in the scene
graph . The default position and orientation of a camera is at (0,0,1) looking along
the negative z-axis.

You can also use a node kit to create a camera; see the reference page for
SoCameraKit.

SOSFEnum viewportMapping
Defines how to map the rendered image into the current viewport, when the
aspect ratio of the camera differs from that of the viewport.
SoSFVec3f position
The location of the camera viewpoint.
SoSFRotation orientation
The orientation of the camera viewpoint, defined as a rotation of the
viewing direction from its default (0,0,-1) vector.
SoSFFloat aspectRatio
The ratio of camera viewing width to height. This value must be greater
than 0.0. There are several standard camera aspect ratios defined in
SoCamera.h.
SoSFFloat nearDistance
SoSFFloat farDistance
The distance from the camera viewpoint to the near and far clipping planes.
SoSFFloat focalDistance

The distance from the viewpoint to the point of focus. This is typically
ignored during rendering, but may be used by some viewers to define a
point of interest.

133

SoCamera

METHODS
void pointAt(const SbVec3f &targetPoint)
Sets the orientation of the camera so that it points toward the given target
point while keeping the "up" direction of the camera parallel to the positive
y-axis. If this is not possible, it uses the positive z-axis as "up.”
virtual void scaleHeight(float scaleFactor)

134

Scales the height of the camera. Perspective cameras scale their heightAngle
fields, and orthographic cameras scale their height fields.

virtual SbViewVolume
getViewVolume(float useAspectRatio = 0.0) const
Returns a view volume structure, based on the camera’s viewing parameters.
If the useAspectRatio argument is not 0.0 (the default), the camera uses that
ratio instead of the one it has.

void viewAll(SoNode *sceneRoot, const SbViewportRegion
&VpRegion, float slack = 1.0)
void viewAll(SoPath *path, const SbViewportRegion &vpRegion,

float slack = 1.0)
Sets the camera to view the scene rooted by the given node or defined by the
given path. The near and far clipping planes will be positioned slack
bounding sphere radii away from the bounding box’s center. A value of 1.0
will make the clipping planes the tightest around the bounding sphere.

SbViewportRegion
getViewportBounds(const SbViewportRegion ®ion) const
Returns the viewport region this camera would use to render into the given
viewport region, accounting for cropping.

static SoType getClassTypeld()
Returns type identifier for this class.

Methods from class SoNode:
setOverride, isOverride, copy, affectsState, getByName, getByName

Methods from class SoFieldContainer:

setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, set, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

Open Inventor C++ Reference Pages

SoCamera

FILE FORMAT/DEFAULTS
This is an abstract class. See the reference page of a derived class for the format and
default values.

INCLUDE FILE
#i ncl ude <l nvent or/ nodes/ SoCaner a. h>

#define SO_ASPECT SQUARE 1.00
#define SO_ASPECT_VIDEO 1.333333333
#define SO_ASPECT 35mm_ACADEMY 1.371

#define SO_ASPECT_16mm 1.369
#define SO_ASPECT_35mm_FULL 1.33333
#define SO_ASPECT_70mm 2.287
#define SO_ASPECT_CINEMASCOPE 2.35
#define SO_ASPECT_HDTV 1777777777
#define SO_ASPECT_PANAVISION 2.361
#define SO_ASPECT_35mm 1.5

#define SO_ASPECT_VISTAVISION 2.301

enum ViewportMapping {
SoCamera::CROP_VIEWPORT_FILL_FRAME
Crops the viewport within the current window, so that the
aspect ratio matches that of the camera. As the window size
changes, the aspect ratio remains unchanged. The cropped
region is drawn as a filled gray area.
SoCamera::CROP_VIEWPORT_LINE_FRAME
Crops the viewport, but draws a thin frame around the viewport
SoCamera::CROP_VIEWPORT_NO_FRAME
Crops the viewport, but gives no visual feedback as to the
viewport dimensions within the window
SoCamera::ADJUST_CAMERA
Adjusts the camera aspect ratio and height to make it fit within
the given window. (The camera’s fields are not affected,
just the values sent to the graphics library.)
SoCamera::LEAVE_ALONE
Do nothing. Camera image may become stretched out of
proportion

SEE ALSO
SoOrthographicCamera, SoPerspectiveCamera, SoCameraKit

135

SoCameraKit

NAME

SoCameraKit — camera nodekit class

INHERITS FROM

SoBase > SoFieldContainer > SoNode > SoBaseKit > SoCameraKit

DESCRIPTION

PARTS

This nodekit class is used to create camera nodes that have a local transformation.
SoCameraKit adds two public parts to the basic nodekit: transform and camera.

The camera part is created by default as an SoPerspectiveCamera node, but may
later be changed to any subclass of SoCamera.

You can move the camera relative to the rest of the scene by creating and editing
the transform part.

SoCameraKit also adds a private part, transformGroup, which is of type
SoTransformSeparator. The kit uses this part to contain the effect of transform to
move only the camera, while allowing the camera to affect the rest of the scene.

SoCameraK:it is derived from SoBaseKit and thus also includes a callbackList part for
adding callback nodes.

(SoTransform) transform
A transform that positions and orients the camera relative to the rest of the
scene. Private parts keep the effect of the transform part localized. This part is
NULL by default, but may be set to any subclass of SoTransform

(SoCamera) camera
The camera node for this nodekit. The camera part is created by default as an
SoPerspectiveCamera node, but may later be changed to any subclass of
SoCamera. (e.g., SoPerspectiveCamera, SoOrthographicCamera).

Parts from class SoBaseKit:

callbackList
METHODS
SoCameraKit()
Constructor.
136 Open Inventor C++ Reference Pages

SoCameraKit

static const SoNodekitCatalog *
getClassNodekitCatalog() const

Returns an SoNodekitCatalog for the class SoCameraKit.

static SoType getClassTypeld()
Returns type identifier for this class.

Methods from class SoBaseKit:

getNodekitCatalog, getPart, getPartString, createPathToPart, setPart, set, set,

isSearchingChildren, setSearchingChildren

Methods from class SoNode:

setOverride, isOverride, copy, affectsState, getByName, getByName

Methods from class SoFieldContainer:

setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Methods from class SoBase:

ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

MACROS
Macros from class SoBaseKit:

SO_GET_PART, SO_CHECK_PART

CATALOG PARTS

All parts
Part Name Part Type Default Type
callbackList NodeKitListPart --
transform Transform --
camera Camera PerspectiveCamera

NULL by
Default

yes
yes
no

137

SoCameraKit

Extra information for list parts from above table
Part Name Container Type Permissible Types

callbackList Separator Callback, EventCallback

FILE FORMAT/DEFAULTS
CaneraKit {

}

INCLUDE FILE
#i ncl ude <l nventor/nodekits/SoCanerakKit.h>

SEE ALSO
SoAppearanceKit, SoBaseKit, SoLightKit, SoNodeKit, SoNodeKitDetail,
SoNodeKitListPart, SoNodeKitPath, SoNodekitCatalog, SoSceneKit, SoSeparatorKit,
SoShapeKit, SoWrapperKit

138 Open Inventor C++ Reference Pages

SoCenterballDragger

NAME
SoCenterballDragger — striped ball you rotate and re-center by dragging with the
mouse

INHERITS FROM
SoBase > SoFieldContainer > SoNode > SoBaseKit > SolnteractionKit > SoDragger >
SoCenterballDragger

DESCRIPTION
SoCenterballDragger is a composite dragger. Its shape is a sphere defined by three
intersecting circles. Where the circles intersect (at the ends of the x, y and z axes)
there are sets of small green crosshairs. Dragging a pair of crosshairs translates the
entire centerball within the plane of the crosshairs. The interface of the sphere and
circles is just like SoTrackballDragger. Dragging a circle rotates about a constrained
axis and dragging the areas between them rotates the sphere freely about the center.
An invisible but pickable sphere initiates the free-rotation dragging.

When you drag the crosshairs, the center field is updated; there is no translation
field. Dragging other parts of the centerball updates the rotation field. As with all
draggers, if you change the fields the dragger moves in response.

The draggers used for the crosshair parts are SoTranslate2Draggers, so pressing the
<Shift> key allows you to constrain motion to slide along either the local x axis or y
axis of that crosshair.. The direction is determined by your initial mouse gesture
after pressing the key. Releasing the key removes the constraint.

Remember: This is not an SoTransform! If you want to move other objects with this
dragger, you can either:

[a] Use an SoCenterballManip, which is subclassed from SoTransform. The
manipulator creates one of these draggers and uses it as the interface to edit the
manipulator’s fields. (See the SoCenterballManip man page.)

[b] Use field-to-field connections to connect the fields of this dragger to those of any
SoTransformation node.

You can change the parts in any instance of this dragger using setPart(). The default
part geometries are defined as resources for this SoCenterballDragger class. They are
detailed in the Dragger Resources section of the online reference page for this class.
You can make your program use different default resources for the parts by copying
the file /usr/share/data/draggerDefaults/centerballDragger.iv into your own
directory, editing the file, and then setting the environment variable
SO_DRAGGER_DIR to be a path to that directory.

139

SoCenterballDragger

FIELDS
SoSFRotation rotation
Orientation of the centerball dragger.
SoSFVec3f center

Center of rotation and scale of the centerball dragger.

Fields from class SoDragger:
isActive

Fields from class SolnteractionKit:
renderCaching, boundingBoxCaching, renderCulling, pickCulling

PARTS
Parts from class SoBaseKit:

callbackList

METHODS
SoCenterballDragger()
Constructor.

static const SoNodekitCatalog *
getClassNodekitCatalog() const
Returns an SoNodekitCatalog for this class.

static SoType getClassTypeld()
Returns type identifier for this class.

Methods from class SoDragger:

addStartCallback, removeStartCallback, addMotionCallback,
removeMotionCallback, addFinishCallback, removeFinishCallback,
addValueChangedCallback, removeValueChangedCallback, setMinGesture,
getMinGesture, setMinScale, getMinScale

Methods from class SolnteractionKit:
setPartAsPath

Methods from class SoBaseKit:

getNodekitCatalog, getPart, getPartString, createPathToPart, setPart, set, set,
isSearchingChildren, setSearchingChildren

140 Open Inventor C++ Reference Pages

SoCenterballDragger

Methods from class SoNode:
setOverride, isOverride, copy, affectsState, getByName, getByName

Methods from class SoFieldContainer:

setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

MACROS

Macros from class SoBaseKit:
SO_GET_PART, SO_CHECK_PART

CATALOG PARTS

Part Name

callbackList
surroundScale
antiSquish
translateToCenter
lightModel
XAXis

YAXis

ZAXis

rotator

YRotator
ZCenterChanger
ZRotator
YCenterChanger
XCenterChanger
XRotator

All parts
Part Type

NodeKitListPart
SurroundScale
AntiSquish
MatrixTransform
LightModel

Separator

Separator

Separator
RotateSphericalDragger
RotateCylindricalDragger
Translate2Dragger
RotateCylindricalDragger
Translate2Dragger
Translate2Dragger
RotateCylindricalDragger

Default Type

NULL by
Default

yes
yes
no
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes

141

SoCenterballDragger

Extra information for list parts from above table
Part Name Container Type Permissible Types

callbackList Separator Callback, EventCallback

FILE FORMAT/DEFAULTS
Cent er bal | Dragger {

r ender Cachi ng AUTO
boundi ngBoxCachi ng AUTO
render Cul | i ng AUTO
pi ckCul | i ng AUTO
i SActive FALSE
rotation 001 O
center 00O
}
INCLUDE FILE

#i ncl ude <l nventor/draggers/ SoCent er bal | Dragger . h>

SEE ALSO
SolnteractionKit, SoDragger, SoDirectionalLightDragger, SoDragPointDragger,
SoHandleBoxDragger, SoJackDragger, SoPointLightDragger,
SoRotateCylindricalDragger, SoRotateDiscDragger, SoRotateSphericalDragger,
SoScalelDragger, SoScale2Dragger, SoScale2UniformDragger,
SoScaleUniformDragger, SoSpotLightDragger, SoTabBoxDragger, SoTabPlaneDragger,
SoTrackballDragger, SoTransformBoxDragger, SoTranslatelDragger,
SoTranslate2Dragger

142 Open Inventor C++ Reference Pages

SoCenterballManip

NAME

SoCenterballManip — transform node with 3D interface for editing rotation and
center

INHERITS FROM
SoBase > SoFieldContainer > SoNode > SoTransformation > SoTransform >
SoTransformManip > SoCenterballManip

DESCRIPTION
SoCenterballManip is derived from SoTransform (by way of SoTransformManip).
When its fields change, nodes following it in the scene graph rotate, scale, and/or
translate.

As a subclass of SoTransformManip, this manipulator also has a 3D interface to edit
some of its fields. In this case, the interface edits the rotation and center fields.

A manipulator differs from a dragger. When you move a dragger, no other nodes are
affected. When you move an SoTransformManip, other nodes move along with it.
(See the reference page for SoTransformManip.)

The interface for an SoCenterballManip is exactly the same as that of the
SoCenterballDragger. To find out more about the interface, see the reference page
for SoCenterballDragger. To find out how the manipulator uses a dragger to
provide its interface, see the reference page for SoTransformManip.

On screen, this manipulator will surround the objects influenced by its motion. This
is because it turns on the surroundScale part of the dragger. (See the reference page
for SoSurroundScale.)

FIELDS
Fields from class SoTransform:

translation, rotation, scaleFactor, scaleOrientation, center
METHODS
SoCenterballManip()
Constructor.

static SoType getClassTypeld()
Returns type identifier for this class.

Methods from class SoTransformManip:
getDragger, replaceNode, replaceManip

143

SoCenterballManip

Methods from class SoTransform:

pointAt, getScaleSpaceMatrix, getRotationSpaceMatrix,
getTranslationSpaceMatrix, multLeft, multRight, combineLeft,
combineRight, setMatrix, recenter

Methods from class SoNode:
setOverride, isOverride, copy, affectsState, getByName, getByName

Methods from class SoFieldContainer:

setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, set, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

FILE FORMAT/DEFAULTS
Cent erbal | Mani p {

transl ation 00O
rotation 001 O
scal eFact or 111
scaleOientation 001 O
center 00O
}
INCLUDE FILE

#i ncl ude <I nventor/ mani ps/ SoCent er bal | Mani p. h>

SEE ALSO
SoCenterballDragger, SoHandleBoxManip, SoJackManip, SoTabBoxManip,
SoTrackballManip, SoTransformBoxManip, SoTransform, SoTransformManip

144 Open Inventor C++ Reference Pages

SoClipPlane

NAME
SoClipPlane — clipping plane node

INHERITS FROM
SoBase > SoFieldContainer > SoNode > SoClipPlane

DESCRIPTION
This node clips all subsequent shapes in the scene graph to the half-space defined by
the plane field. The half-space is the side of the plane in the direction of the plane
normal. For example, if the plane is positioned at the origin and the normal is
pointing down the positive X axis, everything in the negative X space will be
clipped away.

Any number of clipping planes may be active simultaneously, although the graphics
library may place a limit on this number during rendering.

Note that if any clipping planes are active, backface culling (as set up by the
SoShapeHints node) will not be performed.

FIELDS
SoSFPlane plane
Plane defining half-space.
SoSFBool on
Whether clipping plane is active.
METHODS
SoClipPlane()
Creates a clip plane node with default settings.
static SoType getClassTypeld()

Returns type identifier for this class.

Methods from class SoNode:
setOverride, isOverride, copy, affectsState, getByName, getByName

Methods from class SoFieldContainer:

setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, set, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

145

SoClipPlane

ACTION BEHAVIOR
SoGLRenderAction, SoCallbackAction, SoRayPickAction
Adds the plane to the current list of clipping planes in the state.

FILE FORMAT/DEFAULTS

d i pPl ane {
plane 1 00 O
on TRUE
}
INCLUDE FILE

#i ncl ude <l nventor/ nodes/ Sod i pPl ane. h>

SEE ALSO
SoCamera, SoShapeHints

146 Open Inventor C++ Reference Pages

SoColorindex

NAME

SoColorlndex — surface color index node
INHERITS FROM

SoBase > SoFieldContainer > SoNode > SoColorindex
DESCRIPTION

This node specifies the color to use for subsequent shapes as an index into the
current color table. This is used only for BASE_COLOR lighting (see SoLightModel)
in color index mode. Color index mode may be enabled by the window in which
rendering occurs.

Since color indices make sense only in the context of OpenGL rendering, this node
implements only a method for the SoOGLRenderAction.

FIELDS
SoMFLong index
Color index.

METHODS
SoColorindex()
Creates a color index node with default settings.

static SoType getClassTypeld()
Returns type identifier for this class.

Methods from class SoNode:
setOverride, isOverride, copy, affectsState, getByName, getByName

Methods from class SoFieldContainer:
setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, set, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled
Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

ACTION BEHAVIOR
SoGLRenderAction

Sets the color index for subsequent shapes rendered with BASE_COLOR
lighting.

147

SoColorindex

FILE FORMAT/DEFAULTS

Col or I ndex {
i ndex 1
}
INCLUDE FILE

#i ncl ude <l nvent or/ nodes/ SoCol or | ndex. h>

SEE ALSO
SoBaseColor, SoLightModel, SoMateriallndex

148 Open Inventor C++ Reference Pages

SoComplexity

NAME

SoComplexity — shape complexity node

INHERITS FROM

SoBase > SoFieldContainer > SoNode > SoComplexity

DESCRIPTION

FIELDS

This node sets the current shape complexity value. This is a heuristic value which
provides a hint at what geometric complexity to render shape nodes. Values range
from 0 to 1, where 0 means minimum complexity and 1 means maximum
complexity. Each shape node interprets complexity in its own way.

Shape complexity always affects rendering and primitive generation for the
SoCallbackAction. For some shapes, it also affects picking.

There are three ways to interpret shape complexity, depending on the type field.
BOUNDING_BOX complexity ignores the value field and renders all shapes as
bounding boxes, using the current material, drawing style, etc. The other two types
use the value field to determine the tessellation of shapes into polygons.
OBJECT_SPACE complexity uses value directly to determine the tessellation.
SCREEN_SPACE complexity depends on value and the projected size of the shape
on the screen; a value of 0 produces the minimum tessellation for a shape, and a
value of 1 produces a tessellation that is fine enough that each edge of a polygon is
about 1 or two pixels in length. Since the projected size depends on the camera
position, objects may be tessellated differently every frame if the camera is moving;
note that this may have adverse effects on render caching in SoSeparator nodes.

The SoComplexity node also sets a hint for the quality of textures applied to
shapes, based on the value of the textureQuality field.

SOSFEnum type
How shape complexity is interpreted.

SoSFFloat value
Complexity value.

SoSFFloat textureQuality
Hint about texture quality. A value of O indicates that the fastest texturing
should be used, while a value of 1 indicates that the best quality texturing
should be used.

149

SoComplexity

METHODS
SoComplexity()
Creates a complexity node with default settings.
static SoType getClassTypeld()

Returns type identifier for this class.

Methods from class SoNode:
setOverride, isOverride, copy, affectsState, getByName, getByName

Methods from class SoFieldContainer:

setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, set, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Methods from class SoBase:

ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName
ACTION BEHAVIOR

SoGLRenderAction, SoCallbackAction, SoGetBoundingBoxAction,
SoRayPickAction

Sets the current complexity in the state.
FILE FORMAT/DEFAULTS

Conpl exity {
type OBJECT_SPACE
val ue 0.5
textureQuality 0.5
}
INCLUDE FILE

#i ncl ude <I nventor/ nodes/ SoConpl exity. h>

enum Type {
SoComplexity::SCREEN_SPACE

Set complexity based on screen size
SoComplexity::OBJECT_SPACE

Set complexity independent of screen size
SoComplexity::BOUNDING_BOX

Draw all shapes as bounding boxes

}

SEE ALSO
SoShape, SoShapeHints, SoTexture2

150 Open Inventor C++ Reference Pages

SoComposeMatrix

NAME
SoComposeMatrix — composes a transformation matrix

INHERITS FROM
SoBase > SoFieldContainer > SoEngine > SoComposeMatrix

DESCRIPTION
This engine has inputs that specify values for translation, rotation, scale, and center
of transformation. As output, it produces a transformation matrix that transforms
objects into the space specified by the scale, rotation, and translation inputs (in that
order).

The input fields can have multiple values, allowing the engine to compose several
matrices in parallel. Some inputs may have more values than others. In such cases,
the last value of the shorter inputs will be repeated as necessary.

INPUTS
SoMFVec3f translation
Translation in X, y, and z.

SoMFRotation rotation
Rotation.

SoMFVec3f scaleFactor
Scale factors in x, y, and z.

SoMFRotation scaleOrientation
Rotational space for scaling.

SoMFVec3f center
Center point for scaling and rotating.

OUTPUTS
(SoMFMatrix) matrix
Transformation matrix that transforms from object space into the space
specified by the inputs.

METHODS
SoComposeMatrix()
Constructor

Methods from class SoEngine:

getClassTypeld, getOutputs, getOutput, getOutputName, copy, getByName,
getByName

151

SoComposeMatrix

Methods from class SoFieldContainer:

setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, set, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

FILE FORMAT/DEFAULTS
ConposeMatri x {

transl ation 00O
rotation 001 O
scal eFact or 111
scaleOientation 001 O
center 00O
}
INCLUDE FILE

#i ncl ude <l nventor/engi nes/ SoConpose. h>

SEE ALSO
SoDecomposeMatrix, SoEngineOutput

152 Open Inventor C++ Reference Pages

SoComposeRotation

NAME
SoComposeRotation — composes a rotation from axis and angle values

INHERITS FROM
SoBase > SoFieldContainer > SoEngine > SoComposeRotation

DESCRIPTION
This engine has two inputs, representing an axis of rotation and a rotation angle in
radians. As output, the engine composes the inputs into a rotation field.

The input fields can have multiple values, allowing the engine to compose several
rotations in parallel. Some inputs may have more values than others. In such cases,
the last value of the shorter inputs will be repeated as necessary.

INPUTS
SoMFVec3f axis
AXxis of rotation.

SoMFFloat angle
Angle of rotation.

OUTPUTS
(SoMFRotation) rotation
Rotation field, defined by the inputs.

METHODS
SoComposeRotation()
Constructor

Methods from class SoEngine:

getClassTypeld, getOutputs, getOutput, getOutputName, copy, getByName,
getByName

Methods from class SoFieldContainer:

setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, set, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

153

SoComposeRotation

FILE FORMAT/DEFAULTS
ConposeRot ati on {
axi s 001
angle O

}

INCLUDE FILE
#i ncl ude <l nventor/engi nes/ SoConpose. h>

SEE ALSO
SoComposeRotationFromTo, SoDecomposeRotation, SOEngineOutput

154 Open Inventor C++ Reference Pages

SoComposeRotationFromTo

NAME
SoComposeRotationFromTo — composes a rotation that rotates from one vector
into another

INHERITS FROM
SoBase > SoFieldContainer > SoEngine > SoComposeRotationFromTo

DESCRIPTION
This engine takes two inputs, representing a vector before and after a rotation has
been applied. As output, it produces the rotation value that would cause the first
vector to transform into the other.

The input fields can have multiple values, allowing the engine to compose several
rotations in parallel. Some inputs may have more values than others. In such cases,
the last value of the shorter inputs will be repeated as necessary.

INPUTS
SoMFVec3f from
Vector before the rotation.

SoMFVec3f to
Vector after the rotation.

OUTPUTS
(SoMFRotation) rotation
A rotation that transforms one vector into another.

METHODS
SoComposeRotationFromTo()
Constructor

Methods from class SoEngine:

getClassTypeld, getOutputs, getOutput, getOutputName, copy, getByName,
getByName

Methods from class SoFieldContainer:

setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, set, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

155

SoComposeRotationFromTo

FILE FORMAT/DEFAULTS
ConposeRot ati onFronlo {
from 001
to 001

}

INCLUDE FILE
#i ncl ude <l nventor/engi nes/ SoConpose. h>

SEE ALSO
SoComposeRotation, SoDecomposeRotationFromTo, SoEngineOutput

156 Open Inventor C++ Reference Pages

SoComposeVec2f

NAME
SoComposeVec2f — composes 2D vectors from floating-point values

INHERITS FROM
SoBase > SoFieldContainer > SoEngine > SoComposeVec2f

DESCRIPTION
This engine takes two floating-point inputs and composes a 2D floating-point
vector.

The input fields can have multiple values, allowing the engine to compose several
vectors in parallel. One of the inputs may have more values than others. In such
cases, the last value of the shorter input will be repeated as necessary.

INPUTS
SoMFFloat X
The x component.
SoMFFloat Yy
The y component.
OUTPUTS
(SoMFVec2f) vector
Vector composed of x and y components.
METHODS
SoComposeVec2f()
Constructor

Methods from class SoEngine:

getClassTypeld, getOutputs, getOutput, getOutputName, copy, getByName,
getByName

Methods from class SoFieldContainer:

setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, set, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

157

SoComposeVec2f

FILE FORMAT/DEFAULTS
ConposeVec2f ({
x 0
y O
}
INCLUDE FILE
#i ncl ude <l nventor/engi nes/ SoConpose. h>

SEE ALSO
SoDecomposeVec2f, SoEngineOutput

158 Open Inventor C++ Reference Pages

SoComposeVec3f

NAME
SoComposeVec3f — composes 3D vectors from floating-point values

INHERITS FROM
SoBase > SoFieldContainer > SoEngine > SoComposeVec3f

DESCRIPTION
This engine takes three floating-point inputs and composes a 3D vector.

The input fields can have multiple values, allowing the engine to compose several
vectors in parallel. Some inputs may have more values than others. In such cases,
the last value of the shorter inputs will be repeated as necessary.

INPUTS
SoMFFloat X
The x component
SoMFFloat y
The y component
SoMFFloat z
The z component.
OUTPUTS
(SoMFVec3f) vector
Vector composed of x, y, and z.
METHODS
SoComposeVec3f()
Constructor

Methods from class SoEngine:

getClassTypeld, getOutputs, getOutput, getOutputName, copy, getByName,
getByName

Methods from class SoFieldContainer:

setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, set, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

159

SoComposeVec3f

FILE FORMAT/DEFAULTS
ConposeVec3f ({

x 0
y O
z O
}
INCLUDE FILE

#i ncl ude <l nventor/engi nes/ SoConpose. h>

SEE ALSO
SoDecomposeVec3f, SoEngineOutput

160 Open Inventor C++ Reference Pages

SoComposeVec4f

NAME
SoComposeVec4df — composes 4D vectors from floating-point values

INHERITS FROM
SoBase > SoFieldContainer > SoEngine > SoComposeVec4f

DESCRIPTION
This engine takes four floating-point inputs and composes a 4D vector.

The input fields can have multiple values, allowing the engine to compose several
vectors in parallel. Some inputs may have more values than others. In such cases,
the last value of the shorter inputs will be repeated as necessary.

INPUTS
SoMFFloat X
The x component.

SoMFFloat Yy
The y component.

SoMFFloat z
The z component.

SoMFFloat w
The w component.

OUTPUTS
(SoMFVec4f) vector
Vector composed of X, y, z, and w.

METHODS
SoComposeVec4af()
Constructor

Methods from class SoEngine:

getClassTypeld, getOutputs, getOutput, getOutputName, copy, getByName,
getByName

Methods from class SoFieldContainer:

setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, set, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

161

SoComposeVec4f

FILE FORMAT/DEFAULTS
ConposeVec4f ({
x 0

y O

z O

w O
}

INCLUDE FILE
#i ncl ude <l nventor/engi nes/ SoConpose. h>

SEE ALSO
SoDecomposeVec4f, SoEngineOutput

162 Open Inventor C++ Reference Pages

SoComputeBoundingBox

NAME
SoComputeBoundingBox — computes the bounding box and center of a scene
graph

INHERITS FROM
SoBase > SoFieldContainer > SoEngine > SoComputeBoundingBox

DESCRIPTION
This engine computes the bounding box and center of a scene graph. The scene
graph can be defined by a path or by a root node.

If the path input is not NULL, the bounding box of the graph defined by the path
will be computed. If path is NULL, but the node input is not NULL, the bounding
box is computed on the graph rooted by the node. By default, the two inputs are
NULL. If both the inputs are NULL, the outputs are disabled.

The engine uses a default viewport region. If the graph includes screen-based objects
(such as SoText2) you can call setViewportRegion() on the engine instance to set
up the correct viewport region to use.

INPUTS
SoSFNode node
Defines the graph for which the bounding box is computed.
SoSFPath path
Alternatively, defines the graph for which the bounding box is computed.
OUTPUTS
(SoSFVec3f) min
Minimum point of the computed bounding box.
(SoSFVec3f) max
Maximum point of the computed bounding box.
(SoSFVec3f) boxCenter
Center of the computed bounding box.
(SoSFVec3f) objectCenter

Center of the objects in the graph.

163

SoComputeBoundingBox

METHODS

SoComputeBoundingBox()
Constructor

void setViewportRegion(const SbViewportRegion &vpReg);
Sets the viewport region to use for the bounding box computation.

const SbViewportRegion &
getViewportRegion();
Returns the viewport region to use for the bounding box computation.

Methods from class SoEngine:

getClassTypeld, getOutputs, getOutput, getOutputName, copy, getByName,
getByName

Methods from class SoFieldContainer:
setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, set, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

FILE FORMAT/DEFAULTS
Conput eBoundi ngBox {
node NULL
path NULL
}
INCLUDE FILE
#i ncl ude <l nventor/ engi nes/ SoConput eBoundi ngBox. h>

SEE ALSO
SoEngineOutput, SoGetBoundingBoxAction, SbBox3f

164 Open Inventor C++ Reference Pages

SoConcatenate

NAME
SoConcatenate — joins separate fields into a single multiple-value field

INHERITS FROM
SoBase > SoFieldContainer > SOEngine > SoConcatenate

DESCRIPTION
This engine joins up to 10 separate fields of a type into a single multiple-valued field
of the same type. The type of the input fields can be any subclass of SoMField The
type is specified when an instance of the class is created. For example,
SoConcatenate(SoMFFloat::getClassTypeld()) creates an engine that concatenates
floating-point values.

The input field is a 10-element array, where each element can be connected to
single- or multiple-valued fields. All the values in the input are concatenated
together to form one multiple-value field. For example, if input[0] contains 10
values and input[1] contains 3 values, the output will contain 13 values.

Note that, unlike the output of most engines, output is a pointer. Note also that by
default input does not contain any values, and no value is output from the engine.

INPUTS
<inputType> input[10]

OUTPUTS
(<outputType>) output

METHODS
SoConcatenate(SoType inputType)
Constructor. The argument specifies the type of values to concatenate.

Methods from class SoEngine:

getClassTypeld, getOutputs, getOutput, getOutputName, copy, getByName,
getByName

Methods from class SoFieldContainer:

setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, set, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

165

SoConcatenate

FILE FORMAT/DEFAULTS
Concat enate {
type <i
i nputO [1
nput 1 [1
nput 2 [1
nput 3 [1
nput 4 [1
[]
[]
[]
[]
[]

[
[
[
[
i nput5
[
[
[
[

nput Type>

nput 6
nput 7
nput 8
nput 9
}
INCLUDE FILE
#i ncl ude <l nventor/engi nes/ SoConcat enat e. h>

SEE ALSO
SoEngineOutput, SoGate, SoSelectOne

166 Open Inventor C++ Reference Pages

SoCone

NAME

SoCone — cone shape node

INHERITS FROM

SoBase > SoFieldContainer > SoNode > SoShape > SoCone

DESCRIPTION

This node represents a simple cone whose central axis is aligned with the y-axis. By
default, the cone is centered at (0,0,0) and has a size of -1 to +1 in all three
directions. The cone has a radius of 1 at the bottom and a height of 2, with its apex
at 1. The cone has two parts: the sides and the bottom.

The cone is transformed by the current cumulative transformation and is drawn
with the current lighting model, drawing style, material, and geometric complexity.

If the current material binding is PER_PART or PER_PART_INDEXED, the first
current material is used for the sides of the cone, and the second is used for the
bottom. Otherwise, the first material is used for the entire cone.

When a texture is applied to a cone, it is applied differently to the sides and bottom.
On the sides, the texture wraps counterclockwise (from above) starting at the back
of the cone. The texture has a vertical seam at the back, intersecting the yz-plane.
For the bottom, a circle is cut out of the texture square and applied to the cone’s
base circle. The texture appears right side up when the top of the cone is tilted away
from the camera.

FIELDS
SoSFBitMask parts
Visible parts of cone.
SoSFFloat bottomRadius
SoSFFloat height
These define the cone’s height and the radius of the base circle; values must
be greater than 0.0.
METHODS
SoCone()
Creates a cone node with default settings.
void addPart(SoCone::Part part)
void removePart(SoCone::Part part)
These are convenience functions that make it easy to turn on or off a part of
the cone.

167

SoCone

SbBool hasPart(SoCone::Part part) const
This convenience function returns whether a given part is on or off.

static SoType getClassTypeld()
Returns type identifier for this class.

Methods from class SoNode:
setOverride, isOverride, copy, affectsState, getByName, getByName

Methods from class SoFieldContainer:

setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, set, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

ACTION BEHAVIOR
SoGLRenderAction
Draws cone based on the current coordinates, materials, drawing style, and
so on.

SoRayPickAction
Intersects the ray with the cone. The part of the cone that was picked is
available from the SoConeDetail.

SoGetBoundingBoxAction
Computes the bounding box that encloses the cone.

SoCallbackAction

If any triangle callbacks are registered with the action, they will be invoked
for each successive triangle that approximates the cone.

FILE FORMAT/DEFAULTS

Cone {
parts ALL
bottomRadi us 1
hei ght 2

}

168 Open Inventor C++ Reference Pages

SoCone

INCLUDE FILE
#i ncl ude <l nvent or/ nodes/ SoCone. h>

enum Part {
SoCone::SIDES The conical part
SoCone::BOTTOM The bottom circular face
SoCone::ALL All parts

SEE ALSO
SoConeDetail, SoCube, SoCylinder, SoSphere

169

SoConeDetail

NAME
SoConeDetail — stores detail information about the SoCone node

INHERITS FROM
SoDetail > SoConeDetail

DESCRIPTION
This class contains detail information about a point on a cone. It contains the part
of the cone that was hit (sides or bottom).

METHODS
SoConeDetail()
virtual ~SoConeDetail()
Constructor and destructor.

int getPart() const
Returns the part in the detail. The returned value is one of the SoCone part
flags.

static SoType getClassTypeld()

Returns type identifier for this class.

Methods from class SoDetail:
copy, getTypeld, isOfType

INCLUDE FILE
#i ncl ude <l nventor/details/SoConeDetail.h>

SEE ALSO
SoCone, SoDetail, SoPickedPoint, SoPrimitiveVertex

170 Open Inventor C++ Reference Pages

SoCoordinate3

NAME
SoCoordinate3 — coordinate point node

INHERITS FROM
SoBase > SoFieldContainer > SoNode > SoCoordinate3

DESCRIPTION
This node defines a set of 3D coordinates to be used by subsequent vertex-based
shape nodes (those derived from SoVertexShape) or shape nodes that use them as
control points (such as NURBS curves and surfaces). This node does not produce a
visible result during rendering; it simply replaces the current coordinates in the
rendering state for subsequent nodes to use.

FIELDS
SoMFVec3f point
Coordinate point(s).

METHODS
SoCoordinate3()
Creates a coordinate node with default settings.

static SoType getClassTypeld()
Returns type identifier for this class.

Methods from class SoNode:
setOverride, isOverride, copy, affectsState, getByName, getByName

Methods from class SoFieldContainer:

setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, set, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

ACTION BEHAVIOR
SoGLRenderAction, SoCallbackAction, SoGetBoundingBoxAction,
SoRayPickAction
Sets coordinates in current traversal state.

FILE FORMAT/DEFAULTS
Coor di nate3 {
point 00O
}

171

SoCoordinate3

INCLUDE FILE
#i ncl ude <l nvent or/ nodes/ SoCoor di nat e3. h>

SEE ALSO
SoCoordinate4, SoVertexShape

172 Open Inventor C++ Reference Pages

SoCoordinate4

NAME
SoCoordinate4 — rational coordinate point node

INHERITS FROM
SoBase > SoFieldContainer > SoNode > SoCoordinate4

DESCRIPTION
This node defines a set of 3D coordinates to be used by subsequent vertex-based
shape nodes (those derived from SoVertexShape) or shape nodes that use them as
control points (such as NURBS curves and surfaces). Coordinates are specifed as
rational 4-vectors; the corresponding 3D point is computed by dividing the first
three components by the fourth. This node does not produce a visible result during
rendering; it simply replaces the current coordinates in the rendering state for
subsequent nodes to use.

This node exists primarily for use with NURBS curves and surfaces. However, it can
be used to define coordinates for any vertex-based shape.

FIELDS
SoMFVec4f point
Coordinate point(s).

METHODS
SoCoordinate4()
Creates a coordinate node with default settings.

static SoType getClassTypeld()
Returns type identifier for this class.

Methods from class SoNode:
setOverride, isOverride, copy, affectsState, getByName, getByName

Methods from class SoFieldContainer:

setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, set, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

ACTION BEHAVIOR
SoGLRenderAction, SoCallbackAction, SoGetBoundingBoxAction,
SoRayPickAction
Sets coordinates in current traversal state.

173

SoCoordinate4

FILE FORMAT/DEFAULTS
Coor di nate4 {
point 00O 1

}

INCLUDE FILE
#i ncl ude <l nvent or/ nodes/ SoCoor di nat e4. h>

SEE ALSO
SoCoordinate4, SolndexedNurbsCurve, SolndexedNurbsSurface, SoNurbsCurve,
SoNurbsProfile, SoNurbsSurface, SoVertexShape

174 Open Inventor C++ Reference Pages

SoCounter

NAME

SoCounter — triggered integer counter

INHERITS FROM

SoBase > SoFieldContainer > SoEngine > SoCounter

DESCRIPTION

INPUTS

This engine is a counter that outputs numbers, starting at a minimum value,
increasing by a step value, and ending with a number that does not exceed the
maximum value. It outputs the next number whenever the trigger input is touched.
When the maximum number is reached, it starts counting from the beginning
again.

At any time the counter can be reset to a specific value by setting the reset input
field to that value. The next time the counter is triggered it will start counting from
there. Note that the counter will always output numbers based on the min, max and
step values, and setting the reset value does not affect those input fields. If the reset
value is not a legal counter value, the counter will still behave as though it is.

If reset is greater than max, the counter is set to max.
If reset is less than min, the counter is set to min.
If reset is between steps, the counter is set to the lower step value.

Each time a counting cycle is started, the syncOut output is triggered. This output
can be used to synchronize some other event with the counting cycle.

SoSFShort min

Minimum value for the counter.
SoSFShort max

Maximum value for the counter.
SoSFShort step

Counter step value.
SoSFTrigger trigger

Go to the next step.
SoSFShort reset

At the next trigger, reset the counter to the specified value.

175

SoCounter

OUTPUTS
(SoSFShort) output
Counts min-to-max in step increments.

(SoSFTrigger) syncOut
Triggers at cycle start.

METHODS
SoCounter()
Constructor

Methods from class SoEngine:

getClassTypeld, getOutputs, getOutput, getOutputName, copy, getByName,
getByName

Methods from class SoFieldContainer:

setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, set, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

FILE FORMAT/DEFAULTS

Counter {
m n 0
max 1
step 1
trigger
reset 0

}

INCLUDE FILE

#i ncl ude <l nventor/engi nes/ SoCount er. h>

SEE ALSO
SoTimeCounter, SOEngineOutput

176 Open Inventor C++ Reference Pages

SoCube

NAME

SoCube — cube shape node

INHERITS FROM

SoBase > SoFieldContainer > SoNode > SoShape > SoCube

DESCRIPTION

This node represents a cuboid aligned with the coordinate axes. By default, the cube
is centered at (0,0,0) and measures 2 units in each dimension, from -1 to +1. The
cube is transformed by the current cumulative transformation and is drawn with the
current lighting model, drawing style, material, and geometric complexity.

If the current material binding is PER_PART, PER_PART_INDEXED, PER_FACE, or
PER_FACE_INDEXED, materials will be bound to the faces of the cube in this order:
front, back, left, right, top, and bottom.

Textures are applied individually to each face of the cube; the entire texture goes on
each face. On the front, back, right, and left sides of the cube, the texture is applied
right side up. On the top, the texture appears right side up when the top of the cube
is tilted toward the camera. On the bottom, the texture appears right side up when
the top of the cube is tilted away from the camera.

FIELDS
SoSFFloat width
SoSFFloat height
SoSFFloat depth
Sizes in the X, y, and z dimensions, respectively.
METHODS
SoCube()
Creates a cube node with default settings.
static SoType getClassTypeld()

Returns type identifier for this class.

Methods from class SoNode:
setOverride, isOverride, copy, affectsState, getByName, getByName

Methods from class SoFieldContainer:

setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, set, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

177

SoCube

ACTION BEHAVIOR
SoGLRenderAction
Draws cube based on the current coordinates, materials, drawing style, and
so on.

SoRayPickAction
Intersects the ray with the cube. The face of the cube that was picked is
available from the SoCubeDetail.

SoGetBoundingBoxAction
Computes the bounding box that encloses the cube.

SoCallbackAction

If any triangle callbacks are registered with the action, they will be invoked
for each successive triangle that approximates the cube.

FILE FORMAT/DEFAULTS

Cube {
wi dt h 2
hei ght 2
dept h 2
}
INCLUDE FILE

#i ncl ude <Inventor/ nodes/ SoCube. h>

SEE ALSO
SoCone, SoCubeDetail, SoCylinder, SoSphere

178 Open Inventor C++ Reference Pages

SoCubeDetail

NAME
SoCubeDetail — stores detail information about the SoCube node

INHERITS FROM
SoDetail > SoCubeDetail

DESCRIPTION
This class contains detail information about a point on a cube. It contains the part
of the cube that was hit.

Part values are as follows:

Front
Back
Left
Right
Top
Bottom

g~ wWwNEFEO

METHODS
SoCubeDetail()
virtual ~SoCubeDetail()
Constructor and destructor.

int getPart() const
Returns the part in the detail.

static SoType getClassTypeld()
Returns type identifier for this class.

Methods from class SoDetail:
copy, getTypeld, isOfType

INCLUDE FILE
#i ncl ude <l nventor/details/SoCubeDetail.h>

SEE ALSO
SoCube, SoDetail, SoPickedPoint, SoPrimitiveVertex

179

SoCylinder

NAME

SoCylinder — cylinder shape node

INHERITS FROM

SoBase > SoFieldContainer > SoNode > SoShape > SoCylinder

DESCRIPTION

This node represents a simple capped cylinder centered around the y-axis. By
default, the cylinder is centered at (0,0,0) and has a default size of -1 to +1 in all
three dimensions. You can use the radius and height fields to create a cylinder with
a different size.

The cylinder is transformed by the current cumulative transformation and is drawn
with the current lighting model, drawing style, material, and geometric complexity.

If the current material binding is PER_PART or PER_PART_INDEXED, the first
current material is used for the sides of the cylinder, the second is used for the top,
and the third is used for the bottom. Otherwise, the first material is used for the
entire cylinder.

When a texture is applied to a cylinder, it is applied differently to the sides, top, and
bottom. On the sides, the texture wraps counterclockwise (from above) starting at
the back of the cylinder. The texture has a vertical seam at the back, intersecting the
yz-plane. For the top and bottom, a circle is cut out of the texture square and
applied to the top or bottom circle. The top texture appears right side up when the
top of the cylinder is tilted toward the camera, and the bottom texture appears right
side up when the top of the cylinder is tilted away from the camera.

FIELDS
SoSFBitMask parts
Visible parts of cylinder.
SoSFFloat radius
SoSFFloat height
Define the cylinder’s height and radius; values must be greater than 0.0.
METHODS
SoCylinder()
Creates a cylinder node with default settings.
void addPart(SoCylinder::Part part)
void removePart(SoCylinder::Part part)
These are convenience functions that make it easy to turn on or off a part of
the cylinder.
180 Open Inventor C++ Reference Pages

SoCylinder

SbBool hasPart(SoCylinder::Part part) const
This convenience function returns whether a given part is on or off.

static SoType getClassTypeld()
Returns type identifier for this class.

Methods from class SoNode:
setOverride, isOverride, copy, affectsState, getByName, getByName

Methods from class SoFieldContainer:

setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, set, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

ACTION BEHAVIOR
SoGLRenderAction

Draws cylinder based on the current coordinates, materials, drawing style,
and so on.

SoRayPickAction
Intersects the ray with the cylinder. The part of the cylinder that was picked
is available from the SoCylinderDetail.

SoGetBoundingBoxAction
Computes the bounding box that encloses the cylinder.

SoCallbackAction

If any triangle callbacks are registered with the action, they will be invoked
for each successive triangle that approximates the cylinder.

FILE FORMAT/DEFAULTS

Cylinder {
parts ALL
radius 1
hei ght 2

}

181

SoCylinder

INCLUDE FILE
#i ncl ude <l nvent or/ nodes/ SoCyl i nder. h>

enum Part {
SoCylinder::SIDES The cylindrical part

SoCylinder::TOP The top circular face
SoCylinder::BOTTOM The bottom circular face
SoCylinder::ALL All parts
}
SEE ALSO

SoCone, SoCube, SoCylinderDetail, SoSphere

182 Open Inventor C++ Reference Pages

SoCylinderDetail

NAME
SoCylinderDetail — stores detail information about the SoCylinder node

INHERITS FROM
SoDetail > SoCylinderDetail

DESCRIPTION
This class contains detail information about a point on a cylinder. It contains the
part of the cylinder that was hit (sides, top, or bottom).

METHODS
SoCylinderDetail()
virtual ~SoCylinderDetail()
Constructor and destructor.

int getPart() const
Returns the part in the detail. The returned value is one of the SoCylinder
part flags.

static SoType getClassTypeld()

Returns type identifier for this class.

Methods from class SoDetail:
copy, getTypeld, isOfType

INCLUDE FILE
#i ncl ude <Inventor/details/SoCylinderDetail.h>

SEE ALSO
SoCylinder, SoDetail, SoPickedPoint, SoPrimitiveVertex

183

SoDataSensor

NAME

INHERITS FROM

184

SoDataSensor — abstract base class for sensors attached to parts of a scene

SoSensor > SoDelayQueueSensor > SoDataSensor

DESCRIPTION
Data sensors detect changes to scene graph objects (paths, nodes, or fields) and
trigger their callback function when the object changes.

Data sensors provide a delete callback that is called just before the object the data
sensor is attached to is deleted; note that the callback should not attempt to modify
the object in any way, or core dumps may result.

Priority zero data sensors also provide methods that can be called in the callback
function to determine exactly which node, field, or path caused the sensor to be
triggered.

METHODS

void

setDeleteCallback(SoSensorCB *function, void *data)
Sets a callback that will be called when the object the sensor is sensing is
deleted.

SoNode * getTriggerNode() const
SoField * getTriggerField() const

If this is a priority 0 data sensor, returns the node/field that was modified
that caused this sensor to trigger. Returns NULL if the sensor was not
triggered because a node/field changed (for example, if schedule() is called
on the sensor) or if this sensor is not a priority 0 sensor. Note that because
one change to the scene graph may cause multiple nodes or fields to be
modified (because of field-to-field connections), the node or field returned
may not be the only one that changed.

SoPath * getTriggerPath() const

void
SbBool

setTriggerPathFlag(SbBool flag)

getTriggerPathFlag() const
If this is a priority O data sensor, returns a path to the node that caused this
sensor to trigger. Because recreating the path to the node that changed is
relatively expensive, setTriggerPathFlag(TRUE) must be called before the
sensor is scheduled. If it is not called, or if the sensor wasn’t triggered
because a node changed, this returns NULL. NULL is also returned if this is
not a priority O sensor.

Methods from class SoDelayQueueSensor:

setPriority, getPriority, getDefaultPriority, schedule, unschedule, isScheduled

Open Inventor C++ Reference Pages

SoDataSensor

Methods from class SoSensor:
setFunction, getFunction, setData, getData

INCLUDE FILE
#i ncl ude <l nventor/sensors/ SoDat aSensor. h>

SEE ALSO
SoNodeSensor, SoPathSensor, SoFieldSensor, SoDelayQueueSensor

185

SoDB

NAME
SoDB — scene graph database class

INHERITS FROM
SoDB

DESCRIPTION
The SoDB class holds all scene graphs, each representing a 3D scene used by an
application. A scene graph is a collection of SoNode objects which come in several
varieties (see SoNode). Application programs must initialize the database by calling
SoDB::init() before calling any other database routines and before constructing any
nodes, paths, functions, or actions. Note that SoDB::init() is called by
Solnteraction::init(), SoNodeKit::init(), and SoXt::init(), so if you are calling any
of these methods, you do not need to call SoDB::init() directly. All methods on this
class are static.

Typical program database initialization and scene reading is as follows:

#include <Inventor/SoDB.h>
#include <Inventor/Solnput.h>
#include <Inventor/nodes/SoSeparator.h>

SoSeparator *rootSep;
Solnput in;

SoDB::init();

rootSep = SoDB::readAll(&in);

if (rootSep == NULL)
printf("Error on read...\n");

METHODS
static void init()
Initializes the database. This must be called before calling any other database
routines, including the construction of any nodes, paths, engines, or actions.

static const char *
getVersion()
Returns a character string identifying the version of the Inventor library in
use.

186 Open Inventor C++ Reference Pages

SoDB

static SbBool read(Solnput *in, SoNode *&rootNode)

static SbBool read(Solnput *in, SoPath *&path)
Reads a graph from the file specified by the given Solnput, returning a
pointer to the resulting root node in rootNode, or a pointer to the resulting
path in path. The programmer is responsible for determining which routine
to use, based on the contents of the input. These routines return FALSE if
any error occurred during reading.

If the passed Solnput was used to open a file and the name of the file
contains a directory, SoDB automatically adds the directory to the end of
the current directory search path in the Solnput. This means that nested
files named in SoFile nodes may be found relative to that directory. The
directory is removed from the search path when reading is complete.

static SoSeparator *
readAll(Solnput *in)

Reads all graphs from the file specified by the given Solnput. If there is only
one graph in the file and its root is an SoSeparator, a pointer to the root is
returned. In all other cases, this creates an SoSeparator, adds the root nodes
of all graphs read as children of it, and returns a pointer to it. This returns
NULL on error. This processes directory paths in the same way as the other
reading routines.

static SbBool isValidHeader(const char *testString)
This returns TRUE if the given character string is a valid Inventor file header,
either ASCII or binary. Some trivial tests that can be made on the string
before calling this are: it must begin with a "#"; it should be no more than 80
characters; it ends at a newline. Characters after the first newline (if any) in
the passed string are ignored. The valid ASCII header for Inventor 2.0 is:
"#Inventor V2.0 ascii", and the valid binary header is "#lnventor V2.0
binary". Corresponding version 1.0 headers are also considered valid.

static SoField * createGlobalField(const SbName &name, SoType type)
The database maintains a namespace for global fields, making sure that there
is at most one instance of a global field with any given name in the
database. This routine is used to create new global fields. If there is no
global field with the given name, it will create a new global field with the
given name and type. If there is already a global field with the given name
and type, it will return it. If there is already a global field with the given
name but a different type, this returns NULL.

187

SoDB

188

All global fields must be derived from SoField; typically the result of this
routine is cast into the appropriate type; for example:

SoSFLong *longField =
(SoSFLong *) SoDB::createGlobalField("Frame",
SoSFLong::getClassTypeld());

static SoField * getGlobalField(const SbName &name)

Returns the global field with the given name, or NULL if there is none. The
type of the field may be checked using the SoField::isOfType(),
SoField::getClassTypeld(), and SoField::getTypeld() methods.

static void renameGlobalField(const SbName &oldName, const SbName

&newName)
Renames the global field named oldName. Renaming a global field to an
empty name (") deletes it. If there is already a global field with the new
name, that field will be deleted (the getGlobalField method can be used to
guard against this).

static void setRealTimelnterval(const SbTime &deltaT)

The database automatically creates one global field when SoDB::init() is
called. The realTime global field, which is of type SoSFTime, can be
connected to engines and nodes for real-time animation. The database will
automatically update the realTime global field 60 times per second, using a
timer sensor. Typically, there will be a node sensor on the root of the scene
graph which schedules a redraw whenever the scene graph changes; by
updating the realTime global field periodically, scene graphs that are
connected to realTime (and are therefore animating) will be redrawn. The
rate at which the database updates realTime can be controlled with this
routine. Passing in a zero time will disable automatic update of realTime.
Note also that if there are no enabled connections from the realTime field
to any other field, the sensor is automatically disabled.

static const SbTime &

getRealTimelnterval()
Returns how often the database is updating realTime.

static void setDelaySensorTimeout(const SbTime &t)

This sets the timeout value for sensors that are delay queue sensors (one-shot
sensors, data sensors). Delay queue sensors are triggered whenever there is
idle time. If a long period of time elapses without any idle time (as when
there are continuous events to process), these sensors may not be triggered.

Open Inventor C++ Reference Pages

SoDB

Setting this timeout value ensures that if the specified length of time elapses
without any idle time, the delay queue sensors will be processed anyway.

static const SbTime &
getDelaySensorTimeout()
Returns the current delay queue timeout value.

static int doSelect(int nfds, fd_set *readfds, fd_set *writefds, fd_set
*exceptfds, struct timeval *userTimeOut)

In order to keep timer and idle sensors running as expected, it is necessary
that an Inventor application not block waiting for input. If the Inventor
application uses the Xt utility library, this can be handled automatically.
However, if the application is using its own event loop, this function is
provided as a wrapper around select(2) that will handle Inventor tasks if
necessary instead of blocking.

INCLUDE FILE
#i ncl ude <l nvent or/ SoDB. h>

SEE ALSO
SoBase, SoNode, SoEngine, SoField, Solnput, SoFile, SoPath, SoOneShotSensor,

SoDataSensor, SoXt

189

SoDebugError

NAME
SoDebugError — debug error handling

INHERITS FROM
SoError > SoDebugError

DESCRIPTION
SoDebugError is used for all errors reported from the debugging version of the
Inventor library. These errors are typically programmer errors, such as passing a
NULL pointer or an out-of-range index. The post() method takes the name of the
Inventor method that detected the error, to aid the programmer in debugging.

METHODS
static void setHandlerCallback(SoErrorCB *cb, void *data)
static SOErrorCB *
getHandlerCallback()
static void * getHandlerData()
Sets/returns handler callback for SoDebugError class.

static SoType getClassTypeld()
Returns type identifier for SoDebugError class.

SoDebugError::Severity
getSeverity() const
Returns severity of error (for use by handlers).

Methods from class SoError:
getDebugString, getTypeld, isOfType
INCLUDE FILE
#i ncl ude <l nventor/errors/ SoDebugError. h>

enum Severity {

SoDebugError::ERROR Error
SoDebugError::WARNING Just a warning
SoDebugError::INFO No error, just information
}
SEE ALSO

SoMemoryError, SoReadError

190 Open Inventor C++ Reference Pages

SoDecomposeMatrix

NAME
SoDecomposeMatrix — decomposes transformation matrices into values for
translation, rotation, and scale

INHERITS FROM
SoBase > SoFieldContainer > SoEngine > SoDecomposeMatrix

DESCRIPTION
This engine takes as input a transformation matrix and a center of transformation.
As output the engine produces the translation, rotation and scale values derived
from the matrix.

The input fields can have multiple values, allowing the engine to decompose several
matrices in parallel. One of the inputs may have more values than the other. In that
case, the last value of the shorter input will be repeated as necessary.

INPUTS
SoMFMatrix matrix
The 4x4 transformation matrix.

SoMFVec3f center
The center of transformations.

OUTPUTS
(SoMFVec3f) translation
Derived translation in x, y, and z.

(SoMFRotation) rotation
Derived rotation.

(SoMFVec3f) scaleFactor
Derived scale values in x, y, and z.

(SoMFRotation) scaleOrientation
Derived rotational space for scaling.

METHODS
SoDecomposeMatrix()
Constructor

Methods from class SoEngine:

getClassTypeld, getOutputs, getOutput, getOutputName, copy, getByName,
getByName

191

SoDecomposeMatrix

Methods from class SoFieldContainer:

setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, set, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

FILE FORMAT/DEFAULTS

DeconposeMat ri x {
matrix 1 0 0 O
0100
0010
0001
center 00O
}
INCLUDE FILE

#i ncl ude <l nventor/engi nes/ SoConpose. h>

SEE ALSO
SoComposeMatrix, SoEngineOutput

192 Open Inventor C++ Reference Pages

SoDecomposeRotation

NAME
SoDecomposeRotation — decomposes rotation values

INHERITS FROM
SoBase > SoFieldContainer > SoEngine > SoDecomposeRotation

DESCRIPTION
This engine takes as input a rotation, and decomposes it into an axis value and a
rotation angle (in radians).

The input can have multiple values, allowing the engine to decompose several
rotations in parallel.

INPUTS
SoMFRotation rotation
Rotation to be decomposed.

OUTPUTS
(SoMFVec3f) axis
Axis of rotation derived from the input.

(SoMFFloat) angle
Angle (in radians) derived from the input.

METHODS
SoDecomposeRotation()
Constructor

Methods from class SoEngine:

getClassTypeld, getOutputs, getOutput, getOutputName, copy, getByName,
getByName

Methods from class SoFieldContainer:

setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, set, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

FILE FORMAT/DEFAULTS
DeconposeRot ati on {
rotation 001 O
}

193

SoDecomposeRotation

INCLUDE FILE
#i ncl ude <l nventor/engi nes/ SoConpose. h>

SEE ALSO
SoDecomposeRotationFromTo, SoComposeRotation, SOEngineOutput

194 Open Inventor C++ Reference Pages

SoDecomposeVec2f

NAME
SoDecomposeVec2f — decomposes 2D vectors into floating-point values

INHERITS FROM
SoBase > SoFieldContainer > SoEngine > SoDecomposeVec2f

DESCRIPTION
This engine takes as input a 2D vector, and decomposes it into two single floating-
point values.

The input can have multiple values, allowing the engine to decompose several
vectors in parallel.

INPUTS
SoMFVec2f vector
Vector to be decomposed.
OUTPUTS
(SoMFFloat) X
First component of the vector.
(SoMFFloat) y
Second component of the vector.
METHODS
SoDecomposeVec2f()
Constructor

Methods from class SoEngine:

getClassTypeld, getOutputs, getOutput, getOutputName, copy, getByName,
getByName

Methods from class SoFieldContainer:

setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, set, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

FILE FORMAT/DEFAULTS
DeconposeVec2f {
vector 0 O
}

195

SoDecomposeVec2f

INCLUDE FILE
#i ncl ude <l nventor/engi nes/ SoConpose. h>

SEE ALSO
SoComposeVec2f, SoEngineOutput

196 Open Inventor C++ Reference Pages

SoDecomposeVec3f

NAME
SoDecomposeVec3f — decomposes 3D vectors into floating-point values

INHERITS FROM
SoBase > SoFieldContainer > SoEngine > SoDecomposeVec3f

DESCRIPTION
This engine takes as input a 3D vector, and decomposes it into three single floating-
point values.

The input can have multiple values, allowing the engine to decompose several
vectors in parallel.

INPUTS
SoMFVec3f vector
Vector to be decomposed.
OUTPUTS
(SoMFFloat) X
First component of the vector.
(SoMFFloat) y
Second component of the vector.
(SoMFFloat) z
Third component of the vector.
METHODS
SoDecomposeVec3f()
Constructor

Methods from class SoEngine:
getClassTypeld, getOutputs, getOutput, getOutputName, copy, getByName,
getByName

Methods from class SoFieldContainer:
setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, set, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

197

SoDecomposeVec3f

FILE FORMAT/DEFAULTS
DecomposeVec3f {
vector 00O
}

INCLUDE FILE
#i ncl ude <l nventor/engi nes/ SoConpose. h>

SEE ALSO
SoComposeVec3f, SOEngineOutput

198 Open Inventor C++ Reference Pages

SoDecomposeVec4f

NAME
SoDecomposeVec4f — decomposes 4D vectors into floating-point values

INHERITS FROM
SoBase > SoFieldContainer > SoEngine > SoDecomposeVec4f

DESCRIPTION
This engine takes as input a 4D vector, and decomposes it into four single floating-
point values.

The input can have multiple values, allowing the engine to decompose several
vectors in parallel.

INPUTS
SoMFVec4f vector
Vector to be decomposed.

OUTPUTS
(SoMFFloat) X
First component of the vector.

(SoMFFloat) y
Second component of the vector.

(SoMFFloat) z
Third component of the vector.

(SoMFFloat) w
Fourth component of the vector.

METHODS
SoDecomposeVec4f()
Constructor

Methods from class SoEngine:
getClassTypeld, getOutputs, getOutput, getOutputName, copy, getByName,
getByName

Methods from class SoFieldContainer:
setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, set, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

199

SoDecomposeVec4f

FILE FORMAT/DEFAULTS
DecomnmposeVec4f {
vector 0 00O
}

INCLUDE FILE
#i ncl ude <l nventor/engi nes/ SoConpose. h>

SEE ALSO
SoComposeVec4af, SOoEngineOutput

200 Open Inventor C++ Reference Pages

SoDelayQueueSensor

NAME
SoDelayQueueSensor — abstract base class for sensors not dependent on time

INHERITS FROM
SoSensor > SoDelayQueueSensor

DESCRIPTION
Delay queue sensors are separate from timer queue sensors (see
SoTimerQueueSensor) and provide methods for setting the relative priorities of the
sensors in the delay queue (sensors with higher priorities will be triggered first).

Sensors with non-zero priorities are added to the delay queue when scheduled, and
are all processed once, in order, when the delay queue is processed, which normally
happens as part of your program’s main loop (see SoXt::mainLoop() or
SoDB::doSelect()). Typically, the delay queue is processed whenever there are no
events waiting to be distributed and there are no timer queue sensors waiting to be
triggered. The delay queue also has a timeout to ensure that delay queue sensors are
triggered even if there are always events or timer sensors waiting; see
SoDB::setDelaySensorTimeout().

Sensors with priority 0 are treated specially. Priority O sensors are triggered almost
immediately after they are scheduled, before the program returns to the main loop.
Priority O sensors are not necessarily triggered immediately when they are
scheduled, however; if they are scheduled as part of the evaluation of a field
connection network they may not be triggered until the evaluation of the network
is complete. Also, if a priority 0 sensor is scheduled within the callback method of
another priority 0 sensor, it will not be triggered until the callback method is
complete (also note that if more than one priority 0 sensor is scheduled, the order in
which they fire is undefined).

METHODS
void setPriority(unsigned long pri)
unsigned long getPriority()

Sets/gets the priority of the sensor. Priorities can be changed at any time; if
the priority is changed to zero and it is already scheduled, the sensor is
immediately triggered and removed from the queue.

static unsigned long
getDefaultPriority()
Returns the default delay queue sensor priority, which is 100.

virtual void schedule()
If this sensor’s priority is non-zero, adds this sensor to the list of delay queue
sensors ready to be triggered. This is a way of making a sensor fire without
changing the thing it is sensing.

201

SoDelayQueueSensor

Calling schedule() within the callback function causes the sensor to be
called repeatedly. Because sensors are processed only once every time the
delay queue is processed (even if they reschedule themselves), timers and
events will still be processed. This should not be done with a priority zero
sensor because an infinite loop will result.

virtual void unschedule()
If this sensor is scheduled, removes it from the delay queue so that it will
not be triggered.

virtual SbBool isScheduled()
Returns TRUE if this sensor has been scheduled and is waiting in the delay
queue to be triggered. Sensors are removed from the queue before their
callback function is triggered.

Methods from class SoSensor:
setFunction, getFunction, setData, getData

INCLUDE FILE
#i ncl ude <Inventor/sensors/ SoDel ayQueueSensor. h>

SEE ALSO
SoTimerQueueSensor, SoDataSensor, SoFieldSensor, SoldleSensor, SoOneShotSensor,
SoNodeSensor, SoPathSensor, SoSensorManager

202 Open Inventor C++ Reference Pages

SoDetail

NAME
SoDetail — base class for describing detail information about a shape node

INHERITS FROM
SoDetail

DESCRIPTION
SoDetail is the abstract base class for all detail classes. A detail contains shape-
specific information about a particular shape during picking and primitive
generation. Subclasses store information based on the particular type of shape.

METHODS
SoDetail * copy() const
Returns an instance that is a copy of this instance. The caller is responsible
for deleting the copy when it is no longer needed.

static SoType getClassTypeld()
Returns type identifier for this class.

virtual SoType getTypeld() const
Returns the type identifier for a specific instance.

SbBool isOfType(SoType type) const
Returns TRUE if this object is of the type specified in type or is derived from
that type. Otherwise, it returns FALSE.

INCLUDE FILE
#i ncl ude <l nventor/detail s/ SoDetail.h>

SEE ALSO
SoConeDetail, SoCubeDetail, SoCylinderDetail, SoDetailList, SoFaceDetail,
SoLineDetail, SoNodeKitDetail, SoPickedPoint, SoPointDetail, SoPrimitiveVertex,
SoTextDetail

203

SoDetailList

NAME
SoDetailList — maintains a list of instances of details

INHERITS FROM
SbPList > SoDetailList

DESCRIPTION
This subclass of SbPList holds lists of instances of classes derived from SoDetail.

METHODS
SoDetailList()
Constructor.

SoDetailList(int size)
Constructor that pre-allocates storage for size pointers.

SoDetailList(const SoDetailList &I)
Constructor that copies the contents of another list.

~SoDetailList()
Destructor.

void append(SoDetail *detail)
Adds a detail to the end of the list.

void insert(SoDetail *detail, int addBefore)
Inserts given detail in list before detail with given index.

void truncate(int start)
Removes all details after one with given index, inclusive. Removed detail
instances are deleted.

void copy(const SoDetaillList &I)
Copies a list, making a copy of each detail instance in the list.

SoDetaillList & operator =(const SoDetaillList &I)
Copies a list, making a copy of each detail instance in the list.

SoDetail * operator [](int i) const
Accesses an element of a list.

void set(int i, SoDetail *detail)
Sets an element of a list, deleting the old entry first.

204 Open Inventor C++ Reference Pages

SoDetailList

Methods from class SbPL.ist:
find, remove, getLength, operator ==, operator !=

INCLUDE FILE
#i ncl ude <l nventor/ SoLi sts. h>

SEE ALSO
SoDetail

205

SoDirectionalLight

NAME
SoDirectionalLight — node representing a directional light source

INHERITS FROM
SoBase > SoFieldContainer > SoNode > SoLight > SoDirectionalLight

DESCRIPTION
This node defines a directional light source that illuminates along rays parallel to a
given 3-dimensional vector.

FIELDS
SoSFVec3f direction
Illumination direction vector.

Fields from class SoLight:
on, intensity, color

METHODS
SoDirectionalLight()
Creates a directional light source node with default settings.
static SoType getClassTypeld()

Returns type identifier for this class.

Methods from class SoNode:
setOverride, isOverride, copy, affectsState, getByName, getByName

Methods from class SoFieldContainer:

setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, set, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

ACTION BEHAVIOR
SoGLRenderAction
Activates this light (if so specified) during traversal. All shape nodes that
come after this light in the scene graph are illuminated by this light. The
light’s direction is affected by the current transformation.

206 Open Inventor C++ Reference Pages

SoDirectionalLight

FILE FORMAT/DEFAULTS
Di rectional Li ght {

on TRUE
intensity 1
col or 111
direction 00 -1
}
INCLUDE FILE

#i ncl ude <I nventor/nodes/ Sobirectional Li ght. h>

SEE ALSO
SoPointLight, SoSpotLight

207

SoDirectionalLightDragger

NAME

SoDirectionalLightDragger — directional icon you rotate and translate by dragging
with the mouse

INHERITS FROM

SoBase > SoFieldContainer > SoNode > SoBaseKit > SolnteractionKit > SoDragger >
SoDirectionalLightDragger

DESCRIPTION

208

SoDirectionalLightDragger is a composite dragger. It looks like a sun with a large
arrow coming out of it. The arrow can be rotated about the sun by dragging with
the mouse; its orientation is given by the rotation field. You can also drag the sun
(and the arrow with it) through 3-space. The location is stored in the translation
field.

The dragger uses an SoRotateSphericalDragger for changing the rotation. Instead
of using the default spherical geometry, this dragger uses an arrow shape.

The sun is an SoDragPointDragger. Dragging it edits the translation field;
conversely, if you change the translation field the sun will move to that new
location, bringing the arrow with it. The sun looks and behaves just like the sun in
an SoPointLightDragger, as does the material part. See the SoPointLightDragger
man page for details.

Remember: This is not a light source! It just looks like one. If you want to move a
light with this dragger, you can either:

[a] Use an SoDirectionalLightManip, which is subclassed from SoLight. It creates
an SoDirectionalLightDragger and uses it as the interface to change the direction
of its light source (see the SoDirectionalLightManip man page). The manipulator
also edits the material part of this dragger to match the color of light the
manipulator is producing. However, the directional light manipulator will ignore
the translation field, because a directional light has no location or translation field.
So in this case the translation dragger merely allows you to move the physical arrow
to wherever you'd like it to be.

[b] Put an SoTransform under an SoTransformSeparator. Add the
SoDirectionalLight as the next child. Use a field-to-field connection between the
rotation fields of this dragger and the transform node to synchronize the light with
this dragger.

Open Inventor C++ Reference Pages

SoDirectionalLightDragger

FIELDS

PARTS

[c] Use engines to connect the rotation field of this dragger to the direction field of
an SoDirectionalLight. Use the rotation as input to an SoComposeMatrix engine.
Then, use an SoTransformVec3f engine to apply that matrix to (0,0,-1), the default
light direction.

You can change the parts in any instance of this dragger using setPart(). The default
part geometries are defined as resources for this SoDirectionalLightDragger class.
They are detailed in the Dragger Resources section of the online reference page for
this class. You can make your program use different default resources for the parts
by copying the file /usr/share/data/draggerDefaults/directionalLightDragger.iv
into your own directory, editing the file, and then setting the environment variable
SO_DRAGGER_DIR to be a path to that directory.

SoSFRotation rotation
Orientation of the rotating part (an arrow by default).
SoSFVec3f translation

Position of the origin of the directional light dragger.

Fields from class SoDragger:
isActive

Fields from class SolnteractionKit:
renderCaching, boundingBoxCaching, renderCulling, pickCulling

Parts from class SoBaseKit:
callbackList

METHODS

SoDirectionalLightDragger()
Constructor.

static const SoNodekitCatalog *
getClassNodekitCatalog() const
Returns an SoNodekitCatalog for this class

static SoType getClassTypeld()
Returns type identifier for this class.

209

SoDirectionalLightDragger

Methods from class SoDragger:

addStartCallback, removeStartCallback, addMotionCallback,
removeMotionCallback, addFinishCallback, removeFinishCallback,
addValueChangedCallback, removeValueChangedCallback, setMinGesture,
getMinGesture, setMinScale, getMinScale

Methods from class SolnteractionKit:
setPartAsPath

Methods from class SoBaseKit:

getNodekitCatalog, getPart, getPartString, createPathToPart, setPart, set, set,
isSearchingChildren, setSearchingChildren

Methods from class SoNode:

setOverride, isOverride, copy, affectsState, getByName, getByName

Methods from class SoFieldContainer:

setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Methods from class SoBase:

ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

MACROS
Macros from class SoBaseKit:

SO_GET_PART, SO_CHECK_PART
CATALOG PARTS

All parts
Part Name Part Type
callbackList NodeKitListPart
material Material
translatorRotinv ~ Rotation
translator DragPointDragger
rotator RotateSphericalDragger

Default Type

NULL by
Default

yes
yes
yes
yes
yes

210 Open Inventor C++ Reference Pages

SoDirectionalLightDragger

Extra information for list parts from above table
Part Name Container Type Permissible Types

callbackList Separator Callback, EventCallback

FILE FORMAT/DEFAULTS
Di recti onal Li ght Dragger {

r ender Cachi ng AUTO
boundi ngBoxCachi ng AUTO
render Cul | i ng AUTO
pi ckCul | i ng AUTO
i SActive FALSE
transl ation 000
rotation 001 O
}
INCLUDE FILE

#i ncl ude <Inventor/draggers/ SoDirectional Li ght Dragger. h>

SEE ALSO
SolnteractionKit, SoDragger, SoCenterballDragger, SoDragPointDragger,
SoHandleBoxDragger, SoJackDragger, SoPointLightDragger,
SoRotateCylindricalDragger, SoRotateDiscDragger, SoRotateSphericalDragger,
SoScalelDragger, SoScale2Dragger, SoScale2UniformDragger,
SoScaleUniformDragger, SoSpotLightDragger, SoTabBoxDragger, SoTabPlaneDragger,
SoTrackballDragger, SoTransformBoxDragger, SoTranslatelDragger,
SoTranslate2Dragger

211

SoDirectionalLightManip

NAME

SoDirectionalLightManip — directional light node with 3D interface for editing
direction

INHERITS FROM

SoBase > SoFieldContainer > SoNode > SoLight > SoDirectionalLight >
SoDirectionalLightManip

DESCRIPTION

212

SoDirectionalLightManip is the base class for all SoDirectionalLight nodes that
have a built-in 3D user interface (this is the only such class provided with the
Inventor toolkit). Since it is derived from SoDirectionalLight, any changes to its
fields result in a change of lighting for nodes that follow it in the scene graph. In
this case, the interface edits the direction field. Also, the color of the manipulator’s
geometry will reflect the color of the light (but you cannot edit the color using this
manipulator).

Typically, you will want to replace a regular SoDirectionalLight with an
SoDirectionalLightManip (as when the user selects a light to be edited), or vice
versa (as when the user is done moving the light and the interface should go away).
Use the replaceNode() method to insert a manipulator into a scene graph, and the
replaceManip() method to remove it when done.

The SoDirectionalLightManip utilizes an SoDirectionalLightDragger to provide a
3D interface. However, the manipulator differs from the dragger; it lights other
objects in the scene because, as an SoDirectionalLight, it alters the state. The field
values and movement of the dragger, on the other hand, affect only the dragger
itself. To find out more about how the interface works and what each part will do,
see the reference page for SoDirectionalLightDragger. The interfaces of the dragger
and the manipulator are identical.

The SoDirectionalLightManip utilizes its dragger by adding it as a hidden child.
When an action is applied to the manipulator, such as rendering or handling
events, the manipulator first traverses the dragger, and then the manipulator adds
its lighting parameters to the state. When you click-drag-release over the
manipulator, it passes these events down to the dragger, which moves as a result ("l
can’t help it, I'm a dragger!").

The manipulator maintains consistency between the fields of the dragger and its
own fields. Let’s say you use the mouse to rotate the dragger. Callbacks ensure that
the direction field of the manipulator will change by the same amount, thus
changing the lighting of nodes which follow in the scene graph. Similarly, if you set
the direction field of the SoDirectionalLightManip, the manipulator will orient
the dragger accordingly.

Open Inventor C++ Reference Pages

SoDirectionalLightManip

Because the dragger is a hidden child, you can see the dragger on screen and interact

with it,

but the dragger does not show up when you write the manipulator to file.

Also, any SoPath will end at the manipulator. (See the Actions section of this
reference page for a complete description of when the dragger is traversed).

If you want to get a pointer to the dragger you can get it from the manipulator
using the getDragger() method. You will need to do this if you want to change the
geometry of a manipulator, since the geometry actually belongs to the dragger.

FIELDS

Fields from class SoDirectionalLight:

direction

Fields from class SoLight:

on, intensity, color

METHODS
SoDirectionalLightManip()

Constructor.

SoDragger * getDragger()
Returns a pointer to the dragger being used by this manipulator. Given this
pointer, you can customize the dragger just like you would any other
dragger. You can change geometry using the setPart() method, or add
callbacks using the methods found in the SoDragger reference page.

SbBool replaceNode(SoPath *p)

Replaces the tail of the path with this manipulator. The tail of the path must
be an SoDirectionalLight node (or subclass thereof). If the path has a
nodekit, this will try to use setPart() to insert the manipulator. Otherwise,
the manipulator requires that the next to last node in the path chain be a
group.

The field values from the directional light node will be copied to this
manipulator, and the light node will be replaced.

The manipulator will not call ref() on the node it is replacing. The old node
will disappear if it has no references other than from the input path p and its
parent, since this manipulator will be replacing it in both of those places.
Nor will the manipulator make any changes to field connections of the old
node. The calling process is thus responsible for keeping track of its own
nodes and field connections.

213

SoDirectionalLightManip

SbBool replaceManip(SoPath *p, SoDirectionalLight *newOne) const
Replaces the tail of the path, which must be this manipulator, with the
given SoDirectionalLight node. If the path has a nodekit, this will try to use
setPart() to insert the new node. Otherwise, the manipulator requires that
the next to last node in the path chain be a group.

The field values from the manipulator will be copied to the directional light
node, and the manipulator will be replaced.

The manipulator will not call ref() or unref() on the node which is replacing
it, nor will it make any changes to field connections. The calling process is
thus responsible for keeping track of its own nodes and field connections.

static SoType getClassTypeld()
Returns type identifier for this class.

Methods from class SoNode:
setOverride, isOverride, copy, affectsState, getByName, getByName

Methods from class SoFieldContainer:

setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, set, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

ACTION BEHAVIOR
SoGLRenderAction, SoCallbackAction, SoGetBoundingBoxAction,
SoGetMatrixAction, SoHandleEventAction, SoRayPickAction
First, traverses the dragger the way an SoGroup would. All draggers place
themselves in space, but leave the current transformation unchanged when
finished. Then the SoDirectionalLightManip adds a directional light to the
state just like its base class, SoDirectionalLight.

SoSearchAction
Searches just like an SoDirectionalLight. Does not search the dragger,
which is a hidden child.

SoWriteAction
Writes out just like an SoDirectionalLight. Does not write the dragger,
which is a hidden child. If you really need to write valuable information
about the dragger, such as customized geometry, you can retrieve the
dragger with the getDragger() method and then write it out separately.

214 Open Inventor C++ Reference Pages

SoDirectionalLightManip

FILE FORMAT/DEFAULTS
Di rectional Li ght Mani p {

on TRUE
intensity 1
col or 111
direction 00 -1
}
INCLUDE FILE

#i ncl ude <l nventor/ mani ps/ SoDi r ecti onal Li ght Mani p. h>

SEE ALSO

SoDragger, SoDirectionalLight, SoDirectionalLightDragger, SoPointLightManip,

SoSpotLightManip

215

SoDragger

NAME

SoDragger — base class for nodekits that move in response to click-drag-release
mouse events

INHERITS FROM

SoBase > SoFieldContainer > SoNode > SoBaseKit > SolnteractionKit > SoDragger

DESCRIPTION

216

SoDragger is the base class for all nodekits you move by using the mouse to click-
drag-and-release. More specifically, they are operated by a start (mouse button 1
pressed over dragger to pick it), followed by dragging (mouse motion events are
interpreted by the dragger and result in some form of motion and/or change to a
field), followed by finish (mouse up).

Each dragger has a different paradigm for interpreting mouse motion and changing
its fields as a result. Draggers map 2D mouse motion into motion of a point on 3D
lines, planes, spheres or cylinders. (See the SbProjector reference pages.) Then they
react to this motion of a point through 3-space by scaling, translating, or rotating.
For example, SoTranslate2Dragger maps mouse motion onto a 3D plane, then
translates to follow the cursor as it moves within that plane.

Every dragger has fields that describe its current state. Scaling draggers have a
scaleFactor field, rotational draggers have a rotation field, etc. All draggers have the
isActive field, defined in this class. It is TRUE while the dragger is being dragged,
FALSE otherwise.

Draggers that have only one part to pick and one motion field are called simple
draggers. Examples are the SoRotateDiscDragger, SoScalelDragger, and
SoTranslate2Dragger.

Draggers that create assemblies out of other draggers and then orchestrate the
motion of the whole assembly are call composite draggers. SoTransformBoxDragger
is a composite dragger made entirely of simple draggers.
SoDirectionalLightDragger contains both a simple dragger
(SoRotateSphericalDragger) and a composite dragger (SoDragPointDragger) When
using a composite dragger, the fields of the composite dragger are the ones you
should work with. Draggers lower down in the assemblage usually have zeroed out
values. For example, when you drag the face of a transformBox, an
SoTranslate2Dragger, the transformBox "steals" the translation from the child
dragger and transfers it up to the top of the composite dragger, where it effects all
pieces of the assemblage.

Draggers always keep their fields up to date, including while they are being dragged.
So you can use field-to-field connections and engines to connect dragger values to

Open Inventor C++ Reference Pages

SoDragger

other parts of your scene graph. Hence draggers can be easily utilized as input
devices for mouse-driven 3D interface elements. You can also register value-changed
callbacks, which are called whenever any of the fields is changed.

Also, if you set the field of a dragger through some method other than dragging, (by
calling setValue(), for example), the dragger’s internal SoFieldSensor will sense this
and the dragger will move to satisfy that new value. This makes it easy to constrain
draggers to keep their fields within certain limits: if the limit is exceeded, just set it
back to the exceeded maximum or minimum. You can do this even as the dragger is
in use.

When you drag a dragger, the dragger only moves itself. Draggers do not change
the state or affect objects that follow in the scene graph. For example a dragger does
not ever behave like an SoTransform and change the current transformation
matrix. Draggers are not transforms, even if they have field names like translation,
rotation, scaleFactor. Many draggers, such as SoTrackballDragger, have a
corresponding SoTransformManip, in this case SoTrackballManip. The
manipulator is a subclass of SoTransform, and affects other objects in the scene; it
uses a trackball dragger to provide its user interface. In this way, draggers are
employed extensively by manipulators. Callback functions on the dragger allow its
employer to be notified of start, motion, finish, and value changes. In all cases, the
callback function is passed a pointer to the dragger which initiated the callback. (See
the various man pages for more details on specific draggers and manipulators).

All draggers are nodekits. However, draggers do not list their parts in the Parts
section of the reference page. Instead, there is a section called Dragger Resources,
more suited to describe the parts made available to the programmer. Because of
space limitations, the Dragger Resources section only appears in the online versions
of the reference pages. Each dragger has some parts you can pick on, and other parts
that replace them when they are active or moving. These active parts are often just
the same geometry in another color. Draggers also have pieces for displaying
feedback. Each of these pieces has a default scene graph, as well as a special
function within the dragger. Each part also has a resource name. All this
information is contained in the DRAGGER RESOURCES section.

Since draggers are nodekits, you can set the parts in any instance of a dragger using
setPart().

But draggers also give each part a resource name. When a dragger builds a part, it
looks in the global dictionary for the node with that resourceName. By putting a
new entry in the dictionary, you can override that default. The default part
geometries are defined as resources for each class, and each class has a file you can
change to alter the defaults. The files are listed in each dragger’s man page. You can

217

SoDragger

FIELDS

PARTS

make your program use different default resources for the parts by copying the listed
file from the directory /usr/share/data/draggerDefaults into your own directory,
editing the file, and then setting the environment variable SO_DRAGGER_DIR to
be a path to that directory.

SoSFBool isActive

TRUE when mouse is down and dragging, else FALSE.

Fields from class SolnteractionKit:

renderCaching, boundingBoxCaching, renderCulling, pickCulling

Parts from class SoBaseKit:

METHODS

218

void
void

void
void

void
void

void

void

callbackList

addStartCallback(SoDraggerCB *f, void *userData = NULL)

removeStartCallback(SoDraggerCB *f, void *userData = NULL)
Start callbacks are made after the mouse button 1 goes down and the dragger
determines that it has been picked. If it is going to begin dragging, it grabs
events and invokes the startCallbacks.

addMotionCallback(SoDraggerCB *f, void *userData = NULL)
removeMotionCallback(SoDraggerCB *f, void *userData =
NULL)
Motion callbacks are called after each movement of the mouse during
dragging.

addFinishCallback(SoDraggerCB *f, void *userData = NULL)
removeFinishCallback(SoDraggerCB *f, void *userData =
NULL)
Finish callbacks are made after dragging ends and the dragger has stopped
grabbing events.

addValueChangedCallback(SoDraggerCB *f, void *userData =
NULL)
removeValueChangedCallback(SoDraggerCB *f, void
*userData = NULL)
Value-changed callbacks are made after a dragger changes any of its fields.
This does not include changes to the isActive field.

Open Inventor C++ Reference Pages

SoDragger

void setMinGesture(int pixels)

int getMinGesture() const
Set and get the number of pixels of movement required to initiate a
constraint gesture. Default is 8.

static void setMinScale(float newMinScale)

static float getMinScale()
The smallest scale that any dragger will write. If the user attempts to go
below this amount, the dragger will set it to this minimum. Default is .001

static const SoNodekitCatalog *
getClassNodekitCatalog() const
Returns an SoNodekitCatalog for this class.

static SoType getClassTypeld()
Returns type identifier for this class.

Methods from class SolnteractionKit:
setPartAsPath

Methods from class SoBaseKit:
getNodekitCatalog, getPart, getPartString, createPathToPart, setPart, set, set,
isSearchingChildren, setSearchingChildren

Methods from class SoNode:
setOverride, isOverride, copy, affectsState, getByName, getByName

Methods from class SoFieldContainer:
setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled
Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

MACROS

Macros from class SoBaseKit:
SO_GET_PART, SO_CHECK_PART

219

SoDragger

CATALOG PARTS

All parts
NULL by
Part Name Part Type Default Type Default
callbackList NodeKitListPart -- yes

Extra information for list parts from above table
Part Name Container Type Permissible Types

callbackList Separator Callback, EventCallback

FILE FORMAT/DEFAULTS

Dragger {
r ender Cachi ng AUTO
boundi ngBoxCachi ng AUTO
render Cul l'i ng AUTO
pi ckCul |'i ng AUTO
i SActive FALSE

}

INCLUDE FILE

#i ncl ude <I nventor/draggers/ SoDragger. h>

typedef void SoDraggerCB(void *userData, SoDragger *dragger)

SEE ALSO

220

SolnteractionKit, SoCenterballDragger, SoDirectionalLightDragger,
SoDragPointDragger, SoHandleBoxDragger, SoJackDragger, SoPointLightDragger,
SoRotateCylindricalDragger, SoRotateDiscDragger, SoRotateSphericalDragger,

SoScalelDragger, SoScale2Dragger, SoScale2UniformDragger,

SoScaleUniformDragger, SoSpotLightDragger, SoTabBoxDragger, SoTabPlaneDragger,
SoTrackballDragger, SoTransformBoxDragger, SoTranslatelDragger,

SoTranslate2Dragger

Open Inventor C++ Reference Pages

SoDragPointDragger

NAME
SoDragPointDragger — object you can translate in 3D by dragging with the mouse

INHERITS FROM
SoBase > SoFieldContainer > SoNode > SoBaseKit > SolnteractionKit > SoDragger >
SoDragPointDragger

DESCRIPTION
SoDragPointDragger is a compound dragger that translates in all three dimensions
when dragged with the mouse.

It is made up of six smaller draggers, which it displays two at a time. Each pair has
one plane dragger and one line dragger. The line dragger is oriented perpendicular to
the plane, so together the plane/line pair lets you move through all of 3-space.

DragPoint has a total of three such pairs, oriented along the x, y, and z axes of its
local space. You can cycle through the three pairs by hitting the <Alt> key with the
cursor over the dragger. (You need not press the mouse button.)

The line draggers are SoTranslatelDraggers and the plane draggers are
SoTranslate2Draggers. So you can use the <Shift> key to constrain the motion of a
plane dragger along one of the two axes within the plane, as described in the
SoTranslate2Draggers man page.

DragPoint adds extra feedback parts to provide a more intuitive idea of where you
are placed in three-space. There are three feedback planes and three feedback axes;
each corresponds to one of the plane or line draggers, but spans a much greater
distance. When you drag along a line, that line’s larger feedback axis is displayed,
and remains anchored in space while the dragger slides along it. This helps establish
the motion of the dragger relative to the rest of the scene. Similarly, when you drag
within a plane, the larger (but transparent) feedback plane establishes a ground
plane for you to move upon. The location of the dragger within the plane is
pinpointed by two intersecting axes that always cross below the cursor and extend
to the edges of the plane. When you move dragPoint to the edge of the feedback
plane (or line), the feedback will jump to a new location in that direction, so that
the dragger never leaves the feedback behind.

The primary directions of motion are given by the local space of the dragger.
Transforms earlier in the scene will affect the dragger, its children, and the
orientation of its directions of motion.

This node has a translation field which always reflects its position in local space.

Setting the field moves the dragger to that point. You can also connect fields of
other nodes or engines from this one to make them follow the dragger’s motion.

221

SoDragPointDragger

FIELDS

Although the child draggers each have their own resources defining default part
geometries, the dragPoint dragger overrides these with a new set of resources. It also
defines resources for the feedback parts that it adds. These are detailed in the
Dragger Resources section of the online reference page for this class. You can change
the parts in any instance of this dragger using setPart().

You can make your program use different default resources for the parts by copying
the file /usr/share/data/draggerDefaults/dragPointDragger.iv into your own
directory, editing the file, and then setting the environment variable
SO_DRAGGER_DIR to be a path to that directory.

SoSFVec3f translation
Position of the dragger.

Fields from class SoDragger:
isActive

Fields from class SolnteractionKit:
renderCaching, boundingBoxCaching, renderCulling, pickCulling

PARTS
Parts from class SoBaseKit:
callbackList
METHODS
SoDragPointDragger()
Constructor.
void setlumpLimit(float limit)
float getlumpLimit() const
Set and get the point at which the feedback axes will jump to a new
position. For example, if set to .1 (the default), the feedback axes will jump
when the dragger gets within 10% of the end of the axis.
void showNextDraggerSet()
The dragPoint dragger contains three pairs of draggers, each containing a
plane dragger and a line dragger (see the Description above). The dragger
starts with the (y-line/xz-plane) pair displayed. Calling this method will
cycle next through the (z-line/xy-plane), then the (x-line/yz-plane).
222 Open Inventor C++ Reference Pages

SoDragPointDragger

static const SoNodekitCatalog *
getClassNodekitCatalog() const
Returns an SoNodekitCatalog for this class

static SoType getClassTypeld()
Returns type identifier for this class.

Methods from class SoDragger:

addStartCallback, removeStartCallback, addMotionCallback,
removeMotionCallback, addFinishCallback, removeFinishCallback,
addValueChangedCallback, removeValueChangedCallback, setMinGesture,
getMinGesture, setMinScale, getMinScale

Methods from class SolnteractionKit:
setPartAsPath

Methods from class SoBaseKit:

getNodekitCatalog, getPart, getPartString, createPathToPart, setPart, set, set,
isSearchingChildren, setSearchingChildren

Methods from class SoNode:
setOverride, isOverride, copy, affectsState, getByName, getByName

Methods from class SoFieldContainer:

setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

MACROS

Macros from class SoBaseKit:
SO_GET_PART, SO_CHECK_PART

223

SoDragPointDragger

CATALOG PARTS

FILE FORMAT/DEFAULTS

All parts
NULL by
Part Name Part Type Default Type Default
callbackList NodeKitListPart -- yes
XTranslator TranslatelDragger -- yes
xyTranslator Translate2Dragger -- yes
xzTranslator Translate2Dragger -- yes
zTranslator TranslatelDragger -- yes
yzTranslator Translate2Dragger -- yes
yTranslator TranslatelDragger -- yes
xFeedback Separator -- yes
yFeedback Separator -- yes
zFeedback Separator -- yes
yzFeedback Separator -- yes
xzFeedback Separator -- yes
xyFeedback Separator -- yes
Extra information for list parts from above table
Part Name Container Type Permissible Types
callbackList Separator Callback, EventCallback

Dr agPoi nt Dr agger {
r ender Cachi ng
boundi ngBoxCachi ng AUTO

AUTO

render Cul l'i ng AUTO
pi ckCul |'i ng AUTO
i SActive FALSE
transl ation 000
}
INCLUDE FILE
#i ncl ude <I nventor/draggers/ SoDragPoi nt Dr agger . h>
SEE ALSO

224

SolnteractionKit, SoDragger, SoCenterballDragger, SoDragPointDragger,
SoHandleBoxDragger, SoJackDragger, SoPointLightDragger,
SoRotateCylindricalDragger, SoRotateDiscDragger, SoRotateSphericalDragger,
SoScalelDragger, SoScale2Dragger, SoScale2UniformDragger,
SoScaleUniformDragger, SoSpotLightDragger, SoTabBoxDragger, SoTabPlaneDragger,
SoTrackballDragger, SoTransformBoxDragger, SoTranslatelDragger,
SoTranslate2Dragger

Open Inventor C++ Reference Pages

SoDrawStyle

NAME

SoDrawsStyle — node that defines the style to use when rendering

INHERITS FROM

SoBase > SoFieldContainer > SoNode > SoDrawStyle

DESCRIPTION

FIELDS

This node defines the current drawing style for all subsequent shape nodes in a
scene graph. SoDrawsStyle specifies how primitives should be rendered. The drawing
style has no effect on picking or callback primitive generation.

Note that if the current drawing style is not filled, backface culling (as set up by the
SoShapeHints node) will not be performed.

SOSFEnum style
Drawing style.

SoSFFloat pointSize
Radius of points (for POINTS style).

SoSFFloat lineWidth
Width of lines (for LINES style).

SoSFUShort linePattern
Stipple pattern for lines (for LINES style). Values can range from 0 (invisible)
to Oxffff (solid). This specifies how dashed or dotted lines will be drawn.

METHODS

SoDrawstyle()
Creates a drawing style node with default settings.

static SoType getClassTypeld()
Returns type identifier for this class.

Methods from class SoNode:
setOverride, isOverride, copy, affectsState, getByName, getByName

Methods from class SoFieldContainer:

setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, set, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

225

SoDrawStyle

ACTION BEHAVIOR
SoGLRenderAction, SoCallbackAction
Sets the current drawing style.

FILE FORMAT/DEFAULTS
Drawstyl e {
style FI LLED
poi nt Si ze 0
i neWdth 0
linePattern Oxffff

}

INCLUDE FILE
#i ncl ude <l nventor/ nodes/ SoDr awSt yl e. h>

enum Style {

SoDrawsStyle::FILLED

Draw filled regions
SoDrawsStyle::LINES

Draw only outlines (wire frame)
SoDrawsStyle::POINTS

Draw points at vertices
SoDrawsStyle::INVISIBLE

Do not draw anything at all

SEE ALSO
SoLightModel, SoPickStyle, SoShapeHints

226 Open Inventor C++ Reference Pages

SoElapsedTime

NAME
SoElapsedTime — basic controllable time source

INHERITS FROM
SoBase > SoFieldContainer > SoEngine > SoElapsedTime

DESCRIPTION
This engine functions as a stopwatch; it outputs the time that has elapsed since it
started running. By default, the timeln input is connected to the realTime global
field. It can, however, be connected to any other time source.

The ouput from the engine is the time that has elapsed since it started running, or
since the reset input was last triggered. You can affect the speed of the output time
by setting the speed scale factor. A value greater than 1.0 will speed up the output,
and a value less than 1.0 will slow it down.

If you pause the engine, by setting the pause input to TRUE, it stops updating the
timeOut output. When you turn off the pause, it jumps to its current position
without losing time. Alternatively, if you want to stop the engine for a while, and
then restart it from where it left off, use the on input field.

INPUTS
SoSFTime timeln
Running time.

SoSFFloat speed
Scale factor for time.

SoSFBool on
TRUE to start running, FALSE to stop.

SoSFBool pause
TRUE to freeze, FALSE to continue running.

SoSFTrigger reset
Reset the base time.

OUTPUTS
(SoSFTime) timeOut
Time elapsed, modified by the speed factor.

227

SoElapsedTime

METHODS

SoElapsedTime()
Constructor.

Methods from class SoEngine:
getClassTypeld, getOutputs, getOutput, getOutputName, copy, getByName,
getByName

Methods from class SoFieldContainer:
setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, set, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

FILE FORMAT/DEFAULTS
El apsedTi me {
timeln <current tinme>

speed 1
on TRUE
pause FALSE
reset
}
INCLUDE FILE

#i ncl ude <l nventor/engi nes/ SoEl apsedTi ne. h>

SEE ALSO
SoTimeCounter, SoOneShot, SoEngineOutput

228 Open Inventor C++ Reference Pages

SoEngine

NAME
SoEngine — base class for all engines

INHERITS FROM
SoBase > SoFieldContainer > SoEngine

DESCRIPTION
SoEngine is the abstract base class for all engines. Engines are objects used for
animation and behavior. They are lightweight objects that are connected between
nodes, the clock, and other engines to form interesting behaviorial objects (e.g., a
spinning windmill).

Engines are used to animate parts of a scene and/or to constrain one part of a scene
in relation to some other part of the scene. An engine receives a number of input
values, performs some operation on them, and then copies the results into one or
more output fields. Both the inputs and the outputs can be connected to other fields
or engines in the scene graph. When an engine’s output values change, those new
values are sent to any fields or engines connected to them.

METHODS
static SoType getClassTypeld()
Returns the type identifier for the SoEngine class.
virtual int getOutputs(SoEngineOutputList &list) const

Returns a list of outputs in this engine. Use getOutputName to get the
names of the outputs, and use SOEngineOutput::getConnectionType to
determine their types.

SoEngineOutput *
getOutput(const SbName &outputName) const
Returns a pointer to the engine output with the given name. If no such
output exists, NULL is returned.

SbBool getOutputName(const SOEngineOutput *output, SbName
&outputName) const
Returns (in outputName) the name of the engine output (output). Returns
FALSE if the engine output is not contained within the engine instance.

virtual SOEngine *
copy(SbBool copyConnections = FALSE) const
Creates and returns an exact copy of the engine. If the copyConnections
flag is TRUE, any connections to input fields (but not to outputs) of the
engine are also copied.

229

SoEngine

static SOEngine * getByName(const SbName &name)
static int getByName(const SbName &name, SoEngineList &list)
Look up engine(s) by name.

Methods from class SoFieldContainer:

setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, set, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

FILE FORMAT/DEFAULTS
This is an abstract class. See the man page of a derived class for the format and
default values.

INCLUDE FILE
#i ncl ude <l nventor/engi nes/ SoEngi ne. h>

SEE ALSO
SoBoolOperation, SoCalculator, SoComposeMatrix, SoComposeRotation,
SoComposeRotationFromTo, SoComposeVec2f, SoComposeVec3f, SoComposeVec4f,
SoComputeBoundingBox, SoConcatenate, SoCounter, SoDecomposeMatrix,
SoDecomposeRotation, SoDecomposeVec2f, SoDecomposeVec3f,
SoDecomposeVec4f, SoElapsedTime, SoGate, Solnterpolate, SoOnOff, SoOneShot,
SoSelectOne, SoTimeCounter, SoTransformVec3f, SoTriggerAny

230 Open Inventor C++ Reference Pages

SoEngineList

NAME
SoEngineList — maintains a list of pointers to engines

INHERITS FROM
SbPList > SoBaseL.ist > SOEngineList

DESCRIPTION

This subclass of SoBaseList holds lists of pointers to SOEngines. It updates reference
counts to engines in the list whenever adding or removing pointers.

METHODS

SoEngineList()
Constructor.

SoEngineList(int size)
Constructor that pre-allocates storage for size pointers.

SoEngineList(const SoEngineList &I)
Constructor that copies the contents of another list.

~SoEngineList()
Destructor.

void append(SoEngine *engine)
Adds an engine to the end of the list.

SoEngine * operator [](int i) const
Accesses an element of a list.

SoEngineList & operator =(const SoEngineList &I)
Copies a list, keeping all reference counts correct.
Methods from class SoBaseL.ist:
insert, remove, truncate, copy, set, addReferences

Methods from class SbPList:
find, getLength, operator ==, operator !=

INCLUDE FILE
#i ncl ude <l nventor/ SoLi sts. h>

SEE ALSO
SoEngine

231

SoEngineOutput

NAME

SoEngineOutput — class for all engine outputs

INHERITS FROM

SoEngineOutput

DESCRIPTION

SoEngineOuput is the class for all engine output fields. There is no public
constructor routine for this class. Only the engine classes create instances of
SoEngineOutput.

Each engine creates one or more engine outputs. The type of the output is
documented in the engine reference pages. There is also an SoEngineOutput
method for querying the connection type.

The application can at any time enable or disable the engine outputs. By default the
engine outputs are enabled.

METHODS
SoType getConnectionType() const
Returns the type of field this output can connect to.
int getForwardConnections(SoFieldList &list) const
Returns the number of fields this output is writing to, and adds pointers to
those fields to the given list.
void enable(SbBool flag)
Enables or disables all connections from this ouptut. If the connections are
disabled, values will not be output along them. By default, outputs are
enabled.
SbBool isEnabled() const
Returns TRUE if this output is currently enabled.
SoEngine* getContainer() const
Returns containing engine.
INCLUDE FILE

#i ncl ude <I nventor/engi nes/ SoEngi ne. h>

SEE ALSO

232

SoEngine

Open Inventor C++ Reference Pages

SoEngineOutputList

NAME

SoEngineOutputList — maintains a list of pointers to engine outputs

INHERITS FROM

SbPList > SoEngineOutputList

DESCRIPTION

This subclass of SbPlist holds lists of pointers to SOEngineOutputs. It updates
reference counts to engine outputs in the list whenever adding or removing
pointers.

METHODS

void

void

void

SoEngineOutputList()
Constructor.

SoEngineOQutputList(int size)
Constructor that pre-allocates storage for size pointers.

SoEngineOutputList(const SoEngineOutputList &I)
Constructor that copies the contents of another list.

“SoEngineOutputList()
Destructor.

append(SoEngineOutput *engineOutput)
Adds an engine output to the end of the list.

insert(SoEngineOutput *engineOutput, int addBefore)
Inserts the given engine output in the list before the element of the given
index.

set(int i, SOEngineOutput *engineOutput)
Sets an element of a list.

SoEngineOutput *

operator [](int i) const
Accesses an element of a list.

Methods from class SbPList:

find, remove, getLength, truncate, copy, operator =, operator ==, operator !=

233

SoEngineOutputList

INCLUDE FILE
#i ncl ude <l nventor/ SolLi sts. h>

SEE ALSO
SoEngineOutput

234 Open Inventor C++ Reference Pages

SoEnvironment

NAME

SoEnvironment — global environment node

INHERITS FROM

SoBase > SoFieldContainer > SoNode > SoEnvironment

DESCRIPTION

FIELDS

This node describes global environmental attributes such as ambient lighting, light
attenuation, and fog.

Ambient lighting is the amount of extra light impinging on each surface point
when the lighting model is Phong (see SoLightModel).

Light attenuation affects all subsequent lights in a scene (see SoLight). It isa
quadratic function of distance from a light source to a surface point. The three
coefficients are specified in the attenuation field. Attenuation works only for light
sources with a fixed location, such as point and spot lights.

Fog has one of four types, each of which blends each surface point with the
specified fog color. Each type interprets the visibility field to be the distance at
which fog totally obscures objects. A visibility value of 0 (the default) causes the
SoEnvironment node to set up fog so that the visibility is the distance to the far
clipping plane of the current camera.

Note that this node has effect only during rendering, and that it does not inherit
field values from other SoEnvironment nodes.

SoSFFloat ambientintensity
SoSFColor ambientColor
Intensity and RGB color of ambient lighting (for Phong lighting).
SoSFVec3f attenuation
Squared, linear, and constant light attenuation coefficients (in that order)
with respect to distance of light from surface (for Phong lighting).
SOSFEnum fogType
SoSFColor fogColor
SoSFFloat fogVisibility

Type of fog, color of fog, and visibility distance, which is the distance at
which fog totally obscures objects.

235

SoEnvironment

METHODS
SoEnvironment()
Creates an environment node with default settings.
static SoType getClassTypeld()

Returns type identifier for this class.

Methods from class SoNode:
setOverride, isOverride, copy, affectsState, getByName, getByName

Methods from class SoFieldContainer:

setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, set, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

ACTION BEHAVIOR
SoGLRenderAction
Sets the current environment parameters to those specified with this node.
Successive geometries will be rendered using this environment.

FILE FORMAT/DEFAULTS
Envi ronnent {

anbientintensity 0.2
anbi ent Col or 111
attenuation 001
fogType NONE
f ogCol or 111
fogVisibility 0
}
INCLUDE FILE

#i ncl ude <l nvent or/ nodes/ SoEnvi r onnent . h>

enum FogType {
SoEnvironment::NONE No fog
SoEnvironment::HAZE Linear increase in opacity with distance
SoEnvironment::FOG Exponential increase in opacity
SoEnvironment::SMOKE Exponential squared increase in opacity

}

SEE ALSO
SoLight, SoLightModel

236 Open Inventor C++ Reference Pages

SoError

NAME
SoError — error handling base class

INHERITS FROM
SoError

DESCRIPTION
SoError is the base class for all error classes, which provide error handling for
applications. There are two facets to errors: posting and handling. An error is posted
when some bad condition occurs. Posting is done primarily by the Inventor library
itself, but extenders can post their own errors. Posting an error creates an instance of
the appropriate error class (or subclass) and then passes it to the active error handler.
The default handler just prints an appropriate message to stderr. Applications can
override this behavior by supplying a different handler (by specifying a callback
function).

Each subclass of SoError supports the setHandlerCallback() method, which is used
to set the callback function to handle errors. The callback function for a specfic error
class is always used in preference to that of any base classes when handling errors.
The error instance passed to a callback is deleted immediately after the callback is
called; an application that wishes to save information from the instance has to copy
it out first.

Each error class contains a run-time class type id (SoType) that can be used to
determine the type of an instance. The base class defines a character string that
represents a detailed error message that is printed by the default handler. All
handlers are called by the SoError::handleError() method. When debugging, you
can set a breakpoint on this method to stop right before an error is handled.

METHODS
static void setHandlerCallback(SoErrorCB *cb, void *data)
static SoErrorCB *
getHandlerCallback()
static void * getHandlerData()
Sets/returns handler callback for SoError class.

const SbString & getDebugString() const
Returns debug string containing full error information from instance.

static SoType getClassTypeld()
Returns type identifier for SoError class.

virtual SoType getTypeld() const
Returns type identifier for error instance.

237

SoError

SbBool isOfType(SoType type) const
Returns TRUE if instance is of given type or is derived from it.

INCLUDE FILE
#i ncl ude <l nventor/errors/ SoError. h>

typedef void SoErrorCB(const SoError *error, void *data)

SEE ALSO
SoDebugError, SoMemoryError, SoReadError

238 Open Inventor C++ Reference Pages

SoEvent

NAME
SoEvent — base class for all events

INHERITS FROM
SoEvent

DESCRIPTION
SoEvent is the base class for events in the Inventor event model. An event typically
represents a user action, such as a mouse button being pressed or a keyboard key
being released. SoEvent contains general information found in all Inventor events,
including the time the event occurred, the position of the locater when the event
occurred, and the state of the modifier keys when the event occurred.

METHODS
SoEvent()
virtual ~SoEvent()
Constructor and destructor.

virtual SoType getTypeld() const
Return the type id for this event instance.

static SoType getClassTypeld()
Return the type id for the SoEvent class.

SbBool isOfType(SoType type) const
This returns TRUE if the event is an instance of or derived from an event of
the passed type.

void setTime(SbTime t)
SbTime getTime() const
Set and get the time at which the event occurred.

void setPosition(const SbVec2s &p)

const SbVec2s & getPosition() const
Set the window pixel location of the cursor when the event occurred. The
position is relative to the lower left corner of the window in which the event
occurred.

const SbVec2s & getPosition(const SbViewportRegion &vpRgn) const
Get the viewport pixel location of the cursor when the event occurred,
relative to the specified viewport region.

const SbVec2f & getNormalizedPosition(const SbViewportRegion &vpRgn)

const
Get the normalized location of the cursor when the event occurred, relative

239

SoEvent

void
void
void

SbBool
SbBool
SbBool

INCLUDE FILE

to the specified viewport region. The returned value will lie between 0.0 and
1.0.

setShiftDown(SbBool isDown)
setCtrIDown(SbBool isDown)
setAltDown(SbBool isDown)
Set whether the modifier keys were down when the event occurred.

wasShiftDown() const
wasCtrIDown() const
wasAltDown() const
Get whether the modifier keys were down when the event occurred.

#i ncl ude <l nventor/events/ SoEvent. h>

SEE ALSO

SoButtonEvent, SoKeyboardEvent, SoLocation2Event, SoMotion3Event,
SoMouseButtonEvent, SoSpaceballButtonEvent, SoHandleEventAction,
SoEventCallback, SoSelection, Solnteraction, SoXtDevice, SoXtRenderArea

240

Open Inventor C++ Reference Pages

SoEventCallback

NAME
SoEventCallback — node which invokes callbacks for events

INHERITS FROM
SoBase > SoFieldContainer > SoNode > SoEventCallback

DESCRIPTION
SoEventCallback will invoke application supplied callback functions during
SoHandleEventAction traversal. Methods allow the application to specify which
Inventor events should trigger callbacks, and which path must be picked, if any, for
the callback invocation to occur. The application callback is able to get information
about the event and the pick detail, and may grab events, release events, and set
whether the event was handled.

If you register more than one callback function in an SoEventCallback node, all the
callback functions will be invoked when an event occurs, even if one of the
callbacks handles the event. However, if the event is handled by any of the callback
functions, no other node in the scene graph will see the event.

METHODS

static SoType getClassTypeld()

Return the type id for the SoEventCallback class.
SoEventCallback()

Constructor creates an event callback node with no event interest and a
NULL path.

void setPath(SoPath *path)

const SoPath * getPath()
Set and get the path which must be picked in order for the callbacks to be
invoked. If the path is NULL, the callbacks will be invoked for every
interesting event, as specified by addEventCallback(), regardless of what is
picked. The setPath() method makes its own copy of the passed path.

void addEventCallback(SoType eventType, SoEventCallbackCB *f,

void *userData = NULL)
void removeEventCallback(SoType eventType, SoEventCallbackCB

*f, void *userData = NULL)
Specifies the callback functions to be invoked for different event types.
When invoked, the callback function will be passed the userData, along with
a pointer to this SoEventCallback node. For example, passing
SoMouseButtonEvent::getClassTypeld() means callbacks will be invoked
only when a mouse button is pressed or released. Passing
SoEvent::getClassTypeld() for the eventType will cause the callback to be
invoked for every event which passes through this event callback node.

241

SoEventCallback

242

SoHandleEventAction *
getAction() const
Returns the SoHandleEventAction currently traversing this node, or NULL
if traversal is not taking place. This should be called only from callback
functions.

const SoEvent * getEvent() const
Returns the event currently being handled, or NULL if traversal is not taking
place. This should be called only from callback functions.

const SoPickedPoint *
getPickedPoint() const
Returns pick information during SoHandleEventAction traversal, or NULL
if traversal is not taking place. This should be called only from callback
functions.

void setHandled()
Tells the node the event was handled. The callback function is responsible
for setting whether the event was handled or not. If there is more than one
callback function registered with an SoEventCallback node, all of them will
be invoked, regardless of whether one has handled the event or not. This
should be called only from callback functions.

SbBool isHandled() const
Returns whether the event has been handled. This should be called only
from callback functions.

void grabEvents()

void releaseEvents()
Tells the event callback node to grab events or release the grab. While
grabbing, the node will consume all events; however, each callback function
will only be invoked for events of interest.

Methods from class SoNode:
setOverride, isOverride, copy, affectsState, getByName, getByName

Methods from class SoFieldContainer:

setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, set, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

Open Inventor C++ Reference Pages

SoEventCallback

FILE FORMAT/DEFAULTS
Event Cal | back {

}

INCLUDE FILE
#i ncl ude <l nvent or/ nodes/ SoEvent Cal | back. h>

typedef void SoEventCallbackCB(void *userData, SoEventCallback *node)

SEE ALSO
Solnteraction, SoSelection, SoHandleEventAction, SoDragger

243

SoFaceDetail

NAME

SoFaceDetail — stores detail information about vertex-based shapes made of faces

INHERITS FROM

SoDetail > SoFaceDetail

DESCRIPTION

This class contains detail information about a point on a face in a vertex-based
shape made of faces. The information includes the number of points in the face, the
points forming the vertices of the face, and the index of the face within the shape.

Note that when an SoFaceDetail is returned from picking (in an SoPickedPoint), it
will contain details for all points defining the face that was intersected. However,
when an SoFaceDetail is created for a triangle produced during primitive generation
(in an SoPrimitiveVertex), it will contain details for only the three vertices of the
triangle.

METHODS

244

SoFaceDetail()
virtual ~SoFaceDetail()
Constructor and destructor.

long getNumPoints() const
Returns the number of points in the face.

const SoPointDetail *
getPoint(int i) const
Returns information about the point forming the i’th vertex of the face,
represented as an SoPointDetail.

long getFacelndex() const
Returns the index of the face within the shape.

long getPartindex() const
Returns the index of the part containing the face within the shape.

static SoType getClassTypeld()
Returns type identifier for this class.

Methods from class SoDetail:
copy, getTypeld, isOfType

Open Inventor C++ Reference Pages

SoFaceDetail

INCLUDE FILE
#i ncl ude <l nventor/details/SoFaceDetail.h>

SEE ALSO
SoDetail, SoPickedPoint, SoPrimitiveVertex, SoVertexShape

245

SoFaceSet

NAME

SoFaceSet — polygonal face shape node

INHERITS FROM

SoBase > SoFieldContainer > SoNode > SoShape > SoVertexShape >
SoNonIndexedShape > SoFaceSet

DESCRIPTION

FIELDS

246

This node represents a 3D shape formed by constructing faces (polygons) from
vertices located at the current coordinates. SoFaceSet uses the current coordinates in
order, starting at the index specified by the startindex field. Each face has a number
of vertices specified by a value in the numVertices field. For example, an SoFaceSet
with a startindex of 3 and numVertices of [3,4,2] would use coordinates 3, 4, and 5
for the first face, coordinates 6, 7, 8, and 9 for the second face, and coordinates 10
and 11 for the third. If the last value in the numVertices field is

SO FACE_SET _USE_REST_OF VERTICES (-1), all remaining coordinates in the
current coordinates are used as the vertices of the last face.

The number of values in the numVertices field indicates the number of faces in the
set.

The coordinates of the face set are transformed by the current cumulative
transformation. The faces are drawn with the current light model and drawing style.

Treatment of the current material and normal binding is as follows: The PER_PART
and PER_FACE bindings specify a material or normal for each face. The INDEXED
bindings are equivalent to their non-indexed counterparts. The DEFAULT material
binding is equal to OVERALL. The DEFAULT normal binding is equal to
PER_VERTEX. The startlndex is also used for materials, normals, or texture
coordinates when the binding indicates that they should be used per vertex.

If the current complexity value is less than 0.5, some faces will be skipped during
rendering.

SoMFLong numVertices
Number of vertices per face.

Fields from class SoNonIndexedShape:
startindex

Open Inventor C++ Reference Pages

SoFaceSet

METHODS
SoFaceSet()
Creates a face set node with default settings.
static SoType getClassTypeld()

Returns type identifier for this class.

Methods from class SoNode:
setOverride, isOverride, copy, affectsState, getByName, getByName

Methods from class SoFieldContainer:

setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, set, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

ACTION BEHAVIOR
SoGLRenderAction
Draws faces based on the current coordinates, normals, materials, drawing
style, and so on.

SoRayPickAction
Picks faces based on the current coordinates and transformation. Details
about the intersection are returned in an SoFaceDetail.

SoGetBoundingBoxAction
Computes the bounding box that encloses all vertices of the face set with
the current transformation applied to them. Sets the center to the average of
the coordinates of all vertices.

SoCallbackAction
If any triangle callbacks are registered with the action, they will be invoked
for each successive triangle generated from each face in the set.

FILE FORMAT/DEFAULTS
FaceSet {
start | ndex 0
nunvertices -1

247

SoFaceSet

INCLUDE FILE
#i ncl ude <l nvent or/ nodes/ SoFaceSet . h>

SEE ALSO
SoCoordinate3, SoDrawsStyle, SolndexedFaceSet, SoFaceDetail

248 Open Inventor C++ Reference Pages

SoField

NAME
SoField — base class for all fields

INHERITS FROM
SoField

DESCRIPTION
SoField is the abstract base class for all fields. Fields are the data elements contained
within nodes and are the input values for engines. Each node or engine class
specifies a set of fields and associates a name with each. These names define the
semantics of the field (e.g., the SoCube node contains three float fields named
width, height, and depth). Field classes provide the access methods that indirectly
allow editing and querying of data within nodes.

There are two abstract subclasses of SoField: SoSField is the base class for all single-
valued field classes and SoMField is the base class for all multiple-valued fields,
which contain dynamic arrays of values. Subclasses of SoSField have an SoSF prefix,
and subclasses of SoMField have an SoOMF prefix. See the reference pages for
SoSField and SoMField for additional methods.

Fields are typically constructed only within node or engine instances; if you need a
field that is not part of a node or engine, you can create a GlobalField; see the
methods on SoDB for creating global fields.

Fields can be connected either directly to another field, or can be connected to the
output of an engine. The value of a field with a connection will change when the
thing it is connected to changes. For example, consider a field "A" that is connected
from "B" (by A->connectFrom(B)). When B’s value is changed, A’s value will also
change. Note that A and B may have different values, even if they are connected: if
A’s value is set after B’s value, A’s value will be different from B’s until B’s value is
set.

A field can be connected to several other fields, but can be connected from only one
source.

It is possible (and often useful) to create loops of field connections (for example, A
connected from B and B connected from A). If there are loops, then the rule is that
the last setValue() done overrides any connections in to that value. You can think
of setting the value of a field as immediately propagating that value forward into all
the fields it is connected to, with the propagation stopping at the place where the
original setValue() occurred if there is a connection loop. (Actually, a more efficient
mechanism than this is used, but the semantics are the same.)

249

SoField

If you try to connect two fields of differing types, Inventor will automatically try to
insert a field converter engine between them to convert values from one type into
the other. Inventor has most reasonable conversions built-in (multiple-valued field
to single-valued and vice versa, anything to SoSFString, anything to SoSFTrigger,
float/short/unsigned short/long/unsigned long/etc numeric conversions, etc). You
can add field converters using SoDB’s extender method addConverter(); see the
SoDB.h header file for details. You can also find out if a converter is available with
the SoDB::getConverter() method.

Fields each define their own file format for reading and being written to files, but all
fields follow the same conventions:

Fields in a node or engine are written as the name of the field followed by the field’s
value; fields are not written if they have not been modified since they were created
(if they have their default value).

The ignored flag is written as a "™ character after the field’s value (if the field’s value
is its default value, just the "™ is written).

Field connections are written as an "=" followed by the container of the field or

engine output that the field is connected to, followed by a "." and the name of the
field or engine output. For example:

DEF nodel Transform { translation 1 1 1}
DEF node2 Scale { scaleFactor 1 1 1 = USE nodel.translation }

Global fields are written as part of an internal SoFieldContainer class called
GlobalField, which writes out an SoSFName field named type whose value is the
type of the global field, followed by a field of that type whose name is the name of
the global field. For example, a global unsigned long field called "FrameCounter"
whose value is 494 would be written as:

GlobalField {
type SoSFULong
FrameCounter 494

}
METHODS
void setlgnored(SbBool ignore)
SbBool islgnored() const
Sets/gets the ignore flag for this field. When a field’s ignore flag is set to
TRUE, the field is not used during traversal for rendering and other actions.
The default value for this flag is FALSE.
250 Open Inventor C++ Reference Pages

SoField

SbBool isDefault() const
Gets the state of default flag of the field. This flag will be TRUE for any field
whose value is not modified after construction and will be FALSE for those
that have changed (each node or engine determines what the default values
for its fields are). Note: the state of this flag should not be set explicitly from
within applications.

static SoType getClassTypeld()
Return the type identifier for this field class.

virtual SoType getTypeld() const
Return the type identifier for this field instance (SoField *).

virtual SbBool isOfType(SoType type) const
Returns TRUE if this field is the given type or derived from that type. This is
typically used with the getClassTypeld() method to determine the type of an
SoField * at run-time:

SoField *field =;

if (field->isOfType(SoSFFloat::getClassTypeld())) {
SoSFFloat *floatField = (SoSFFloat *)field);
floatField->setVValue(4.5);

}

SbBool set(const char *valueString)
Sets the field to the given value, which is an ASCII string in the Inventor file
format. Each field subclass defines its own file format; see their reference
pages for information on their file format. The string should contain only
the field’s value, not the field’s name (e.g., "1.0", not "width 1.0"). This
method returns TRUE if the string is valid, FALSE if it is not.

void get(SbString &valueString)
Returns the value of the field in the Inventor file format, even if the field
has its default value.

int operator ==(const SoField &f) const

int operator !=(const SoField &f) const
Return TRUE (FALSE) if this field is of the same type and has the same value
as f.

void touch()

Simulates a change to the field, causing attached sensors to fire, connected
fields and engines to be marked as needing evaluation, and so forth. Calling

251

SoField

252

SbBool
SbBool

void

SbBool

SbBool

SbBool

SbBool

SbBool

void

touch() on an instance of a derived field class is equivalent to calling
setValue(getValue()) using the derived class’s methods, except that the
field’s isDefault() status remains unchanged.

connectFrom(SoField *fromField)
connectFrom(SoEngineOutput *fromEngine)
Connects this field to another field or from an engine output. If the field
was connected to something before, it will be automatically disconnected (a
field may have only one connection writing into it at a time). Unless
connections to the field are disabled (see enableConnection()), the field’s
value will be set to the value of the thing it is connected to.

disconnect()
Disconnect the field from whatever it was connected to. This does nothing if
the field was not connected.

isConnected() const
Returns TRUE if the field is connected to anything.

isConnectedFromField() const
Returns TRUE if the field is connected to another field.

getConnectedField(SoField *&writingField) const
Returns TRUE if this field is being written into by another field, and returns
the field it is connected to in writingField. Returns FALSE and does not
modify writingField if it is not connected to a field.

isConnectedFromEngine() const
Returns TRUE if the field is connected to an engine’s output.

getConnectedEngine(SoEngineOutput *&engineOutput) const
Returns TRUE if this field is being written into by an engine, and returns the
engine output it is connected to in engineOutput. Returns FALSE and does not
modify engineOutput if it is not connected to an engine.

enableConnection(SbBool flag)
Field connections may be enabled and disabled. Disabling a field’s
connection is almost exactly like disconnecting it; the only difference is that
you can later re-enable the connection by calling enableConnection(TRUE).
Note that disconnecting an engine output can cause the engine’s reference
count to be decremented and the engine to be deleted, but disabling the
connection does not decrement its reference count.

Open Inventor C++ Reference Pages

SoField

Re-enabling a connection will cause the value of the field to be changed to
the engine output or field to which it is connected.

A field’s connection-enabled status is maintained even if the field is
disconnected or reconnected. By default, connections are enabled.

SbBool isConnectionEnabled() const
Returns FALSE if connections to this field are disabled. Note that this may
return FALSE even if the field is not connected to anything.

int getForwardConnections(SoFieldList &list) const
Adds pointers to all of the fields that this field is writing into (either fields in
nodes, global fields or engine inputs) to the given field list, and returns the
number of forward connections.

SoFieldContainer *
getContainer() const
Returns the object that contains this field. The type of the object will be
either SoNode, SoEngine, or will be a global field container (note that the
global field container class is internal to Inventor; see the methods for
creating and accessing global fields on SoDB). For example:

SoFieldContainer *f = field->getContainer();
if (f->isOfType(SoNode::getClassTypeld())) {
... do something ...
} else if (f->isOfType(SoEngine::getClassTypeld())) {
... do someting else ...
}else {
... it must be a global field. We can figure out its name, but
that is about it:
const SbName &globalFieldName = f->getName();

}

INCLUDE FILE
#i ncl ude <l nventor/fields/ SoField. h>

SEE ALSO
SoSField, SoMField, SoNode, SoDB

253

SoFieldContainer

NAME

INHERITS FROM

METHODS

static SoType getClassTypeld()
Returns the type of this class.

void setToDefaults()
Sets all fields in this object to their default values.

SbBool hasDefaultValues() const
Returns TRUE if all of the object’s fields have their default values. This will
return TRUE even if a field’s isDefault() method returns FALSE — for
example, if a field’s default value is 0.0 and you setValue(0.0) that field, the
default flag will be set to FALSE (because it would be too slow to compare
the field against its default value every time setValue is called). However,
hasDefaultValues() would return TRUE in this case.

SbBool fieldsAreEqual(const SoFieldContainer *fc) const
Returns TRUE if this object’s fields are exactly equal to fc’s fields. If fc is not
exactly same type as this object, FALSE is returned.

void copyFieldValues(const SoFieldContainer *fc, SbBool

copyConnections = FALSE)
Copies the contents of fc’s fields into this object’s fields. fc must be the same
type as this object. If copyConnections is TRUE, then if any of fc’s fields are
connected then this object’s fields will also be connected to the same source.
254 Open Inventor C++ Reference Pages

SoFieldContainer — abstract base class for objects that contain fields

SoBase > SoFieldContainer

DESCRIPTION
SoFieldContainer is the abstract base class for engines and nodes. It contains
methods for finding out what fields an object has, controlling notification, and for
dealing with all of the fields of an object at once.

The fields of an engine are its inputs. Note that even though an engine’s output
corresponds to a specific type of field, an engine output is not a field.

SoFieldContainer

SbBool

void

virtual i

set(const char *fieldDataString)
Sets one or more fields in this object to the values specified in the given
string, which should be a string in the Inventor file format. TRUE is returned
if the string was valid Inventor file format. For example, you could set the
fields of an SoCube by doing:

SoCube *cube =
cube->set("width 1.0 height 2.0 depth 3.2");

get(SbString &fieldDataString)
Returns the values of the fields of this object in the Inventor ASCII file
format in the given string. Fields whose isDefault() bit is set will not be part
of the string. You can use the field->get() method to get a field’s value as a
string even if has its default value.

nt getFields(SoFieldList &resultList) const

Appends pointers to all of this object’s fields to resultList, and returns the
number of fields appended. The types of the fields can be determined using
field->isOfType() and field->getTypeld(), and their names can be
determined by passing the field pointers to the getFieldName() method (see
below).

virtual SoField * getField(const SbName &fieldName) const

SbBool

SbBool
SbBool

Returns a pointer to the field of this object whose name is fieldName. Returns
NULL if there is no field with the given name.

getFieldName(const SoField *field, SbName &fieldName) const
Returns the name of the given field in the fieldName argument. Returns
FALSE if field is not a member of this object.

enableNotify(SbBool flag)

isNotifyEnabled() const
Notification is the process of telling intersted objects that this object has
changed. Notification is needed to make engines and sensors function, is
used to keep SoPaths up to date when the scene graph’s topology changes,
and is also used to invalidate rendering or bounding box caches.

Notification is normally enabled, but can be disabled on a node by node (or
engine by engine) basis. If you are making extensive changes to a large part
of the scene graph then disabling notification can increase performance, at
the expense of increased responsibility for making sure that any interested
engines, sensors or paths are kept up to date.

255

SoFieldContainer

For example, if you will be making a lot of changes to a small part of your
scene graph and you know that there are no engines or sensors attached to
nodes in that part of the scene graph, you might disable notification on the
nodes you are changing, modify them, re-enable notification, and then
touch() one of the nodes to cause a redraw.

However, you should profile your application and make sure that
notification is taking a significant amount of time before going to the
trouble of manually controlling notification.

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

INCLUDE FILE
#i ncl ude <l nventor/fiel ds/ SoFi el dCont ai ner. h>

SEE ALSO
SoSField, SoMField, SoNode, SoDB

256 Open Inventor C++ Reference Pages

SoFieldList

NAME
SoFieldList — maintains a list of pointers to fields

INHERITS FROM
SbPList > SoFieldList

DESCRIPTION
This subclass of SbPList holds lists of pointers to instances of classes derived from
SoField.
METHODS
SoFieldList()
Constructor.
SoFieldList(int size)
Constructor that pre-allocates storage for size pointers.
SoFieldList(const SoFieldList &I)
Constructor that copies the contents of another list.
~SoFieldList()
Destructor.
void append(SoField *ptr)
Adds a pointer to the end of the list.
void insert(SoField *ptr, int addBefore)
Inserts given pointer in list before pointer with given index.
SoField * operator [](int i) const
Accesses an element of a list.
void set(int i, SoField *field)

Sets an element of a list.

Methods from class SbPList:
find, remove, getLength, truncate, copy, operator =, operator ==, operator !=

INCLUDE FILE
#i ncl ude <l nventor/SoLists. h>

SEE ALSO
SoField

257

SoFieldSensor

NAME
SoFieldSensor — sensor class that can be attached to Inventor fields

INHERITS FROM
SoSensor > SoDelayQueueSensor > SoDataSensor > SoFieldSensor

DESCRIPTION
Field sensors detect changes to fields, calling a callback function whenever the field
changes. The field may be part of a node, an input of an engine, or a global field.

METHODS
SoFieldSensor()
SoFieldSensor(SoSensorCB *func, void *field)
Creation methods. The second method takes the callback function and field
to be called when the sensor is triggered.

~SoFieldSensor()
Destroys the sensor, freeing up any memory associated with it after
unscheduling it.

void attach(SoField *field)
void detach()
SoField * getAttachedField() const

The attach() method makes this sensor detect changes to the given field.
The detach() method unschedules this sensor (if it is scheduled) and makes
it ignore changes to the scene graph. The getAttachedField() method
returns the field that this sensor is sensing, or NULL if it is not attached to
any field.

Methods from class SoDataSensor:
setDeleteCallback, getTriggerNode, getTriggerField, getTriggerPath,
setTriggerPathFlag, getTriggerPathFlag

Methods from class SoDelayQueueSensor:
setPriority, getPriority, getDefaultPriority, schedule, unschedule, isScheduled

Methods from class SoSensor:
setFunction, getFunction, setData, getData

INCLUDE FILE
#i ncl ude <l nventor/sensors/ SoFi el dSensor. h>

SEE ALSO
SoNodeSensor, SoPathSensor, SoDataSensor

258 Open Inventor C++ Reference Pages

SoFile

NAME

SoFile — node that reads children from a named file

INHERITS FROM

SoBase > SoFieldContainer > SoNode > SoFile

DESCRIPTION

This node represents a subgraph that was read from a named input file. When an
SoFile node is written out, just the field containing the name of the file is written;
no children are written out. When an SoFile is encountered during reading, reading
continues from the named file, and all nodes read from the file are added as hidden
children of the file node.

Whenever the name field changes, any existing children are removed and the
contents of the new file is read in. The file node remembers what directory the last
file was read from and will read the new file from the same directory after checking
the standard list of directories (see Solnput), assuming the field isn’t set to an
absolute path name.

The children of an SoFile node are hidden; there is no way of accessing or editing
them. If you wish to edit the contents of an SoFile node, you can modify the
contents of the named file and then "touch" the name field (see SoField).
Alternatively, you can use the copyChildren() method to get a editable copy of the
file node’s children. Note that this does not affect the original file on disk, however.

FIELDS
SoSFString name
Name of file from which to read children.
METHODS
SoFile()
Creates a file node with default settings.
SoGroup * copyChildren() const
Returns a new SoGroup containing copies of all of the file node’s children.
static SoType getClassTypeld()

Returns type identifier for this class.

Methods from class SoNode:
setOverride, isOverride, copy, affectsState, getByName, getByName

259

SoFile

Methods from class SoFieldContainer:

setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, set, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

ACTION BEHAVIOR
SoGLRenderAction, SoCallbackAction, SoGetBoundingBoxAction,
SoGetMatrixAction, SoHandleEventAction
Traverses its children just as SoGroup does.

SoRayPickAction
Traverses its hidden children, but, if intersections are found, generates paths
that end at the SoFile node.

SoWriteAction
Writes just the name field and no children.

FILE FORMAT/DEFAULTS

File {
nane "<Undefined file>"
}
INCLUDE FILE

#i ncl ude <l nvent or/ nodes/ SoFi | e. h>

SEE ALSO
Solnput, SoPath

260 Open Inventor C++ Reference Pages

SoFont

NAME
SoFont — node that defines font type and size for text

INHERITS FROM
SoBase > SoFieldContainer > SoNode > SoFont

DESCRIPTION
This node defines the current font type and point size for all subsequent text shapes
in the scene graph. Fonts are specified with PostScript names, except for the default
font. The default font is called "defaultFont" and is the standard SGI graphics font
for 2D text. "Utopia" is the standard Inventor font for 3D text.

FIELDS
SoSFName name
This field defines the font name as a PostScript name. For example, Times
Roman would be specified as Times-Roman.

SoSFFloat size
This field defines the font size. The value is in points for 2D text and is in
the current units for 3D text.

METHODS
SoFont()
Creates a font node with default settings.

static SoType getClassTypeld()
Returns type identifier for this class.

Methods from class SoNode:
setOverride, isOverride, copy, affectsState, getByName, getByName

Methods from class SoFieldContainer:

setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, set, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

ACTION BEHAVIOR
SoGLRenderAction, SoCallbackAction, SoGetBoundingBoxAction,
SoRayPickAction
Sets the font name and size in the current traversal state.

261

SoFont

FILE FORMAT/DEFAULTS

Font {
name "defaultFont"
size 10
}
INCLUDE FILE

#i ncl ude <l nvent or/ nodes/ SoFont . h>

SEE ALSO
SoText2, SoText3

262 Open Inventor C++ Reference Pages

SoGate

NAME
SoGate — selectively copies its input to its output

INHERITS FROM
SoBase > SoFieldContainer > SOEngine > SoGate

DESCRIPTION
This engine selectively copies its input to its output. The type of the input field can
be any subclass of SoMField. The type is specified when an instance of the class is
created. For example, SoGate(SoMFFloat::getClassTypeld()) creates an engine that
copies floating-point values.

The enable input controls continous flow-through of values. While enable is TRUE,
the input will be copied to the output. Alternatively, by touching the trigger input,
you can copy a single value from the input to the output.

Note that unlike most other engine fields, input and output are pointers. Note also
that by default input does not contain any values.

INPUTS
SoSFBool enable
Enable continous flow-through.

SoSFTrigger trigger
Copy a single value.

<inputType> input
The value that is copied to the output when the gate is open.

OUTPUTS
(<outputType>) output
Contains a copy of the input value if the gate is open.

METHODS
SoGate(SoType inputType)
Constructor. The argument specifies the type of the input field.

Methods from class SoEngine:

getClassTypeld, getOutputs, getOutput, getOutputName, copy, getByName,
getByName

Methods from class SoFieldContainer:

setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, set, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

263

SoGate

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

FILE FORMAT/DEFAULTS

Gate {
type <i nput Type>
i nput [1
enabl e FALSE
trigger
}
INCLUDE FILE

#i ncl ude <l nventor/engi nes/ So. h>

SEE ALSO
SoEngineOutput, SoConcatenate, SoSelectOne

264 Open Inventor C++ Reference Pages

SoGetBoundingBoxAction

NAME
SoGetBoundingBoxAction — computes bounding box of a scene

INHERITS FROM
SoAction > SoGetBoundingBoxAction

DESCRIPTION
This class is used to compute a 3D bounding box enclosing objects defined by a
scene graph. The box is a rectangular prism. The action also computes the center
point, which is defined differently for different objects. (For example, the center of
an SoFaceSet is the average of its vertices’ coordinates.) For a group, the center point
is defined as the average of the centers of all shapes in it.

Each bounding box is calculated as a SbXfBox3f, where the transformation matrix
is defined so that the bounding box can be stored in the object space of the
SoShape. When two bounding boxes are combined by a group node, the
combination is performed so as to produce the smaller untransformed box. The
result of the calculation by the action can be returned as an SbXfBox3f or as a
world-space-aligned SbBox3f.

To calculate the bounding box of a subgraph bounded by two paths, specify the left
edge of the subgraph with setResetPath(), and apply the action to the path that
defines the right edge of the subgraph. The accumulated bounding box and
transformation will be reset when the tail of the reset path is traversed.

If the subgraph being traversed does not contain any shapes, the returned bounding
box will be empty (that is, box.isEmpty() will return TRUE).

METHODS
SoGetBoundingBoxAction(const SbViewportRegion
&viewportRegion)
Constructor takes viewport region to use for picking. Even though the
bounding box computation may not involve a window per se, some nodes
need this information to determine their size and placement.

void setViewportRegion(const SbViewportRegion &newRegion)
const SbViewportRegion &
getViewportRegion() const
Sets/returns current viewport region to use for action.

SbBox3f getBoundingBox() const
Returns computed bounding box in world space.

265

SoGetBoundingBoxAction

266

SbXfBox3f & getXfBoundingBox()
Returns computed bounding box before transformation into world space.

const SbVec3f & getCenter() const
Returns computed center point in world space.

void setinCameraSpace(SbBool flag)
Set this flag to TRUE if you want the returned bounding box to be in the
space of whatever camera is in the graph. Camera space is defined to have
the viewpoint at the origin, with the direction of view along the negative z
axis. This space can be used to determine distances of objects from the
camera.

SbBool islnCameraSpace() const
Returns camera space flag.

void setResetPath(const SoPath *path, SbBool resetBefore = TRUE,
ResetType what = ALL)
If a non-NULL path is specified, the action will reset the computed
bounding box to be empty and/or the current transformation to identity.
The resetBefore flag indicates whether to perform the reset before or after the
tail node of the path is traversed.

const SoPath * getResetPath() const
Returns the current reset path, or NULL.

SbBool isResetPath() const
Returns TRUE if the current reset path is not NULL.

SbBool isResetBefore() const
Returns TRUE if the resetBefore flag was specified for the reset path.

SoGetBoundingBoxAction::ResetType
getWhatReset() const
Returns what flags were specified to be reset for the reset path.

Methods from class SoAction:
apply, apply, apply, getClassTypeld, getTypeld, isOfType, invalidateState

Open Inventor C++ Reference Pages

SoGetBoundingBoxAction

INCLUDE FILE
#i ncl ude <I nventor/actions/ SoCet Boundi ngBoxActi on. h>

enum ResetType {
SoGetBoundingBoxAction:: TRANSFORM
Transformation
SoGetBoundingBoxAction::BBOX
Bounding Box
SoGetBoundingBoxAction::ALL
Both Transform and Bounding Box

SEE ALSO
SbBox3f, SbXfBox3f, SoGetMatrixAction

267

SoGetMatrixAction

NAME

SoGetMatrixAction — computes transformation matrix for subgraph

INHERITS FROM

SoAction > SoGetMatrixAction

DESCRIPTION

This action computes transformation matrices for a given subgraph. It computes the
cumulative transformation matrix and its inverse, along with a cumulative texture
transformation matrix and its inverse.

This action is unlike most others in that it does not traverse downwards from
groups. When applied to a node, it computes the matrix for just that node. (This
makes sense for transformation nodes, but not for others, really.) It is much more
useful when applied to a path. When applied to a path, it gathers the
transformation info for all nodes in the path and those that affect nodes in the
path, but it stops when it hits the last node in the path; it does not traverse
downwards from it as other actions (such as rendering) do. This behavior makes the
most sense for this action.

METHODS
SoGetMatrixAction(const SbViewportRegion &newRegion)
Constructor takes viewport region to use for picking. Even though the
matrix computation may not involve a window per se, some nodes need this
information to determine their placement.
void setViewportRegion(const SbViewportRegion &newRegion)

268

const SbViewportRegion &
getViewportRegion() const
Sets/returns current viewport region to use for action.

SbMatrix & getMatrix()
SbMatrix & getinverse()
Returns cumulative transformation matrix and its inverse.
SbMatrix & getTextureMatrix()
SbMatrix & getTexturelnverse()

Returns cumulative texture transformation matrix and its inverse.

Methods from class SoAction:
apply, apply, apply, getClassTypeld, getTypeld, isOfType, invalidateState

Open Inventor C++ Reference Pages

SoGetMatrixAction

INCLUDE FILE
#i ncl ude <l nventor/actions/ SoGet Matri xAction. h>

SEE ALSO
SoGetBoundingBoxAction

269

SoGLRenderAction

NAME
SoGLRenderAction — renders a scene graph using OpenGL

INHERITS FROM
SoAction > SoGLRenderAction

DESCRIPTION
This class traverses a scene graph and renders it using the OpenGL graphics library.
It assumes that a valid window has been created and initialized for proper OpenGL
rendering. The SoXtRenderArea class or any of its subclasses may be used to create
such a window.

METHODS
SoGLRenderAction(const SbViewportRegion &viewportRegion,
SbBool useCurrentGLValues = FALSE)
Constructor. The first parameter defines the viewport region into which
rendering will take place. The second parameter specifies whether current
OpenGL state values (material, line width, etc.) are to be inherited for
rendering. If this is FALSE (the default), Inventor will set up its own
reasonable default values.

void setViewportRegion(const SbViewportRegion &newRegion)
const SbViewportRegion &
getViewportRegion() const
Changes/returns viewport region to use for rendering.

void setUpdateArea(const SbVec2f &origin, const SbVec2f &size)

void getUpdateArea(SbVec2f &origin, SbVec2f &size) const
Sets/returns the current update area, which is the rectangular area of the
viewport region that will actually be rendered into. This can be used for
partial updates in applications that can manage them. The update area is
specified in normalized viewport coordinates, where (0,0) is the lower left
corner of the viewport and (1,1) is the upper right corner. The area is
specified or returned as an origin and a size.

void setAbortCallback(SoGLRenderAbortCB *func, void *userData)
Sets callback to call during rendering to test for an abort condition. It will be
called for each node that is traversed. This allows applications to terminate
rendering prematurely if some condition occurs. The callback function
should return TRUE if rendering should abort.

270 Open Inventor C++ Reference Pages

SoGLRenderAction

void setTransparencyType(TransparencyType type)
TransparencyType
getTransparencyType() const

Sets/returns transparency quality level to use when rendering. The default is
SCREEN_DOOR. (Note that SCREEN_DOOR transparency does not work in
the case where transparency values are specified for each vertex of a shape. If
this is the case, use one of the other transparency types.)

void setSmoothing(SbBool smooth)

SbBool isSmoothing() const
Sets/returns smoothing flag. When on, smoothing uses OpenGL’s line- and
point-smoothing features to provide cheap antialiasing of lines and points.
The default is FALSE.

void setNumPasses(int num)

int getNumPasses() const
Sets/returns number of rendering passes for multipass rendering. Specifying
more than one pass will result in antialiasing of the rendered scene, using
OpenGL’s accumulation buffer. (Camera nodes typically move their
viewpoints a little bit for each pass to achieve the antialiasing.) Each
additional pass provides better antialiasing, but requires more rendering
time The default is 1 pass.

void setPassUpdate(SbBool flag)

SbBool isPassUpdate() const
Sets/returns a flag indicating whether intermediate results are displayed after
each antialiasing pass for progressive improvement (default is FALSE).

void setPassCallback(SoGLRenderPassCB *func, void *userData)
Sets a callback function to invoke between passes when antialiasing. Passing
NULL (which is the default state) will cause a clear of the color and depth
buffers to be performed.

void setCacheContext(unsigned long context)

unsigned long getCacheContext() const

Sets/returns the OpenGL cache context. A cache context is just an integer
identifying when OpenGL display lists (which are used for render caching)
can be shared between render actions; for example, see the documentation
on GLX contexts for information on when OpenGL display lists can be
shared between GLX windows.

271

SoGLRenderAction

Methods from class SoAction:
apply, apply, apply, getClassTypeld, getTypeld, isOfType, invalidateState

INCLUDE FILE
#i ncl ude <l nventor/actions/ SoG@ Render Acti on. h>

typedef SbBool SoGLRenderAbortCB(void *userData)
typedef void SoGLRenderPassCB(void *userData)

enum TransparencyType {
SoGLRenderAction::SCREEN_DOOR
Uses stipple patterns for screen-door transparency
SoGLRenderAction::ADD
Uses additive alpha blending
SoGLRenderAction::DELAYED_ADD
Uses additive blending, rendering all transparent objects after
opaque ones
SoGLRenderAction::SORTED_OBJECT_ADD
Same as DELAYED_ADD, but sorts transparent objects by
distances of bounding boxes from camera
SoGLRenderAction::BLEND
Uses multiplicative alpha blending
SoGLRenderAction::DELAYED_BLEND
Uses multiplicative alpha blending, rendering all transparent
objects after opaque ones
SoGLRenderAction::SORTED_OBJECT BLEND
Same as DELAYED_BLEND, but sorts transparent objects by
distances of bounding boxes from camera

SEE ALSO
SoSeparator, SoXtRenderArea

272 Open Inventor C++ Reference Pages

SoGroup

NAME
SoGroup — base class for all group nodes

INHERITS FROM
SoBase > SoFieldContainer > SoNode > SoGroup

DESCRIPTION
This node defines the base class for all group nodes. SoGroup is a node that
contains an ordered list of child nodes. The ordering of the child nodes represents
the traversal order for all operations (for example, rendering, picking, and so on).
This node is simply a container for the child nodes and does not alter the traversal
state in any way. During traversal, state accumulated for a child is passed on to each
successive child and then to the parents of the group (SoGroup does not push or
pop traversal state as SoSeparator does).

METHODS
SoGroup()
Creates an empty group node.
SoGroup(int nChildren)
Constructor that takes approximate number of children. Space is allocated
for pointers to the children, but the group does not contain any actual child
nodes.
void addChild(SoNode *child)
Adds a child as last one in group.
void insertChild(SoNode *child, int newChildindex)
Adds a child so that it becomes the one with the given index.
SoNode * getChild(int index) const
Returns pointer to child node with the given index.
int findChild(const SoNode *child) const
Finds index of given child within group.
int getNumcChildren() const
Returns number of children.
void removeChild(int index)
Removes child with given index from group.
void removeChild(SoNode *child)

Removes first instance of given child from group.

273

SoGroup

void removeAllChildren()
Removes all children from group.

void replaceChild(int index, SoNode *newChild)
Replaces child with given index with new child.

void replaceChild(SoNode *oldChild, SoNode *newChild)
Replaces first instance of given child with new child.

static SoType getClassTypeld()
Returns type identifier for this class.

Methods from class SoNode:
setOverride, isOverride, copy, affectsState, getByName, getByName

Methods from class SoFieldContainer:

setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, set, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

ACTION BEHAVIOR

SoGLRenderAction, SoCallbackAction, SoGetBoundingBoxAction,
SoHandleEventAction, SoRayPickAction
Traverses each child in order.

SoGetMatrixAction
Does nothing unless the group is in the middle of the path chain the action

is being applied to. If so, the children up to and including the next node in
the chain are traversed.

SoSearchAction

If searching for group nodes, compares with this group. Otherwise,
continues to search children.

SoWriteAction
Writes out the group node. This method also deals with any field data
associated with the group node. As a result, this method is used for most
subclasses of SoGroup as well.

274 Open Inventor C++ Reference Pages

SoGroup

FILE FORMAT/DEFAULTS
G oup {

}

INCLUDE FILE
#i ncl ude <l nventor/ nodes/ SoG oup. h>

SEE ALSO
SoArray, SoLevelOfDetail, SoMultipleCopy, SoPathSwitch, SoSeparator, SoSwitch

275

SoHandleBoxDragger

NAME

SoHandleBoxDragger — box you can scale, stretch and translate by dragging with
the mouse

INHERITS FROM

SoBase > SoFieldContainer > SoNode > SoBaseKit > SolnteractionKit > SoDragger >
SoHandleBoxDragger

DESCRIPTION

276

SoHandleBoxDragger is a dragger shaped like a wireframe box with small corner

cubes mounted on each corner. Click and drag any of these cubes to scale the box
uniformly. Six other center cubes are centered on the sides of the box; white lines

connect them to the center of the dragger. Drag one of the center cubes along its
line to stretch the box in that direction. Dragging a face of the box translates the
dragger within that plane.

While you drag a face of the box, purple feedback arrows display the possible
directions of motion. Press the <Shift> key to constrain the motion to one of the two
major directions in the plane. The constraint direction is chosen based on the next
user gesture. Press the <ALT> key and the dragger will translate perpendicular to that
plane. The translation field is modified as the face is dragged.

By default, dragging any of the small cubes scales about the center of the object.
Pressing the <ALT> key changes this: A corner cube will scale about its opposite
corner. A center cube will scale about the center of its opposite face. Dragging one of
the small cubes will usually result in changes to both the scaleFactor and
translation fields. This is because any scale about a point other than the origin has
a translation element.

As with all draggers, if you change the fields the dragger will move to match the
new settings.

Remember: This is not an SoTransform!. If you want to move other objects with this
dragger, you can either:

[a] Use an SoHandleBoxManip, which is subclassed from SoTransform. It creates
one of these draggers and uses it as the interface to change its fields. (see the
SoHandleBoxManip reference page).

[b] Use field-to-field connections to connect the fields of this dragger to those of any
SoTransformation node.

You can change the parts in any instance of this dragger using setPart(). The default
part geometries are defined as resources for this SoHandleBoxDragger class. They

Open Inventor C++ Reference Pages

SoHandleBoxDragger

FIELDS

PARTS

are detailed in the Dragger Resources section of the online reference page for this
class. You can make your program use different default resources for the parts by
copying the file /usr/share/data/draggerDefaults/handleBoxDragger.iv into your
own directory, editing the file, and then setting the environment variable
SO_DRAGGER_DIR to be a path to that directory.

SoSFVec3f scaleFactor
Scale of the dragger.
SoSFVec3f translation

Position of the dragger.

Fields from class SoDragger:
isActive

Fields from class SolnteractionKit:
renderCaching, boundingBoxCaching, renderCulling, pickCulling

Parts from class SoBaseKit:
callbackList

METHODS

SoHandleBoxDragger()
Constructor.

static const SoNodekitCatalog *
getClassNodekitCatalog() const
Returns an SoNodekitCatalog for this class

static SoType getClassTypeld()
Returns type identifier for this class.

Methods from class SoDragger:

addStartCallback, removeStartCallback, addMotionCallback,
removeMotionCallback, addFinishCallback, removeFinishCallback,
addValueChangedCallback, removeValueChangedCallback, setMinGesture,
getMinGesture, setMinScale, getMinScale

Methods from class SolnteractionKit:
setPartAsPath

277

SoHandleBoxDragger

Methods from class SoBaseKit:

getNodekitCatalog, getPart, getPartString, createPathToPart, setPart, set, set,
isSearchingChildren, setSearchingChildren

Methods from class SoNode:
setOverride, isOverride, copy, affectsState, getByName, getByName

Methods from class SoFieldContainer:

setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

MACROS
Macros from class SoBaseKit:

SO_GET_PART, SO_CHECK_PART

CATALOG PARTS

All parts
NULL by
Part Name Part Type Default Type Default
callbackList NodeKitListPart -- yes
surroundScale SurroundScale -- yes
translatorl Separator -- yes
translatorlActive Separator -- yes
translator2 Separator -- yes
translator2Active Separator -- yes
translator3 Separator -- yes
translator3Active Separator -- yes
translator4 Separator -- yes
translator4Active Separator -- yes
translator5 Separator -- yes
translatorS5Active Separator -- yes
translator6 Separator -- yes
translator6Active Separator -- yes

Open Inventor C++ Reference Pages

SoHandleBoxDragger

Part Name

extruderl
extruderlActive
extruder2
extruder2Active
extruder3
extruder3Active
extruder4
extruder4Active
extruder5
extruder5Active
extruder6
extruder6Active
uniforml
uniforml1Active
uniform2
uniform2Active
uniform3
uniform3Active
uniform4
uniform4Active
uniform5
uniform5Active
uniform6
uniform6Active
uniform?7
uniform7Active
uniform8
uniform8Active
arrowl

arrow2

arrow3

arrow4

arrows

arrow6

All parts (continued)
Part Type Default Type

Separator --
Separator --
Separator --
Separator --
Separator --
Separator --
Separator --
Separator --
Separator --
Separator --
Separator --
Separator --
Separator --
Separator --
Separator --
Separator --
Separator --
Separator --
Separator --
Separator --
Separator --
Separator --
Separator --
Separator --
Separator --
Separator --
Separator --
Separator --
Separator --
Separator --
Separator --
Separator --
Separator --
Separator --

NULL by
Default

yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes

279

SoHandleBoxDragger

Extra information for list parts from above table
Part Name Container Type Permissible Types

callbackList Separator Callback, EventCallback

FILE FORMAT/DEFAULTS
Handl eBoxDr agger {

r ender Cachi ng AUTO
boundi ngBoxCachi ng AUTO
render Cul | i ng AUTO
pi ckCul | i ng AUTO
i SActive FALSE
transl ation 000
scal eFact or 111
}
INCLUDE FILE

#i ncl ude <Inventor/draggers/ SoHandl eBoxDr agger . h>

NOTE
Unlike most multi-function draggers, SoHandleBoxDragger is not a compound
dragger made up of other draggers that perform its smaller tasks. This is not because
it was inappropriate, but because was written before implementation of the methods
that synchronize multiple child draggers. The younger SoTransformBoxDragger
has similarities to the handle box dragger, but the transform box dragger is a
compound dragger.

SEE ALSO
SolnteractionKit, SoDragger, SoCenterballDragger, SoDirectionalLightDragger,
SoDragPointDragger, SoJackDragger, SoPointLightDragger,
SoRotateCylindricalDragger, SoRotateDiscDragger, SoRotateSphericalDragger,
SoScalelDragger, SoScale2Dragger, SoScale2UniformDragger,
SoScaleUniformDragger, SoSpotLightDragger, SoTabBoxDragger, SoTabPlaneDragger,
SoTrackballDragger, SoTransformBoxDragger, SoTranslatelDragger,
SoTranslate2Dragger

280 Open Inventor C++ Reference Pages

SoHandleBoxManip

NAME
SoHandleBoxManip — transform node with 3D Interface for Editing ScaleFactor and
Translation

INHERITS FROM
SoBase > SoFieldContainer > SoNode > SoTransformation > SoTransform >
SoTransformManip > SoHandleBoxManip

DESCRIPTION
SoHandleBoxManip is derived from SoTransform (by way of SoTransformManip).
When its fields change, nodes following it in the scene graph rotate, scale, and/or
translate.

As a subclass of SoTransformManip, this manip also has a 3D interface to edit some
of its fields. In this case, the interface edits the scaleFactor and translation fields.

A manipulator differs from a dragger. When you move a dragger, no other nodes are
affected. When you move an SoTransformManip, other nodes move along with it.
(See the reference page for SoTransformManip).

The interface for an SoHandleBoxManip is exactly the same as that of the
SoHandleBoxDragger. To find out more about the interface, see the reference page
for SoHandleBoxDragger. To find out how the manipulator uses a dragger to
provide its interface, see the reference page for SoTransformManip.

On screen, this manip will surround the objects influenced by its motion. This is
because it turns on the surroundScale part of the dragger (See the reference page for
SoSurroundScale)

FIELDS
Fields from class SoTransform:

translation, rotation, scaleFactor, scaleOrientation, center

METHODS
SoHandleBoxManip()
Constructor.

static SoType getClassTypeld()
Returns type identifier for this class.

Methods from class SoTransformManip:
getDragger, replaceNode, replaceManip

281

SoHandleBoxManip

Methods from class SoTransform:

pointAt, getScaleSpaceMatrix, getRotationSpaceMatrix,
getTranslationSpaceMatrix, multLeft, multRight, combineLeft,
combineRight, setMatrix, recenter

Methods from class SoNode:
setOverride, isOverride, copy, affectsState, getByName, getByName

Methods from class SoFieldContainer:

setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, set, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

FILE FORMAT/DEFAULTS
Handl eBoxMani p {

transl ation 00O
rotation 001 O
scal eFact or 111
scaleOientation 001 O
center 00O
}
INCLUDE FILE

#i ncl ude <l nvent or/ mani ps/ SoHandl eBoxMani p. h>

SEE ALSO
SoCenterballManip, SoHandleBoxDragger, SoJackManip, SoTabBoxManip,
SoTrackballManip, SoTransformBoxManip, SoTransform, SoTransformManip

282 Open Inventor C++ Reference Pages

SoHandleEventAction

NAME

SoHandleEventAction — allows nodes in a graph to receive input events

INHERITS FROM

SoAction > SoHandleEventAction

DESCRIPTION

This class is used to allow nodes in a scene graph to handle input events. It is usually
invoked from a component derived from SoXtRenderArea when the component
receives a window system event.

Manipulator, dragger and selection nodes respond to and process events. Most other
group nodes just pass the event to their children, while most other nodes simply
ignore the action entirely. Once a node has indicated to the action that it has
handled the event, traversal stops.

A node that handles an event can also grab future events. Once it has done so, all
events will be sent directly to that node, with no traversal taking place, until the
node releases the grab.

METHODS

void

SoHandleEventAction(const SbViewportRegion
&viewportRegion)

Constructor takes viewport region to use; this is needed to perform a pick
operation when requested.

setViewportRegion(const SbViewportRegion &newRegion)

const SbViewportRegion &

void

const SoEvent *
Sets/returns the event being handled.

getViewportRegion() const

Sets/returns current viewport region to use for action.

setEvent(const SoEvent *ev)
getEvent() const

void setHandled()
SbBool isHandled() const

Sets/returns whether any node has yet handled the event.
void setGrabber(SoNode *node)

Initiates grabbing of future events. All events will be sent to the given node

until the grab is released.

283

SoHandleEventAction

void releaseGrabber()
Releases the grab.

SoNode * getGrabber() const

Returns the node that is currently grabbing events, or NULL if there is none.
void setPickRoot(SoNode *node)
SoNode * getPickRoot() const

Sets/returns the root node used for initiating a pick action for those nodes
that want to know what is under the cursor.

void setPickRadius(float radiusinPixels)
Set the radius (in pixels) around the viewport-space point through which the
ray passes when doing ray picking. Ray picking is performed when
getPickedPoint() is called. The pick radius set here is used when testing the
ray against lines and points.

const SoPickedPoint *
getPickedPoint()

Returns the frontmost object hit (as an SoPickedPoint) by performing a pick
based on the mouse location specified in the event for which the action is
being applied. The first time this is called for a particular event, a
SoRayPickAction is applied to find this object; subsequent calls for the
same event return the same information. The storage for the picked point
remains valid as long as the action is not re-applied or deleted.

const SoPickedPointList &
getPickedPointList()
Returns a list of objects intersected by a picking operation, sorted from
nearest to farthest.

Methods from class SoAction:
apply, apply, apply, getClassTypeld, getTypeld, isOfType, invalidateState

INCLUDE FILE
#i ncl ude <l nventor/actions/ SoHandl eEvent Acti on. h>

SEE ALSO
SoEvent, SoPickedPoint, SoRayPickAction

284 Open Inventor C++ Reference Pages

SoldleSensor

NAME
SoldleSensor — sensor for one-time only callbacks when the application is idle

INHERITS FROM
SoSensor > SoDelayQueueSensor > SoldleSensor

DESCRIPTION
An idle sensor is almost exactly like an SoOneShotSensor, except that it is only
triggered when there are no timer queue sensors waiting to be triggered and there
are no events waiting to be processed; that is, idle sensors will not be triggered if the
delay queue is processed because the delay queue timeout expires. If the delay queue
timeout is disabled (see SoDB::setDelaySensorTimeout().), idle and one-shot
sensors are exactly the same.

Note that idle sensors do not reschedule themselves. Inventor 1 idle sensors were
always scheduled; call schedule() in the callback function to duplicate that
behavior.

See the SoOneShotSensor manual page for more information.

METHODS
SoldleSensor()
SoldleSensor(SoSensorCB *func, void *data)
Creation methods. The second method takes the callback function and data
to be called when the sensor is triggered.

~SoldleSensor()
Destroys the sensor, freeing up any memory associated with it after
unscheduling it.

Methods from class SoDelayQueueSensor:
setPriority, getPriority, getDefaultPriority, schedule, unschedule, isScheduled

Methods from class SoSensor:
setFunction, getFunction, setData, getData

INCLUDE FILE
#i ncl ude <l nventor/sensors/ Sol dl eSensor. h>

SEE ALSO
SoOneShotSensor, SoDelayQueueSensor

285

SolndexedFaceSet

NAME
SolndexedFaceSet — indexed polygonal face shape node

INHERITS FROM
SoBase > SoFieldContainer > SoNode > SoShape > SoVertexShape > SolndexedShape
> SolndexedFaceSet

DESCRIPTION
This node represents a 3D shape formed by constructing faces (polygons) from
vertices located at the current coordinates. SolndexedFaceSet uses the indices in the
coordIndex field (from SolndexedShape) to specify the polygonal faces. An index
of SO END_FACE_INDEX (-1) indicates that the current face has ended and the next
one begins.

The vertices of the faces are transformed by the current transformation matrix. The
faces are drawn with the current light model and drawing style.

Treatment of the current material and normal binding is as follows: The PER_PART
and PER_FACE bindings specify a material or normal for each face. PER_VERTEX
specifies a material or normal for each vertex. The corresponding INDEXED
bindings are the same, but use the materiallndex or normallndex indices (see
SolndexedShape) The DEFAULT material binding is equal to OVERALL. The
DEFAULT normal binding is equal to PER_VERTEX_INDEXED; if insufficient
normals exist in the state, vertex normals will be generated automatically. Textures
are applied as described for the SolndexedShape class.

If the current complexity value is less than 0.5, some faces will be skipped during
rendering.

FIELDS
Fields from class SolndexedShape:

coordindex, materiallndex, normallndex, textureCoordlndex

METHODS
SolndexedFaceSet()
Creates an indexed face set node with default settings.
static SoType getClassTypeld()

Returns type identifier for this class.

Methods from class SoNode:
setOverride, isOverride, copy, affectsState, getByName, getByName

286 Open Inventor C++ Reference Pages

SolndexedFaceSet

Methods from class SoFieldContainer:

setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, set, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

ACTION BEHAVIOR
SoGLRenderAction
Draws faces based on the current coordinates, normals, materials, drawing
style, and so on.

SoRayPickAction
Picks faces based on the current coordinates and transformation. Details
about the intersection are returned in an SoFaceDetail.

SoGetBoundingBoxAction
Computes the bounding box that encloses all vertices of the face set with
the current transformation applied to them. Sets the center to the average of
the coordinates of all vertices.

SoCallbackAction
If any triangle callbacks are registered with the action, they will be invoked
for each successive triangle generated from each face in the set.

FILE FORMAT/DEFAULTS
| ndexedFaceSet {

coor dl ndex 0
mat eri al | ndex -1
nor mal | ndex -1
t extureCoordl ndex -1
}
INCLUDE FILE

#i ncl ude <Inventor/ nodes/ Sol ndexedFaceSet . h>

SEE ALSO
SoCoordinate3, SoDrawStyle, SoFaceDetail, SoFaceSet

287

SolndexedLineSet

NAME

SolndexedLineSet — indexed polyline shape node

INHERITS FROM

SoBase > SoFieldContainer > SoNode > SoShape > SoVertexShape > SolndexedShape
> SolndexedLineSet

DESCRIPTION

FIELDS

This node represents a 3D shape formed by constructing polylines from vertices
located at the current coordinates. SolndexedLineSet uses the indices in the
coordIndex field (from SolndexedShape) to specify the polylines. An index of
SO _END_LINE_INDEX (-1) indicates that the current polyline has ended and the
next one begins.

The coordinates of the line set are transformed by the current cumulative
transformation. The lines are drawn with the current light model and drawing style
(drawing style FILLED is treated as LINES).

Treatment of the current material and normal binding is as follows: The PER_PART
binding specifies a material or normal for each segment of the line. The PER_FACE
binding specifies a material or normal for each polyline. PER_VERTEX specifies a
material or normal for each vertex. The corresponding INDEXED bindings are the
same, but use the materiallndex or normallndex indices (see SolndexedShape)
The DEFAULT material binding is equal to OVERALL. The DEFAULT normal binding
is equal to PER_VERTEX_ INDEXED; if insufficient normals exist in the state, vertex
normals will be generated automatically. Textures are applied as described for the
SolndexedShape class.

The current complexity value has no effect on the rendering of indexed line sets.

Fields from class SolndexedShape:
coordindex, materiallndex, normallndex, textureCoordlndex

METHODS
SolndexedLineSet()
Creates an indexed line set node with default settings.
static SoType getClassTypeld()

288

Returns type identifier for this class.

Methods from class SoNode:
setOverride, isOverride, copy, affectsState, getByName, getByName

Open Inventor C++ Reference Pages

SolndexedLineSet

Methods from class SoFieldContainer:

setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, set, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

ACTION BEHAVIOR
SoGLRenderAction
Draws lines based on the current coordinates, normals, materials, drawing
style, and so on.

SoRayPickAction
Picks lines based on the current coordinates and transformation. Details
about the intersection are returned in an SoLineDetail.

SoGetBoundingBoxAction
Computes the bounding box that encloses all vertices of the line set with the
current transformation applied to them. Sets the center to the average of the
coordinates of all vertices.

SoCallbackAction
If any line segment callbacks are registered with the action, they will be
invoked for each successive segment in the line set.

FILE FORMAT/DEFAULTS
| ndexedLi neSet {

coor dl ndex 0
mat eri al | ndex -1
nor mal | ndex -1
t extureCoordl ndex -1
}
INCLUDE FILE

#i ncl ude <l nvent or/ nodes/ Sol ndexedLi neSet . h>

SEE ALSO
SoCoordinate3, SoDrawStyle, SoLineDetail, SoLineSet

289

SolndexedNurbsCurve

NAME

SolndexedNurbsCurve — indexed NURBS curve shape node

INHERITS FROM

SoBase > SoFieldContainer > SoNode > SoShape > SolndexedNurbsCurve

DESCRIPTION

FIELDS

290

This class represents a NURBS curve based on the knot vector and the control points
that you specify. The knotVector field specifies a floating-point array of values; the
values are the coordinates of the knot points in the curve, and you must enter them
in non-decreasing order. The numControlPoints field specifies the number of
control points the curve will have and will use the current coordinates that are
indexed from the coordIndex field.

You can get a curve of minimum order (2) by specifying two more knots than
control points and having at least two control points. This curve would be a set of
line segments connecting the control points together.

You can get a curve of maximum order (8) by specifying 8 more knots than control
points and having at least 8 control points. In this curve, each control point would
have influence on a larger portion of the curve than with curves of lesser order.

The control points of the curve are transformed by the current transformation
matrix. The curve is drawn with the current lighting model and drawing style
(drawing style FILLED is treated as LINES). The coordinates, normals, and texture
coordinates of a NURBS curve are generated, so you cannot bind explicit normals or
texture coordinates to a NURBS curve.

The approximation of the curve by line segments is affected by the current
complexity value.

SoSFLong numControlPoints
Number of control points for the curve.

SoMFLong coordindex
Coordinate indices for the control points.

SoMFFloat knotVector
The knot vector for the curve. Values must be in non-decreasing order.

Open Inventor C++ Reference Pages

SolndexedNurbsCurve

METHODS
SolndexedNurbsCurve()
Creates an indexed NURBS curve node with default settings.
static SoType getClassTypeld()

Returns type identifier for this class.

Methods from class SoNode:
setOverride, isOverride, copy, affectsState, getByName, getByName

Methods from class SoFieldContainer:

setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, set, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

ACTION BEHAVIOR
SoGLRenderAction
Draws the curve based on the current coordinates, material, and so on.

SoRayPickAction
Picks the curve based on the current coordinates and transformation.

SoGetBoundingBoxAction
Computes the bounding box that encloses all control points of the curve
with the current transformation applied to them. Sets the center to the
average of the control points.

SoCallbackAction
If any line segment callbacks are registered with the action, they will be
invoked for each successive segment approximating the curve.

FILE FORMAT/DEFAULTS
| ndexedNur bsCurve {
nunControl Points O
coor dl ndex 0
knot Vect or 0

291

SolndexedNurbsCurve

INCLUDE FILE
#i ncl ude <l nvent or/ nodes/ Sol ndexedNur bsCur ve. h>

SEE ALSO
SoNurbsCurve, SolndexedNurbsSurface

292 Open Inventor C++ Reference Pages

SolndexedNurbsSurface

NAME

SolndexedNurbsSurface — indexed NURBS surface shape node

INHERITS FROM

SoBase > SoFieldContainer > SoNode > SoShape > SolndexedNurbsSurface

DESCRIPTION

FIELDS

This shape node represents a NURBS surface based on the knot vectors and the
control points that you specify. The uKnotVector and vKnotVector fields specify
floating-point arrays of values; the values are the coordinates of the knot points in
the surface, and you must enter them in non-decreasing order. The
numUControlPoints and numVControlPoints fields specify the number of control
points the surface will have in the U and V parametric directions, and will use the
current coordinates that are indexed from the coordIndex field.

You can get a surface of minimum order (2) in the U or V directions by specifying
two more knots than control points in that direction and having at least two
control points in that direction. This surface would appear creased in one direction.

You can get a surface of maximum order (8) in the U or V directions by specifying
eight more knots than control points in that direction and having at least eight
control points in that direction.

The control points of the NURBS surface are transformed by the current cumulative
transformation. The surface is drawn with the current light model and drawing
style. The coordinates, normals, and texture coordinates of a surface are generated,
so you cannot bind explicit normals or texture coordinates to a NURBS surface. The
first material in the state is applied to the entire surface.

The surface is trimmed according to the currently defined profiles curves.

When default texture coordinates are applied to a NURBS surface, the edges of the
texture square are stretched to fit the surface. The axes of the texture are called S
and T; S is horizontal and T is vertical. The axes of the NURBS surface are called U
and V; U is horizontal and V is vertical. You can also define texture coordinates
explicitly with the S,T location point, the knot vectors, and the current texture
coordinates.

SoSFLong numUControlPoints
SoSFLong numVControlPoints
Number of control points in the U and V directions.

293

SolndexedNurbsSurface

SoMFLong coordindex
Coordinate indices.

SoMFFloat uKnotVector
SoMFFloat vKnotVector
The knot vectors in the U and V directions.

SoSFLong numsSControlPoints
SoSFLong numTControlPoints
Number of control points in the S and T directions.

SoMFLong textureCoordindex
Texture coordinate indices.

SoMFFloat sKnotVector
SoMFFloat tKnotVector
The knot vectors in the S and T directions.

METHODS
SolndexedNurbsSurface()
Creates an indexed NURBS surface node with default settings.
static SoType getClassTypeld()

Returns type identifier for this class.

Methods from class SoNode:
setOverride, isOverride, copy, affectsState, getByName, getByName

Methods from class SoFieldContainer:

setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, set, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

ACTION BEHAVIOR
SoGLRenderAction
Draws the surface based on the current coordinates, material, and so on.

SoRayPickAction
Picks the surface based on the current coordinates and transformation.

294 Open Inventor C++ Reference Pages

SolndexedNurbsSurface

SoGetBoundingBoxAction
Computes the bounding box that encloses all control points of the surface
with the current transformation applied to them. Sets the center to the
average of the control points.

SoCallbackAction
If any triangle callbacks are registered with the action, they will be invoked
for each successive triangle approximating the surface.

FILE FORMAT/DEFAULTS
I ndexedNur bsSur face {

numJControl Points O
numvVControl Points O
nunSControl Points 0
numiControl Points O
coor dl ndex 0
uKnot Vect or 0
vKnot Vect or 0
sKnot Vect or 0
t Knot Vect or 0
t ext ureCoordl ndex -1
}
INCLUDE FILE

#i ncl ude <Inventor/ nodes/ Sol ndexedNur bsSur f ace. h>

SEE ALSO
SolndexedNurbsCurve, SoNurbsSurface, SoProfile

295

SolndexedShape

NAME

SolndexedShape — abstract base class for all indexed vertex-based shapes

INHERITS FROM

SoBase > SoFieldContainer > SoNode > SoShape > SoVertexShape > SolndexedShape

DESCRIPTION

296

This node is the abstract base class for all vertex-based shapes that are constructed
from indices, including SolndexedFaceSet, SolndexedTriangleStripSet, and
SolndexedLineSet. SolndexedShape defines fields that are used in all of its
subclasses.

All subclasses of SoNonlndexedShape construct objects by using the current
coordinates as the object’s vertices. The coordIndex field defined by this class
contains the indices into the current coordinates of the vertices of the shape. These
indices are also used for materials, normals, or texture coordinates when the
appropriate binding is PER_VERTEX_INDEXED.

Material and normal bindings are interpreted as follows for each subclass:

OVERALL One material for the entire shape.
PER_PART Specific to the subclass.
PER_PART_INDEXEDSame as PER_PART, using indices from the
materiallndex or normallndex field.
PER_FACE Specific to the subclass.
PER_FACE_INDEXEDSame as PER_FACE, using indices from the
materiallndex or normallndex field.
PER_VERTEX One material per vertex.
PER_VERTEX_ INDEXEDOnNe material per vertex, using indices from the
materiallndex or normallndex field.
DEFAULT Same as OVERALL for materials, or
PER_VERTEX_ INDEXED for normals.

When any _INDEXED binding is used for materials or normals, the materiallndex
or normallndex field is used to determine the indices for the materials or normals.
If this field contains a single value of -1 (the default), the coordinate indices from
the coordlindex field are used as well for materials or normals. When the binding is
PER_VERTEX_ INDEXED, indices in these fields that correspond to negative indices
in coordIndex are skipped; for other index bindings all the values in the fields are
used, in order.

Open Inventor C++ Reference Pages

SolndexedShape

When the normal binding is DEFAULT and there aren’t enough normals in the
current state to be applied to each vertex, default normals are created. The
creaseAngle field of the SoShapeHints node guides this process.

Explicit texture coordinates (as defined by SoTextureCoordinate2) may be bound
to vertices of an indexed shape consecutively (if the texture coordinate binding is
PER_VERTEX) or by using the indices in the textureCoordlndex field (if the
binding is PER_VERTEX_INDEXED). As with all vertex-based shapes, if there is a
current texture but no texture coordinates are specified, a default texture coordinate
mapping is calculated using the bounding box of the shape.

Be sure that the indices contained in the coordlndex, materiallndex,
normallndex, and textureCoordlndex fields are valid with respect to the current
state, or errors will occur.

FIELDS
SoMFLong coordindex
The indices of the coordinates that the shape uses as its vertices. The
coordinates connect to form faces, lines, or other shapes. Each subclass
defines special negative indices to use to indicate separation between faces,
lines, and so on.
SoMFLong materiallndex
SoMFLong normallndex
SoMFLong textureCoordlindex
The indices of the materials, normals, and texture coordinates that are used
for the shape. These fields are used only when the appropriate binding is
one of the _INDEXED bindings. By default, the values of these fields indicate
that the coordinate indices should be used for materials, normals, or texture
coordinates as well.
METHODS
static SoType getClassTypeld()

Returns type identifier for this class.

Methods from class SoNode:
setOverride, isOverride, copy, affectsState, getByName, getByName

Methods from class SoFieldContainer:

setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, set, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

297

SolndexedShape

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

FILE FORMAT/DEFAULTS
This is an abstract class. See the reference page of a derived class for the format and
default values.

INCLUDE FILE
#i ncl ude <l nvent or/ nodes/ Sol ndexedShape. h>

SEE ALSO
SolndexedFaceSet, SolndexedLineSet, SolndexedTriangleStripSet, SoMaterialBinding,
SoNonlIndexedShape, SoNormalBinding, SoShapeHints,
SoTextureCoordinateBinding

298 Open Inventor C++ Reference Pages

SolndexedTriangleStripSet

NAME

SolndexedTriangleStripSet — indexed triangle strip set shape node

INHERITS FROM

SoBase > SoFieldContainer > SoNode > SoShape > SoVertexShape > SolndexedShape
> SolndexedTriangleStripSet

DESCRIPTION

FIELDS

This shape node constructs triangle strips out of vertices located at the current
coordinates. SolndexedTriangleStripSet uses the indices in the coordIndex field
(from SolndexedShape) to specify the vertices of the triangle strips. An index of
SO _END_STRIP_INDEX (-1) indicates that the current strip has ended and the next
one begins.

The vertices of the faces are transformed by the current transformation matrix. The
faces are drawn with the current light model and drawing style.

Treatment of the current material and normal binding is as follows: PER_PART
specifies a material or normal per strip. PER_FACE binding specifies a material or
normal for each triangle. PER_VERTEX specifies a material or normal for each
vertex. The corresponding INDEXED bindings are the same, but use the
materiallndex or normallndex indices (see SolndexedShape) The DEFAULT
material binding is equal to OVERALL. The DEFAULT normal binding is equal to
PER_VERTEX_ INDEXED; if insufficient normals exist in the state, vertex normals
will be generated automatically. Textures are applied as described for the
SolndexedShape class.

If the current complexity value is less than 0.5, some strips will be skipped during
rendering.

Fields from class SolndexedShape:
coordindex, materiallndex, normallndex, textureCoordlndex

METHODS
SolndexedTriangleStripSet()
Creates an indexed triangle strip set node with default settings.
static SoType getClassTypeld()

Returns type identifier for this class.

Methods from class SoNode:
setOverride, isOverride, copy, affectsState, getByName, getByName

299

SolndexedTriangleStripSet

Methods from class SoFieldContainer:

setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, set, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

ACTION BEHAVIOR
SoGLRenderAction
Draws a strip set based on the current coordinates, normals, materials,
drawing style, and so on.

SoRayPickAction
Picks on the strip set based on the current coordinates and transformation.
Details about the intersection are returned in an SoFaceDetail.

SoGetBoundingBoxAction
Computes the bounding box that encloses all vertices of the strip set with
the current transformation applied to them. Sets the center to the average of
the coordinates of all vertices.

SoCallbackAction
If any triangle callbacks are registered with the action, they will be invoked
for each successive triangle forming the strips of the set.

FILE FORMAT/DEFAULTS
I ndexedTri angl eStri pSet {

coor dl ndex 0
mat eri al | ndex -1
nor mal | ndex -1
t extureCoordl ndex -1
}
INCLUDE FILE

#i ncl ude <l nvent or/ nodes/ Sol ndexedTri angl eStri pSet. h>

SEE ALSO
SoCoordinate3, SoDrawStyle, SoFaceDetail, SolndexedFaceSet, SoTriangleStripSet

300 Open Inventor C++ Reference Pages

Solnfo

NAME
Solnfo — node containing information text string

INHERITS FROM
SoBase > SoFieldContainer > SoNode > Solnfo

DESCRIPTION
This class defines a information node in the scene graph. This node has no effect
during traversal. It is used to store information in the scene graph, typically for
application-specific purposes, copyright messages, or other strings. This node differs
from the SoLabel node in that it stores its information in an SbString instead of an
SbName; the SbString is more efficient for storing long strings that don’t have to be
accessed very often. Use an SoLabel node for short strings that have to be accessed

more often.
FIELDS
SoSFString string
Defines the info string value as an SbString.
METHODS
Solnfo()
Creates an info node with default settings.
static SoType getClassTypeld()

Returns type identifier for this class.

Methods from class SoNode:
setOverride, isOverride, copy, affectsState, getByName, getByName

Methods from class SoFieldContainer:

setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, set, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

FILE FORMAT/DEFAULTS

Info {
string "<Undefined info>"
}
INCLUDE FILE
#i ncl ude <I nvent or/ nodes/ Sol nfo. h>
SEE ALSO

SbString, SoLabel

301

Solnput

NAME

Solnput — used to read Inventor data files

INHERITS FROM

Solnput

DESCRIPTION

This class is used by the SoDB reading routines when reading Inventor data files. It
supports both ASCII (default) and binary Inventor formats. It skips over Inventor
comments (from '# to end of line) and can stack input files. When EOF is reached,
the stack is popped. This class can also be used to read from a buffer in memory.

METHODS
Solnput()
~Solnput()
Constructor and destructor. The default Solnput reads from stdin. The
destructor closes any files opened by the Solnput.
static void addDirectoryFirst(const char *dirName)
static void addDirectoryLast(const char *dirName)
static void addEnvDirectoriesFirst(const char *envVarName)
static void addEnvDirectoriesLast(const char *envVarName)
The Solnput class maintains a global list of directories that is searched to
find files when opening them. Directories are searched in order. Each of
these routines adds directories to the list, either at the beginning ("First") or
the end ("Last"). The last two routines add directories named in the value of
the given environment variable. Directories may be separated by colons or
whitespace in the variable’s value.
static void removeDirectory(const char *dirName)
Removes named directory from the list.
static void clearDirectories()

302

Clears the list of directories (including the current directory).
static const SbStringList &
getDirectories()
Returns the list of directories as an SbStringList.

void setFilePointer(FILE *newFP)
Sets file pointer to read from. Clears the stack of input files if necessary.

Open Inventor C++ Reference Pages

Solnput

SbBool

SbBool

SbBool

FILE *

openFile(const char *fileName, SbBool okIfNotFound = FALSE)
Opens named file, sets file pointer to result. Clears the stack of input files if
necessary. This returns FALSE on error; if okIfNotFound is FALSE (the default),
this prints an error message if the file could not be found.

pushFile(const char *fileName)
Opens named file, pushing the resulting file pointer onto the stack. Returns
FALSE on error.

closeFile()
Closes all files on stack opened with openFile() or pushFile().

isValidFile()
Returns TRUE if the currently open file is a valid Inventor file; that is, it
begins with a valid Inventor header.

getCurFile() const
Returns a pointer to the current file, or NULL if reading from a buffer.

const char * getCurFileName() const

void

INCLUDE FILE

Returns full name (including directory path) of current file, or NULL if
reading from a buffer.

setBuffer(void *bufPointer, size_t bufSize)
Sets an in-memory buffer to read from, along with its size.

#i ncl ude <l nventor/ Sol nput . h>

SEE ALSO

SoDB, SoOutput, SoTranReceiver

303

Solnteraction

NAME
Solnteraction — initializes Inventor interaction classes

INHERITS FROM
Solnteraction

DESCRIPTION
Solnteraction consists of one static function which initializes all Inventor
interaction classes, as well as nodekits and the database. Note that
Solnteraction::init() is already called by SoXt::init().

METHODS
static void init()

This calls SoDB::init() and SoNodeKit::init(), calls initClasses() on
SoDragger, and calls initClass() on the following classes: SoAntiSquish,
SoBoxHighlightRenderAction, SoCenterballManip,
SoDirectionalLightManip, SoHandleBoxManip, SolnteractionKit,
SoJackManip, SoLineHighlightRenderAction, SoPointLightManip,
SoSelection, SoSpotLightManip, SoSurroundScale, SoTabBoxManip,
SoTrackballManip, SoTransformBoxManip, and SoTransformManip.

INCLUDE FILE
#i ncl ude <l nventor/ Sol nteraction. h>

SEE ALSO
SoDB, SoNodeKit, SoXt

304 Open Inventor C++ Reference Pages

SolnteractionKit

NAME
SolnteractionKit — base class for all interaction nodekit classes

INHERITS FROM
SoBase > SoFieldContainer > SoNode > SoBaseKit > SolnteractionKit

DESCRIPTION
This is the base class for all classes of interaction nodekits. Currently, the only
subclass is SoDragger, which reacts to click-drag-release events from the mouse.

This node has four fields corresponding to those of an SoSeparator: They are
renderCaching, boundingBoxCaching, renderCulling, and pickCulling. They
behave the same here as they do for an SoSeparator

The setPartAsPath() method provides support for creating "stand-in" objects for
parts in the interaction kit. The "stand-in", or "surrogate" part, is a path to an object
that lies somewhere else in the scene graph.

FIELDS
SOSFEnum renderCaching
Set render caching mode. Default is AUTO.
SOSFEnum boundingBoxCaching
Set bounding box caching mode. Default is ON. Setting this value to AUTO
is equivalent to ON - automatic culling is not implemented.
SOSFEnum renderCulling
Set render culling mode. Default is OFF. Setting this value to AUTO is
equivalent to ON - automatic culling is not implemented.
SOSFEnum pickCulling
Set pick caching mode. Default is AUTO.
PARTS
Parts from class SoBaseKit:
callbackList
METHODS
SolnteractionKit()
Constructor.
virtual SbBool setPartAsPath(const SbName &partName, SoPath

*surrogatePath)
Sets any public part in the interaction Kit as a "surrogate" path instead. The
object at the end of the path serves as a stand-in when a pick occurs, and
can thus initiate interaction.

305

SolnteractionKit

306

Instead of the usual setPart(), which replaces partName with a new node,
this will remove the node being used for partName from the scene and
remember the surrogatePath you give it. Later, any pick on surrogatePath will
be regarded as a pick on partName.

For example, set the XRotator part of an SoTrackballDragger to be the path
to an object in the scene. The rest of the trackball will look the same, but the
XRotator stripe will disappear. However, click the mouse on the object at the
end of surrogatePath and the ball will start to drag in rotation around its X
axis.

Note that this is different from setting the part to be the node at the end of
the path. When you set the part as a node, a second instance will be drawn
in the local space of the interaction kit. When you set it as a path, the object
itself is used, not a copy.

The partName may be any part name that follows the nodekit syntax for
parts, such as childList[0].shape or rotator.rotatorActive. (See the getPart()
method in the SoBaseKit reference page for a complete description.)

static const SoNodekitCatalog *
getClassNodekitCatalog() const
Returns an SoNodekitCatalog for the class SolnteractionKit.

static SoType getClassTypeld()
Returns type identifier for this class.

Methods from class SoBaseKit:
getNodekitCatalog, getPart, getPartString, createPathToPart, setPart, set, set,
isSearchingChildren, setSearchingChildren

Methods from class SoNode:
setOverride, isOverride, copy, affectsState, getByName, getByName

Methods from class SoFieldContainer:

setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

Open Inventor C++ Reference Pages

SolnteractionKit

MACROS
Macros from class SoBaseKit:

SO_GET_PART, SO_CHECK_PART

CATALOG PARTS

All parts
NULL by
Part Name Part Type Default Type Default
callbackList NodeKitListPart -- yes

Extra information for list parts from above table
Part Name Container Type Permissible Types

callbackList Separator Callback, EventCallback

FILE FORMAT/DEFAULTS
InteractionKit {

render Cachi ng AUTO
boundi ngBoxCachi ng AUTO
render Cul I'i ng AUTO
pi ckCul | i ng AUTO
}
INCLUDE FILE

#i ncl ude <l nventor/ nodekits/ SolnteractionKit.h>

enum CacheEnabled {
SolnteractionKit::OFF Never build or use a cache
SolnteractionKit::ON Always try to build a cache
SolnteractionKit::AUTO Automatic caching

}

SEE ALSO
SoBaseKit, Solnteraction, SoNodeKitDetail, SoNodeKitPath, SoNodekitCatalog,
SoDragger, SoCenterballDragger, SoDirectionalLightDragger, SoDragPointDragger,
SoHandleBoxDragger, SoJackDragger, SoPointLightDragger,
SoRotateCylindricalDragger, SoRotateDiscDragger, SoRotateSphericalDragger,
SoScalelDragger, SoScale2Dragger, SoScale2UniformDragger,
SoScaleUniformDragger, SoSpotLightDragger, SoTabBoxDragger, SoTabPlaneDragger,
SoTrackballDragger, SoTransformBoxDragger, SoTranslatelDragger,
SoTranslate2Dragger

307

Solnterpolate

NAME
Solnterpolate — base class for all interpolator engines

INHERITS FROM
SoBase > SoFieldContainer > SoEngine > Solnterpolate

DESCRIPTION
Solnterpolate is the abstract base class for all interpolator engines. An interpolator
engine linearly interpolates between two values, based on the alpha input value.
The alpha value should be between 0.0 and 1.0. The interpolator engines derived
from this class define the input fields that are to be interpolated.

INPUTS
SoSFFloat alpha
Interpolation control value.

OUTPUTS
(SoMFFloat) output
Interpolated value. The type of the output value is the same as the type of
the input values, which is specified by the derived classes.

METHODS
Methods from class SoEngine:

getClassTypeld, getOutputs, getOutput, getOutputName, copy, getByName,
getByName

Methods from class SoFieldContainer:

setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, set, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

FILE FORMAT/DEFAULTS
This is an abstract class. See the man page of a derived class for the format and
default values.

INCLUDE FILE
#i ncl ude <l nventor/engi nes/ Sol nt er pol ate. h>

SEE ALSO
SoEngineOutput, SolnterpolateFloat, SolnterpolateRotation, SolnterpolateVec?2f,
SolnterpolateVec3f, SolnterpolateVec4f

308 Open Inventor C++ Reference Pages

Solnterpolate

NAME
SolnterpolateFloat — interpolates floating-point values

INHERITS FROM
SoBase > SoFieldContainer > SoEngine > Solnterpolate > SolnterpolateFloat

DESCRIPTION
This engine linearly interpolates between two floating-point values, based on the
alpha input value. The alpha value should be between 0.0 and 1.0.

The input fields can have multiple values, allowing the engine to interpolate several
objects in parallel. One of the inputs may have more values than the other. In that
case, the last value of the shorter input will be repeated as necessary.

INPUTS
SoMFFloat inputO
SoMFFloat inputl
The engine linearly interpolates from inputO to inputl.
Inputs from class Solnterpolate:
alpha
OUTPUTS
Outputs from class Solnterpolate:
output
METHODS
SolnterpolateFloat()
Constructor.

Methods from class SoEngine:

getClassTypeld, getOutputs, getOutput, getOutputName, copy, getByName,
getByName

Methods from class SoFieldContainer:

setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, set, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

309

SolnterpolateFloat

FILE FORMAT/DEFAULTS
I nt er pol at eFl oat {

al pha 0
input0 O
inputl 1
}
INCLUDE FILE

#i ncl ude <l nventor/engi nes/ Sol nt er pol at e. h>

SEE ALSO

SoEngineOutput, SolnterpolateRotation, SolnterpolateVec2f, SolnterpolateVec3f,
SolnterpolateVec4f

310 Open Inventor C++ Reference Pages

SolnterpolateRotation

NAME
SolnterpolateRotation — interpolates rotation values

INHERITS FROM
SoBase > SoFieldContainer > SoEngine > Solnterpolate > SolnterpolateRotation

DESCRIPTION
This engine linearly interpolates between two rotation values, based on the alpha
input value. The alpha value should be between 0.0 and 1.0.

The input fields can have multiple rotations, allowing the engine to interpolate
several objects in parallel. One of the inputs may have more values than the other.
In that case, the last value of the shorter input will be repeated as necessary.

INPUTS
SoMFRotation inputO
SoMFRotation inputl
The engine linearly interpolates from inputO to inputl.
Inputs from class Solnterpolate:
alpha
OUTPUTS
Outputs from class Solnterpolate:
output
METHODS
SolnterpolateRotation()
Constructor.

Methods from class SoEngine:
getClassTypeld, getOutputs, getOutput, getOutputName, copy, getByName,
getByName

Methods from class SoFieldContainer:
setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, set, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

311

SolnterpolateRotation

FILE FORMAT/DEFAULTS
I nt er pol at eRot ati on {

al pha 0
inputO 001 O
inputl 001 O
}
INCLUDE FILE

#i ncl ude <l nventor/engi nes/ Sol nt er pol at e. h>

SEE ALSO

SoEngineOutput, SolnterpolateFloat, SolnterpolateVec2f, SolnterpolateVec3f,
SolnterpolateVec4f

312 Open Inventor C++ Reference Pages

SolnterpolateVec2f

NAME
SolnterpolateVec2f — interpolates 2D floating-point vectors

INHERITS FROM
SoBase > SoFieldContainer > SoEngine > Solnterpolate > SolnterpolateVec2f

DESCRIPTION
This engine linearly interpolates between two 2D vectors, based on the alpha input
value. The alpha value should be between 0.0 and 1.0.

The input fields can have multiple vectors, allowing the engine to interpolate
several objects in parallel. One of the inputs may have more values than the other.
In that case, the last value of the shorter input will be repeated as necessary.

INPUTS
SoMFVec2f inputO
SoMFVec2f inputl
The engine linearly interpolates from inputO to inputl.
Inputs from class Solnterpolate:
alpha
OUTPUTS
Outputs from class Solnterpolate:
output
METHODS
SolnterpolateVec2f()
Constructor.

Methods from class SoEngine:
getClassTypeld, getOutputs, getOutput, getOutputName, copy, getByName,
getByName

Methods from class SoFieldContainer:
setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, set, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

313

SolnterpolateVec2f

FILE FORMAT/DEFAULTS
I nt er pol at eVec2f {

al pha 0
input0 0 O
inputl 0O
}
INCLUDE FILE

#i ncl ude <l nventor/engi nes/ Sol nt er pol at e. h>

SEE ALSO

SoEngineOutput, SolnterpolateFloat, SolnterpolateRotation, SolnterpolateVec3f,
SolnterpolateVec4f

314 Open Inventor C++ Reference Pages

SolnterpolateVec3f

NAME
SolnterpolateVec3f — interpolates 3D floating-point vectors

INHERITS FROM
SoBase > SoFieldContainer > SoEngine > Solnterpolate > SolnterpolateVec3f

DESCRIPTION
This engine linearly interpolates between two 3D vectors, based on the alpha input
value. The alpha value should be between 0.0 and 1.0.

The input fields can have multiple vectors, allowing the engine to interpolate
several objects in parallel. One of the inputs may have more values than the other.
In that case, the last value of the shorter input will be repeated as necessary.

INPUTS
SoMFVec3f inputO
SoMFVec3f inputl
The engine linearly interpolates from inputO to inputl.
Inputs from class Solnterpolate:
alpha
OUTPUTS
Outputs from class Solnterpolate:
output
METHODS
SolnterpolateVec3f()
Constructor.

Methods from class SoEngine:
getClassTypeld, getOutputs, getOutput, getOutputName, copy, getByName,
getByName

Methods from class SoFieldContainer:
setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, set, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

315

SolnterpolateVec3f

FILE FORMAT/DEFAULTS
I nt er pol at eVec3f {
al pha 0
input0O 0 0O
inputl 00O
}

INCLUDE FILE
#i ncl ude <l nventor/engi nes/ Sol nt er pol at e. h>

SEE ALSO

SoEngineOutput, SolnterpolateFloat, SolnterpolateRotation, SolnterpolateVec?2f,
SolnterpolateVec4f

316 Open Inventor C++ Reference Pages

SolnterpolateVec4f

NAME
SolnterpolateVec4f — interpolates 4D floating-point vectors

INHERITS FROM
SoBase > SoFieldContainer > SoEngine > Solnterpolate > SolnterpolateVec4f

DESCRIPTION
This engine linearly interpolates between two 4D vectors, based on the alpha input
value. The alpha value should be between 0.0 and 1.0.

The input fields can have multiple vectors, allowing the engine to interpolate
several objects in parallel. One of the inputs may have more values than the other.
In that case, the last value of the shorter input will be repeated as necessary.

INPUTS
SoMFVec4f inputO
SoMFVec4af inputl
The engine linearly interpolates from inputO to inputl.
Inputs from class Solnterpolate:
alpha
OUTPUTS
Outputs from class Solnterpolate:
output
METHODS
SolnterpolateVec4f()
Constructor.

Methods from class SoEngine:
getClassTypeld, getOutputs, getOutput, getOutputName, copy, getByName,
getByName

Methods from class SoFieldContainer:
setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, set, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

317

SolnterpolateVec4f

FILE FORMAT/DEFAULTS
I nt er pol at eVec4f {

al pha 0
inputO 0 00O
inputl 0 00O
}
INCLUDE FILE

#i ncl ude <l nventor/engi nes/ Sol nt er pol at e. h>

SEE ALSO

SoEngineOutput, SolnterpolateFloat, SolnterpolateRotation, SolnterpolateVec?2f,
SolnterpolateVec3f

318 Open Inventor C++ Reference Pages

SoJackDragger

NAME

SoJackDragger — jack-shaped object you rotate, translate, or scale by dragging with
the mouse

INHERITS FROM

SoBase > SoFieldContainer > SoNode > SoBaseKit > SolnteractionKit > SoDragger >
SoJackDragger

DESCRIPTION

FIELDS

SoJackDragger is a composite dragger in the shape of a jack from the children’s
game jacks. Three lines along the X, y, and z axes form the central star shape, which
you can drag with the mouse to rotate the jack. Dragging any of the small cubes
mounted at the end of the axes will scale the jack uniformly in all 3 dimensions. At
the core of the jack is an SoDragPointDragger for translating the jack.

Each of these shapes is a different dragger with the default geometry changed. All of
them are parts of the jack dragger, which keeps them moving together. The star is
an SoRotateSphericalDragger, and dragging it updates the rotation field of the jack
dragger. The small cubes are an SoScaleUniformDragger, tied to the scaleFactor
field. The position of the SoDragPointDragger is given by the translation field. As
with all draggers, if you change the fields the dragger will move to match the new
settings.

Remember: This is not an SoTransform!. If you want to move other objects with this
dragger, you can either:

[a] Use an SoJackManip, which is subclassed from SoTransform. It creates one of
these draggers and uses it as the interface to change its fields. (see the SoJackManip
man page).

[b] Use field-to-field connections to connect the fields of this dragger to those of any
SoTransformation node.

You can change the parts in any instance of this dragger using setPart(). The default
part geometries are defined as resources for this SoJackDragger class. They are
detailed in the Dragger Resources section of the online reference page for this class.
You can make your program use different default resources for the parts by copying
the file /usr/share/data/draggerDefaults/jackDragger.iv into your own directory,
editing the file, and then setting the environment variable SO DRAGGER_DIR to
be a path to that directory.

SoSFRotation rotation
Orientation of the dragger.

319

SoJackDragger

SoSFVec3f scaleFactor
Scale of the dragger.

SoSFVec3f translation
Position of the dragger.

Fields from class SoDragger:
isActive

Fields from class SolnteractionKit:
renderCaching, boundingBoxCaching, renderCulling, pickCulling

PARTS
Parts from class SoBaseKit:
callbackList
METHODS
SoJackDragger()
Constructor.
static const SoNodekitCatalog *
getClassNodekitCatalog() const
Returns an SoNodekitCatalog for this class
static SoType getClassTypeld()
Returns type identifier for this class.
Methods from class SoDragger:
addStartCallback, removeStartCallback, addMotionCallback,
removeMotionCallback, addFinishCallback, removeFinishCallback,
addValueChangedCallback, removeValueChangedCallback, setMinGesture,
getMinGesture, setMinScale, getMinScale
Methods from class SolnteractionKit:
setPartAsPath
Methods from class SoBaseKit:
getNodekitCatalog, getPart, getPartString, createPathToPart, setPart, set, set,
isSearchingChildren, setSearchingChildren
Methods from class SoNode:
setOverride, isOverride, copy, affectsState, getByName, getByName
320 Open Inventor C++ Reference Pages

SoJackDragger

Methods from class SoFieldContainer:

setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Methods from class SoBase:

ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

MACROS

Macros from class SoBaseKit:
SO_GET_PART, SO_CHECK_PART

CATALOG PARTS

Part Name

callbackList
surroundScale
antiSquish
scaler

rotator
translator

All parts
Part Type

NodeKitListPart
SurroundScale
AntiSquish
ScaleUniformDragger
RotateSphericalDragger
DragPointDragger

NULL by
Default Type Default

- yes
- yes
- no
- yes
- yes
- yes

Part Name Container Type

callbackList Separator

Extra information for list parts from above table

Permissible Types

Callback, EventCallback

FILE FORMAT/DEFAULTS
JackDr agger {

r ender Cachi ng AUTO
boundi ngBoxCachi ng AUTO
render Cul l'i ng AUTO
pi ckCul |i ng AUTO
i SActive FALSE
rotation 001
transl ation 000
scal eFact or 111

321

SoJackDragger

INCLUDE FILE
#i ncl ude <l nventor/dragger s/ SoJackDr agger . h>

SEE ALSO
SolnteractionKit, SoDragger, SoCenterballDragger, SoDirectionalLightDragger,
SoDragPointDragger, SoHandleBoxDragger, SoPointLightDragger,
SoRotateCylindricalDragger, SoRotateDiscDragger, SoRotateSphericalDragger,
SoScalelDragger, SoScale2Dragger, SoScale2UniformDragger,
SoScaleUniformDragger, SoSpotLightDragger, SoTabBoxDragger, SoTabPlaneDragger,
SoTrackballDragger, SoTransformBoxDragger, SoTranslatelDragger,
SoTranslate2Dragger

322 Open Inventor C++ Reference Pages

SoJackManip

NAME

SoJackManip — transform node with 3D interface for rotating, scaling, and
translating

INHERITS FROM

SoBase > SoFieldContainer > SoNode > SoTransformation > SoTransform >
SoTransformManip > SoJackManip

DESCRIPTION

FIELDS

SoJackManip is derived from SoTransform (by way of SoTransformManip). When
its fields change, nodes following it in the scene graph rotate, scale, and/or translate.

As a subclass of SoTransformManip, this manip also has a 3D interface to edit some
of its fields. In this case, the interface edits the scaleFactor, rotation and
translation fields.

A manipulator differs from a dragger. When you move a dragger, no other nodes are
affected. When you move an SoTransformManip, other nodes move along with it.
(See the reference page for SoTransformManip).

The interface for an SoJackManip is exactly the same as that of the SoJackDragger.
To find out more about the interface, see the reference page for SoJackDragger. To
find out how the manipulator uses a dragger to provide its interface, see the
reference page for SoTransformManip.

On screen, this manip will surround the objects influenced by its motion. This is
because it turns on the surroundScale part of the dragger (See the reference page for
SoSurroundScale)

Fields from class SoTransform:
translation, rotation, scaleFactor, scaleOrientation, center

METHODS

SoJackManip()
Constructor.

static SoType getClassTypeld()
Returns type identifier for this class.

Methods from class SoTransformManip:
getDragger, replaceNode, replaceManip

323

SoJackManip

Methods from class SoTransform:

pointAt, getScaleSpaceMatrix, getRotationSpaceMatrix,
getTranslationSpaceMatrix, multLeft, multRight, combineLeft,
combineRight, setMatrix, recenter

Methods from class SoNode:
setOverride, isOverride, copy, affectsState, getByName, getByName

Methods from class SoFieldContainer:

setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, set, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

FILE FORMAT/DEFAULTS

JackMani p {
transl ation 00O
rotation 001 O
scal eFact or 111
scaleOientation 001 O
center 00O

}

INCLUDE FILE

#i ncl ude <l nventor/ mani ps/ SoJackMani p. h>

SEE ALSO
SoCenterballManip, SoHandleBoxManip, SoJackDragger, SoTabBoxManip,
SoTrackballManip, SoTransformBoxManip, SoTransform, SoTransformManip

324 Open Inventor C++ Reference Pages

SoKeyboardEvent

NAME
SoKeyboardEvent — keyboard key press and release events

INHERITS FROM
SoEvent > SoButtonEvent > SoKeyboardEvent

DESCRIPTION
SoKeyboardEvent represents keyboard key press and release events in the Inventor
event model.

METHODS
SoKeyboardEvent()
Constructor.

static SoType getClassTypeld()
Return the type id for the SoKeyboardEvent class.

void setKey(SoKeyboardEvent::Key whichKey)
SoKeyboardEvent::Key
getKey() const
Set and get which key generated the event.

static SbBool isKeyPressEvent(const SoEvent *e, SoKeyboardEvent::Key
whichKey)

static SbBool isKeyReleaseEvent(const SoEvent *e, SoKeyboardEvent::Key
whichKey)

Returns whether the passed event is a keyboard press or release event of the
passed key. When SoKeyboardEvent::ANY is passed, this returns TRUE if
the event represents a keyboard press or release of any key.

char getPrintableCharacter() const
Convenience routine that returns the character representing the key, if it’s
printable. If not, this returns NULL ("\0").

Methods from class SoButtonEvent:
setState, getState

Methods from class SoEvent:

getTypeld, isOfType, setTime, getTime, setPosition, getPosition, getPosition,
getNormalizedPosition, setShiftDown, setCtrIDown, setAltDown,
wasShiftDown, wasCtrIDown, wasAltDown

325

SoKeyboardEvent

INCLUDE FILE
#i ncl ude <I nventor/events/ SoKeyboar dEvent. h>

326

enum Key {

SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::

#define SO_KEY_PRESS_EVENT(EVENT,KEY)
(SoKeyboardEvent::isKeyPressEvent(EVENT,SoKeyboardEvent::KEY))
#define SO_KEY_RELEASE_EVENT(EVENT,KEY)
(SoKeyboardEvent::isKeyReleaseEvent(EVENT,SoKeyboardEvent::KEY))

ANY
LEFT_SHIFT
RIGHT_SHIFT
LEFT_CONTROL
RIGHT_CONTROL
LEFT_ALT
RIGHT_ALT
NUMBER_O
NUMBER_1
NUMBER_2
NUMBER_3
NUMBER_4
NUMBER_5
NUMBER_6
NUMBER_7
NUMBER_8
NUMBER_9

oOZIrX<“—IOmMmMmMmQogOm>

Open Inventor C++ Reference Pages

Special constant for any key

Modifiers

Numbers

Letters

SoKeyboardEvent

SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::

N-<><§<C—|U7;U,O'U

HOME
LEFT_ARROW
UP_ARROW
RIGHT_ARROW
DOWN_ARROW
PAGE_UP
PAGE_DOWN
PRIOR

NEXT

END
PAD_ENTER
PAD_F1

PAD_F2

PAD_F3

PAD_F4

PAD_0

PAD_1

PAD_2

PAD_3

PAD_4

PAD_5

PAD_6

PAD_7

PAD_8

PAD_9
PAD_ADD
PAD_SUBTRACT
PAD_MULTIPLY
PAD_DIVIDE
PAD_SPACE

Cursor control and motion

Keypad functions

327

SoKeyboardEvent

SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::
SoKeyboardEvent::

PAD_TAB
PAD_INSERT
PAD_DELETE
PAD_PERIOD
F1

F2

F3

F4

F5

F6

F7

F8

F9

F10

F11

F12
BACKSPACE
TAB

RETURN
ENTER
PAUSE
SCROLL_LOCK
ESCAPE
DELETE
PRINT
INSERT
NUM_LOCK
CAPS_LOCK
SHIFT_LOCK
SPACE
APOSTROPHE
COMMA
MINUS
PERIOD
SLASH
SEMICOLON
EQUAL
BRACKETLEFT
BACKSLASH
BRACKETRIGHT
GRAVE

Function keys

Miscellaneous

Open Inventor C++ Reference Pages

SoKeyboardEvent

SEE ALSO
SoEvent, SoButtonEvent, SoLocation2Event, SoMotion3Event, SoMouseButtonEvent,
SoSpaceballButtonEvent, SoHandleEventAction, SoEventCallback, SoSelection,
Solnteraction, SoXtDevice

329

SoLabel

NAME
SoLabel — node containing label text string

INHERITS FROM
SoBase > SoFieldContainer > SoNode > SolLabel

DESCRIPTION
This class defines a label node in the scene graph. This node has no effect during
traversal. It is used to store text labels in the scene graph, typically for application-
specific identification of subgraphs when node naming is not appropriate.

FIELDS
SoSFName label
Defines the label string value as an SbName.

METHODS
SoLabel()
Creates a label node with default settings.

static SoType getClassTypeld()
Returns type identifier for this class.

Methods from class SoNode:
setOverride, isOverride, copy, affectsState, getByName, getByName

Methods from class SoFieldContainer:

setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, set, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

FILE FORMAT/DEFAULTS
Label {
| abel "<Undefined | abel >"

}

INCLUDE FILE
#i ncl ude <l nvent or/ nodes/ SoLabel . h>

SEE ALSO
SbName, Solnfo

330 Open Inventor C++ Reference Pages

SoLevelOfDetail

NAME

SolLevelOfDetail — level-of-detail switching group node

INHERITS FROM

SoBase > SoFieldContainer > SoNode > SoGroup > SoLevelOfDetail

DESCRIPTION

FIELDS

This group node is used to allow applications to switch between various
representations of objects automatically. The children of this node typically
represent the same object or objects at varying levels of detail, from highest detail to
lowest. The size of the objects when projected into the viewport is used to
determine which version to use (i.e., which child to traverse).

The size is computed as the area of the screen rectangle enclosing the projection of
the 3D bounding box that encloses all of the children. When rendering, this size is
compared to the values in the screenArea field. If the size is greater than the first
value, child 0 is traversed. If it is smaller than the first, but greater than the second,
child 1 is traversed, and so on. If there are fewer children than are required by this
rule, the last child is traversed. The screenArea field contains just 0 by default, so
the first child is always traversed.

The size calculation takes the current complexity into account. If the complexity is
0 or is of type BOUNDING_BOX, the last child is always traversed. If the complexity
is less than .5, the computed size is scaled down appropriately to use (possibly) a less
detailed representation. If the complexity is greater than .5, the size is scaled up. At
complexity 1, the first child is always used.

SoMFFloat screenArea
Areas to use for comparison

METHODS

SoLevelOfDetail()
Creates a level-of-detail node with default settings.

static SoType getClassTypeld()
Returns type identifier for this class.

Methods from class SoGroup:

addChild, insertChild, getChild, findChild, getNumChildren, removeChild,
removeChild, removeAllChildren, replaceChild, replaceChild

Methods from class SoNode:
setOverride, isOverride, copy, affectsState, getByName, getByName

331

SoLevelOfDetail

Methods from class SoFieldContainer:

setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, set, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

ACTION BEHAVIOR
SoGLRenderAction, SoRayPickAction, SoCallbackAction
Only the child with the appropriate level of detail is traversed.

SoGetBoundingBoxAction
The box that encloses all children is computed. (This is the box that is
needed to compute the projected size.)

others
All implemented as for SoGroup, except that SoLevelOfDetail saves/restores
state (like SoSeparator) when applying any action.

FILE FORMAT/DEFAULTS
Level O Detail {
screenArea O
}

INCLUDE FILE
#i ncl ude <l nvent or/ nodes/ SoLevel O Detail . h>

SEE ALSO
SoComplexity, SoSwitch, SoSeparator

332 Open Inventor C++ Reference Pages

SoLight

NAME
SoLight — abstract base class for all light source nodes

INHERITS FROM
SoBase > SoFieldContainer > SoNode > SoLight

DESCRIPTION
SoLight is the abstract base class for all light nodes. A light node defines an
illumination source that may affect subsequent shapes in the scene graph,
depending on the current lighting style. Light sources are affected by the current
transformation. A light node under a separator does not affect any objects outside
that separator.

You can also use a node kit to create a light; see the reference page for SoLightKit.

FIELDS
SoSFBool on
Determines whether the source is active or inactive. When inactive, the
source does not illuminate at all.

SoSFFloat intensity
IHlumination intensity of light source. Valid values range from 0.0 (no
illumination) to 1.0 (maximum illumination).

SoSFColor color
Light source illumination color.

METHODS
static SoType getClassTypeld()
Returns type identifier for this class.

Methods from class SoNode:
setOverride, isOverride, copy, affectsState, getByName, getByName

Methods from class SoFieldContainer:

setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, set, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

333

SoLight

ACTION BEHAVIOR
SoGLRenderAction
Activates this light (if so specified) during traversal. All shape nodes that
come after this light in the scene graph are illuminated by this light.

FILE FORMAT/DEFAULTS
This is an abstract class. See the reference page of a derived class for the format and
default values.

INCLUDE FILE
#i ncl ude <l nventor/ nodes/ SoLi ght. h>

SEE ALSO
SoDirectionalLight, SoEnvironment, SoLightKit, SoLightModel, SoMaterial,
SoPointLight, SoSpotLight

334 Open Inventor C++ Reference Pages

SoLightKit

NAME

SoLightKit — light nodekit class

INHERITS FROM

SoBase > SoFieldContainer > SoNode > SoBaseKit > SoLightKit

DESCRIPTION

PARTS

This nodekit class is used to create light nodes that have a local transformation and
a geometry icon to represent the light source. SoLightKit adds three public parts to
the basic nodekit: transform, light, and icon.

SoLightKit creates an SoDirectionalLight as the light part by default - all other
parts are NULL at creation.

You can move the light relative to the rest of the scene by creating and editing the
transform part.

You can add a geometrical representation for the light by setting the icon part to be
any scene graph you like.

SoLightKit also adds two private parts. An SoTransformSeparator contains the
effect of transform to move only the light and icon, while allowing the light to
illuminate the rest of the scene. The second private part is an SoSeparator, which
keeps property nodes within the icon geometry from affecting the rest of the scene.
It also serves to cache the icon even when the light or transform is changing.

SoLightKit is derived from SoBaseKit and thus also includes a callbackList part for
adding callback nodes.

(SoTransform) transform
This part positions and orients the light and icon relative to the rest of the
scene. Its effect is kept local to this nodekit by a private part of type
SoTransformSeparator. The transform part is NULL by default. If you ask for
transform using getPart(), an SoTransform will be returned. But you may set
the part to be any subclass of SoTransform. For example, set the transform to
be an SoDragPointManip and the light to be an SoPointLight. Then you
can move the light by dragging the manipulator with the mouse.

(SoLight) light
The light node for this nodekit. This can be set to any node derived from
SoLight. An SoDirectionalLight is created by default, and it is also the type
of light returned when the you request that the nodekit build a light for
you.

335

SoLightKit

(SoNode) icon
This part is a user-supplied scene graph that represents the light source. It is
NULL by default — an SoCube is created by the lightkit when a method
requires it to build the part itself.

Parts from class SoBaseKit:
callbackList

METHODS
SoLightKit()
Constructor.

static const SoNodekitCatalog *
getClassNodekitCatalog() const
Returns an SoNodekitCatalog for the class SoLightKit.

static SoType getClassTypeld()
Returns type identifier for this class.

Methods from class SoBaseKit:
getNodekitCatalog, getPart, getPartString, createPathToPart, setPart, set, set,
isSearchingChildren, setSearchingChildren

Methods from class SoNode:
setOverride, isOverride, copy, affectsState, getByName, getByName

Methods from class SoFieldContainer:
setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled
Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

MACROS
Macros from class SoBaseKit:

SO_GET_PART, SO_CHECK_PART

336 Open Inventor C++ Reference Pages

SoLightKit

CATALOG PARTS

All parts
NULL by
Part Name Part Type Default Type Default
callbackList NodeKitListPart -- yes
transform Transform -- yes
light Light DirectionalLight no
icon Node Cube yes

Extra information for list parts from above table
Part Name Container Type Permissible Types

callbackList Separator Callback, EventCallback

FILE FORMAT/DEFAULTS
LightKit {
}

INCLUDE FILE
#i ncl ude <I nventor/nodekits/ SoLightKit.h>

SEE ALSO
SoAppearanceKit, SoBaseKit, SoCameraKit, SoNodeKit, SoNodeKitDetail,
SoNodeKitListPart, SoNodeKitPath, SoNodekitCatalog, SoSceneKit, SoSeparatorKit,
SoShapeKit, SoWrapperKit

337

SoLightModel

NAME
SoLightModel — node that defines the lighting model to use when rendering

INHERITS FROM
SoBase > SoFieldContainer > SoNode > SoLightModel

DESCRIPTION
This node defines the lighting model to be used when rendering subsequent shapes.
The lighting model is specified in the model field. When the default model (Phong
lighting) is used, light sources are required in a scene for objects to be easily visible.

FIELDS
SOSFEnum model
Lighting model to use
METHODS
SoLightModel()
Creates a light model node with default settings.
static SoType getClassTypeld()

Returns type identifier for this class.

Methods from class SoNode:
setOverride, isOverride, copy, affectsState, getByName, getByName

Methods from class SoFieldContainer:

setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, set, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

ACTION BEHAVIOR
SoGLRenderAction, SoCallbackAction
Sets the current lighting model in the state.

FILE FORMAT/DEFAULTS
Li ght Model {
nodel PHONG
}

338 Open Inventor C++ Reference Pages

SoLightModel

INCLUDE FILE
#i ncl ude <l nventor/ nodes/ SoLi ght Mbdel . h>

enum Model {
SoLightModel::BASE_COLOR
Use only the base (diffuse) object color
SoLightModel::PHONG
Use Phong lighting model

SEE ALSO
SoBaseColor, SoEnvironment, SoLight, SoMaterial

339

SoLinearProfile

NAME
SoLinearProfile — Piecewise-linear profile curve

INHERITS FROM
SoBase > SoFieldContainer > SoNode > SoProfile > SoLinearProfile

DESCRIPTION
this node specifies a piecewise-linear curve that is used as a profile.

FIELDS
Fields from class SoProfile:

index, linkage

METHODS
SoLinearProfile()
Creates a linear profile node with default settings.
static SoType getClassTypeld()

Returns type identifier for this class.

Methods from class SoNode:
setOverride, isOverride, copy, affectsState, getByName, getByName

Methods from class SoFieldContainer:

setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, set, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

ACTION BEHAVIOR
SoGLRenderAction, SoRayPickAction, SoCallbackAction
Adds a profile to the current state.

FILE FORMAT/DEFAULTS
LinearProfile {
i ndex 0
i nkage START_FI RST

}

INCLUDE FILE
#i ncl ude <Inventor/nodes/ SoLi nearProfile.h>

SEE ALSO
SoNurbsProfile, SoProfileCoordinate2, SoProfileCoordinate3

340 Open Inventor C++ Reference Pages

SoLineDetail

NAME
SoLineDetail — stores detail information about vertex-based shapes made of line
segments

INHERITS FROM
SoDetail > SoLineDetail

DESCRIPTION
This class contains detail information about a point on a line segment in a vertex-
based shape made of line segments. The information includes the points at the ends
of the segment, and the index of the segment within the shape.

METHODS
SoLineDetail()
virtual ~SoLineDetail()
Constructor and destructor.

const SoPointDetail *
getPoint0() const
const SoPointDetail *
getPoint1() const
These return information about the two points forming the end vertices of
the line segment, represented as an SoPointDetail.

long getLinelndex() const
Returns the index of the line the segment is part of within a shape, such as
the third line within an SoLineSet.

long getPartindex() const
Returns the index of the part containing the line segment within the shape.
Usually, the part index is the same as the line segment index, such as the
fifth segment overall within an SoLineSet.

static SoType getClassTypeld()
Returns type identifier for this class.

Methods from class SoDetail:
copy, getTypeld, isOfType

INCLUDE FILE
#i ncl ude <Inventor/details/SoLineDetail.h>

SEE ALSO
SoDetail, SoPickedPoint, SoPrimitiveVertex, SoVertexShape

341

SoLineHighlightRenderAction

NAME

SoLineHighlightRenderAction — selection highlight style

INHERITS FROM

SoAction > SoGLRenderAction > SoLineHighlightRenderAction

DESCRIPTION

METHODS
SoLineHighlightRenderAction()

Constructor.

virtual void apply(SoNode *node)
This renders the passed scene graph, and also renders each selected object in
wireframe, as specified by the first SoSelection node found in the scene
graph.

void setVisible(SbBool b)
This provides a convenient mechansim for turning highlights off or back on.
When FALSE is passed, subsequent calls to apply() render the scene graph
without rendering highlights. The application is responsible for forcing a
redraw of the scene after changing this state. The default visibility is on.

SbBool isVisible() const
Returns whether highlights will be rendered or not.

void setColor(const SbColor &c)

SbColor & getColor()
Set and get the color of the highlight. Default is red (1,0,0). The application
is responsible for forcing a redraw of the scene to see the affects of this
change.

void setLinePattern(unsigned short pattern)

unsigned short getLinePattern()
Set and get the line pattern of the highlight. Default is solid, Oxffff. The
pattern of bits in the passed variable specifies the pattern of the line. See
SoDrawsStyle for more information. The application is responsible for
forcing a redraw of the scene to see the affects of this change.

342 Open Inventor C++ Reference Pages

SoLineHighlightRenderAction is a render action which renders the specified scene
graph, then renders each selected object again in wireframe. Selected objects are
specified by the first SoSelection node in the scene to which this action is applied.
If there is no renderable geometry in a selected object, no highlight is rendered for
that object. A highlight render action can be passed to the setGLRenderAction()
method of SoXtRenderArea to have an affect on scene graphs.

SoLineHighlightRenderAction

void setLineWidth(float width)

float getLineWidth()
Set and get the line width of the highlight. Default is 3. The application is
responsible for forcing a redraw of the scene to see the affects of this change.

Methods from class SoGLRenderAction:

setViewportRegion, getViewportRegion, setUpdateArea, getUpdateArea,
setAbortCallback, setTransparencyType, getTransparencyType,
setSmoothing, isSmoothing, setNumPasses, getNumPasses, setPassUpdate,
isPassUpdate, setPassCallback, setCacheContext, getCacheContext

Methods from class SoAction:
getClassTypeld, getTypeld, isOfType, invalidateState

INCLUDE FILE

#i ncl ude <Inventor/actions/SoLi neH ghlight Render Acti on. h>

EXAMPLE

Here is an example of how a line highlight can be specified for a particular selection
node and render area.

SoXtRenderArea *myRenderArea;
SoSelection *mysSelection;

// Set the highlight render action
myRenderArea->setGLRenderAction(
new SoLineHighlightRenderAction());

// Automatic redraw on selection changes
myRenderArea->redrawOnSelectionChange(mysSelection);

SEE ALSO

SoBoxHighlightRenderAction, SoGLRenderAction, SoSelection, SoXtRenderArea,
SoDrawsStyle, Solnteraction

343

SoLineSet

NAME

SoLineSet — polyline shape node

INHERITS FROM

SoBase > SoFieldContainer > SoNode > SoShape > SoVertexShape >
SoNonIndexedShape > SoLineSet

DESCRIPTION

FIELDS

344

This node represents a 3D shape formed by constructing polylines from vertices
located at the current coordinates. SoLineSet uses the current coordinates in order,
starting at the index specified by the startindex field. Each line has a number of
vertices specified by a value in the numVertices field. For example, an SoLineSet
with a startindex of 3 and numVertices of [3,4,2] would use coordinates 3, 4, and 5
for the first line, coordinates 6, 7, 8, and 9 for the second line, and coordinates 10
and 11 for the third. If the last value in the numVertices field is

SO _LINE_SET _USE_REST_OF_VERTICES (-1), all remaining coordinates in the
current coordinates are used as the vertices of the last line.

The number of values in the numVertices field indicates the number of polylines in
the set.

The coordinates of the line set are transformed by the current cumulative
transformation. The lines are drawn with the current light model and drawing style
(drawing style FILLED is treated as LINES).

Treatment of the current material and normal binding is as follows: The PER_PART
binding specifies a material or normal for each segment of the line. The PER_FACE
binding specifies a material or normal for each polyline. The INDEXED bindings
are equivalent to their non-indexed counterparts. The DEFAULT material binding is
equal to OVERALL. The DEFAULT normal binding is equal to PER_VERTEX. The
startindex is also used for materials, normals, or texture coordinates when the
binding indicates that they should be used per vertex.

The current complexity value has no effect on the rendering of line sets.

SoMFLong numVertices
Number of vertices per polyline.

Fields from class SoNonIndexedShape:
startindex

Open Inventor C++ Reference Pages

SoLineSet

METHODS
SoLineSet()
Creates a line set node with default settings.
static SoType getClassTypeld()

Returns type identifier for this class.

Methods from class SoNode:
setOverride, isOverride, copy, affectsState, getByName, getByName

Methods from class SoFieldContainer:

setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, set, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

ACTION BEHAVIOR
SoGLRenderAction
Draws lines based on the current coordinates, normals, materials, drawing
style, and so on.

SoRayPickAction
Picks lines based on the current coordinates and transformation. Details
about the intersection are returned in an SoLineDetail.

SoGetBoundingBoxAction
Computes the bounding box that encloses all vertices of the line set with the
current transformation applied to them. Sets the center to the average of the
coordinates of all vertices.

SoCallbackAction
If any line segment callbacks are registered with the action, they will be
invoked for each successive segment in the line set.

FILE FORMAT/DEFAULTS
Li neSet {
start | ndex 0
nunvertices -1

345

SoLineSet

INCLUDE FILE
#i ncl ude <l nvent or/ nodes/ SoLi neSet . h>

SEE ALSO
SoCoordinate3, SoDrawsStyle, SolndexedLineSet, SoLineDetail

346 Open Inventor C++ Reference Pages

SolLocation2Event

NAME
SoLocation2Event — 2D location events

INHERITS FROM
SoEvent > SoLocation2Event

DESCRIPTION
SoLocation2Event represents 2D location events in the Inventor event model.

METHODS
SoLocation2Event()
Constructor.

static SoType getClassTypeld()
Return the type id for the SoLocation2Event class.

Methods from class SoEvent:

getTypeld, isOfType, setTime, getTime, setPosition, getPosition, getPosition,
getNormalizedPosition, setShiftDown, setCtrIDown, setAltDown,
wasShiftDown, wasCtrIDown, wasAltDown

INCLUDE FILE
#i ncl ude <l nventor/events/ SoLocati on2Event. h>

SEE ALSO
SoEvent, SoButtonEvent, SoKeyboardEvent, SoMotion3Event, SoMouseButtonEvent,
SoSpaceballButtonEvent, SoHandleEventAction, SoEventCallback, SoSelection,
Solnteraction, SoXtDevice

347

SoMaterial

NAME

SoMaterial — surface material definition node

INHERITS FROM

SoBase > SoFieldContainer > SoNode > SoMaterial

DESCRIPTION

This node defines the current surface material properties for all subsequent shapes.
SoMaterial sets several components of the current material during traversal.
Different shapes interpret materials with multiple values differently. To bind
materials to shapes, use an SoMaterialBinding node.

FIELDS

SoMFColor ambientColor
Ambient color(s) of the surface.

SoMFColor diffuseColor
Diffuse color(s) of the surface.

SoMFColor specularColor
Specular color(s) of the surface.

SoMFColor emissiveColor
Emissive color(s) of the surface.

SoMFFloat shininess
Shininess coefficient(s) of the surface. Values can range from 0.0 for no
shininess (a diffuse surface) to 1.0 for maximum shininess (a highly polished
surface).

SoMFFloat transparency
Transparency value(s) of the surface. Values can range from 0.0 for opaque
surfaces to 1.0 for completely transparent surfaces.

METHODS
SoMaterial()

Creates a material node with default settings.

static SoType getClassTypeld()

348

Returns type identifier for this class.

Methods from class SoNode:
setOverride, isOverride, copy, affectsState, getByName, getByName

Open Inventor C++ Reference Pages

SoMaterial

Methods from class SoFieldContainer:

setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, set, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

ACTION BEHAVIOR
SoGLRenderAction, SoCallbackAction
Sets the ambient color, the diffuse color, the specular color, the emissive
color, the shininess, and the transparency of the current material.

FILE FORMAT/DEFAULTS

Mat erial {
anbi ent Col or 0.2 0.20.2
di f f useCaol or 0.8 0.8 0.8
specularColor 00 O
em ssiveColor 0 0 O
shi ni ness 0.2
transparency 0

}

INCLUDE FILE

#i ncl ude <l nvent or/ nodes/ SoMat eri al . h>

SEE ALSO
SoBaseColor, SoLightModel, SoMaterialBinding, SoPackedColor

349

SoMaterialBinding

NAME
SoMaterialBinding — node that specifies how multiple materials are bound to
shapes

INHERITS FROM
SoBase > SoFieldContainer > SoNode > SoMaterialBinding

DESCRIPTION
This node specifies how the current materials are bound to shapes that follow in the
scene graph. Each shape node may interpret bindings differently. The current
material always has a base value, which is defined by the first value of all material
fields. Since material fields may have multiple values, the binding determines how
these values are distributed over a shape.

The bindings for faces and vertices are meaningful only for shapes that are made
from faces and vertices. Similarly, the indexed bindings are only used by the shapes
that allow indexing.

When multiple material values are bound, the values are cycled through, based on
the period of the material component with the most values. For example, the
following table shows the values used when cycling through (or indexing into) a
material with 2 ambient colors, 3 diffuse colors, and 1 of all other components in
the current material. (The period of this material cycle is 3):

Material Ambient color Diffuse color Other
0 0 0 0
1 1 1 0
2 1 2 0
3 (same as 0) 0 0 0
FIELDS
SOSFEnum value
Specifies how to bind materials to shapes.
METHODS
SoMaterialBinding()
Creates a material binding node with default settings.
static SoType getClassTypeld()

Returns type identifier for this class.

350 Open Inventor C++ Reference Pages

SoMaterialBinding

Methods from class SoNode:
setOverride, isOverride, copy, affectsState, getByName, getByName

Methods from class SoFieldContainer:

setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, set, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

ACTION BEHAVIOR
SoGLRenderAction, SoCallbackAction
Sets the current material binding type.

FILE FORMAT/DEFAULTS
Mat eri al Bi ndi ng {
val ue DEFAULT

}

INCLUDE FILE
#i ncl ude <l nventor/ nodes/ SoMat eri al Bi ndi ng. h>

enum Binding {

SoMaterialBinding::DEFAULT

Use default binding
SoMaterialBinding::OVERALL

Whole object has same material
SoMaterialBinding::PER_PART

One material for each part of object
SoMaterialBinding::PER_PART_INDEXED

One material for each part, indexed
SoMaterialBinding::PER_FACE

One material for each face of object
SoMaterialBinding::PER_FACE_INDEXED

One material for each face, indexed
SoMaterialBinding::PER_VERTEX

One material for each vertex of object
SoMaterialBinding::PER_VERTEX_INDEXED

One material for each vertex, indexed

}

SEE ALSO
SoMaterial, SoNormalBinding, SoShape, SoTextureCoordinateBinding

351

SoMateriallndex

NAME

SoMateriallndex — surface material node for color index mode

INHERITS FROM

SoBase > SoFieldContainer > SoNode > SoMateriallndex

DESCRIPTION

FIELDS

This node is used to define surface materials for scenes to be rendered in OpenGL’s
color index mode (as opposed to RGB mode). The fields of this node set up indices
into the current color map for OpenGL lighting. Refer to the OpenGL manuals for
lighting information. The application is responsible for setting up a color map that
will work for lighting.

The index fields have multiple values, and are bound to shapes in the same manner
as are the fields of the SoMaterial node. Note that the three index fields should
contain the same number of values.

When using both SoMateriallndex and SoMaterial, fields common to the two
nodes (that is, shininess and transparency are overridden, but other fields are not.
Therefore, it is possible to use both nodes in the same graph.

SoMFLong ambientindex
Ambient index(ices) of the surface.

SoMFLong diffuselndex
Diffuse index(ices) of the surface.

SoMFLong specularindex
Specular index(ices) of the surface.

SoMFFloat shininess
Shininess coefficient(s) of the surface. Values can range from 0.0 for no
shininess (a diffuse surface) to 1.0 for maximum shininess (a highly polished
surface).

SoMFFloat transparency
Transparency value(s) of the surface. Values can range from 0.0 for opaque
surfaces to 1.0 for completely transparent surfaces.

METHODS

352

SoMateriallndex()
Creates a material index node with default settings.

Open Inventor C++ Reference Pages

SoMateriallndex

static SoType getClassTypeld()
Returns type identifier for this class.

Methods from class SoNode:
setOverride, isOverride, copy, affectsState, getByName, getByName

Methods from class SoFieldContainer:

setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, set, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

ACTION BEHAVIOR
SoGLRenderAction, SoCallbackAction
Sets the ambient index, the diffuse index, the specular index, the the
shininess, and the transparency of the current material.

FILE FORMAT/DEFAULTS
Mat eri al | ndex {
anbi ent | ndex
di f f usel ndex
specul ar | ndex
shi ni ness
transpar ency

cowN

}

INCLUDE FILE
#i ncl ude <l nvent or/ nodes/ Sovat eri al | ndex. h>

SEE ALSO
SoColorindex, SoMaterial, SoMaterialBinding, SoXtRenderArea

353

SoMatrixTransform

NAME
SoMatrixTransform — node that specifies a 3D geometric transformation as a matrix

INHERITS FROM
SoBase > SoFieldContainer > SoNode > SoTransformation > SoMatrixTransform

DESCRIPTION
This node defines a geometric 3D transformation with a single SbMatrix. Note that
some matrices (such as singular ones) may result in errors in bounding boxes,
picking, and lighting.

FIELDS
SoSFMatrix matrix
Transformation matrix.

METHODS
SoMatrixTransform()
Creates a matrix transformation node with default settings.

static SoType getClassTypeld()
Returns type identifier for this class.

Methods from class SoNode:
setOverride, isOverride, copy, affectsState, getByName, getByName

Methods from class SoFieldContainer:

setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, set, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

ACTION BEHAVIOR
SoGLRenderAction, SoCallbackAction, SoGetBoundingBoxAction,
SoRayPickAction
Concatenates matrix given in the matrix field with the current
transformation matrix.

SoGetMatrixAction
Returns transformation matrix specified in the matrix field.

354 Open Inventor C++ Reference Pages

SoMatrixTransform

FILE FORMAT/DEFAULTS
Mat ri xTr ansf or

m {
matrix 1 000
0100
0010
0001
}
INCLUDE FILE

#i ncl ude <l nvent or/ nodes/ Sovat ri xTransf orm h>

SEE ALSO
SoTransform, SoMultipleCopy

355

SoMemoryError

NAME
SoMemoryError — memory error handling

INHERITS FROM
SoError > SoMemoryError

DESCRIPTION
SoMemoryError is used for errors reported due to lack of memory.

METHODS
static void setHandlerCallback(SoErrorCB *cb, void *data)
static SOErrorCB *
getHandlerCallback()
static void * getHandlerData()
Sets/returns handler callback for SoMemoryError class.

static SoType getClassTypeld()
Returns type identifier for SoMemoryError class.

Methods from class SoError:
getDebugString, getTypeld, isOfType

INCLUDE FILE
#i ncl ude <Inventor/errors/ SoMenoryError. h>

SEE ALSO
SoDebugError, SoReadError

356 Open Inventor C++ Reference Pages

SoMFBitMask

NAME
SoMFBitMask — multiple-value field containing any number of masks of bit flags

INHERITS FROM
SoField > SoMField > SOMFEnum > SoMFBitMask

DESCRIPTION
A multiple-value field that contains any number of masks of bit flags, stored as ints.
Nodes or engines that use this field class define mnemonic names for the bit flags.
These names should be used when setting or testing the values of the field, even
though the values are treated as integers in the methods.

The bit-wise "&" and "[* operators should be used when testing and setting flags in a
mask.

SoMFBitMasks are written to file as one or more mnemonic enumerated type
names, in this format:

(flagl |flag2|...)
If only one flag is used in a mask, the parentheses are optional. These names differ
among uses of this field in various node or engine classes. See the reference pages for

specific nodes or engines for the names.

The field values may also be represented as integers, but this is not guaranteed to be
portable.

When more than one value is present, all of the values are enclosed in square
brackets and separated by commas.

METHODS

static SoType getClassTypeld()

virtual void getTypeld() const
Returns the type for this class or a particular object of this class.

int operator [](int i) const
Returns the i’'th value of the field. Indexing past the end of the field (passing
in i greater than getNum()) will return garbage.

constint * getValues(int start) const

Returns a pointer into the array of values in the field, starting at index start.
The values are read-only; see the startEditing()/finishEditing() methods for
a way of modifying values in place.

357

SoMFBitMask

358

int

void

void

int
void

int
int

int*
void

find(int targetValue, SbBool addIfNotFound = FALSE)
Finds the given value in the array and returns the index of that value in the
array. If the value is not found, -1 is returned. If addIfNotFound is set, then
targetVValue is added to the end of the array (but -1 is still returned).

setValues(int start, int num, const int *newValues)
Sets num values starting at index start to the values in newValues. The array
will be automatically be made larger to accomodate the new values, if
necessary.

setlValue(int index, int newValue)
Sets the index’th value in the array to newValue. The array will be
automatically expanded, if necessary.

operator =(int newValue)

setValue(int newValue)
Sets the first value in the array to newValue, and deletes the second and
subsequent values.

operator ==(const SOMFBitMask &f) const

operator !=(const SOMFBitMask &f) const
Returns TRUE if all of the values of this field equal (do not equal) those of
the given field. If the fields are different types FALSE will always be returned
(even if one field is an SoMFFloat with one value of 1.0 and the other is an
SoMFInt with a value of 1, for example).

startEditing()

finishEditing()
startEditing() returns a pointer to the internally-maintained array that can
be modified. The values in the array may be changed, but values cannot be
added or removed. It is illegal to call any other editing methods between
startEditing() and finishEditing() (e.g. set1Value(), setValue(), etc).

Fields, engines or sensors connected to this field and sensors are not notified
that this field has changed until finishEditing() is called. Calling
finishEditing() always sets the isDefault() flag to FALSE and informs
engines and sensors that the field changed, even if none of the values
actually were changed.

Methods from class SoMField:

getNum, setNum, deleteValues, insertSpace, setl, getl

Open Inventor C++ Reference Pages

SoMFBitMask

Methods from class SoField:

setlgnored, islgnored, isDefault, isOfType, set, get, touch, connectFrom,
connectFrom, disconnect, isConnected, isConnectedFromField,
getConnectedField, isConnectedFromEnNngine, getConnectedEngine,
enableConnection, isConnectionEnabled, getForwardConnections,
getContainer

INCLUDE FILE
#i ncl ude <l nventor/fiel ds/ SOM-Bi t Mask. h>

359

SoMFBool

NAME

SoMFBool — multiple-value field containing any number of boolean values

INHERITS FROM

SoField > SoMField > SoMFBool

DESCRIPTION

A multiple-value field that contains any number of boolean values.

SoMFBools are written to file as one or more boolean values, which are written as
"0" (representing a false value), "1", "TRUE", or "FALSE".

When more than one value is present, all of the values are enclosed in square
brackets and separated by commas; for example:

[0, FALSE, 1, TRUE]

METHODS

360

static SoType getClassTypeld()
virtual void getTypeld() const
Returns the type for this class or a particular object of this class.

SbBool operator [](int i) const
Returns the i’'th value of the field. Indexing past the end of the field (passing
in i greater than getNum()) will return garbage.

const SbBool * getValues(int start) const
Returns a pointer into the array of values in the field, starting at index start.
The values are read-only; see the startEditing()/finishEditing() methods for
a way of modifying values in place.

int find(SbBool targetValue, SbBool addIfNotFound = FALSE)
Finds the given value in the array and returns the index of that value in the
array. If the value is not found, -1 is returned. If addIfNotFound is set, then
targetVValue is added to the end of the array (but -1 is still returned).

void setValues(int start, int num, const SbBool *newValues)
Sets num values starting at index start to the values in newValues. The array
will be automatically be made larger to accomodate the new values, if
necessary.

Open Inventor C++ Reference Pages

SoMFBool

void setlValue(int index, SbBool newValue)
Sets the index’th value in the array to newValue. The array will be
automatically expanded, if necessary.

SbBool operator =(SbBool newValue)

void setValue(SbBool newValue)
Sets the first value in the array to newValue, and deletes the second and
subsequent values.

int operator ==(const SoMFBool &f) const

int operator !=(const SoMFBool &f) const
Returns TRUE if all of the values of this field equal (do not equal) those of
the given field. If the fields are different types FALSE will always be returned
(even if one field is an SoMFFloat with one value of 1.0 and the other is an
SoMFInt with a value of 1, for example).

SbBool * startEditing()

void finishEditing()
startEditing() returns a pointer to the internally-maintained array that can
be modified. The values in the array may be changed, but values cannot be
added or removed. It is illegal to call any other editing methods between
startEditing() and finishEditing() (e.g. set1Value(), setValue(), etc).

Fields, engines or sensors connected to this field and sensors are not notified
that this field has changed until finishEditing() is called. Calling
finishEditing() always sets the isDefault() flag to FALSE and informs
engines and sensors that the field changed, even if none of the values
actually were changed.

Methods from class SoMField:
getNum, setNum, deleteValues, insertSpace, setl, getl

Methods from class SoField:

setlgnored, islgnored, isDefault, isOfType, set, get, touch, connectFrom,
connectFrom, disconnect, isConnected, isConnectedFromField,
getConnectedField, isConnectedFromEnNngine, getConnectedEngine,
enableConnection, isConnectionEnabled, getForwardConnections,
getContainer

INCLUDE FILE
#i ncl ude <l nventor/fiel ds/ SoM~Bool . h>

361

SoMFColor

NAME
SoMFColor — multiple-value field containing any number of RGB colors stored as
three floats

INHERITS FROM
SoField > SoMField > SoMFColor

DESCRIPTION
A multiple-value field that contains any number of RGB colors, stored as instances
of SbColor. Values may be set in either RGB (red, green, blue) or HSV (hue,
saturation, value) color spaces.

SoMFColors are written to file as one or more RGB triples of floating point numbers
in standard scientific notation. When more than one value is present, all of the
values are enclosed in square brackets and separated by commas. For example:

[1.00.00.0,010,001]

represents the three colors red, green, and blue.

METHODS

void setValues(int start, int num, const float rgb[][3])

void setHSVValues(int start, int num, const float hsv[][3])
Sets num values starting at index start to the RGB (or HSV) values specified
by the given array of floats. Each float should be in the range 0.0 to 1.0, and
there must be 3*num floats in the array.

void setValue(const SbVec3f &vec)

void setValue(float red, float green, float blue)

void setHSVValue(float hue, float saturation, float value)

void setValue(const float rgb[3])

void setHSVValue(const float hsv[3])
Sets the field to contain one and only one value, the given color (expressed
as either RGB or HSV floating point values in the range 0.0 to 1.0), and
deletes the second and subsequent values.

void setlValue(index, const SbVec3f &vec)

void setlValue(index, float r, float g, float b)

void setlHSVValue(index, float h, float s, float v)

void setlValue(index, const float rgb[3])

void setlHSVValue(index, const float hsv[3])

Sets one value in the array to the given color. The array will be expanded
and filled with zeroes as necessary.

362 Open Inventor C++ Reference Pages

SoMFColor

static SoType getClassTypeld()
virtual void getTypeld() const
Returns the type for this class or a particular object of this class.

const SbColor & operator [](int i) const
Returns the i’th value of the field. Indexing past the end of the field (passing
in i greater than getNum()) will return garbage.

const SbColor * getValues(int start) const
Returns a pointer into the array of values in the field, starting at index start.
The values are read-only; see the startEditing()/finishEditing() methods for
a way of modifying values in place.

int find(const SbColor & targetValue, SbBool addIfNotFound =
FALSE)
Finds the given value in the array and returns the index of that value in the
array. If the value is not found, -1 is returned. If addIfNotFound is set, then
targetVValue is added to the end of the array (but -1 is still returned).

void setValues(int start, int num, const SbColor *newValues)
Sets num values starting at index start to the values in newValues. The array
will be automatically be made larger to accomodate the new values, if
necessary.

void setlValue(int index, const SbColor & newValue)
Sets the index’th value in the array to newValue. The array will be
automatically expanded, if necessary.

const SbColor & operator =(const SbColor & newValue)

void setValue(const SbColor & newValue)
Sets the first value in the array to newValue, and deletes the second and
subsequent values.

int operator ==(const SOMFColor &f) const

int operator !=(const SOMFColor &f) const
Returns TRUE if all of the values of this field equal (do not equal) those of
the given field. If the fields are different types FALSE will always be returned
(even if one field is an SoMFFloat with one value of 1.0 and the other is an
SoMFInt with a value of 1, for example).

363

SoMFColor

SbColor * startEditing()

void

finishEditing()
startEditing() returns a pointer to the internally-maintained array that can
be modified. The values in the array may be changed, but values cannot be
added or removed. It is illegal to call any other editing methods between
startEditing() and finishEditing() (e.g. set1Value(), setValue(), etc).

Fields, engines or sensors connected to this field and sensors are not notified
that this field has changed until finishEditing() is called. Calling
finishEditing() always sets the isDefault() flag to FALSE and informs
engines and sensors that the field changed, even if none of the values
actually were changed.

Methods from class SoMField:

getNum, setNum, deleteValues, insertSpace, setl, getl

Methods from class SoField:

SEE ALSO

setlgnored, islgnored, isDefault, isOfType, set, get, touch, connectFrom,
connectFrom, disconnect, isConnected, isConnectedFromField,
getConnectedField, isConnectedFromEnNngine, getConnectedEngine,
enableConnection, isConnectionEnabled, getForwardConnections,
getContainer

SbColor

364

Open Inventor C++ Reference Pages

SoMFEnum

NAME
SoMFEnum — multiple-value field containing any number of enumerated type
values

INHERITS FROM
SoField > SoMField > SOMFEnum

DESCRIPTION
A multiple-value field that contains any number of enumerated type values, stored
as ints. Nodes that use this field class define mnemonic names for values. These
names should be used when setting or testing the values of the field, even though
the values are treated as integers in the methods.

SoMFEnums are written to file as a set of mnemonic enumerated type names. These
names differ among uses of this field in various node classes. See the reference pages
for specific nodes for the names.

When more than one value is present, all of the values are enclosed in square
brackets and separated by commas.

METHODS

void setValue(const SbName &name)
Sets this field to contain one and only one value, which is the mnemonic
name as a string.

void setlValue(int index, const SbName &name)
Sets the index’th value to be the integer corresponding to the mnemonic
name in the given string.

static SoType getClassTypeld()

virtual void getTypeld() const
Returns the type for this class or a particular object of this class.

int operator [](int i) const
Returns the i’'th value of the field. Indexing past the end of the field (passing
in i greater than getNum()) will return garbage.

constint * getValues(int start) const

Returns a pointer into the array of values in the field, starting at index start.
The values are read-only; see the startEditing()/finishEditing() methods for
a way of modifying values in place.

365

SoMFEnum

366

int

void

void

int
void

int
int

int*
void

find(int targetValue, SbBool addIfNotFound = FALSE)
Finds the given value in the array and returns the index of that value in the
array. If the value is not found, -1 is returned. If addIfNotFound is set, then
targetVValue is added to the end of the array (but -1 is still returned).

setValues(int start, int num, const int *newValues)
Sets num values starting at index start to the values in newValues. The array
will be automatically be made larger to accomodate the new values, if
necessary.

setlValue(int index, int newValue)
Sets the index’th value in the array to newValue. The array will be
automatically expanded, if necessary.

operator =(int newValue)

setValue(int newValue)
Sets the first value in the array to newValue, and deletes the second and
subsequent values.

operator ==(const SOMFEnum &f) const

operator !=(const SOMFEnum &f) const
Returns TRUE if all of the values of this field equal (do not equal) those of
the given field. If the fields are different types FALSE will always be returned
(even if one field is an SoMFFloat with one value of 1.0 and the other is an
SoMFInt with a value of 1, for example).

startEditing()

finishEditing()
startEditing() returns a pointer to the internally-maintained array that can
be modified. The values in the array may be changed, but values cannot be
added or removed. It is illegal to call any other editing methods between
startEditing() and finishEditing() (e.g. set1Value(), setValue(), etc).

Fields, engines or sensors connected to this field and sensors are not notified
that this field has changed until finishEditing() is called. Calling
finishEditing() always sets the isDefault() flag to FALSE and informs
engines and sensors that the field changed, even if none of the values
actually were changed.

Methods from class SoMField:

getNum, setNum, deleteValues, insertSpace, setl, getl

Open Inventor C++ Reference Pages

SoMFEnum

Methods from class SoField:

setlgnored, islgnored, isDefault, isOfType, set, get, touch, connectFrom,
connectFrom, disconnect, isConnected, isConnectedFromField,
getConnectedField, isConnectedFromEnNngine, getConnectedEngine,
enableConnection, isConnectionEnabled, getForwardConnections,
getContainer

367

SoMFFloat

NAME

SoMFFloat — multiple-value field containing any number of floating point values

INHERITS FROM

SoField > SoMField > SoMFFloat

DESCRIPTION

A multiple-value field that contains any number of floating point values.
SoMFFloats are written to file as one or more values in standard scientific notation.
When more than one value is present, all of the values are enclosed in square
brackets and separated by commas; for example:

[1.0, 2.3, 5, 6.2e4, -100,]

The last comma is optional.

METHODS

368

static SoType getClassTypeld()
virtual void getTypeld() const
Returns the type for this class or a particular object of this class.

float operator [](int i) const
Returns the i’'th value of the field. Indexing past the end of the field (passing
in i greater than getNum()) will return garbage.

const float * getValues(int start) const
Returns a pointer into the array of values in the field, starting at index start.
The values are read-only; see the startEditing()/finishEditing() methods for
a way of modifying values in place.

int find(float targetValue, SbBool addIfNotFound = FALSE)
Finds the given value in the array and returns the index of that value in the
array. If the value is not found, -1 is returned. If addIfNotFound is set, then
targetValue is added to the end of the array (but -1 is still returned).

void setValues(int start, int num, const float *newValues)
Sets num values starting at index start to the values in newValues. The array
will be automatically be made larger to accomodate the new values, if
necessary.

void setlValue(int index, float newValue)

Sets the index’th value in the array to newValue. The array will be
automatically expanded, if necessary.

Open Inventor C++ Reference Pages

SoMFFloat

float operator =(float newValue)

void setValue(float newValue)
Sets the first value in the array to newValue, and deletes the second and
subsequent values.

int operator ==(const SoMFFloat &f) const

int operator !=(const SoMFFloat &f) const
Returns TRUE if all of the values of this field equal (do not equal) those of
the given field. If the fields are different types FALSE will always be returned
(even if one field is an SoMFFloat with one value of 1.0 and the other is an
SoMFInt with a value of 1, for example).

float * startEditing()

void finishEditing()
startEditing() returns a pointer to the internally-maintained array that can
be modified. The values in the array may be changed, but values cannot be
added or removed. It is illegal to call any other editing methods between
startEditing() and finishEditing() (e.g. set1Value(), setValue(), etc).

Fields, engines or sensors connected to this field and sensors are not notified
that this field has changed until finishEditing() is called. Calling
finishEditing() always sets the isDefault() flag to FALSE and informs
engines and sensors that the field changed, even if none of the values
actually were changed.

Methods from class SoMField:
getNum, setNum, deleteValues, insertSpace, setl, getl

Methods from class SoField:

setlgnored, islgnored, isDefault, isOfType, set, get, touch, connectFrom,
connectFrom, disconnect, isConnected, isConnectedFromField,
getConnectedField, isConnectedFromEnNngine, getConnectedEngine,
enableConnection, isConnectionEnabled, getForwardConnections,
getContainer

INCLUDE FILE
#i ncl ude <l nventor/fiel ds/ SOMFFI oat . h>

369

SoMField

NAME

SoMField — base class for all multiple-valued fields

INHERITS FROM

SoField > SoMField

DESCRIPTION

370

Each class derived from SoMField begins with an SOMF prefix and contains a
dynamic array of values of a particular type. Each has a setValues() method that is
passed a pointer to a const array of values of the correct type; these values are copied
into the array in the field, making extra room in the array if necessary. The start and
num parameters to this method indicate the starting array index to copy into and
the number of values to copy.

The getValues() method for a multiple-value field returns a const pointer to the
array of values in the field. (Because this pointer is const, it cannot be used to
change values in this array.)

In addition, the indexing operator "[]" is overloaded to return the i’th value in the
array; because it returns a const reference, it can be used only to get values, not to
set them.

Methods are provided for getting the number of values in the field, inserting space
for new values in the middle, and deleting values.

There are other methods that allow you to set only one value of several in the field
and to set the field to contain one and only one value.

Two other methods can be used to make several changes to a multiple-value field
without the overhead of copying values into and out of the fields. The
startEditing() method returns a non-const pointer to the array of values in the field;
this pointer can then be used to change (but not add or remove) any values in the
array. The finishEditing() method indicates that the editing is done and notifies
any sensors or engines that may be connected to the field.

SoMFields are written to file as a series of values separated by commas, all enclosed
in square brackets. If the field has no values (getNum() returns zero), then only the
square brackets ("[]") are written. The last value may optionally be followed by a
comma. Each field subtype defines how the values are written; for example, a field
whose values are integers might be written as:

[1,2,3,4]

or:
[11 21 31 41]

Open Inventor C++ Reference Pages

SoMField

METHODS

int getNum() const
Returns the number of values currently in the field.

void setNum(int num)
Forces this field to have exactly num values, inserting or deleting values as
necessary.

virtual void deleteValues(int start, int num = -1)
Deletes num values beginning at index start (index start through start+num-1
will be deleted, and any leftover values will be moved down to fill in the gap
created). A num of -1 means delete all values from start to the last value in
the field; getNum() will return start as the number of values in the field after
this operation (deleteValues(0, -1) empties the field).

virtual void insertSpace(int start, int num)
Inserts space for num values at index start. Index start through start+num-1
will be moved up to make room. For example, to make room for 7 new
values at the beginning of the field call insertSpace(0, 10).

SbBool setl(int index, const char *valueString)

void getl(int index, SbString &valueString)
These are equivalent to the set() and get() methods of SoField, but they
operate on only one value. See the SoField methods for details.

static SoType getClassTypeld()

Return the type identifier for this field class.

Methods from class SoField:
setlgnored, islgnored, isDefault, getTypeld, isOfType, set, get, operator ==,
operator !=, touch, connectFrom, connectFrom, disconnect, isConnected,
isConnectedFromField, getConnectedField, isConnectedFromEngine,
getConnectedEngine, enableConnection, isConnectionEnabled,
getForwardConnections, getContainer

INCLUDE FILE
#i ncl ude <l nventor/fields/ SoField. h>

SEE ALSO
SoNode, SoEngine

371

SoMFLong

NAME

SoMFLong — multiple-value field containing any number of long integers

INHERITS FROM

SoField > SoMField > SoMFLong

DESCRIPTION

A multiple-value field that contains any number of long (32-bit) integers.
SoMFLongs are written to file as one or more integer values, in decimal,
hexadecimal or octal format. When more than one value is present, all of the values
are enclosed in square brackets and separated by commas; for example:

[17, -OXE20, -518820]

METHODS

372

static SoType getClassTypeld()
virtual void getTypeld() const
Returns the type for this class or a particular object of this class.

long operator [](int i) const
Returns the i’'th value of the field. Indexing past the end of the field (passing
in i greater than getNum()) will return garbage.

const long * getValues(int start) const
Returns a pointer into the array of values in the field, starting at index start.
The values are read-only; see the startEditing()/finishEditing() methods for
a way of modifying values in place.

int find(long targetValue, SbBool addIfNotFound = FALSE)
Finds the given value in the array and returns the index of that value in the
array. If the value is not found, -1 is returned. If addIfNotFound is set, then
targetValue is added to the end of the array (but -1 is still returned).

void setValues(int start, int num, const long *newValues)
Sets num values starting at index start to the values in newValues. The array
will be automatically be made larger to accomodate the new values, if
necessary.

void setlValue(int index, long newValue)

Sets the index’th value in the array to newValue. The array will be
automatically expanded, if necessary.

Open Inventor C++ Reference Pages

SoMFLong

long
void

int
int

long *
void

operator =(long newValue)

setValue(long newValue)
Sets the first value in the array to newValue, and deletes the second and
subsequent values.

operator ==(const SoMFLong &f) const

operator !=(const SOMFLong &f) const
Returns TRUE if all of the values of this field equal (do not equal) those of
the given field. If the fields are different types FALSE will always be returned
(even if one field is an SoMFFloat with one value of 1.0 and the other is an
SoMFInt with a value of 1, for example).

startEditing()

finishEditing()
startEditing() returns a pointer to the internally-maintained array that can
be modified. The values in the array may be changed, but values cannot be
added or removed. It is illegal to call any other editing methods between
startEditing() and finishEditing() (e.g. set1Value(), setValue(), etc).

Fields, engines or sensors connected to this field and sensors are not notified
that this field has changed until finishEditing() is called. Calling
finishEditing() always sets the isDefault() flag to FALSE and informs
engines and sensors that the field changed, even if none of the values
actually were changed.

Methods from class SoMField:

getNum, setNum, deleteValues, insertSpace, setl, getl

Methods from class SoField:

INCLUDE FILE

setlgnored, islgnored, isDefault, isOfType, set, get, touch, connectFrom,
connectFrom, disconnect, isConnected, isConnectedFromField,
getConnectedField, isConnectedFromEnNngine, getConnectedEngine,
enableConnection, isConnectionEnabled, getForwardConnections,
getContainer

#i ncl ude <lnventor/fiel ds/ SoMrLong. h>

373

SoMFMatrix

NAME

SoMFMatrix — multiple-value field containing any number of 4x4 matrices

INHERITS FROM

SoField > SoMField > SoMFMatrix

DESCRIPTION

A multiple-value field that contains any number of 4x4 matrices.

SoMFMatrices are written to file as sets of 16 floating point numbers separated by
whitespace. When more than one value is present, all of the values are enclosed in

square brackets and separated by commas; for example, two identity matrices might
be written as:

[LOOO 010000100001,
1000010000100001]

METHODS
void setValue(float all, float al2, float al3, float al4, float a21, float
a22, float a23, float a24, float a31, float a32, float a33, float
a34, float a41, float a42, float a43, float a44)
Makes this field contain one and only one value, which is the matrix given
by the 16 values.
static SoType getClassTypeld()
virtual void getTypeld() const

374

Returns the type for this class or a particular object of this class.

const SbMatrix &
operator [](int i) const
Returns the i’'th value of the field. Indexing past the end of the field (passing
in i greater than getNum()) will return garbage.

const SbMatrix * getValues(int start) const
Returns a pointer into the array of values in the field, starting at index start.
The values are read-only; see the startEditing()/finishEditing() methods for
a way of modifying values in place.

int find(const SbMatrix & targetValue, SbBool addIfNotFound =
FALSE)
Finds the given value in the array and returns the index of that value in the
array. If the value is not found, -1 is returned. If addIfNotFound is set, then
targetVValue is added to the end of the array (but -1 is still returned).

Open Inventor C++ Reference Pages

SoMFMatrix

void

void

setValues(int start, int num, const SbMatrix *newValues)
Sets num values starting at index start to the values in newValues. The array
will be automatically be made larger to accomodate the new values, if
necessary.

setlValue(int index, const SbMatrix & newValue)
Sets the index’th value in the array to newValue. The array will be
automatically expanded, if necessary.

const SbMatrix &

operator =(const SbMatrix & newValue)

void setValue(const SbMatrix & newValue)
Sets the first value in the array to newValue, and deletes the second and
subsequent values.

int operator ==(const SoMFMatrix &f) const

int operator !=(const SoMFMatrix &f) const
Returns TRUE if all of the values of this field equal (do not equal) those of
the given field. If the fields are different types FALSE will always be returned
(even if one field is an SoMFFloat with one value of 1.0 and the other is an
SoMFInt with a value of 1, for example).

SbMatrix * startEditing()

void finishEditing()

startEditing() returns a pointer to the internally-maintained array that can
be modified. The values in the array may be changed, but values cannot be
added or removed. It is illegal to call any other editing methods between
startEditing() and finishEditing() (e.g. set1Value(), setValue(), etc).

Fields, engines or sensors connected to this field and sensors are not notified
that this field has changed until finishEditing() is called. Calling
finishEditing() always sets the isDefault() flag to FALSE and informs
engines and sensors that the field changed, even if none of the values
actually were changed.

Methods from class SoMField:

getNum, setNum, deleteValues, insertSpace, setl, getl

375

SoMFMatrix

Methods from class SoField:

setlgnored, islgnored, isDefault, isOfType, set, get, touch, connectFrom,
connectFrom, disconnect, isConnected, isConnectedFromField,
getConnectedField, isConnectedFromEnNngine, getConnectedEngine,
enableConnection, isConnectionEnabled, getForwardConnections,
getContainer

INCLUDE FILE
#i ncl ude <l nventor/fields/SoM~Matri x. h>

376 Open Inventor C++ Reference Pages

SoMFName

NAME
SoMFName — multiple-value field containing any number of names

INHERITS FROM
SoField > SoMField > SOMFName

DESCRIPTION
A multiple-valued field containing any number of names. Names are short series of
characters generally used for labels or names, and are stored in a special table
designed to allow fast lookup and comparison. For most purposes, an SOMFString
field is probably more appropriate.

SoMFNames are written to file as one or more strings of characters. Names must
begin with an underscore or alphabetic character, and must consist entirely of
underscores, alphabetic characters, or numbers. When more than one value is
present, all of the values are enclosed in square brackets and separated by commas;
for example:

[Fred, Wilma, Part 01, translationField]

METHODS

void setValues(int start, int num, const char *strings[])
Sets num values beginning at index start to the names contained in the given
set of character strings.

void setValue(const char *string)
Sets this field to contain one and only one value, given by string.

static SoType getClassTypeld()

virtual void getTypeld() const

Returns the type for this class or a particular object of this class.

const SbName & operator [](int i) const
Returns the i’'th value of the field. Indexing past the end of the field (passing
in i greater than getNum()) will return garbage.

const SbName * getValues(int start) const
Returns a pointer into the array of values in the field, starting at index start.
The values are read-only; see the startEditing()/finishEditing() methods for
a way of modifying values in place.

377

SoMFName

378

int

void

void

find(const SbName & targetValue, SbBool addIfNotFound =
FALSE)
Finds the given value in the array and returns the index of that value in the
array. If the value is not found, -1 is returned. If addIfNotFound is set, then
targetVValue is added to the end of the array (but -1 is still returned).

setValues(int start, int num, const SbName *newValues)
Sets num values starting at index start to the values in newValues. The array
will be automatically be made larger to accomodate the new values, if
necessary.

setlValue(int index, const SbName & newValue)
Sets the index’th value in the array to newValue. The array will be
automatically expanded, if necessary.

const SbName & operator=(const SbName & newValue)

void setValue(const SbName & newValue)
Sets the first value in the array to newValue, and deletes the second and
subsequent values.

int operator ==(const SoMFName &f) const

int operator !=(const SoOMFName &f) const
Returns TRUE if all of the values of this field equal (do not equal) those of
the given field. If the fields are different types FALSE will always be returned
(even if one field is an SoMFFloat with one value of 1.0 and the other is an
SoMFInt with a value of 1, for example).

SbName * startEditing()

void finishEditing()

startEditing() returns a pointer to the internally-maintained array that can
be modified. The values in the array may be changed, but values cannot be
added or removed. It is illegal to call any other editing methods between
startEditing() and finishEditing() (e.g. set1Value(), setValue(), etc).

Fields, engines or sensors connected to this field and sensors are not notified
that this field has changed until finishEditing() is called. Calling
finishEditing() always sets the isDefault() flag to FALSE and informs
engines and sensors that the field changed, even if none of the values
actually were changed.

Methods from class SoMField:

getNum, setNum, deleteValues, insertSpace, setl, getl

Open Inventor C++ Reference Pages

SoMFName

Methods from class SoField:

setlgnored, islgnored, isDefault, isOfType, set, get, touch, connectFrom,
connectFrom, disconnect, isConnected, isConnectedFromField,
getConnectedField, isConnectedFromEnNngine, getConnectedEngine,
enableConnection, isConnectionEnabled, getForwardConnections,
getContainer

INCLUDE FILE
#i ncl ude <l nventor/fiel ds/ SoMFNane. h>

379

SoMFNode

NAME

SoMFNode — multiple-value field containing any number of pointers to nodes

INHERITS FROM

SoField > SoMField > SoMFNode

DESCRIPTION

This field maintains a set of pointers to SoNode instances, correctly maintaining
their reference counts.

SoMFNodes are written to file as one or more nodes. When more than one value is
present, all of the values are enclosed in square brackets and separated by commas;
for example:

[Cube {}, Sphere { radius 2.0 }, USE myTranslation]

METHODS
static SoType getClassTypeld()
virtual void getTypeld() const
Returns the type for this class or a particular object of this class.
SoNode * operator [](int i) const

380

Returns the i’'th value of the field. Indexing past the end of the field (passing
in i greater than getNum()) will return garbage.

const SoNode ** getValues(int start) const
Returns a pointer into the array of values in the field, starting at index start.
The values are read-only; see the startEditing()/finishEditing() methods for
a way of modifying values in place.

int find(SoNode * targetValue, SbBool addIfNotFound = FALSE)
Finds the given value in the array and returns the index of that value in the
array. If the value is not found, -1 is returned. If addIfNotFound is set, then
targetValue is added to the end of the array (but -1 is still returned).

void setValues(int start, int num, const SoNode * *newValues)
Sets num values starting at index start to the values in newValues. The array
will be automatically be made larger to accomodate the new values, if
necessary.

void setlValue(int index, SoNode * newValue)

Sets the index’th value in the array to newValue. The array will be
automatically expanded, if necessary.

Open Inventor C++ Reference Pages

SoMFNode

SoNode * operator =(SoNode * newValue)

void setValue(SoNode * newValue)
Sets the first value in the array to newValue, and deletes the second and
subsequent values.

int operator ==(const SOMFNode &f) const

int operator !=(const SOMFNode &f) const
Returns TRUE if all of the values of this field equal (do not equal) those of
the given field. If the fields are different types FALSE will always be returned
(even if one field is an SoMFFloat with one value of 1.0 and the other is an
SoMFInt with a value of 1, for example).

SoNode * * startEditing()

void finishEditing()
startEditing() returns a pointer to the internally-maintained array that can
be modified. The values in the array may be changed, but values cannot be
added or removed. It is illegal to call any other editing methods between
startEditing() and finishEditing() (e.g. set1Value(), setValue(), etc).

Fields, engines or sensors connected to this field and sensors are not notified
that this field has changed until finishEditing() is called. Calling
finishEditing() always sets the isDefault() flag to FALSE and informs
engines and sensors that the field changed, even if none of the values
actually were changed.

Methods from class SoMField:
getNum, setNum, deleteValues, insertSpace, setl, getl

Methods from class SoField:

setlgnored, islgnored, isDefault, isOfType, set, get, touch, connectFrom,
connectFrom, disconnect, isConnected, isConnectedFromField,
getConnectedField, isConnectedFromEnNngine, getConnectedEngine,
enableConnection, isConnectionEnabled, getForwardConnections,
getContainer

INCLUDE FILE
#i ncl ude <l nventor/fiel ds/ SoMFNode. h>

381

SoMFPath

NAME

SoMFPath — multiple-value field containing any number of pointers to paths

INHERITS FROM

SoField > SoMField > SoMFPath

DESCRIPTION

This field maintains a set of pointers to SoPath instances, correctly maintaining
their reference counts.

SoMFPaths are written to file as one or more paths (see the SoPath manual page for
a description of the file format for a path). When more than one value is present, all
of the values are enclosed in square brackets and separated by commas.

METHODS
static SoType getClassTypeld()
virtual void getTypeld() const
Returns the type for this class or a particular object of this class.
SoPath * operator [](int i) const

382

Returns the i’'th value of the field. Indexing past the end of the field (passing
in i greater than getNum()) will return garbage.

const SoPath * * getValues(int start) const
Returns a pointer into the array of values in the field, starting at index start.
The values are read-only; see the startEditing()/finishEditing() methods for
a way of modifying values in place.

int find(SoPath * targetValue, SbBool addIfNotFound = FALSE)
Finds the given value in the array and returns the index of that value in the
array. If the value is not found, -1 is returned. If addIfNotFound is set, then
targetVValue is added to the end of the array (but -1 is still returned).

void setValues(int start, int num, const SoPath * *newValues)
Sets num values starting at index start to the values in newValues. The array
will be automatically be made larger to accomodate the new values, if
necessary.

void setlValue(int index, SoPath * newValue)

Sets the index’th value in the array to newValue. The array will be
automatically expanded, if necessary.

Open Inventor C++ Reference Pages

SoMFPath

SoPath * operator =(SoPath * newValue)

void setValue(SoPath * newValue)
Sets the first value in the array to newValue, and deletes the second and
subsequent values.

int operator ==(const SoMFPath &f) const

int operator !=(const SoMFPath &f) const
Returns TRUE if all of the values of this field equal (do not equal) those of
the given field. If the fields are different types FALSE will always be returned
(even if one field is an SoMFFloat with one value of 1.0 and the other is an
SoMFInt with a value of 1, for example).

SoPath * * startEditing()

void finishEditing()
startEditing() returns a pointer to the internally-maintained array that can
be modified. The values in the array may be changed, but values cannot be
added or removed. It is illegal to call any other editing methods between
startEditing() and finishEditing() (e.g. set1Value(), setValue(), etc).

Fields, engines or sensors connected to this field and sensors are not notified
that this field has changed until finishEditing() is called. Calling
finishEditing() always sets the isDefault() flag to FALSE and informs
engines and sensors that the field changed, even if none of the values
actually were changed.

Methods from class SoMField:
getNum, setNum, deleteValues, insertSpace, setl, getl

Methods from class SoField:

setlgnored, islgnored, isDefault, isOfType, set, get, touch, connectFrom,
connectFrom, disconnect, isConnected, isConnectedFromField,
getConnectedField, isConnectedFromEnNngine, getConnectedEngine,
enableConnection, isConnectionEnabled, getForwardConnections,
getContainer

INCLUDE FILE
#i ncl ude <l nventor/fiel ds/ SoM~Pat h. h>

383

SoMFPlane

NAME

SoMFPlane — field containing several plane equations

INHERITS FROM

SoField > SoMField > SoMFPlane

DESCRIPTION

A field containing one or more plane equations.

SoMFPlanes are written to file as groups of four floating point values separated by
whitespace. In each set of four values, the first three are the normal direction of the
plane, the fourth is the distance of the plane from the origin (in the direction of the
normal).

When more than one value is present, all of the values are enclosed in square
brackets and separated by commas; for example:

[1000,.707 .707 0 100,]

METHODS

384

static SoType getClassTypeld()
virtual void getTypeld() const
Returns the type for this class or a particular object of this class.

SbPlane operator [](int i) const
Returns the i’'th value of the field. Indexing past the end of the field (passing
in i greater than getNum()) will return garbage.

const SbPlane * getValues(int start) const
Returns a pointer into the array of values in the field, starting at index start.
The values are read-only; see the startEditing()/finishEditing() methods for
a way of modifying values in place.

int find(SbPlane targetValue, SbBool addIfNotFound = FALSE)
Finds the given value in the array and returns the index of that value in the
array. If the value is not found, -1 is returned. If addIfNotFound is set, then
targetVValue is added to the end of the array (but -1 is still returned).

void setValues(int start, int num, const SbPlane *newValues)
Sets num values starting at index start to the values in newValues. The array
will be automatically be made larger to accomodate the new values, if
necessary.

Open Inventor C++ Reference Pages

SoMFPlane

void setlValue(int index, SbPlane newValue)
Sets the index’th value in the array to newValue. The array will be
automatically expanded, if necessary.

SbPlane operator =(SbPlane newValue)

void setValue(SbPlane newValue)
Sets the first value in the array to newValue, and deletes the second and
subsequent values.

int operator ==(const SOMFPlane &f) const

int operator !=(const SOMFPlane &f) const
Returns TRUE if all of the values of this field equal (do not equal) those of
the given field. If the fields are different types FALSE will always be returned
(even if one field is an SoMFFloat with one value of 1.0 and the other is an
SoMFInt with a value of 1, for example).

SbPlane * startEditing()

void finishEditing()
startEditing() returns a pointer to the internally-maintained array that can
be modified. The values in the array may be changed, but values cannot be
added or removed. It is illegal to call any other editing methods between
startEditing() and finishEditing() (e.g. set1Value(), setValue(), etc).

Fields, engines or sensors connected to this field and sensors are not notified
that this field has changed until finishEditing() is called. Calling
finishEditing() always sets the isDefault() flag to FALSE and informs
engines and sensors that the field changed, even if none of the values
actually were changed.

Methods from class SoMField:
getNum, setNum, deleteValues, insertSpace, setl, getl

Methods from class SoField:

setlgnored, islgnored, isDefault, isOfType, set, get, touch, connectFrom,
connectFrom, disconnect, isConnected, isConnectedFromField,
getConnectedField, isConnectedFromEnNngine, getConnectedEngine,
enableConnection, isConnectionEnabled, getForwardConnections,
getContainer

INCLUDE FILE
#i ncl ude <l nventor/fields/ SOMFPI ane. h>

385

SoMFRotation

NAME
SoMFRotation — Multiple-value field containing any number of SbRotations.

INHERITS FROM
SoField > SoMField > SoMFRotation

DESCRIPTION
multiple-value field that contains any number of SbRotations.

SoMFRotations are written to file as one or more sets of four floating point values.
Each set of 4 values is an axis of rotation followed by the amount of right-handed
rotation about that axis, in radians.

When more than one value is present, all of the values are enclosed in square
brackets and separated by commas; for example:

[1000,-.707 -.707 0 1.57]

METHODS
void setlValue(int index, const SbVec3f &axis, float angle)

Sets the index’th value to the given axis/angle.
void setValue(const SbVec3f &axis, float angle)

Makes this field have exactly one value, given by axis and angle.
void setlValue(int index, float qO, float q1, float g2, float q3)
void setlValue(int index, const float q[4])

Sets the index’th value to the given quaternion.
void setValue(float O, float q1, float g2, float q3)
void setValue(float q[4])

Makes this field have exactly one value, given by the quaternion.
static SoType getClassTypeld()
virtual void getTypeld() const

Returns the type for this class or a particular object of this class.

const SbRotation &
operator [](int i) const
Returns the i’'th value of the field. Indexing past the end of the field (passing
in i greater than getNum()) will return garbage.

386 Open Inventor C++ Reference Pages

SoMFRotation

const SbRotation *

int

void

void

getValues(int start) const
Returns a pointer into the array of values in the field, starting at index start.
The values are read-only; see the startEditing()/finishEditing() methods for
a way of modifying values in place.

find(const SbRotation & targetValue, SbBool addIfNotFound =
FALSE)
Finds the given value in the array and returns the index of that value in the
array. If the value is not found, -1 is returned. If addIfNotFound is set, then
targetVValue is added to the end of the array (but -1 is still returned).

setValues(int start, int num, const SbRotation *newValues)
Sets num values starting at index start to the values in newValues. The array
will be automatically be made larger to accomodate the new values, if
necessary.

setlValue(int index, const SbRotation & newValue)
Sets the index’th value in the array to newValue. The array will be
automatically expanded, if necessary.

const SbRotation &

operator =(const SbRotation & newValue)

void setValue(const SbRotation & newValue)
Sets the first value in the array to newValue, and deletes the second and
subsequent values.

int operator ==(const SoMFRotation &f) const

int operator !=(const SoMFRotation &f) const
Returns TRUE if all of the values of this field equal (do not equal) those of
the given field. If the fields are different types FALSE will always be returned
(even if one field is an SoMFFloat with one value of 1.0 and the other is an
SoMFInt with a value of 1, for example).

SbRotation * startEditing()

void finishEditing()

startEditing() returns a pointer to the internally-maintained array that can
be modified. The values in the array may be changed, but values cannot be
added or removed. It is illegal to call any other editing methods between
startEditing() and finishEditing() (e.g. set1Value(), setValue(), etc).

Fields, engines or sensors connected to this field and sensors are not notified
that this field has changed until finishEditing() is called. Calling

387

SoMFRotation

finishEditing() always sets the isDefault() flag to FALSE and informs
engines and sensors that the field changed, even if none of the values
actually were changed.

Methods from class SoMField:
getNum, setNum, deleteValues, insertSpace, setl, getl

Methods from class SoField:

setlgnored, islgnored, isDefault, isOfType, set, get, touch, connectFrom,
connectFrom, disconnect, isConnected, isConnectedFromField,
getConnectedField, isConnectedFromEnNngine, getConnectedEngine,
enableConnection, isConnectionEnabled, getForwardConnections,
getContainer

INCLUDE FILE
#i ncl ude <l nventor/fields/ SoMFRot ati on. h>

SEE ALSO
SbRotation

388 Open Inventor C++ Reference Pages

SoMFShort

NAME
SoMFShort — multiple-value field containing any number of short integers

INHERITS FROM
SoField > SoMField > SoMFShort

DESCRIPTION
A multiple-value field that contains any number of short (16-bit) integers.

SoMFShorts are written to file as one or more short integer values, represented as
decimal, hexadecimal (beginning with '0x") or octal (beginning with '0’) values.
When more than one value is present, all of the values are enclosed in square
brackets and separated by commas; for example:

[-7, OXFF, -033]

METHODS

static SoType getClassTypeld()

virtual void getTypeld() const
Returns the type for this class or a particular object of this class.

short operator [](int i) const
Returns the i’'th value of the field. Indexing past the end of the field (passing
in i greater than getNum()) will return garbage.

const short * getValues(int start) const
Returns a pointer into the array of values in the field, starting at index start.
The values are read-only; see the startEditing()/finishEditing() methods for
a way of modifying values in place.

int find(short targetValue, SbBool addIfNotFound = FALSE)
Finds the given value in the array and returns the index of that value in the
array. If the value is not found, -1 is returned. If addIfNotFound is set, then
targetValue is added to the end of the array (but -1 is still returned).

void setValues(int start, int num, const short *newValues)
Sets num values starting at index start to the values in newValues. The array
will be automatically be made larger to accomodate the new values, if
necessary.

void setlValue(int index, short newValue)

Sets the index’th value in the array to newValue. The array will be
automatically expanded, if necessary.

389

SoMFShort

short
void

int
int

short *
void

operator =(short newValue)

setValue(short newValue)
Sets the first value in the array to newValue, and deletes the second and
subsequent values.

operator ==(const SoMFShort &f) const

operator !=(const SoMFShort &f) const
Returns TRUE if all of the values of this field equal (do not equal) those of
the given field. If the fields are different types FALSE will always be returned
(even if one field is an SoMFFloat with one value of 1.0 and the other is an
SoMFInt with a value of 1, for example).

startEditing()

finishEditing()
startEditing() returns a pointer to the internally-maintained array that can
be modified. The values in the array may be changed, but values cannot be
added or removed. It is illegal to call any other editing methods between
startEditing() and finishEditing() (e.g. set1Value(), setValue(), etc).

Fields, engines or sensors connected to this field and sensors are not notified
that this field has changed until finishEditing() is called. Calling
finishEditing() always sets the isDefault() flag to FALSE and informs
engines and sensors that the field changed, even if none of the values
actually were changed.

Methods from class SoMField:

getNum, setNum, deleteValues, insertSpace, setl, getl

Methods from class SoField:

INCLUDE FILE

setlgnored, islgnored, isDefault, isOfType, set, get, touch, connectFrom,
connectFrom, disconnect, isConnected, isConnectedFromField,
getConnectedField, isConnectedFromEnNngine, getConnectedEngine,
enableConnection, isConnectionEnabled, getForwardConnections,
getContainer

#i ncl ude <lnventor/fields/ SoMShort. h>

390

Open Inventor C++ Reference Pages

SoMFString

NAME
SoMFString — multiple-value field containing any number of strings

INHERITS FROM
SoField > SoMField > SOMFString

DESCRIPTION
A multiple-value field that contains any number of strings.

SoMFStrings are written to file as one or more strings within double quotes. Any
characters (including newlines) may appear within the quotes. To include a double
quote character within the string, precede it with a backslash. For example:

[cowEnizer , "Scene Boy", "He said, \"I did not'\""]

METHODS
setValues(int start, int num, const char *strings[])
Sets num values, starting at index start, to the strings in the given character
arrays.
setValue(const char *string)
Deletes all values currently in this field and sets this field to contain only the
given string.
static SoType getClassTypeld()
virtual void getTypeld() const

Returns the type for this class or a particular object of this class.

const SbString & operator [](int i) const
Returns the i’'th value of the field. Indexing past the end of the field (passing
in i greater than getNum()) will return garbage.

const SbString * getValues(int start) const
Returns a pointer into the array of values in the field, starting at index start.
The values are read-only; see the startEditing()/finishEditing() methods for
a way of modifying values in-place.

int find(const SbString & targetValue, SbBool addIfNotFound =
FALSE)
Finds the given value in the array and returns the index of that value in the
array. If the value is not found, -1 is returned. If addIfNotFound is set, then
targetValue will be added to the end of the array (but -1 is still returned).

391

SoMFString

void setValues(int start, int num, const SbString *newValues)
Sets num values starting at index start to the values in newValues. The array
will be automatically be made larger to accomodate the new values, if
necessary.

void setlValue(int index, const SbString & newValue)
Sets the index’th value in the array to newValue. The array will be
automatically expanded, if necessary.

const SbString & operator =(const SbString & newValue)

void setValue(const SbString & newValue)
Sets the first value in the array to newValue, and deletes the second and
subsequent values.

int operator ==(const SOMFString &f) const

int operator !=(const SOMFString &f) const
Returns TRUE if all of the values of this field equal (do not equal) those of
the given field. If the fields are different types FALSE will always be returned
(even if one field is an SoMFFloat with one value of 1.0 and the other is an
SoMFInt with a value of 1, for example).

SbString * startEditing()

void finishEditing()
startEditing() returns a pointer to the internally-maintained array that can
be modified. The values in the array may be changed, but values cannot be
added or removed. It is illegal to call any other editing methods between
startEditing() and finishEditing() (e.g. set1Value(), setValue(), etc).

Fields, engines or sensors connected to this field and sensors are not notified
that this field has changed until finishEditing() is called. Calling
finishEditing() always sets the isDefault(). flag to FALSE and informs
engines and sensors that the field changed, even if none of the values
actually were changed.

Methods from class SoMField:
getNum, setNum, deleteValues, insertSpace, setl, getl

392 Open Inventor C++ Reference Pages

SoMFString

Methods from class SoField:

setlgnored, islgnored, isDefault, isOfType, set, get, touch, connectFrom,
connectFrom, disconnect, isConnected, isConnectedFromField,
getConnectedField, isConnectedFromEnNngine, getConnectedEngine,
enableConnection, isConnectionEnabled, getForwardConnections,
getContainer

INCLUDE FILE
#i ncl ude <lnventor/fields/ SoMFString. h>

393

SoOMFTime

NAME

SoMFTime — multiple-value field containing any number of SbTime values

INHERITS FROM

SoField > SoMField > SOMFTime

DESCRIPTION

A multiple-value field that contains any number of SbTime values.

SoMFTimes are written to file as one or more double-precision floating point values
representing the length of time in seconds. Absolute times are measured relative to
00:00:00 GMT, January 1, 1970.

When more than one value is present, all of the values are enclosed in square
brackets and separated by commas; for example:

[1.0, 1345600.1200055, 99.8]

METHODS
static SoType getClassTypeld()
virtual void getTypeld() const

394

Returns the type for this class or a particular object of this class.

const SbTime & operator [](int i) const
Returns the i’'th value of the field. Indexing past the end of the field (passing
in i greater than getNum()) will return garbage.

const SbTime * getValues(int start) const
Returns a pointer into the array of values in the field, starting at index start.
The values are read-only; see the startEditing()/finishEditing() methods for
a way of modifying values in place.

int find(const SbTime & targetValue, SbBool addIfNotFound =
FALSE)
Finds the given value in the array and returns the index of that value in the
array. If the value is not found, -1 is returned. If addIfNotFound is set, then
targetVValue is added to the end of the array (but -1 is still returned).

void setValues(int start, int num, const SbTime *newValues)
Sets num values starting at index start to the values in newValues. The array
will be automatically be made larger to accomodate the new values, if
necessary.

Open Inventor C++ Reference Pages

SoMFTime

void setlValue(int index, const SbTime & newValue)
Sets the index’th value in the array to newValue. The array will be
automatically expanded, if necessary.

const SbTime & operator =(const SbTime & newValue)

void setValue(const SbTime & newValue)
Sets the first value in the array to newValue, and deletes the second and
subsequent values.

int operator ==(const SOMFTime &f) const

int operator !=(const SOMFTime &f) const
Returns TRUE if all of the values of this field equal (do not equal) those of
the given field. If the fields are different types FALSE will always be returned
(even if one field is an SoMFFloat with one value of 1.0 and the other is an
SoMFInt with a value of 1, for example).

SbTime * startEditing()

void finishEditing()
startEditing() returns a pointer to the internally-maintained array that can
be modified. The values in the array may be changed, but values cannot be
added or removed. It is illegal to call any other editing methods between
startEditing() and finishEditing() (e.g. set1Value(), setValue(), etc).

Fields, engines or sensors connected to this field and sensors are not notified
that this field has changed until finishEditing() is called. Calling
finishEditing() always sets the isDefault() flag to FALSE and informs
engines and sensors that the field changed, even if none of the values
actually were changed.

Methods from class SoMField:
getNum, setNum, deleteValues, insertSpace, setl, getl

Methods from class SoField:

setlgnored, islgnored, isDefault, isOfType, set, get, touch, connectFrom,
connectFrom, disconnect, isConnected, isConnectedFromField,
getConnectedField, isConnectedFromEnNngine, getConnectedEngine,
enableConnection, isConnectionEnabled, getForwardConnections,
getContainer

395

SoOMFTime

INCLUDE FILE
#i ncl ude <l nventor/fiel ds/ SOMFTi ne. h>

SEE ALSO
SbTime

396 Open Inventor C++ Reference Pages

SoMFULong

NAME
SoMFULong — multiple-value field containing any number of unsigned long
integers

INHERITS FROM
SoField > SoMField > SoMFULong

DESCRIPTION
A multiple-value field that contains any number of unsigned long (32-bit) integers.

SoMFULongs are written to file as one or more unsigned long integers, in decimal,
hexadecimal or octal format.

When more than one value is present, all of the values are enclosed in square
brackets and separated by commas; for example:

[17, OXFFFFEO, 0755]

METHODS
static SoType getClassTypeld()
virtual void getTypeld() const
Returns the type for this class or a particular object of this class.
unsigned long operator[](int i) const

Returns the i’'th value of the field. Indexing past the end of the field (passing
in i greater than getNum()) will return garbage.

const unsigned long *
getValues(int start) const
Returns a pointer into the array of values in the field, starting at index start.
The values are read-only; see the startEditing()/finishEditing() methods for
a way of modifying values in place.

int find(unsigned long targetValue, SbBool addIfNotFound =
FALSE)
Finds the given value in the array and returns the index of that value in the
array. If the value is not found, -1 is returned. If addIfNotFound is set, then
targetVValue is added to the end of the array (but -1 is still returned).

void setValues(int start, int num, const unsigned long *newValues)
Sets num values starting at index start to the values in newValues. The array
will be automatically be made larger to accomodate the new values, if
necessary.

397

SoMFULong

void setlValue(int index, unsigned long newValue)
Sets the index’th value in the array to newValue. The array will be
automatically expanded, if necessary.

unsigned long operator =(unsigned long newValue)

void setValue(unsigned long newValue)
Sets the first value in the array to newValue, and deletes the second and
subsequent values.

int operator ==(const SoMFULong &f) const

int operator !=(const SoMFULong &f) const

Returns TRUE if all of the values of this field equal (do not equal) those of
the given field. If the fields are different types FALSE will always be returned
(even if one field is an SoMFFloat with one value of 1.0 and the other is an
SoMFInt with a value of 1, for example).

unsigned long * startEditing()

void

finishEditing()
startEditing() returns a pointer to the internally-maintained array that can
be modified. The values in the array may be changed, but values cannot be
added or removed. It is illegal to call any other editing methods between
startEditing() and finishEditing() (e.g. set1Value(), setValue(), etc).

Fields, engines or sensors connected to this field and sensors are not notified
that this field has changed until finishEditing() is called. Calling
finishEditing() always sets the isDefault() flag to FALSE and informs
engines and sensors that the field changed, even if none of the values
actually were changed.

Methods from class SoMField:

getNum, setNum, deleteValues, insertSpace, setl, getl

Methods from class SoField:

INCLUDE FILE

setlgnored, islgnored, isDefault, isOfType, set, get, touch, connectFrom,
connectFrom, disconnect, isConnected, isConnectedFromField,
getConnectedField, isConnectedFromEnNngine, getConnectedEngine,
enableConnection, isConnectionEnabled, getForwardConnections,
getContainer

#i ncl ude <lnventor/fiel ds/ SoMFULong. h>

398

Open Inventor C++ Reference Pages

SoMFUShort

NAME
SoMFUShort — multiple-value field containing any number of unsigned short
integers

INHERITS FROM
SoField > SoMField > SoMFUShort

DESCRIPTION
A multiple-value field that contains any number of unsigned short integers.

SoMFUShorts are written to file as one or more unsigned short integer values,
represented as decimal, hexadecimal (beginning with ’0x”") or octal (beginning with
'0’) values. When more than one value is present, all of the values are enclosed in
square brackets and separated by commas; for example:

[7, OXFF, 033]

METHODS
static SoType getClassTypeld()
virtual void getTypeld() const
Returns the type for this class or a particular object of this class.
unsigned short operator [](int i) const

Returns the i’'th value of the field. Indexing past the end of the field (passing
in i greater than getNum()) will return garbage.

const unsigned short *
getValues(int start) const
Returns a pointer into the array of values in the field, starting at index start.
The values are read-only; see the startEditing()/finishEditing() methods for
a way of modifying values in place.

int find(unsigned short targetValue, SbBool addIfNotFound =
FALSE)
Finds the given value in the array and returns the index of that value in the
array. If the value is not found, -1 is returned. If addIfNotFound is set, then
targetVValue is added to the end of the array (but -1 is still returned).

void setValues(int start, int num, const unsigned short *newValues)
Sets num values starting at index start to the values in newValues. The array
will be automatically be made larger to accomodate the new values, if
necessary.

399

SoMFUShort

void setlValue(int index, unsigned short newValue)
Sets the index’th value in the array to newValue. The array will be
automatically expanded, if necessary.

unsigned short operator =(unsigned short newValue)

void setValue(unsigned short newValue)
Sets the first value in the array to newValue, and deletes the second and
subsequent values.

int operator ==(const SOMFUShort &f) const

int operator !=(const SoOMFUShort &f) const

Returns TRUE if all of the values of this field equal (do not equal) those of
the given field. If the fields are different types FALSE will always be returned
(even if one field is an SoMFFloat with one value of 1.0 and the other is an
SoMFInt with a value of 1, for example).

unsigned short * startEditing()

void

finishEditing()
startEditing() returns a pointer to the internally-maintained array that can
be modified. The values in the array may be changed, but values cannot be
added or removed. It is illegal to call any other editing methods between
startEditing() and finishEditing() (e.g. set1Value(), setValue(), etc).

Fields, engines or sensors connected to this field and sensors are not notified
that this field has changed until finishEditing() is called. Calling
finishEditing() always sets the isDefault() flag to FALSE and informs
engines and sensors that the field changed, even if none of the values
actually were changed.

Methods from class SoMField:

getNum, setNum, deleteValues, insertSpace, setl, getl

Methods from class SoField:

INCLUDE FILE

setlgnored, islgnored, isDefault, isOfType, set, get, touch, connectFrom,
connectFrom, disconnect, isConnected, isConnectedFromField,
getConnectedField, isConnectedFromEnNngine, getConnectedEngine,
enableConnection, isConnectionEnabled, getForwardConnections,
getContainer

#i ncl ude <l nventor/fields/ SoM~UShort. h>

400

Open Inventor C++ Reference Pages

SoMFVec2f

NAME
SoMFVec2f — multiple-value field containing any number of two-dimensional
vectors

INHERITS FROM
SoField > SoMField > SoMFVec2f

DESCRIPTION
A multiple-value field that contains any number of two-dimensional vectors.

SoMFVec2fs are written to file as one or more pairs of floating point values
separated by whitespace. When more than one value is present, all of the values are
enclosed in square brackets and separated by commas; for example:

[00, 1.2 3.4, 98.6 -del]

METHODS

void setValues(int start, int num, const float xy[][2])
Sets num values starting at index start to the given floating point values.
There must be num*2 values in the passed array.

void setlValue(int index, float x, float y)

void setlValue(int index, const float xy[2])
Set the index’th value to the given floating point values.

void setValue(float x, float y)

void setValue(const float xy[2])
Sets the field to contain the given value and only the given value (if the
array had multiple values before, they are deleted).

static SoType getClassTypeld()

virtual void getTypeld() const

Returns the type for this class or a particular object of this class.

const SbVec2f & operator [](int i) const
Returns the i’'th value of the field. Indexing past the end of the field (passing
in i greater than getNum()) will return garbage.

const SbVec2f * getValues(int start) const
Returns a pointer into the array of values in the field, starting at index start.
The values are read-only; see the startEditing()/finishEditing() methods for
a way of modifying values in place.

401

SoMFVec2f

402

int

void

void

find(const SbVec2f & targetValue, SbBool addIfNotFound =
FALSE)
Finds the given value in the array and returns the index of that value in the
array. If the value is not found, -1 is returned. If addIfNotFound is set, then
targetVValue is added to the end of the array (but -1 is still returned).

setValues(int start, int num, const SbVVec2f *newValues)
Sets num values starting at index start to the values in newValues. The array
will be automatically be made larger to accomodate the new values, if
necessary.

setlValue(int index, const SbVec2f & newValue)
Sets the index’th value in the array to newValue. The array will be
automatically expanded, if necessary.

const SbVec2f & operator =(const SbVec2f & newValue)

void setValue(const SbVec2f & newValue)
Sets the first value in the array to newValue, and deletes the second and
subsequent values.

int operator ==(const SoMFVec2f &f) const

int operator !=(const SoMFVec2f &f) const
Returns TRUE if all of the values of this field equal (do not equal) those of
the given field. If the fields are different types FALSE will always be returned
(even if one field is an SoMFFloat with one value of 1.0 and the other is an
SoMFInt with a value of 1, for example).

SbVec2f * startEditing()

void finishEditing()

startEditing() returns a pointer to the internally-maintained array that can
be modified. The values in the array may be changed, but values cannot be
added or removed. It is illegal to call any other editing methods between
startEditing() and finishEditing() (e.g. set1Value(), setValue(), etc).

Fields, engines or sensors connected to this field and sensors are not notified
that this field has changed until finishEditing() is called. Calling
finishEditing() always sets the isDefault() flag to FALSE and informs
engines and sensors that the field changed, even if none of the values
actually were changed.

Methods from class SoMField:

getNum, setNum, deleteValues, insertSpace, setl, getl

Open Inventor C++ Reference Pages

SoMFVec2f

Methods from class SoField:

setlgnored, islgnored, isDefault, isOfType, set, get, touch, connectFrom,
connectFrom, disconnect, isConnected, isConnectedFromField,
getConnectedField, isConnectedFromEnNngine, getConnectedEngine,
enableConnection, isConnectionEnabled, getForwardConnections,
getContainer

INCLUDE FILE
#i ncl ude <l nventor/fields/ SoM~Vec2f. h>

403

SoMFVec3f

NAME
SoMFVec3f — multiple-value field containing any number of three-dimensional
vectors

INHERITS FROM
SoField > SoMField > SoMFVec3f

DESCRIPTION
A multiple-value field that contains any number of three-dimensional vectors.

SoMFVec3fs are written to file as one or more triples of floating point values
separated by whitespace.

When more than one value is present, all of the values are enclosed in square
brackets and separated by commas; for example:

[000,1.23.45.6,98.6 -del 212]

METHODS

void setValues(int start, int num, const float xyz[][3])
Sets num values starting at index start to the given floating point values.
There must be num*3 values in the passed array.

void setlValue(int index, float x, float y, float z)

void setlValue(int index, const float xyz[3])
Set the index’th value to the given floating point values.

void setValue(float x, float y, float z)

void setValue(const float xyz[3])
Sets the field to contain the given value and only the given value (if the
array had multiple values before, they are deleted).

static SoType getClassTypeld()

virtual void getTypeld() const

Returns the type for this class or a particular object of this class.
const SbVec3f & operator [](int i) const

Returns the i’'th value of the field. Indexing past the end of the field (passing
in i greater than getNum()) will return garbage.

404 Open Inventor C++ Reference Pages

SoMFVec3f

const SbVec3f * getValues(int start) const
Returns a pointer into the array of values in the field, starting at index start.
The values are read-only; see the startEditing()/finishEditing() methods for
a way of modifying values in place.

int find(const SbVec3f & targetValue, SbBool addIfNotFound =
FALSE)
Finds the given value in the array and returns the index of that value in the
array. If the value is not found, -1 is returned. If addIfNotFound is set, then
targetVValue is added to the end of the array (but -1 is still returned).

void setValues(int start, int num, const SbVVec3f *newValues)
Sets num values starting at index start to the values in newValues. The array
will be automatically be made larger to accomodate the new values, if
necessary.

void setlValue(int index, const SbVec3f & newValue)
Sets the index’th value in the array to newValue. The array will be
automatically expanded, if necessary.

const SbVec3f & operator =(const SbVec3f & newValue)

void setValue(const SbVec3f & newValue)
Sets the first value in the array to newValue, and deletes the second and
subsequent values.

int operator ==(const SoMFVec3f &f) const

int operator !=(const SoMFVec3f &f) const
Returns TRUE if all of the values of this field equal (do not equal) the given
field. If the fields are different types FALSE will always be returned (even if
one field is an SoMFFloat with one value of 1.0 and the other is an SOMFInt
with a value of 1, for example).

SbVec3f * startEditing()

void finishEditing()
startEditing() returns a pointer to the internally-maintained array that can
be modified. The values in the array may be changed, but values cannot be
added or removed. It is illegal to call any other editing methods between
startEditing() and finishEditing() (e.g. set1Value(), setValue(), etc).

Fields, engines or sensors connected to this field and sensors are not notified
that this field has changed until finishEditing() is called. Calling

405

SoMFVec3f

finishEditing() always sets the isDefault() flag to FALSE and informs
engines and sensors that the field changed, even if none of the values
actually were changed.

Methods from class SoMField:
getNum, setNum, deleteValues, insertSpace, setl, getl

Methods from class SoField:

setlgnored, islgnored, isDefault, isOfType, set, get, touch, connectFrom,
connectFrom, disconnect, isConnected, isConnectedFromField,
getConnectedField, isConnectedFromEnNngine, getConnectedEngine,
enableConnection, isConnectionEnabled, getForwardConnections,
getContainer

INCLUDE FILE
#i ncl ude <l nventor/fields/ SoMVec3f. h>

406 Open Inventor C++ Reference Pages

SoMFVec4f

NAME
SoMFVec4f — multiple-value field containing any number of four-dimensional
vectors

INHERITS FROM
SoField > SoMField > SoMFVec4f

DESCRIPTION
A multiple-value field that contains any number of four-dimensional vectors.

SoMFVec4fs are written to file as one or more triples of floating point values
separated by whitespace.

When more than one value is present, all of the values are enclosed in square
brackets and separated by commas; for example:

[000,1.23.45.6,98.6 -del 212]

METHODS

void setValues(int start, int num, const float xyzw[][4])
Sets num values starting at index start to the given floating point values.
There must be num*4 values in the passed array.

void setlValue(int index, float x, float y, float z, float w)

void setlValue(int index, const float xyzw[4])
Set the index’th value to the given floating point values.

void setValue(float x, float y, float z, float w)

void setValue(const float xyzw[4])
Sets the field to contain the given value and only the given value (if the
array had multiple values before, they are deleted).

static SoType getClassTypeld()

virtual void getTypeld() const

Returns the type for this class or a particular object of this class.
const SbVec4f & operator [](int i) const

Returns the i’'th value of the field. Indexing past the end of the field (passing
in i greater than getNum()) will return garbage.

407

SoMFVec4f

const SbVec4f * getValues(int start) const
Returns a pointer into the array of values in the field, starting at index start.
The values are read-only; see the startEditing()/finishEditing() methods for
a way of modifying values in place.

int find(const SbVec4f & targetValue, SbBool addIfNotFound =
FALSE)
Finds the given value in the array and returns the index of that value in the
array. If the value is not found, -1 is returned. If addIfNotFound is set, then
targetValue is added to the end of the array (but -1 is still returned).

void setValues(int start, int num, const SbVVec4f *newValues)
Sets num values starting at index start to the values in newValues. The array
will be automatically be made larger to accomodate the new values, if
necessary.

void setlValue(int index, const SbVec4f & newValue)
Sets the index’th value in the array to newValue. The array will be
automatically expanded, if necessary.

const SbVec4f & operator =(const SbVec4f & newValue)

void setValue(const SbVec4f & newValue)
Sets the first value in the array to newValue, and deletes the second and
subsequent values.

int operator ==(const SoMFVec4f &f) const

int operator !=(const SoMFVec4f &f) const
Returns TRUE if all of the values of this field equal (do not equal) those of
the given field. If the fields are different types FALSE will always be returned
(even if one field is an SoMFFloat with one value of 1.0 and the other is an
SoMFInt with a value of 1, for example).

SbVec4f * startediting()

void finishEditing()
startEditing() returns a pointer to the internally-maintained array that can
be modified. The values in the array may be changed, but values cannot be
added or removed. It is illegal to call any other editing methods between
startEditing() and finishEditing() (e.g. setlValue(), setValue(), etc).

Fields, engines or sensors connected to this field and sensors are not notified
that this field has changed until finishEditing() is called. Calling
finishEditing() always sets the isDefault() flag to FALSE and informs
engines and sensors that the field changed, even if none of the values
actually were changed.

408 Open Inventor C++ Reference Pages

SoMFVec4f

Methods from class SoMField:
getNum, setNum, deleteValues, insertSpace, setl, getl

Methods from class SoField:

setlgnored, islgnored, isDefault, isOfType, set, get, touch, connectFrom,
connectFrom, disconnect, isConnected, isConnectedFromField,
getConnectedField, isConnectedFromEnNngine, getConnectedEngine,
enableConnection, isConnectionEnabled, getForwardConnections,
getContainer

INCLUDE FILE
#i ncl ude <l nventor/fiel ds/ SoM~Vec4f. h>

409

SoMotion3Event

NAME
SoMotion3Event — 3D motion events

INHERITS FROM
SoEvent > SoMotion3Event

DESCRIPTION
SoMotion3Event represents 3D relative motion events in the Inventor event model.

METHODS
SoMotion3Event()
Constructor.

static SoType getClassTypeld()
Return the type id for the SoMotion3Event class.

void setTranslation(const SbVec3f &t)
const SbVec3f & getTranslation() const
Set and get the relative change in translation since the last translation event.

void setRotation(const SbRotation &)
const SbRotation &
getRotation() const
Set and get the relative change in rotation since the last rotation event.

Methods from class SoEvent:

getTypeld, isOfType, setTime, getTime, setPosition, getPosition, getPosition,
getNormalizedPosition, setShiftDown, setCtrIDown, setAltDown,
wasShiftDown, wasCtrIDown, wasAltDown

INCLUDE FILE
#i ncl ude <l nventor/events/ SoMbti on3Event. h>

SEE ALSO
SoEvent, SoButtonEvent, SoKeyboardEvent, SoLocation2Event,
SoMouseButtonEvent, SoSpaceballButtonEvent, SoHandleEventAction,
SoEventCallback, SoSelection, Solnteraction, SoXtDevice

410 Open Inventor C++ Reference Pages

SoMouseButtonEvent

NAME
SoMouseButtonEvent — mouse button press and release events

INHERITS FROM
SoEvent > SoButtonEvent > SoMouseButtonEvent

DESCRIPTION
SoMouseButtonEvent represents mouse button press and release events in the
Inventor event model.

METHODS
SoMouseButtonEvent()
Constructor.
static SoType getClassTypeld()
Return the type id for the SoMouseButtonEvent class.
void setButton(SoMouseButtonEvent::Button b)

SoMouseButtonEvent::Button
getButton() const
Set and get which mouse button generated the event.

static SbBool isButtonPressEvent(const SoEvent *e,
SoMouseButtonEvent::Button whichButton)
static SbBool isButtonReleaseEvent(const SoEvent *e,

SoMouseButtonEvent::Button whichButton)
Returns whether the passed event is a mouse button press or release event of
the passed button. When SoMouseButtonEvent::ANY is passed, this returns
TRUE if the event represents a button press or release of any mouse button.

Methods from class SoButtonEvent:
setState, getState

Methods from class SoEvent:
getTypeld, isOfType, setTime, getTime, setPosition, getPosition, getPosition,

getNormalizedPosition, setShiftDown, setCtrIDown, setAltDown,
wasShiftDown, wasCtrIDown, wasAltDown

INCLUDE FILE
#i ncl ude <Inventor/events/ SoMouseButtonEvent. h>

#define SO_MOUSE_PRESS_EVENT(EVENT,BUTTON) \
(SoMouseButtonEvent::isButtonPressEvent(EVENT,SoMouseButtonEvent::BUTTON))

#define SO_MOUSE_RELEASE_EVENT(EVENT,BUTTON) \
(SoMouseButtonEvent::isButtonReleaseEvent(EVENT,SoMouseButtonEvent::BUTTON))

411

SoMouseButtonEvent

enum Button {
SoMouseButtonEvent::ANY
Any button
SoMouseButtonEvent::BUTTON1
First mouse button
SoMouseButtonEvent::BUTTON2
Second mouse button
SoMouseButtonEvent::BUTTONS3
Third mouse button

SEE ALSO
SoEvent, SoButtonEvent, SoKeyboardEvent, SoLocation2Event, SoMotion3Event,
SoSpaceballButtonEvent, SoHandleEventAction, SoEventCallback, SoSelection,
Solnteraction, SoXtDevice

412 Open Inventor C++ Reference Pages

SoMultipleCopy

NAME

SoMultipleCopy — group node that traverses multiple times, applying matrices

INHERITS FROM

SoBase > SoFieldContainer > SoNode > SoGroup > SoMultipleCopy

DESCRIPTION

FIELDS

This group node traverses its children, in order, several times, applying a different
matrix each time. The matrices are stored in the multiple-value matrix field. Each
matrix is concatenated to the current transformation matrix, and all of the children
are traversed. This allows the user to put multiple copies of the same data in
different locations easily and efficiently.

Traversing the Nth child sets the current switch value to N, for use with inherited
switch values (see SoSwitch).

SoMFMatrix matrix
Set of matrices to apply to children.

METHODS

SoMultipleCopy()
Creates a multiple copy node with default settings.

static SoType getClassTypeld()
Returns type identifier for this class.

Methods from class SoGroup:

addChild, insertChild, getChild, findChild, getNumChildren, removeChild,
removeChild, removeAllChildren, replaceChild, replaceChild

Methods from class SoNode:
setOverride, isOverride, copy, affectsState, getByName, getByName

Methods from class SoFieldContainer:

setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, set, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

413

SoMultipleCopy

ACTION BEHAVIOR
SoGLRenderAction, SoCallbackAction, SoGetBoundingBoxAction,
SoRayPickAction
Traverses all children for each matrix, saving and restoring state before and
after each traversal.

SoSearchAction
Traverses all children once, setting the inherited switch value to
SO_SWITCH_ALL first.

FILE FORMAT/DEFAULTS
Mul ti pl eCopy {

matrix 1 000
0100
0010
0001
}
INCLUDE FILE

#i ncl ude <l nvent or/ nodes/ SoMul ti pl eCopy. h>

SEE ALSO
SoArray, SoSwitch

414 Open Inventor C++ Reference Pages

SoNode

NAME
SoNode — abstract base class for all database nodes

INHERITS FROM
SoBase > SoFieldContainer > SoNode

DESCRIPTION
This is the abstract base class from which all scene graph node classes are derived.

METHODS
void setOverride(SbBool state)
Turns override flag on or off.

SbBool isOverride() const
Returns the state of the override flag.

virtual SoNode * copy(SbBool copyConnections = FALSE) const
Creates and returns an exact copy of the node. If the node is a group, it
copies the children as well. If copyConnections is TRUE (it is FALSE by
default), any connections to (but not from) fields of the node are copied, as
well.

virtual SbBool affectsState() const
Returns TRUE if a node has an effect on the state during traversal. The
default method returns TRUE. Node classes (such as SoSeparator) that
isolate their effects from the rest of the graph override this method to return

FALSE.
static SoNode * getByName(const SbName &name)
static int getByName(const SbName &name, SoNodeList &list)

A node’s name can be set using SoBase::setName(). These methods allow
nodes to be looked up by name. The first one returns the last node given the
specified name. The second one returns the number of nodes with the given
name, and adds to list pointers to those nodes.

static SoType getClassTypeld()
Returns type identifier for the SoNode class.

Methods from class SoFieldContainer:

setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, set, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

415

SoNode

ACTION BEHAVIOR
SoSearchAction
If the node pointer, type, or name matches the search criteria, returns a path
to the node.

SoWriteAction
Writes the contents of the node to the current SoOutput.

FILE FORMAT/DEFAULTS
This is an abstract class. See the reference page of a derived class for the format and
default values.

INCLUDE FILE
#i ncl ude <Inventor/ nodes/ SoNode. h>

SEE ALSO
SoPath, SoAction, SoNodeKit

416 Open Inventor C++ Reference Pages

SoNodeKit

NAME
SoNodeKit — initializes nodekit classes

INHERITS FROM

SoNodeKit
DESCRIPTION

This class is used to initialize all nodekit classes.
METHODS

static void init()

Initialize all nodekit classes by registering them with the database. This
function needs to be called before any other nodekit class may be
constructed or accessed. Note that this is called automatically by
Solnteraction::init() and SoXt::init(), so if you have made either of these
calls, there is no need to call SoNodeKit::init() directly.

INCLUDE FILE
#i ncl ude <l nvent or/ nodeki t s/ SoNodeKit. h>

SEE ALSO
SoAppearanceKit, SoBaseKit, SoCamerakKit, Solnteraction, SoLightKit,
SoNodeKitDetail, SoNodeKitListPart, SONodeKitPath, SoNodekitCatalog, SoSceneKit,
SoSeparatorKit, SoShapeKit, SoWrapperKit, SoXt

417

SoNodekitCatalog

NAME

SoNodekitCatalog — nodekit catalog class

INHERITS FROM

SoNodekitCatalog

DESCRIPTION

This class describes the parts and structure of a nodekit. Each class of nodekit has
one SoNodekitCatalog (a static variable for the class). Internally, the catalog
contains one entry for each "part” in the nodekit’s structure. Users can query the
catalog for information about each entry in the catalog. This information can be
obtained either by part name (an SbName unique for the part within the catalog) or
by part number (an index into an array of parts).

Note that, although the catalog for a nodekit class may contain many entries, each
instance of that class is not initially created with all of these parts intact. Rather,
each instance of the class has its own parts list which keeps track of which parts the
user has created. The nodekit uses the catalog as a guide in creating new nodes as its
descendants; the standard addChild(), removeChild() and other SoGroup methods
are protected, so that users must create descendants indirectly by asking the nodekit
to get and/or set the different "parts” in the catalog.

The first entry in any SoNodekitCatalog corresponds to the nodekit itself. Its
partName is "this" and its partNumber is 0. All other parts in the catalog are described
relative to "this."

METHODS
static void initClass()
Initializes this object.
int getNumEntries() const
Returns number of entries in the catalog.
int getPartNumber(const SbName &theName) const

418

Given the name of a part, returns its part number in the catalog.

const SbName & getName(int thePartNumber) const
Given the part number of a part, returns its name in the catalog.

Open Inventor C++ Reference Pages

SoNodekitCatalog

SoType

SoType

SoType

SoType

SbBool

SbBool

SbBool

SbBool

const SbName &
const SbName &
int

int

const SbName &
const SbName &
int

int

SbBool

SbBool

SoType

SoType

const SoTypeList &

const SoTypeList &

SbBool
SbBool

getType(int thePartNumber) const

getType(const SbName &theName) const
getDefaultType(int thePartNumber) const
getDefaultType(const SbName &theName) const
isNullByDefault(int thePartNumber) const
isNullByDefault(const SbName &theName) const
isLeaf(int thePartNumber) const

isLeaf(const SbName &theName) const
getParentName(int thePartNumber) const
getParentName(const SbName &theName) const
getParentPartNumber(int thePartNumber) const
getParentPartNumber(const SbName &theName) const
getRightSiblingName(int thePartNumber) const
getRightSiblingName(const SbName &theName) const
getRightSiblingPartNumber(int thePartNumber) const
getRightSiblingPartNumber(const SbName &theName) const
isList(int thePartNumber) const

isList(const SbName &theName) const
getListContainerType(int thePartNumber) const
getListContainerType(const SbName &theName) const

getListltemTypes(int thePartNumber) const
getListltemTypes(const SbName &theName) const

isPublic(int thePartNumber) const
isPublic(const SbName &theName) const

A full set of methods for finding out all parameters in the catalog, given
either the part name or the part number.

INCLUDE FILE

#i ncl ude <l nventor/ nodekit s/ SoNodeki t Cat al og. h>

#define SO_CATALOG_NAME_NOT_FOUND -1
#define SO_CATALOG_THIS_PART NUM 0

SEE ALSO

SoAppearanceKit, SoBaseKit, SoCameraKit, SoLightKit, SoNodeKit, SoNodeKitDetail,
SoNodeKitListPart, SoNodeKitPath, SoSceneKit, SoSeparatorKit, SoShapeKit,

SoWrapperKit

419

SoNodeKitDetail

NAME
SoNodeKitDetail — stores detail information about a nodekit

INHERITS FROM
SoDetail > SoNodeKitDetail

DESCRIPTION
This class contains detail information about a nodekit. This consists of a pointer to

the nodekit, a pointer to the child part within the nodekit, and the name of the
child part.

During a pick action, each nodekit along the picked path creates its own
SoNodeKitDetail. Together, the full set of details gives you complete picture of the
pickpath.

Since nodekits have hidden children (See the reference page for SoBaseKit), a
regular SoPath ends at the topmost nodekit in the path. If you cast the pickpath
from an SoPath pointer to an SoNodeKitPath pointer, you can then retrieve all
nodekits along the path and examine their corresponding details.

METHODS
SoNodeKitDetail()

virtual ~“SoNodeKitDetail()
Constructor and destructor.

SoBaseKit * getNodeKit() const
Returns a pointer to the nodekit that created this detail.

SoNode * getPart() const

Returns a pointer to the part selected within the nodekit that created this
detail.

const SbName & getPartName() const
Returns the name of the part selected within the nodekit that created this
detail. (See SoRayPickAction in the ACTIONS section of the SoBaseKit
reference page for more information).

Methods from class SoDetail:
copy, getClassTypeld, getTypeld, isOfType

INCLUDE FILE
#i ncl ude <l nventor/detail s/ SoNodeKitDetail.h>

SEE ALSO
SoBaseKit, SoNodeKitPath, SoDetail, SoPickedPoint

420 Open Inventor C++ Reference Pages

SoNodeKitListPart

NAME
SoNodeKitListPart — group node with restricted children

INHERITS FROM
SoBase > SoFieldContainer > SoNode > SoNodeKitListPart

DESCRIPTION
This node class is very similar to SoGroup with the exception that it specifies
restrictions on the type of children that it allows. It is used by nodekits to restrict
child types within list parts (see the reference page for SoBaseKit).

By default, any kind of child may be added. Methods of this class allow you to
restrict the type of allowable children, and to lock down the types so that this type
list may no longer be altered.

Inside the SoNodeKitListPart is a container node, which in turn contains the
children. The container node is a hidden child, and the type of node used may be set
with setContainerType(). In this way, you can make the nodekitlist behave like a
group, a separator, or any other subclass of group. The container is not accessible so
that the nodekitlist may retain control over what kinds of children are added.

METHODS
SoNodeKitListPart()
Constructor.
SoType getContainerType() const
void setContainerType(SoType newContainerType)

Gets and sets the type of node used as the container.

const SoTypeList &
getChildTypes() const
Returns the permitted child node types. By default, any type of node is
permitted, so the list contains one entry of type SoNode.

void addChildType(SoType typeToAdd)
Permits the node type typeToAdd as a child. The first time the
addChildType() method is called, the default of SoNode is overridden and
only the new typeToAdd is permitted. In subsequent calls to
addChildType(), the typeToAdd is added to the existing types.

SbBool isTypePermitted(SoType typeToCheck) const
Returns whether a node of type typeToCheck may be added as a child.

421

SoNodeKitListPart

422

SbBool isChildPermitted(const SoNode *child) const
Returns whether the node child may be added to this list. This will return
TRUE if the type of child is one of the permissible child types.

void containerSet(const char *fieldDataString)
Sends a string to the set() method on the container node. This is how you
can set the value of a switch node if the container node is an SoSwitch, for
example.

void lockTypes()
This function permanently locks the permitted child types and the container
type permanently. Calls to setContainerType() and addChildType() will
have no effect after this function is called.

SbBool isTypeLocked() const
Returns whether the permitted child types and the container type are locked
(i.e. cannot be changed). See lockTypes()

void addChild(SoNode *child)

void insertChild(SoNode *child, int childindex)

SoNode * getChild(int index) const

int findChild(SoNode *child) const

int getNumcChildren() const

void removeChild(int index)

void removeChild(SoNode *child)

void replaceChild(int index, SoNode *newChild)

void replaceChild(SoNode *oldChild, SoNode *newChild)

These are the functions used to edit the children. They parallel those of
SoGroup, except that they always check the child types against those which
are permissible. See SoGroup for details.

static SoType getClassTypeld()
Returns type identifier for this class.

Methods from class SoNode:
setOverride, isOverride, copy, affectsState, getByName, getByName

Methods from class SoFieldContainer:

setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, set, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

Open Inventor C++ Reference Pages

SoNodeKitListPart

FILE FORMAT/DEFAULTS
NodeKi t Li st Part {
cont ai ner TypeNane "G oup”
chi | dTypeNanes "
cont ai ner Node NULL
}

INCLUDE FILE
#i ncl ude <l nventor/ nodekits/ SoNodeKitListPart. h>

SEE ALSO
SoBaseKit, SoNodeKit, SoNodeKitDetail, SoNodeKitPath, SoNodekitCatalog,
SoSceneKit, SoSeparatorKit, SoShapeKit, SoWrapperKit

423

SoNodeKitPath

NAME

SoNodeKitPath — path that points to a list of hierarchical nodekits

INHERITS FROM

SoBase > SoPath > SoNodeKitPath

DESCRIPTION

SoNodeKitPath is a subclass of SoPath that lets you look at nodekits below the top
nodekit in the path. Since nodekits have hidden children, when you call getTail()
on a regular path, it returns the top-most nodekit on the path. This occurs even
though the path might contain extra internal information leading to a node far
deeper in the scene graph. For example, when picking an object inside an
SoSceneKit, the regular path would end at the scenekit. But a nodekit path would
continue further down listing the other nodekits below it in the path.

Intermediary (private) nodes between nodekits are not included in the nodekit path.

Note that there is no constructor for an SoNodeKitPath, so you can not create one.
Rather, you cast an (SoPath *) into an (SoNodeKitPath *), which returns nodekit-
style values from all the same questions as SoPath.

Also, some methods of SoPath may not be called on an SoNodeKitPath. Any
methods which take a regular SoNode as an argument (except for setHead()) are not
accessible, and replaced by methods that take an SoBaseKit as an argument instead.
Methods which allow the programmer to refer to the child index of a node beneath
its parent are also inaccessible; since a SoNodeKitPath only shows nodekits and
hides any private parts, successive nodekits in the path may not actually be parent
and child.

METHODS

424

void append(SoBaseKit *childKit)
Adds childKit to end of chain; uses first occurrence of childKit as a part within
current last nodekit. If the path is empty, this is equivalent to
setHead(childKit).

void append(const SoNodeKitPath *fromPath)
Adds all nodekits in fromPath’s chain to end of chain; the head node of
fromPath must be the same as or a child of the current tail node.

void pop()
Pops the last nodekit off the end of the path.

Open Inventor C++ Reference Pages

SoNodeKitPath

SoNode * getTail() const
Return the last nodekit in a path chain. Note that getHead() is not redefined
from SoPath, since an SoNodeKitPath need not begin with a nodekit; the
restriction is placed only on successive nodes on the path.

SoNode * getNode(int i) const
Returns a pointer to the i'th node in the nodekit path.

SoNode * getNodeFromTail(int i) const
Returns a pointer to the i’th nodekit in the chain, counting backward from
the tail nodekit. Passing O for i returns the tail nodekit.

int getLength() const
Returns length of path chain (number of nodekits).

void truncate(int start)
Truncates the path chain, removing all nodes from index start on. Calling
truncate(0) empties the path entirely.

SbBool containsNode(const SoNodeKit *nodeKit) const
Returns TRUE if the passed nodekit is found anywhere in the path chain.

int findFork(const SoNodeKitPath *path) const
If the two paths have different head nodes, this returns -1. Otherwise, it
returns the path chain index of the last nodekit (starting at the head) that is
the same for both paths.

friend int operator ==(const SoNodeKitPath &p1, const SoNodeKitPath
&p2)
Returns TRUE if all node pointers in the two nodekit path chains are equal.
Methods from class SoPath:
setHead, getHead, containsPath, copy, getByName, getByName

Methods from class SoBase:

ref, unref, unrefNoDelete, touch, getClassTypeld, getTypeld, isOfType,
setName, getName

INCLUDE FILE
#i ncl ude <l nvent or/ SoNodeKi t Pat h. h>

SEE ALSO
SoBaseKit, SoPath, SoRayPickAction, SoSearchAction

425

SoNodeList

NAME
SoNodeList — maintains a list of pointers to nodes

INHERITS FROM
SbPList > SoBaseList > SoNodeList

DESCRIPTION
This subclass of SoBaseL.ist holds lists of pointers to SoNodes. It updates reference
counts to nodes in the list whenever adding or removing pointers.

METHODS
SoNodeList()
Constructor.

SoNodeList(int size)
Constructor that pre-allocates storage for size pointers.

SoNodeList(const SoNodeList &I)
Constructor that copies the contents of another list.

~“SoNodelL.ist()
Destructor.

void append(SoNode *node)
Adds a pointer to the end of the list.

SoNode * operator [](int i) const
Accesses an element of a list.

SoNodeList & operator =(const SoNodeList &I)
Copies a list, keeping all reference counts correct.

Methods from class SoBaseL.ist:
insert, remove, truncate, copy, set, addReferences

Methods from class SbPList:
find, getLength, operator ==, operator !=

INCLUDE FILE
#i ncl ude <l nventor/SoLists. h>

SEE ALSO
SoNode

426 Open Inventor C++ Reference Pages

SoNodeSensor

NAME
SoNodeSensor — sensor class that can be attached to Inventor nodes

INHERITS FROM
SoSensor > SoDelayQueueSensor > SoDataSensor > SoNodeSensor

DESCRIPTION
Node sensors detect changes to nodes, calling a callback function whenever any
field of the node or, if the node is a group node, any children of the node change.

METHODS
SoNodeSensor()
SoNodeSensor(SoSensorCB *func, void *data)
Creation methods. The second method takes the callback function and data
to be called when the sensor is triggered.

~SoNodeSensor()
Destroys the sensor, freeing up any memory associated with it after
unscheduling it.

void attach(SoNode *node)
void detach()
SoNode * getAttachedNode() const

The attach() method makes this sensor detect changes to the given node.
The detach() method unschedules this sensor (if it is scheduled) and makes
it ignore changes to the scene graph. The getAttachedNode() method
returns the node that this sensor is sensing, or NULL if it is not attached to
any node.

Methods from class SoDataSensor:
setDeleteCallback, getTriggerNode, getTriggerField, getTriggerPath,
setTriggerPathFlag, getTriggerPathFlag

Methods from class SoDelayQueueSensor:
setPriority, getPriority, getDefaultPriority, schedule, unschedule, isScheduled

Methods from class SoSensor:
setFunction, getFunction, setData, getData

INCLUDE FILE
#i ncl ude <l nventor/sensors/ SoNodeSensor. h>

SEE ALSO
SoFieldSensor, SoPathSensor, SoDataSensor

427

SoNonIndexedShape

NAME

SoNonlIndexedShape — abstract base class for all non-indexed vertex-based shapes

INHERITS FROM

SoBase > SoFieldContainer > SoNode > SoShape > SoVertexShape >
SoNonlIndexedShape

DESCRIPTION

This node is the abstract base class for all vertex-based shapes that are not
constructed from indices, such as SoFaceSet, SoLineSet, and SoQuadMesh.

All subclasses of SoNonlndexedShape construct objects by using the current
coordinates as the object’s vertices. The startindex field defined by this class
contains the index of the coordinate to use for the first vertex. This index is also
used for materials, normals, or texture coordinates when the binding indicates that
they should be used per vertex.

The subclass decides what to do with this and any subsequent coordinates. The
shape is drawn with the current lighting model and drawing style and is
transformed by the current transformation matrix.

Material, normal, and texture coordinate bindings for shapes derived from this class
ignore any index specifications. That is, a binding value of PER_FACE_INDEXED is
treated the same way as PER_FACE, and so on.

If there aren’t sufficient values in the current coordinates, material, or texture
coordinates, errors will occur.

FIELDS
SoSFLong startindex
Index of first coordinate of shape.
METHODS
static SoType getClassTypeld()

428

Returns type identifier for this class.

Methods from class SoNode:
setOverride, isOverride, copy, affectsState, getByName, getByName

Methods from class SoFieldContainer:

setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, set, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Open Inventor C++ Reference Pages

SoNonIndexedShape

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

FILE FORMAT/DEFAULTS
This is an abstract class. See the reference page of a derived class for the format and
default values.

INCLUDE FILE
#i ncl ude <l nvent or/ nodes/ SoNonl ndexedShape. h>

SEE ALSO
SoFaceSet, SolndexedShape, SoLineSet, SoPointSet, SoQuadMesh, SoTriangleStripSet

429

SoNormal

NAME
SoNormal — node that defines surface normals for shapes

INHERITS FROM
SoBase > SoFieldContainer > SoNode > SoNormal

DESCRIPTION
This node defines a set of 3D surface normal vectors to be used by vertex-based
shape nodes that follow it in the scene graph. This node does not produce a visible
result during rendering; it simply replaces the current normals in the rendering state
for subsequent nodes to use. This node contains one multiple-valued field that
contains the normal vectors.

Surface normals are needed to compute lighting when the Phong lighting model is
used. Most vertex-based shapes that use normals can compute default normals if
none are specified, depending on the current normal binding.

FIELDS
SoMFVec3f vector
Surface normal vectors.

METHODS
SoNormal()
Creates a surface normal node with default settings.

static SoType getClassTypeld()
Returns type identifier for this class.

Methods from class SoNode:
setOverride, isOverride, copy, affectsState, getByName, getByName

Methods from class SoFieldContainer:
setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, set, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled
Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

ACTION BEHAVIOR

SoGLRenderAction, SoCallbackAction, SoRayPickAction
Sets the current normals in the traversal state.

430 Open Inventor C++ Reference Pages

SoNormal

FILE FORMAT/DEFAULTS
Nor mal {
vector 00 1

}

INCLUDE FILE
#i ncl ude <l nvent or/ nodes/ SoNor mal . h>

SEE ALSO
SoCoordinate3, SoLightModel, SoNormalBinding, SoVertexShape

431

SoNormalBinding

NAME
SoNormalBinding — node that specifies how multiple surface normals are bound to
shapes

INHERITS FROM
SoBase > SoFieldContainer > SoNode > SoNormalBinding

DESCRIPTION
This node specifies how the current normals are bound to shapes that follow in the
scene graph. Each shape node may interpret bindings differently.

The bindings for faces and vertices are meaningful only for shapes that are made
from faces and vertices. Similarly, the indexed bindings are only used by the shapes
that allow indexing. For bindings that require multiple normals, be sure to have at
least as many normals defined as are necessary; otherwise, errors will occur.

FIELDS
SOSFEnum value
Specifies how to bind normals to shapes.

METHODS
SoNormalBinding()
Creates a normal binding node with default settings.

static SoType getClassTypeld()
Returns type identifier for this class.

Methods from class SoNode:
setOverride, isOverride, copy, affectsState, getByName, getByName

Methods from class SoFieldContainer:

setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, set, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

ACTION BEHAVIOR
SoGLRenderAction, SoCallbackAction, SoRayPickAction
Sets the current normal binding type.

432 Open Inventor C++ Reference Pages

SoNormalBinding

FILE FORMAT/DEFAULTS
Nor mal Bi ndi ng {
val ue DEFAULT

}

INCLUDE FILE
#i ncl ude <I nventor/ nodes/ SoNor nal Bi ndi ng. h>

enum Binding {

SoNormalBinding::DEFAULT

Use default binding
SoNormalBinding::OVERALL

Whole object has same normal
SoNormalBinding::PER_PART

One normal for each part of object
SoNormalBinding::PER_PART_INDEXED

One normal for each part, indexed
SoNormalBinding::PER_FACE

One normal for each face of object
SoNormalBinding::PER_FACE_INDEXED

One normal for each face, indexed
SoNormalBinding::PER_VERTEX

One normal for each vertex of object
SoNormalBinding::PER_VERTEX_INDEXED

One normal for each vertex, indexed

SEE ALSO
SoMaterialBinding, SoNormal, SoTextureCoordinateBinding, SoVertexShape

433

SoNurbsCurve

NAME

SoNurbsCurve — NURBS curve shape node

INHERITS FROM

SoBase > SoFieldContainer > SoNode > SoShape > SoNurbsCurve

DESCRIPTION

This class represents a NURBS curve, based on the knot vector and the control points
that you specify. The knotVector field specifies a floating-point array of values; the
values are the coordinates of the knot points in the curve, and you must enter them
in non-decreasing order. The curve will use the first numControlPoints values in
the current coordinates as control points.

If you specify n knots, you can specify up to n-8 control points. The number of
knots minus the number of control points is known as the order of the curve. A
NURBS curve can have an order of up to 8.

The control points of the curve are transformed by the current transformation
matrix. The curve is drawn with the current lighting model and drawing style
(drawing style FILLED is treated as LINES). The coordinates, normals, and texture
coordinates of a NURBS curve are generated, so you cannot bind explicit normals or
texture coordinates to a NURBS curve.

The approximation of the curve by line segments is affected by the current
complexity value.

FIELDS
SoSFLong numControlPoints
Number of control points.
SoMFFloat knotVector
The knot vector.
METHODS
SoNurbsCurve()
Creates a NURBS curve node with default settings.
static SoType getClassTypeld()

434

Returns type identifier for this class.

Methods from class SoNode:
setOverride, isOverride, copy, affectsState, getByName, getByName

Open Inventor C++ Reference Pages

SoNurbsCurve

Methods from class SoFieldContainer:

setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, set, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

ACTION BEHAVIOR
SoGLRenderAction
Draws the curve based on the current coordinates, material, and so on.

SoRayPickAction
Picks the curve based on the current coordinates and transformation.

SoGetBoundingBoxAction
Computes the bounding box that encloses all control points of the curve
with the current transformation applied to them. Sets the center to the
average of the control points.

SoCallbackAction
If any line segment callbacks are registered with the action, they will be
invoked for each successive segment approximating the curve.

FILE FORMAT/DEFAULTS
Nur bsCurve {
nunControl Points O
knot Vect or 0

}

INCLUDE FILE
#i ncl ude <l nvent or/ nodes/ SoNur bsCur ve. h>

SEE ALSO
SolndexedNurbsCurve, SoNurbsSurface

435

SoNurbsProfile

NAME
SoNurbsProfile — NURBS profile curve

INHERITS FROM
SoBase > SoFieldContainer > SoNode > SoProfile > SoNurbsProfile

DESCRIPTION
This node specifies a NURBS curve that is used as a profile. The curve is defined in
the same way as a standard SoNurbsCurve, except that the control points are
constructed from the current set of profile coordinates, using the index field.

FIELDS
SoMFFloat knotVector
The knot vector for the NURBS curve. It must be a list of non-decreasing
floating point values.

Fields from class SoProfile:
index, linkage

METHODS
SoNurbsProfile()
Creates a NURBS profile curve node with default settings.
static SoType getClassTypeld()

Returns type identifier for this class.

Methods from class SoNode:
setOverride, isOverride, copy, affectsState, getByName, getByName

Methods from class SoFieldContainer:

setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, set, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

ACTION BEHAVIOR
SoGLRenderAction, SoCallbackAction, SoRayPickAction
Adds a profile to the current traversal state.

436 Open Inventor C++ Reference Pages

SoNurbsProfile

FILE FORMAT/DEFAULTS
Nur bsProfile {

i ndex 0
I i nkage START_FI RST
knot Vector O
}
INCLUDE FILE

#i ncl ude <l nvent or/ nodes/ SoNur bsProfil e. h>

SEE ALSO

SoLinearProfile, SoNurbsCurve, SoProfileCoordinate2, SoProfileCoordinate3

437

SoNurbsSurface

NAME

SoNurbsSurface — NURBS surface shape node

INHERITS FROM

SoBase > SoFieldContainer > SoNode > SoShape > SoNurbsSurface

DESCRIPTION

FIELDS

438

This shape node represents a NURBS surface based on the node’s knot vectors and
on control points constructed from the current coordinates. The current coordinates
are used in row-major order (the V direction corresponds to the rows). The number
of coordinates used is determined by the numUControlPoints and
numVControlPoints fields. The uKnotVector and vKnotVector fields contain
floating point arrays of non-decreasing values.

The order of the surface in the U and V directions is defined as the number of knots
minus the number of control points in the particular direction. The largest order
allowed for a NURBS surface is 8.

The control points of the NURBS surface are transformed by the current cumulative
transformation. The surface is drawn with the current light model and drawing
style. The coordinates, normals, and texture coordinates of a surface are generated,
so you cannot bind explicit normals or texture coordinates to a NURBS surface. The
first material in the state is applied to the entire surface.

The surface is trimmed according to the currently defined profile’s curves.

When default texture coordinates are applied to a NURBS surface, the edges of the
texture square are stretched to fit the surface. The axes of the texture are called S
and T; S is horizontal and T is vertical. The axes of the NURBS surface are called U
and V; U is horizontal and V is vertical. You can also define texture coordinates
explicitly with the S,T location point, the knot vectors, and the current texture
coordinates.

The approximation of the surface by polygons is affected by the current complexity
value.

SoSFLong numUControlPoints
SoSFLong numVControlPoints
Number of control points in the U and V directions.

SoSFLong numsSControlPoints

SoSFLong numTControlPoints
Number of control points in the S and T directions.

Open Inventor C++ Reference Pages

SoNurbsSurface

SoMFFloat uKnotVector
SoMFFloat vKnotVector
The knot vectors in the U and V directions.

SoMFFloat sKnotVector
SoMFFloat tKnotVector
The knot vectors in the S and T directions.

METHODS
SoNurbsSurface()
Creates a NURBS surface node with default settings.
static SoType getClassTypeld()

Returns type identifier for this class.

Methods from class SoNode:
setOverride, isOverride, copy, affectsState, getByName, getByName

Methods from class SoFieldContainer:

setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, set, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

ACTION BEHAVIOR
SoGLRenderAction
Draws the surface based on the current coordinates, material, and so on.

SoRayPickAction
Picks the surface based on the current coordinates and transformation.

SoGetBoundingBoxAction
Computes the bounding box that encloses all control points of the surface
with the current transformation applied to them. Sets the center to the
average of the control points.

SoCallbackAction

If any triangle callbacks are registered with the action, they will be invoked
for each successive triangle approximating the surface.

439

SoNurbsSurface

FILE FORMAT/DEFAULTS
Nur bsSur f ace {
numJCont r ol Poi nt s
numvCont r ol Poi nt s
nunmSCont r ol Poi nt s
numlCont r ol Poi nt s
uKnot Vect or
vKnot Vect or
sKnot Vect or
t Knot Vect or

cNoNoNoNeoleNoNo)

}

INCLUDE FILE
#i ncl ude <l nvent or/ nodes/ SoNur bsSur f ace. h>

SEE ALSO
SolndexedNurbsSurface, SoNurbsCurve, SoProfile

440 Open Inventor C++ Reference Pages

SoOffScreenRenderer

NAME
SoOffScreenRenderer — renders to an off-screen buffer for printing or generating
textures

INHERITS FROM
SoOffScreenRenderer

DESCRIPTION
This class is used to render into an off-screen buffer to create a printable image or to
generate a texture image. It uses X Pixmaps for rendering. Methods are provided to
write the buffer to a file, either as an RGB image or an encapsulated PostScript
description.

METHODS
static float getScreenPixelsPerlinch()
Returns the number of pixels per inch (in the horizontal direction) of the
current X device screen.

void setComponents(Components components)
Components getComponents() const
Sets or returns the components to be rendered.

void setViewportRegion(const SbViewportRegion ®ion)
const SbViewportRegion &
getViewportRegion() const
Sets or returns the viewport region used for rendering.

void setBackgroundColor(const ShColor &c)
const SbColor & getBackgroundColor() const
Sets or returns the background color for rendering.

SbBool render(SoNode *scene)

SbBool render(SoPath *scene)
Renders the given scene, specified as a node or a path, into an off-screen
buffer.

unsigned char * getBuffer() const

Returns the buffer containing the rendered image.

SbBool writeToORGB(FILE *fp) const
Writes the buffer as a .rgb file to the given file pointer.

441

SoOffScreenRenderer

SbBool writeToPostScript(FILE *fp) const

SbBool writeToPostScript(FILE *fp, const SbVVec2f &printSize) const
Writes the buffer as encapsulated PostScript. If a print size is not given, the
size of the image in the buffer is adjusted so it is the same as the apparent
size of the viewport region on the current device.

INCLUDE FILE
#i ncl ude <l nventor/ m sc/ SoOf f Scr eenRender er. h>

enum Components {
SoOffScreenRenderer::LUMINANCE
SoOffScreenRenderer::LUMINANCE_TRANSPARENCY
SoOffScreenRenderer::RGB
SoOffScreenRenderer::RGB_TRANSPARENCY

442 Open Inventor C++ Reference Pages

SoOneShot

NAME
SoOneShot — timer that runs for a pre-set amount of time

INHERITS FROM
SoBase > SoFieldContainer > SOEngine > SoOneShot

DESCRIPTION
This engine is a timer that runs for a pre-set amount of time and then stops. By
default, the timeln input is connected to the realTime global field. It can, however,
by connected to any other time source.

The timer is started when the trigger input is touched. It then runs for the specified
duration, and updates the timeOut output with the time that has elapsed. During
that time, the ramp output is also updated. The ramp output starts at 0.0 at the
beginning of the cycle, and linearly increases until it reaches 1.0 at the end of the
cycle.

You can disable the timer by setting the disable input to TRUE. The output value
remains 0.0 while the timer is disabled. If the timer is disabled in the middle of a
cycle the output values will be set to 0.0.

The flags input contains control flags. Using the flags you can set the timer to be
retriggerable in the middle of a cycle, and set the output values to stay high after the
cycle has been completed. By default, these flags are not set.

INPUTS
SoSFTime timeln
Running time.
SoSFTime duration
Duration of the active cycle.
SoSFTrigger trigger
Start the cycle. The trigger will be ignored if it is touched in the middle of a
cycle and the RETRIGGERABLE flag is not set.
SoSFBitMask flags
Control flags.
SoSFBool disable

If TRUE, the timer is disabled.

443

SoOneShot

OUTPUTS
(SoSFTime) timeOut
Elapsed time from the start.
(SoSFBool) isActive
Is TRUE during the active cycle.
(SoSFFloat) ramp
Ramps linearly from 0.0 to 1.0.
METHODS
SoOneShot()
Constructor

Methods from class SoEngine:
getClassTypeld, getOutputs, getOutput, getOutputName, copy, getByName,
getByName

Methods from class SoFieldContainer:
setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, set, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

FILE FORMAT/DEFAULTS

OneShot {
duration 1
trigger
flags @)
di sabl e FALSE
tineln <current tinme>
}
INCLUDE FILE

#i ncl ude <l nventor/engi nes/ So. h>

enum Flags {
SoOneShot::RETRIGGERABLE Can start over during the cycle
SoOneShot::HOLD_FINAL Output values stay high after cycle

}

SEE ALSO
SoElapsedTime, SoEngineOutput

444 Open Inventor C++ Reference Pages

SoOneShotSensor

NAME
SoOneShotSensor — sensor for one-time only callbacks

INHERITS FROM
SoSensor > SoDelayQueueSensor > SoOneShotSensor

DESCRIPTION
A one-shot sensor is triggered once after it is scheduled, when the delay queue is
processed. Like all delay queue sensors, one-shot sensors with a non-zero priority are
just added to the delay queue when scheduled; if they are scheduled again before
the delay queue is processed nothing happens, and they are guaranteed to be called
only once when the delay queue is processed. For example, a one-shot sensor whose
callback function redraws the scene might be scheduled whenever the scene graph
changes and whenever a window-system event reporting that the window changed
size occurs. By using a one-shot, the scene will only be redrawn once even if a
window-changed-size event occurs just after the scene graph is modified (or if
several window-changed-size events occur in a row).

Calling schedule() in the callback function is a useful way of getting something to
happen repeatedly as often as possible, while still handling events and timeouts.

A priority 0 one-shot sensor isn’t very useful, since scheduling it is exactly the same
as directly calling its callback function.

METHODS
SoOneShotSensor()
SoOneShotSensor(SoSensorCB *func, void *data)
Creation methods. The second method takes the callback function and data
to be called when the sensor is triggered.

~SoOneShotSensor()
Destroys the sensor, freeing up any memory associated with it after
unscheduling it.

Methods from class SoDelayQueueSensor:
setPriority, getPriority, getDefaultPriority, schedule, unschedule, isScheduled

Methods from class SoSensor:
setFunction, getFunction, setData, getData

INCLUDE FILE
#i ncl ude <l nvent or/sensors/ SoOneShot Sensor . h>

SEE ALSO
SoldleSensor, SoDelayQueueSensor

445

SoOnOff

NAME
SoOnOff — engine that functions as an on/off switch

INHERITS FROM
SoBase > SoFieldContainer > SoEngine > SoOnOff

DESCRIPTION
This engine has three triggers as input and two Boolean values as output. The isOn
output is a switch that can be turned on or off by triggering the corresponding
input. You can toggle the value by triggering the toggle input. By default isOn is
FALSE. The isOff output value is the inverse of isOn

INPUTS
SoSFTrigger on
Turn the isOn switch on.
SoSFTrigger off
Turn the isOn switch off.
SoSFTrigger toggle
Toggle the switch value.
OUTPUTS
(SoSFBool) isOn
Switch value.
(SoSFBool) isOff
The inverse of isOn.
METHODS

SoOnOff()
Constructor.

Methods from class SoEngine:
getClassTypeld, getOutputs, getOutput, getOutputName, copy, getByName,
getByName

Methods from class SoFieldContainer:
setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, set, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

446 Open Inventor C++ Reference Pages

SoOnOff

FILE FORMAT/DEFAULTS

OO f {
on
of f
t oggl e
}
INCLUDE FILE

#i ncl ude <l nventor/engi nes/ SoOntf f. h>

SEE ALSO
SoEngineOutput

447

SoOrthographicCamera

NAME

SoOrthographicCamera — orthographic camera node

INHERITS FROM

SoBase > SoFieldContainer > SoNode > SoCamera > SoOrthographicCamera

DESCRIPTION

FIELDS

An orthographic camera defines a parallel projection from a viewpoint. This camera
does not diminish objects with distance, as an SoPerspectiveCamera does. The
viewing volume for an orthographic camera is a rectangular parallelepiped (a box).

By default, the camera is located at (0,0,1) and looks along the negative z-axis; the
position and orientation fields can be used to change these values. The height field
defines the total height of the viewing volume; this and the aspectRatio field
determine its width.

SoSFFloat height
Height of the viewing volume.

Fields from class SoCamera:

viewportMapping, position, orientation, aspectRatio, nearDistance,
farDistance, focalDistance

METHODS
SoOrthographicCamera()
Creates an orthographic camera node with default settings.
static SoType getClassTypeld()

448

Returns type identifier for this class.
Methods from class SoCamera:
pointAt, scaleHeight, getViewVolume, viewAll, viewAll, getViewportBounds

Methods from class SoNode:
setOverride, isOverride, copy, affectsState, getByName, getByName

Methods from class SoFieldContainer:

setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, set, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

Open Inventor C++ Reference Pages

SoOrthographicCamera

ACTION BEHAVIOR
SoGLRenderAction, SoCallbackAction, SoGetBoundingBoxAction,
SoHandleEventAction, SoRayPickAction
Sets the viewport and camera information in the state.

FILE FORMAT/DEFAULTS
Ot hogr aphi cCanera {

vi ewpor t Mappi ng ADJUST_CAMERA
posi tion 001
orientation 001 O
aspectRatio 1
near Di st ance 1
farDi st ance 10
focal D st ance 5
hei ght 2

}

INCLUDE FILE
#i ncl ude <l nvent or/ nodes/ SoOrt hogr aphi cCaner a. h>

SEE ALSO
SbViewVolume, SoPerspectiveCamera

449

SoOutput

NAME

INHERITS FROM

450

SoOutput — used to write Inventor data files

SoOutput

DESCRIPTION
This class is used for writing Inventor data files. It supports both ASCII (default) and
binary formats and provides some convenience functions for handling files. It can
also write to a buffer in memory as well as to a file pointer. An instance of SoOutput
is contained in an SoWriteAction; this is typically the only instance needed.

METHODS

void

FILE *

SbBool

void

SbBool

size t

SoOutput()

~SoOutput()
Constructor and destructor. The default SoOutput writes to stdout. The
destructor closes any files opened by the SoOutput.

setFilePointer(FILE *newFP)
Sets file pointer to write to.

getFilePointer() const
Returns the file pointer in use, or NULL if using a buffer.

openFile(const char *fileName)
Opens named file, sets file pointer to result. This returns FALSE on error.

closeFile()
Closes current file if opened with openFile().

setBuffer(void *bufPointer, size_t initSize, SoOutputReallocCB
*reallocFunc, long offset = 0)
Sets up memory buffer to write to, initial size, reallocation function (which
is called if there is not enough room in the buffer), and offset in the buffer at
which to begin writing. If the reallocation function returns NULL, writing
will be disabled.

getBuffer(void *&bufPointer, size_t &nBytes) const
Returns pointer to memory buffer being written to and the new size of the
buffer. Returns FALSE if not writing into a buffer.

getBufferSize() const

The total number of bytes allocated to a memory buffer may be larger than
the number of bytes written. This returns that total number.

Open Inventor C++ Reference Pages

SoOutput

void resetBuffer()
Resets buffer for output again. Output starts over at beginning of buffer.

void setBinary(SbBool flag)
Sets whether output should be ASCII (default) or binary.

SbBool isBinary() const
Returns current state of binary flag.

static float iSASClIHeader(const char *string)

static float isBinaryHeader(const char *string)
Returns non-zero if given string matches the ASCII or binary file header. The
value returned is the file format version number.

INCLUDE FILE

#i ncl ude <l nventor/ SoQut put . h>

typedef void * SoOutputReallocCB(void *ptr, size_t newSize)

SEE ALSO

Solnput, SoWriteAction, SoTranSender

451

SoPackedColor

NAME
SoPackedColor — node that defines base colors using packed representation

INHERITS FROM
SoBase > SoFieldContainer > SoNode > SoPackedColor

DESCRIPTION
SoPackedColor is similar to SoBaseColor in that it sets the diffuse color component
of the current material. However, it also changes the transparency component. The
color and transparency information is packed into unsigned long integers:
Oxaabbggrr, where aa represents the alpha (0x00 = fully transparent, Oxff = opaque),
and bb, gg, and rr represent the blue, green, and red components of the color,
respectively.

SoPackedColor uses less memory than SoBaseColor or SoMaterial to store multiple
color and transparency values. It can be used in cases where space is critical.

FIELDS
SoMFULong rgba
Defines the packed colors.

METHODS
SoPackedColor()
Creates a packed color node with default settings.

static SoType getClassTypeld()
Returns type identifier for this class.

Methods from class SoNode:
setOverride, isOverride, copy, affectsState, getByName, getByName

Methods from class SoFieldContainer:

setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, set, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

ACTION BEHAVIOR
SoGLRenderAction, SoCallbackAction
Sets the current base (diffuse) color(s) in the state.

452 Open Inventor C++ Reference Pages

SoPackedColor

FILE FORMAT/DEFAULTS
PackedCol or {
rgba Oxffcccccce

}

INCLUDE FILE
#i ncl ude <l nvent or/ nodes/ SoPackedCol or. h>

SEE ALSO
SoBaseColor, SoMaterial

453

SoPath

NAME

SoPath — path that points to a list of hierarchical nodes

INHERITS FROM

SoBase > SoPath

DESCRIPTION

A path represents a scene graph or subgraph. It contains a list of pointers to nodes
forming a chain from some root to some descendent. Each node in the chain is a
child of the previous node. Paths are used to refer to some object in a scene graph
precisely and unambiguously, even if there are many instances of the object.
Therefore, paths are returned by both the SoRayPickAction and SoSearchAction.

When an action is applied to a path, only the nodes in the subgraph defined by the
path are traversed. These include: the nodes in the path chain, all nodes (if any)
below the last node in the path, and all nodes whose effects are inherited by any of
these nodes.

SoPath attempts to maintain consistency of paths even when the structure of the
scene graph changes. For example, removing a child from its parent when both are
in a path chain cuts the path chain at that point, leaving the top part intact.
Removing the node to the left of a node in a path adjusts the index for that node.
Replacing a child of a node when both the parent and the child are in the chain
replaces the child in the chain with the new child, truncating the path below the
new child.

Note that only public children of nodes are accessible from an SoPath. Nodes like
node kits that limit access to their children may provide other ways to get more
information, such as by using the SoNodeKitPath class.

METHODS

454

SoPath()
Constructs an empty path.

SoPath(int approxLength)
Constructs a path with a hint to length (number of nodes in chain).

SoPath(SoNode *node)
Constructs a path and sets the head node to the given node.

void setHead(SoNode *node)

Sets head node (first node in chain). The head node must be set before the
append() or push() methods may be called.

Open Inventor C++ Reference Pages

SoPath

void append(int childindex)
Adds node to end of chain; the node is the childindex’th child of the current
tail node.

void append(SoNode *childNode)

Adds node to end of chain; uses the first occurrence of childNode as child of
current tail node. If the path is empty, this is equivalent to
setHead(childNode).

void append(const SoPath *fromPath)
Adds all nodes in fromPath’s chain to end of chain; the head node of
fromPath must be the same as or a child of the current tail node.

void push(int childlndex)

void pop()
These allow a path to be treated as a stack; they push a node at the end of
the chain and pop the last node off.

SoNode * getHead() const
SoNode * getTail() const
These return the first and last nodes in a path chain.
SoNode * getNode(int i) const
int getlndex(int i) const

These return a pointer to the i’th node or the index of the i’th node (within
its parent) in the chain. Calling getNode(0) is equivalent to calling
getHead().

SoNode * getNodeFromTail(int i) const

int getindexFromTail(int i) const
These return a pointer to the i’th node or the index of the i’'th node (within
its parent) in the chain, counting backward from the tail node. Passing O for
i returns the tail node or its index.

int getLength() const
Returns length of path chain (number of nodes).

void truncate(int start)

Truncates the path chain, removing all nodes from index start on. Calling
truncate(0) empties the path entirely.

455

SoPath

456

SbBool containsNode(const SoNode *node) const
Returns TRUE if the node is found anywhere in the path chain.

SbBool containsPath(const SoPath *path) const
Returns TRUE if the nodes in the chain in the passed path are contained (in
consecutive order) in this path chain.

int findFork(const SoPath *path) const
If the two paths have different head nodes, this returns -1. Otherwise, it
returns the path chain index of the last node (starting at the head) that is
the same for both paths.

SoPath * copy(int startfromNodelndex = 0, int numNodes = 0) const
Creates and returns a new path that is a copy of some or all of this path.
Copying starts at the given index (default is 0, which is the head node). A
numNodes of 0 (the default) means copy all nodes from the starting index to
the end. Returns NULL on error.

friend int operator ==(const SoPath &p1, const SoPath &p2)
Returns TRUE if all node pointers in the two path chains are identical.

static SoPath * getByName(const SbName &name)

static int getByName(const SbName &name, SoPathList &list)

These methods lookup and return paths with a given name. Paths are named
by calling their setName() method (defined by the SoBase class). The first
form returns the last path that was given that name, either by setName() or
by reading in a named path from a file. If there is no path with the given
name, NULL will be returned. The second form appends all paths with the
given name to the given path list and returns the number of paths that were
added. If there are no paths with the given name, zero will be returned and
nothing will be added to the list.

Methods from class SoBase:

ref, unref, unrefNoDelete, touch, getClassTypeld, getTypeld, isOfType,
setName, getName

Open Inventor C++ Reference Pages

SoPath

FILE FORMAT/DEFAULTS
SoPat h {
[head node]
[nunber of remaining indices]
[ndex]

[| .ndex]

}

Note that the indices in a written path are adjusted based on the nodes that are
actually written to a file. Since nodes in the graph that have no effect on the path
(such as some separator nodes) are not written, the siblings of such nodes must

undergo index adjustment when written. The actual nodes in the graph remain
unchanged.

INCLUDE FILE
#i ncl ude <l nvent or/ SoPat h. h>

SEE ALSO
SoNode, SoRayPickAction, SoSearchAction, SoNodeKitPath

457

SoPathList

NAME
SoPathList — maintains a list of pointers to paths

INHERITS FROM
SbPList > SoBaseList > SoPathList

DESCRIPTION
This subclass of SoBaseL.ist holds lists of pointers to SoPaths. It updates reference
counts to paths in the list whenever adding or removing pointers.

METHODS
SoPathList()
Constructor.

SoPathList(int size)
Constructor that pre-allocates storage for size pointers.

SoPathList(const SoPathList &I)
Constructor that copies the contents of another list.

~SoPathList()
Destructor.

void append(SoPath *path)
Adds a path to the end of the list.

SoPath * operator [](int i) const
Accesses an element of a list.

SoPathList & operator =(const SoPathList &I)
Copies a list, keeping all reference counts correct.

int findPath(const SoPath &path)
Returns the index of the matching path in the list, or -1 if not found.

void sort()
Sorts list in place based on (1) increasing address of head node, then (2)
increasing indices of children.

void uniquify()
Given a sorted list, removes any path that (1) is a duplicate, or (2) goes
through a node that is the tail of another path.

Methods from class SoBaseL.ist:
insert, remove, truncate, copy, set, addReferences

458 Open Inventor C++ Reference Pages

SoPathList

Methods from class SbPL.ist:
find, getLength, operator ==, operator !=

INCLUDE FILE
#i ncl ude <l nventor/ SoLi sts. h>

SEE ALSO
SoPath

459

SoPathSensor

NAME

SoPathSensor — sensor class that can be attached to Inventor paths

INHERITS FROM

SoSensor > SoDelayQueueSensor > SoDataSensor > SoPathSensor

DESCRIPTION

Path sensors detect changes to paths, calling a callback function whenever the path
or any node in the path changes. The definition of "in the path" is the same as the
definition used when applying an action to the path — any node that can possibly
affect the node at the end of the path chain is considered in the path. See the
SoPath manual page for more information on paths.

METHODS
SoPathSensor()
SoPathSensor(SoSensorCB *func, void *data)
Creation methods. The second method takes the callback function and data
to be called when the sensor is triggered.
~SoPathSensor()
Destroys the sensor, freeing up any memory associated with it after
unscheduling it.
void attach(SoPath *path)
void detach()
SoPath * getAttachedPath() const

460

The attach() method makes this sensor detect changes to the given path.
The detach() method unschedules this sensor (if it is scheduled) and makes
it ignore changes to the scene graph. The getAttachedPath() method
returns the path that this sensor is sensing, or NULL if it is not attached to
any path.

Methods from class SoDataSensor:

setDeleteCallback, getTriggerNode, getTriggerField, getTriggerPath,
setTriggerPathFlag, getTriggerPathFlag

Methods from class SoDelayQueueSensor:
setPriority, getPriority, getDefaultPriority, schedule, unschedule, isScheduled

Methods from class SoSensor:
setFunction, getFunction, setData, getData

Open Inventor C++ Reference Pages

SoPathSensor

INCLUDE FILE
#i ncl ude <l nventor/sensors/ SoPat hSensor. h>

SEE ALSO
SoNodeSensor, SoPathSensor, SoDataSensor

461

SoPathSwitch

NAME
SoPathSwitch — group node that traverses only when traversed along a given path

INHERITS FROM
SoBase > SoFieldContainer > SoNode > SoGroup > SoPathSwitch

DESCRIPTION
SoPathSwitch is a group node that traverses its children only if the current traversal
path matches the SoPath in the path field. This can be used, for example, to affect
only one instance of a subgraph. The path field contains the path up to (but not
including) the SoPathSwitch. The path need not go all the way back to the root; if
it does not, then only the number of ancestors that are in the path are compared to
see if the children should be traversed. A NULL path means that the children are
never traversed.

FIELDS
SoSFPath path
The path that must match the current traversal path.
METHODS
SoPathSwitch()
Creates a path switch node with default settings.
SoPathSwitch(int nChildren)
Constructor that takes approximate number of children.
static SoType getClassTypeld()

Returns type identifier for this class.

Methods from class SoGroup:

addChild, insertChild, getChild, findChild, getNumChildren, removeChild,
removeChild, removeAllChildren, replaceChild, replaceChild

Methods from class SoNode:
setOverride, isOverride, copy, affectsState, getByName, getByName

Methods from class SoFieldContainer:

setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, set, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

462 Open Inventor C++ Reference Pages

SoPathSwitch

ACTION BEHAVIOR

SoGLRenderAction, SoCallbackAction, SoGetBoundingBoxAction,
SoRayPickAction, SoHandleEventAction
Traverses the children if the paths match.

FILE FORMAT/DEFAULTS
Pat hSwi t ch {
path NULL
}

INCLUDE FILE
#i ncl ude <Inventor/ nodes/ SoPat hSwi t ch. h>

SEE ALSO
SoPath, SoSwitch

463

SoPendulum

NAME

SoPendulum — animated oscillating rotation node

INHERITS FROM

SoBase > SoFieldContainer > SoNode > SoTransformation > SoRotation >
SoPendulum

DESCRIPTION

FIELDS

The SoPendulum class is derived from SoRotation, so it applies a rotation to the
current transformation. Using engines connected to the realTime global field, the
rotation value is animated over time between two fixed rotations, achieving the
effect of a swinging pendulum. The period of the swing can be adjusted by changing
the speed field. The current rotation at any time is available in the rotation field,
inherited from SoRotation

SoSFRotation rotationO

SoSFRotation rotationl
These define the two fixed rotations that are interpolated to create the
pendular motion.

SoSFFloat speed
Defines the speed of the pendulum, in cycles per second.

SoSFBool on

Allows applications to enable or disable the motion easily.

Fields from class SoRotation:

rotation
METHODS
SoPendulum()
Creates a pendulum node with default settings.
static SoType getClassTypeld()

464

Returns type identifier for this class.

Methods from class SoNode:
setOverride, isOverride, copy, affectsState, getByName, getByName

Methods from class SoFieldContainer:

setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, set, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Open Inventor C++ Reference Pages

SoPendulum

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

ACTION BEHAVIOR
SoGLRenderAction, SoCallbackAction, SoGetBoundingBoxAction,

SoRayPickAction
Concatenates interpolated rotation value with the current transformation

matrix.

SoGetMatrixAction
Returns transformation matrix specified by the interpolated rotation.

FILE FORMAT/DEFAULTS

Pendul um {
rotation 0 01 3.14159
rotation0 0 0 1 3.14159
rotationl 0 0 1 3.14159
speed 1
on TRUE

}

INCLUDE FILE

#i ncl ude <l nvent or/ nodes/ SoPendul um h>

SEE ALSO
SoRotor, SoShuttle

465

SoPerspectiveCamera

NAME

SoPerspectiveCamera — perspective camera node

INHERITS FROM

SoBase > SoFieldContainer > SoNode > SoCamera > SoPerspectiveCamera

DESCRIPTION

FIELDS

A perspective camera defines a perspective projection from a viewpoint. The viewing
volume for a perspective camera is a truncated right pyramid.

By default, the camera is located at (0,0,1) and looks along the negative z-axis; the
position and orientation fields can be used to change these values. The
heightAngle field defines the total vertical angle of the viewing volume; this and
the aspectRatio field determine the horizontal angle.

SoSFFloat heightAngle
Vertical angle of the viewing volume.

Fields from class SoCamera:

viewportMapping, position, orientation, aspectRatio, nearDistance,
farDistance, focalDistance

METHODS
SoPerspectiveCamera()
Creates a perspective camera node with default settings.
static SoType getClassTypeld()

466

Returns type identifier for this class.
Methods from class SoCamera:
pointAt, scaleHeight, getViewVolume, viewAll, viewAll, getViewportBounds

Methods from class SoNode:
setOverride, isOverride, copy, affectsState, getByName, getByName

Methods from class SoFieldContainer:

setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, set, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

Open Inventor C++ Reference Pages

SoPerspectiveCamera

ACTION BEHAVIOR
SoGLRenderAction, SoCallbackAction, SoGetBoundingBoxAction,
SoHandleEventAction, SoRayPickAction
Sets the viewport and camera information in the state.

FILE FORMAT/DEFAULTS

Per specti veCanera {
vi ewpor t Mappi ng ADJUST_CAMERA
posi tion 001
orientation 001 O
aspectRatio
near Di st ance
farDi stance
focal D stance
hei ght Angl e

0

OUR R R

. 785398
}

INCLUDE FILE
#i ncl ude <l nvent or/ nodes/ SoPer specti veCanera. h>

SEE ALSO
SbViewVolume, SoOrthographicCamera

467

SoPickAction

NAME
SoPickAction — abstract base class for picking objects in a scene

INHERITS FROM
SoAction > SoPickAction

DESCRIPTION
This is an abstract base class for all picking actions. Currently, the only supported
subclass is the SoRayPickAction.

METHODS
void setViewportRegion(const SbViewportRegion &newRegion)
const SbViewportRegion &
getViewportRegion() const
Sets/returns current viewport region to use for action. Even though the
picking operation may not involve a window per se, some nodes need this
information to determine their size and placement.

Methods from class SoAction:
apply, apply, apply, getClassTypeld, getTypeld, isOfType, invalidateState

INCLUDE FILE
#i ncl ude <l nventor/actions/ SoPi ckActi on. h>

SEE ALSO
SoRayPickAction

468 Open Inventor C++ Reference Pages

SoPickedPoint

NAME
SoPickedPoint — represents point on surface of picked object

INHERITS FROM
SoPickedPoint

DESCRIPTION
An SoPickedPoint represents a point on the surface of an object that was picked by
applying an SoRayPickAction to a scene. It contains a path to the picked shape, the
point of intersection, the surface normal and texture coordinates at that point, and
other information.

Each node in the picked path may have a corresponding instance of a detail
subclass. These detail instances are stored in the SoPickedPoint.

METHODS
SoPickedPoint(const SoPickedPoint &pp)
Copy constructor.

~SoPickedPoint()
Destructor.

const SbVec3f & getPoint() const

const SbVec3f & getNormal() const

const SbVec4f & getTextureCoords() const
These return the intersection point and surface normal in world space, and
the texture coordinates in image space.

int getMateriallndex() const
Returns the index into the current set of materials of the material active at
the intersection point. Note that if the materials are interpolated between
vertices, the index will correspond to the material at one of the vertices.

SoPath * getPath() const
Returns the path to the object that was intersected.

SbBool isOnGeometry() const
Returns whether the intersection is actually on the geometry of the
character that was hit, as opposed to being on the bounding box. The pick
style (see SoPickStyle) affects this decision.

const SoDetail * getDetail(const SoNode *node = NULL) const
Returns the detail that corresponds to the given node in the path returned
by getPath(). If the node pointer is NULL (the default), the detail
corresponding to the tail of the path is returned.

469

SoPickedPoint

const SbMatrix getObjectToWorld(const SoNode *node = NULL) const

const SbMatrix getWorldToObject(const SoNode *node = NULL) const
These return the transformation matrices between world space and the
object space corresponding to the given node in the path. If the node
pointer is NULL (the default), the matrix corresponding to the tail of the
path is returned.

const SbMatrix getObjectTolmage(const SoNode *node = NULL) const

const SbMatrix getlmageToObject(const SoNode *node = NULL) const
These return the texture transformation matrices between image space and
the object space corresponding to the given node in the path. If the node
pointer is NULL (the default), the matrix corresponding to the tail of the
path is returned.

const SbVec3f getObjectPoint(const SoNode *node = NULL) const
const SbVec3f getObjectNormal(const SoNode *node = NULL) const
const SbVec4f getObjectTextureCoords(const SoNode *node=NULL) const

These return the intersection point, surface normal, and texture coordinates
in the object space corresponding to the given node in the path. If the node
pointer is NULL (the default), the information corresponding to the tail of
the path is returned.

INCLUDE FILE

#i ncl ude <l nvent or/ SoPi ckedPoi nt. h>

SEE ALSO

470

SoRayPickAction, SoPickStyle, SoDetail, SoPath

Open Inventor C++ Reference Pages

SoPickedPointList

NAME

SoPickedPointList — maintains a list of pointers to SoPickedPoint instances

INHERITS FROM

SbPList > SoPickedPointList

DESCRIPTION

This subclass of SbPList holds lists of pointers to instances of classes derived from
SoPickedPoint. It is used primarily to return information from picking with the
SoRayPickAction class.

METHODS

void

void

void

SoPickedPointList()
Constructor.

SoPickedPointList(int size)
Constructor that pre-allocates storage for size pointers.

SoPickedPointList(const SoPickedPointList &I)
Constructor that copies the contents of another list.

~SoPickedPointList()
Destructor.

append(SoPickedPoint *ptr)
Adds a pointer to the end of the list.

insert(SoPickedPoint *ptr, int addBefore)
Inserts given pointer in list before pointer with given index.

truncate(int start)
Removes all pointers after one with given index, inclusive, deleting all
instances removed from the list.

SoPickedPoint * operator [](int i) const

void

Accesses an element of a list.

set(int i, SoPickedPoint *pickedPoint)
Sets an element of a list.

Methods from class SbPList:

find, remove, getLength, copy, operator =, operator ==, operator !=

471

SoPickedPointList

INCLUDE FILE
#i ncl ude <l nventor/ SolLi sts. h>

SEE ALSO
SoPickedPoint, SoRayPickAction

472 Open Inventor C++ Reference Pages

SoPickStyle

NAME
SoPickStyle — picking style node

INHERITS FROM
SoBase > SoFieldContainer > SoNode > SoPickStyle

DESCRIPTION
This node determines how subsequent geometry nodes in the scene graph are to be
picked, as indicated by the style field.

Note that this is the only way to change the pick behavior of shapes; drawing style,
complexity, and other rendering-related properties have no effect on picking.

FIELDS
SOSFEnum style
Picking style.

METHODS
SoPickStyle()
Creates a pick style node with default settings.

static SoType getClassTypeld()
Returns type identifier for this class.

Methods from class SoNode:
setOverride, isOverride, copy, affectsState, getByName, getByName

Methods from class SoFieldContainer:

setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, set, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

ACTION BEHAVIOR
SoRayPickAction, SoCallbackAction
Sets the current pick style in the state.

FILE FORMAT/DEFAULTS
Pi ckStyle {
style SHAPE
}

473

SoPickStyle

INCLUDE FILE
#i ncl ude <l nventor/ nodes/ SoPi ckStyl e. h>

enum Style {
SoPickStyle::SHAPE
Points on the surfaces of shapes may be picked
SoPickStyle::BOUNDING_BOX
Points on the surfaces of 3D bounding boxes of shapes may be
picked
SoPickStyle::UNPICKABLE
Subsequent objects are transparent to picks

SEE ALSO
SoComplexity, SoDrawsStyle, SoRayPickAction

474 Open Inventor C++ Reference Pages

SoPointDetail

NAME
SoPointDetail — stores detail information about vertex-based shapes made of points

INHERITS FROM
SoDetail > SoPointDetail

DESCRIPTION
This class contains detail information about a point in a vertex-based shape made of
points. It is used for returning information about an intersection with or primitives
generated by a set of points. It is also used by SoFaceDetail and SoLineDetail to
return information about the vertices of faces and line segments.

METHODS
SoPointDetail()
virtual ~SoPointDetail()
Constructor and destructor.

long getCoordinatelndex() const
Returns the index of the point within the relevant coordinate node.

long getMateriallndex() const
Returns the index of the material for the point within the relevant material
node.

long getNormallndex() const

Returns the index of the surface normal at the point within the relevant
normal node. Note that if normals have been generated for a shape, the
index may not be into an existing normal node.

long getTextureCoordIndex() const
Returns the index of the texture coordinates for the point within the
relevant normal node. Note that if texture coordinates have been generated
for a shape, the index may not be into an existing texture coordinate node.

Methods from class SoDetail:
copy, getClassTypeld, getTypeld, isOfType

INCLUDE FILE
#i ncl ude <l nventor/detail s/ SoPointDetail.h>

SEE ALSO
SoDetail, SoPickedPoint, SoPrimitiveVertex, SoVertexShape, SoFaceDetail,
SoLineDetail

475

SoPointDetail

NAME
SoPointLight — node representing a point light source

INHERITS FROM
SoBase > SoFieldContainer > SoNode > SoLight > SoPointLight

DESCRIPTION
This node defines a point light source at a fixed 3D location. A point source
illuminates equally in all directions; that is, it is omni-directional.

FIELDS
SoSFVec3f location
Location of the source.

Fields from class SoLight:
on, intensity, color

METHODS
SoPointLight()
Creates a point light source node with default settings.
static SoType getClassTypeld()

Returns type identifier for this class.

Methods from class SoNode:
setOverride, isOverride, copy, affectsState, getByName, getByName

Methods from class SoFieldContainer:

setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, set, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

ACTION BEHAVIOR
SoGLRenderAction
Activates this light (if so specified) during traversal. All shape nodes that
come after this light in the scene graph are illuminated by this light. The
light’s location is affected by the current transformation.

476 Open Inventor C++ Reference Pages

SoPointLight

FILE FORMAT/DEFAULTS

Poi nt Li ght {
on TRUE
intensity 1
col or 111
| ocation 001
}
INCLUDE FILE

#i ncl ude <l nvent or/ nodes/ SoPoi nt Li ght . h>

SEE ALSO
SoDirectionalLight, SoSpotLight

477

SoPointLightDragger

NAME

SoPointLightDragger — sun-shaped icon you can translate in 3D by dragging with
the mouse

INHERITS FROM

SoBase > SoFieldContainer > SoNode > SoBaseKit > SolnteractionKit > SoDragger >
SoPointLightDragger

DESCRIPTION

478

SoPointLightDragger is a dragger that looks like a point light source, can be
translated in three directions, and has a translation field that always reflects its
position in local space. The point light dragger also has a special material part which
can be used to make it take on the color of a light source.

Remember: This is not a light source! It just looks like one. If you want to move a
light with this dragger, you can either:

[a] Use an SoPointLightManip, which is subclassed from SoLight. It creates one of
these draggers and uses it as the interface to change the location of its light source
(see the SoPointLightManip reference page). The manipulator also edits the
material part of this dragger to match the color of light the manipulator is
producing.

[b] Use a field-to-field connection to connect the location of a light source from this
dragger’s translation field.

This dragger contains an SoDragPointDragger, which you drag through 3-space
using an integrated set of linear and planar draggers. (For detailed information on
how to use SoDragPointDragger, see its reference page.) The point light dragger sets
the planar translation parts of this dragPoint dragger with a new default that looks
like a shining sun emanating rays of light (okay, so use your imagination).

By changing the material part you can change the color of the sun shape, because
the default part contains no SoMaterial nodes. This fact enables the
SoPointLightManip (not the dragger, the manipulator) to color its dragger to
match the color of the light it is emanating. Recall that a point light manip is
derived from SoLight and creates a point light dragger to provide an interface and
geometrical presence on screen. The manipulator also has a color field; when the
light color changes, it changes the material part of its dragger so that they match.

You can change the parts in any instance of this dragger using setPart().
The default part geometries are defined as resources for this SoPointLightDragger

class. They are detailed in the Dragger Resources section of the online reference page

Open Inventor C++ Reference Pages

SoPointLightDragger

FIELDS

PARTS

for this class. You can make your program use different default resources for the
parts by copying the file /usr/share/data/draggerDefaults/pointLightDragger.iv
into your own directory, editing the file, and then setting the environment variable
SO_DRAGGER_DIR to be a path to that directory.

SoSFVec3f translation
Position of the dragger.

Fields from class SoDragger:
isActive

Fields from class SolnteractionKit:
renderCaching, boundingBoxCaching, renderCulling, pickCulling

Parts from class SoBaseKit:
callbackList

METHODS

SoPointLightDragger()
Constructor.

static const SoNodekitCatalog *
getClassNodekitCatalog() const
Returns an SoNodekitCatalog for this class

static SoType getClassTypeld()
Returns type identifier for this class.

Methods from class SoDragger:

addStartCallback, removeStartCallback, addMotionCallback,
removeMotionCallback, addFinishCallback, removeFinishCallback,
addValueChangedCallback, removeValueChangedCallback, setMinGesture,
getMinGesture, setMinScale, getMinScale

Methods from class SolnteractionKit:
setPartAsPath

Methods from class SoBaseKit:

getNodekitCatalog, getPart, getPartString, createPathToPart, setPart, set, set,
isSearchingChildren, setSearchingChildren

479

SoPointLightDragger

Methods from class SoNode:
setOverride, isOverride, copy, affectsState, getByName, getByName

Methods from class SoFieldContainer:

setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Methods from class SoBase:

ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

MACROS
Macros from class SoBaseKit:

SO_GET_PART, SO_CHECK_PART
CATALOG PARTS

All parts
NULL by
Part Name Part Type Default Type Default
callbackList NodeKitListPart -- yes
material Material -- yes
translator DragPointDragger -- yes

Extra information for list parts from above table
Part Name Container Type Permissible Types

callbackList Separator Callback, EventCallback

FILE FORMAT/DEFAULTS
Poi nt Li ght Dr agger {

r ender Cachi ng AUTO
boundi ngBoxCachi ng AUTO
render Cul l'i ng AUTO
pi ckCul |i ng AUTO
i SActive FALSE
translation 000
}
INCLUDE FILE

#i ncl ude <I nventor/draggers/ SoPoi nt Li ght Dr agger . h>

480 Open Inventor C++ Reference Pages

SoPointLightDragger

SEE ALSO
SolnteractionKit, SoDragger, SoCenterballDragger, SoDirectionalLightDragger,
SoDragPointDragger, SoHandleBoxDragger, SoJackDragger,
SoRotateCylindricalDragger, SoRotateDiscDragger, SoRotateSphericalDragger,
SoScalelDragger, SoScale2Dragger, SoScale2UniformDragger,
SoScaleUniformDragger, SoSpotLightDragger, SoTabBoxDragger, SoTabPlaneDragger,
SoTrackballDragger, SoTransformBoxDragger, SoTranslatel1Dragger,
SoTranslate2Dragger

481

SoPointLightManip

NAME

SoPointLightManip — point light node with 3D interface for editing location

INHERITS FROM

SoBase > SoFieldContainer > SoNode > SoLight > SoPointLight > SoPointLightManip

DESCRIPTION

482

SoPointLightManip is the base class for all SoPointLight nodes that have a built-in
3D user interface (this is the only such class provided with the Inventor toolkit).
Since it is derived from SoPointLight, any changes to its fields result in a change of
lighting for nodes that follow it in the scene graph. In this case, the interface edits
the location field. Also, the color of the manipulator’s geometry will reflect the
color of the light (but you can not edit the color using this manipulator).

Typically, you will want to replace a regular SoPointLight with an
SoPointLightManip (as when the user selects a light to be edited), or vice versa (as
when the user is done moving the light and the interface should go away). Use the
replaceNode() method to insert a manipulator into a scene graph, and the
replaceManip() method to remove it when done.

The SoPointLightManip utilizes an SoPointLightDragger to provide a 3D
interface. However, the manipulator differs from the dragger; it lights other objects
in the scene because, as an SoPointLight, it alters the state. The fields values and
movement of the dragger, on the other hand, affect only the dragger itself. To find
out more about how the interface works and what each part will do, see the
reference page for SoPointLightDragger. The interfaces of the dragger and the
manipulator are identical.

The SoPointLightManip utilizes its dragger by adding it as a hidden child. When an
action is applied to the manipulator, such as rendering or handling events, the
manipulator first traverses the dragger, and then the manipulator adds its lighting
parameters to the state. When you click-drag-release over the manipulator, it passes
these events down to the dragger, which moves as a result ("l can’t help it, I'm a
dragger!").

The manipulator maintains consistency between the fields of the dragger and its
own fields. Let’s say you use the mouse to translate the dragger. Callbacks insure that
the location field of the manipulator will change by the same amount, thus
changing the lighting of nodes which follow in the scene graph. Similarly, if you set
the location field of the SoPointLightManip, the manipulator will place the
dragger accordingly.

Because the dragger is a hidden child, you can see the dragger on screen and interact
with it, but the dragger does not show up when you write the manipulator to file.

Open Inventor C++ Reference Pages

SoPointLightManip

Also, any SoPath will end at the manipulator. (See the Actions section of this
reference page for a complete description of when the dragger is traversed).

If you want to get a pointer to the dragger you can get it from the manipulator
using the getDragger() method. You will need to do this if you want to change the
geometry of a manipulator, since the geometry actually belongs to the dragger.

FIELDS

Fields from class SoPointLight:

location

Fields from class SoLight:

METHODS

on, intensity, color

SoPointLightManip()
Constructor.

SoDragger * getDragger()

SbBool

SbBool

Returns a pointer to the dragger being used by this manipulator. Given this
pointer, you can customize the dragger just like you would any other
dragger. You can change geometry using the setPart() method, or add
callbacks using the methods found in the SoDragger reference page.

replaceNode(SoPath *p)
Replaces the tail of the path with this manipulator. The tail of the path must
be an SoPointLight node (or subclass thereof). If the path has a nodekit, this
will try to use setPart() to insert the manipulator. Otherwise, the
manipulator requires that the next to last node in the path chain be a group.

The field values from the point light node will be copied to this
manipulator, and the light node will be replaced.

The manipulator will not call ref() on the node it is replacing. The old node
will disappear if it has no references other than from the input path p and its
parent, since this manipulator will be replacing it in both of those places.
Nor will the manipulator make any changes to field connections of the old
node. The calling process is thus responsible for keeping track of its own
nodes and field connections.

replaceManip(SoPath *p, SoPointLight *newOne) const

Replaces the tail of the path, which must be this manipulator, with the
given SoPointLight node. If the path has a nodekit, this will try to use

483

SoPointLightManip

setPart() to insert the new node. Otherwise, the manipulator requires that
the next to last node in the path chain be a group.

The field values from the manipulator will be copied to the point light node,
and the manipulator will be replaced.

The manipulator will not call ref() or unref() on the node which is
replacing it, nor will it make any changes to field connections. The calling
process is thus responsible for keeping track of its own nodes and field
connections.

static SoType getClassTypeld()
Returns type identifier for this class.

Methods from class SoNode:
setOverride, isOverride, copy, affectsState, getByName, getByName

Methods from class SoFieldContainer:

setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, set, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

ACTION BEHAVIOR
SoGLRenderAction, SoCallbackAction, SoGetBoundingBoxAction,
SoGetMatrixAction, SoHandleEventAction, SoRayPickAction
First, traverses the dragger the way an SoGroup would. All draggers place
themselves in space, but leave the current transformation unchanged when
finished. Then the SoPointLightManip adds a point light into the state, just
like its base class, SoPointLight.

SoSearchAction

Searches just like an SoPointLight. Does not search the dragger, which is a
hidden child.

SoWriteAction
Writes out just like an SoPointLight. Does not write the dragger, which is a
hidden child. If you really need to write valuable information about the
dragger, such as customized geometry, you can retrieve the dragger with the
getDragger() method and then write it out separately.

484 Open Inventor C++ Reference Pages

SoPointLightManip

FILE FORMAT/DEFAULTS
Poi nt Li ght Mani p {

on TRUE
intensity 1
col or 111
| ocation 001
}
INCLUDE FILE

#i ncl ude <l nvent or/ mani ps/ SoPoi nt Li ght Mani p. h>

SEE ALSO
SoDragger, SoPointLight, SoPointLightDragger, SoDirectionalLightManip,
SoSpotLightManip

485

SoPointSet

NAME

SoPointSet — point set shape node

INHERITS FROM

SoBase > SoFieldContainer > SoNode > SoShape > SoVertexShape >
SoNonlIndexedShape > SoPointSet

DESCRIPTION

FIELDS

This node represents a set of points located at the current coordinates. SoPointSet
uses the current coordinates in order, starting at the index specified by the
startindex field. The number of points in the set is specified by the numPoints
field. A value of SO_POINT_SET_USE_REST_OF POINTS (-1) for this field indicates
that all remaining values in the current coordinates are to be used as points.

The coordinates of the point set are transformed by the current cumulative
transformation. The points are drawn with the current light model and drawing
style (drawing styles FILLED and LINES are treated as POINTS).

Treatment of the current material and normal binding is as follows: PER_PART,
PER_FACE, and PER_VERTEX bindings bind one material or normal to each point.
The DEFAULT material binding is equal to OVERALL. The DEFAULT normal binding
is equal to PER_VERTEX. The startindex is also used for materials, normals, or
texture coordinates when the binding indicates that they should be used per vertex.

If the current complexity value is less than 0.5, some points will be skipped during
rendering.

SoSFLong numPoints
Number of points.

Fields from class SoNonIndexedShape:

startindex
METHODS
SoPointSet()
Creates a point set node with default settings.
static SoType getClassTypeld()

486

Returns type identifier for this class.

Methods from class SoNode:
setOverride, isOverride, copy, affectsState, getByName, getByName

Open Inventor C++ Reference Pages

SoPointSet

Methods from class SoFieldContainer:

setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, set, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

ACTION BEHAVIOR
SoGLRenderAction
Draws points based on the current coordinates, normals, materials, drawing
style, and so on.

SoRayPickAction
Picks points based on the current coordinates and transformation. Details
about the intersection are returned in an SoPointDetail.

SoGetBoundingBoxAction
Computes the bounding box that encloses all points in the set with the
current transformation applied to them. Sets the center to the average of the
coordinates of all points.

SoCallbackAction

If any point callbacks are registered with the action, they will be invoked for
each point in the set.

FILE FORMAT/DEFAULTS

Poi nt Set {
startlndex O
nunPoi nt s -1
}
INCLUDE FILE

#i ncl ude <l nvent or/ nodes/ SoPoi nt Set . h>

SEE ALSO
SoCoordinate3, SoDrawStyle, SolndexedPointSet, SoPointDetail

487

SoPrimitiveVertex

NAME

SoPrimitiveVertex — represents a vertex of a generated primitive

INHERITS FROM

SoPrimitiveVertex

DESCRIPTION

An SoPrimitiveVertex represents a vertex of a primitive (triangle, line segment, or
point) that is being generated by an SoCallbackAction. It contains an object-space
point, normal, texture coordinates, material index, and a pointer to an instance of
an SoDetail subclass. This detail may contain more information about the vertex, or
may be a NULL pointer if there is no such info.

Instances of SoPrimitiveVertex are typically created on the stack by shape classes
while they are generating primitives. Anyone who wants to save them as return
values from SoCallbackAction should probably make copies of them.

METHODS

488

SoPrimitiveVertex()
SoPrimitiveVertex(const SoPrimitiveVertex &pv)
“SoPrimitiveVertex()
Constructors and destructor. Note that copying a primitive vertex copies the
detail pointer, and not the detail itself.

const SbVec3f & getPoint() const
const SbVec3f & getNormal() const
const SbVec4f & getTextureCoords() const
These return the surface point, normal, and texture coordinates in object

space.
int getMateriallndex() const
Returns the index into the current set of materials of the material active at
the vertex.

const SoDetail * getDetail() const
Returns the detail giving more information about the vertex. Note that this
pointer may be NULL if there is no more info.

Open Inventor C++ Reference Pages

SoPrimitiveVertex

SoPrimitiveVertex &
operator =(const SoPrimitiveVertex &pv)
Copies the given vertex. Note that just the pointer to the detail is copied,
and not the detail itself.

INCLUDE FILE
#i ncl ude <l nventor/SoPrimtiveVertex. h>

489

SoProfile

NAME

SoProfile — abstract base class for all profile nodes

INHERITS FROM

SoBase > SoFieldContainer > SoNode > SoProfile

DESCRIPTION

This node is the abstract base class for all profile nodes, which define 2D curves. A
profile is not itself geometry, but is used to change or delimit the geometry of
something else. For an SoText3 node, the profile determines the cross-section of the
side of each text character. For an SoNurbsSurface node, the profile is used to
specify trim curves for the surface.

The current profile state can consist of one or more profiles, each of which can be
made up of one or more instances of SoProfile subclass nodes. Each profile node
specifies (in the index field) a set of indices that refer to the current set of profile
coordinates, specified using either an SoProfileCoordinate2 or an
SoProfileCoordinate3 node. No profile curve should intersect itself or another
profile curve.

Profiles are part of the state, just like all other properties. The state contains a
current list of profiles. Depending on the linkage field, a profile can clear the list
and begin a new profile, begin a new profile at the end of those already in the list,
or append to the last profile in the current list. Note that when appending profile B
to the end of profile A, B must begin at the same 2D point at which A ends.

FIELDS
SoMFLong index
Indices into profile coordinates.
SOSFEnum linkage
Specifies connectivity of profile curve with respect to profiles in current list
in state.
METHODS
static SoType getClassTypeld()

490

Returns type identifier for this class.

Methods from class SoNode:
setOverride, isOverride, copy, affectsState, getByName, getByName

Methods from class SoFieldContainer:

setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, set, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Open Inventor C++ Reference Pages

SoProfile

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

ACTION BEHAVIOR
SoGLRenderAction, SoCallbackAction, SoGetBoundingBoxAction,
SoRayPickAction
Adds profile to current traversal state.

FILE FORMAT/DEFAULTS
This is an abstract class. See the reference page of a derived class for the format and
default values.

INCLUDE FILE
#i ncl ude <l nvent or/ nodes/ SoProfile. h>

enum Profile {
SoProfile::START_FIRST
Start a new profile and remove any existing profiles from the
current list
SoProfile::START_NEW
Start a new profile and add it to the current list
SoProfile::ADD_TO_CURRENT
Add to end of the last profile in the current list

SEE ALSO
SoLinearProfile, SoNurbsProfile, SoNurbsSurface, SoProfileCoordinate2,
SoProfileCoordinate3, SoText3

491

SoProfileCoordinate?2

NAME
SoProfileCoordinate2 — profile coordinate node

INHERITS FROM
SoBase > SoFieldContainer > SoNode > SoProfileCoordinate2

DESCRIPTION
This node defines a set of 2D coordinates to be used by subsequent SoProfile nodes.
This node does not produce a visible result during rendering; it simply replaces the
current profile coordinates in the traversal state for subsequent nodes to use.

FIELDS
SoMFVec2f point
2D profile coordinate points.
METHODS
SoProfileCoordinate2()
Creates a profile coordinate node with default settings.
static SoType getClassTypeld()

Returns type identifier for this class.

Methods from class SoNode:
setOverride, isOverride, copy, affectsState, getByName, getByName

Methods from class SoFieldContainer:

setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, set, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

ACTION BEHAVIOR
SoGLRenderAction, SoCallbackAction, SoGetBoundingBoxAction,
SoRayPickAction
Sets profile coordinates in current traversal state.

FILE FORMAT/DEFAULTS
Profil eCoordi nate2 {
point 0O
}

492 Open Inventor C++ Reference Pages

SoProfileCoordinate?2

INCLUDE FILE
#i ncl ude <l nvent or/ nodes/ SoProfi | eCoordi nat e2. h>

SEE ALSO
SoProfile, SoProfileCoordinate3

493

SoProfileCoordinate3

NAME
SoProfileCoordinate3 — rational profile coordinate node

INHERITS FROM
SoBase > SoFieldContainer > SoNode > SoProfileCoordinate3

DESCRIPTION
This node defines a set of rational 3D coordinates to be used by subsequent
SoProfile nodes. (These coordinates may be used for any type of profile; they may
be useful in some cases for specifying control points for SoNurbsProfile nodes.) This
node does not produce a visible result during rendering; it simply replaces the
current profile coordinates in the traversal state for subsequent nodes to use.

FIELDS
SoMFVec3f point
Rational 3D profile coordinate points.
METHODS
SoProfileCoordinate3()
Creates a profile coordinate node with default settings.
static SoType getClassTypeld()

Returns type identifier for this class.

Methods from class SoNode:
setOverride, isOverride, copy, affectsState, getByName, getByName

Methods from class SoFieldContainer:

setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, set, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

ACTION BEHAVIOR
SoGLRenderAction, SoCallbackAction, SoGetBoundingBoxAction,
SoRayPickAction
Sets profile coordinates in current traversal state.

FILE FORMAT/DEFAULTS
Profil eCoordi nate3 {
point 001
}

494 Open Inventor C++ Reference Pages

SoProfileCoordinate3

INCLUDE FILE
#i ncl ude <l nvent or/ nodes/ SoProfi | eCoordi nat e3. h>

SEE ALSO
SoProfile, SoProfileCoordinate2

495

SoQuadMesh

NAME
SoQuadMesh — quadrilateral mesh shape node

INHERITS FROM
SoBase > SoFieldContainer > SoNode > SoShape > SoVertexShape >
SoNonlIndexedShape > SoQuadMesh

DESCRIPTION
This shape node constructs quadrilaterals out of vertices located at the current
coordinates. SoQuadMesh uses the current coordinates, in order, starting at the
index specified by the startindex field. The number of vertices in the columns and
rows of the mesh are specified by the verticesPerColumn and verticesPerRow
fields. (Note that these numbers are 1 greater than the number of quadrilaterals per
row and per column.)

For example, an SoQuadMesh with a startindex of 3, verticesPerColumn of 3, and
verticesPerRow of 4 would use coordinates 3, 4, 5, and 6 for the first row of vertices,
coordinates 7, 8, 9, and 10 for the second row, and coordinates 11, 12, 13, and 14
for the third (last) row. The result is a mesh of 3 quadrilaterals across by 2 down.
Note: non-planar quadrilaterals formed by a quad mesh may cause interesting but
unpredictable results.

The coordinates of the mesh are transformed by the current cumulative
transformation. The mesh is drawn with the current light model and drawing style.

Treatment of the current material and normal binding is as follows: The PER_PART
binding specifies a material or normal for each row of the mesh. The PER_FACE
binding specifies a material or normal for each quadrilateral. The INDEXED
bindings are equivalent to their non-indexed counterparts. The DEFAULT material
binding is equal to OVERALL. The DEFAULT normal binding is equal to
PER_VERTEX. The startlndex is also used for materials, normals, or texture
coordinates when the binding indicates that they should be used per vertex.

If the current complexity value is less than 0.5, some rows will be skipped during

rendering.

FIELDS
SoSFLong verticesPerColumn
SoSFLong verticesPerRow

Number of vertices per column and row.

Fields from class SoNonIndexedShape:
startindex

496 Open Inventor C++ Reference Pages

SoQuadMesh

METHODS
SoQuadMesh()
Creates a quadrilateral mesh node with default settings.
static SoType getClassTypeld()

Returns type identifier for this class.

Methods from class SoNode:
setOverride, isOverride, copy, affectsState, getByName, getByName

Methods from class SoFieldContainer:

setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, set, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

ACTION BEHAVIOR
SoGLRenderAction
Draws a mesh based on the current coordinates, normals, materials, drawing
style, and so on.

SoRayPickAction
Picks on the mesh based on the current coordinates and transformation.
Details about the intersection are returned in an SoFaceDetail.

SoGetBoundingBoxAction
Computes the bounding box that encloses all vertices of the mesh with the
current transformation applied to them. Sets the center to the average of the
coordinates of all vertices.

SoCallbackAction

If any triangle callbacks are registered with the action, they will be invoked
for each successive triangle forming the quadrilaterals of the mesh.

FILE FORMAT/DEFAULTS

QuadMesh {
start | ndex 0
verticesPer Colum 1
verti cesPer Row 1
}

497

SoQuadMesh

INCLUDE FILE
#i ncl ude <Inventor/nodes/ SoQuadMesh. h>

SEE ALSO
SoCoordinate3, SoDrawStyle, SoFaceDetail, SoFaceSet, SoTriangleStripSet

498 Open Inventor C++ Reference Pages

SoRayPickAction

NAME
SoRayPickAction — intersects objects with a ray cast into scene

INHERITS FROM
SoAction > SoPickAction > SoRayPickAction

DESCRIPTION
This class performs picking by casting a ray into a scene and performing intersection
tests with each object. The ray is extended to be a cone or cylinder, depending on
the camera type, for intersection with points and lines. Each intersection is returned
as an SoPickedPoint instance.

The picking ray can be specified as either a ray from the camera location through a
particular viewport pixel, or as a world-space ray. In the former case, a valid camera
must be encountered during traversal of the graph to determine the location of the
ray in world space.

Callers can cause the action to compute all intersections along the ray (sorted closest
to farthest) by setting the pickAll flag to TRUE. By default, the action computes
only the closest intersection. In either case, the intersections are returned in an
SoPickedPointList. Each intersection can be examined by accessing the appropriate
SoPickedPoint in the list. The SoPickedPoint class provides methods to get the
intersection point, normal, and other info.

METHODS
SoRayPickAction(const SbViewportRegion &viewportRegion)
Constructor takes viewport region to use for picking. Even though the
picking operation may not involve a window per se, some nodes need this
information to determine their size and placement.

void setPoint(const SbVec2s &viewportPoint)
Sets the viewport-space point through which the ray passes, starting at the
camera’s viewpoint. Viewport coordinates range from (0,0) at the lower left
to (width-1,height-1) at the upper right.

void setNormalizedPoint(const SbVec2f &normPoint)
Sets the viewport point in normalized coordinates, which range from (0,0) at
the lower left to (1,1) at the upper right.

void setRadius(float radiusinPixels)
Set the radius (in pixels) around the point. This is used when testing the ray
against lines and points. By default, the radius is 5 pixels. For perspective
cameras, the ray is extended to be a cone when testing against lines and
points. For orthographic cameras, the ray is extended to be a cylinder. The
radius has no effect for shapes of other types.

499

SoRayPickAction

void

void
SbBool

setRay(const SbVec3f &start, const SbVec3f &direction, float
nearDistance = -1.0, float farDistance = -1.0)

Sets a world-space ray along which to pick. The ray is defined as a world
space starting point and direction vector. The direction vector will be
normalized automatically. The last two arguments are the parametric
distances between which intersections along the ray must occur. The
distances are measured as if the direction vector is unit length; e.g., if
nearDistance is 2.0, the intersection must occur past (start + 2*(length of the
direction vector)) units along the ray. These distances can be used to achieve
near and far plane clipping. A negative distance (such as the default values)
means disable clipping to that plane.

setPickAll(SbBool flag)

isPickAll() const
Sets/returns whether the action will return all objects intersected or just the
closest one.

const SoPickedPointList &

getPickedPointList() const
Returns list of picked points.

SoPickedPoint * getPickedPoint(int index = 0) const

Returns the indexed picked point from the list.

Methods from class SoPickAction:

setViewportRegion, getViewportRegion

Methods from class SoAction:

INCLUDE FILE

SEE ALSO

500

apply, apply, apply, getClassTypeld, getTypeld, isOfType, invalidateState

#i ncl ude <l nventor/actions/ SoRayPi ckActi on. h>

SoPickedPoint, SoPickedPointList

Open Inventor C++ Reference Pages

SoReadError

NAME
SoReadError — read error handling

INHERITS FROM
SoError > SoReadError

DESCRIPTION
SoReadError is used for errors reported while reading Inventor data files.

METHODS
static void setHandlerCallback(SoErrorCB *cb, void *data)
static SoErrorCB *
getHandlerCallback()
static void * getHandlerData()
Sets/returns handler callback for SoReadError class.

static SoType getClassTypeld()
Returns type identifier for SoReadError class.

Methods from class SoError:
getDebugString, getTypeld, isOfType

INCLUDE FILE
#i ncl ude <l nventor/errors/ SoReadError. h>

SEE ALSO
SoDebugError, SoMemoryError

501

SoResetTransform

NAME
SoResetTransform — node that resets the current transformation to identity

INHERITS FROM
SoBase > SoFieldContainer > SoNode > SoTransformation > SoResetTransform

DESCRIPTION
This node resets the current transformation to identity. It can be used to apply an
absolute world space transformation afterwards, such as translating to a specific
point from within a hierarchy. An SoResetTransform node should probably be used
under an SoSeparator or SoTransformSeparator so it won’t change transformations
for the rest of the scene graph. An SoResetTransform node can also be used to reset
the current bounding box to empty during traversal of an
SoGetBoundingBoxAction, if the whatToReset field has the BBOX bit set.

FIELDS
SoSFBitMask whatToReset
Specifies which items to reset when the node is traversed.

METHODS
SoResetTransform()
Creates a reset transformation node with default settings.

static SoType getClassTypeld()
Returns type identifier for this class.

Methods from class SoNode:
setOverride, isOverride, copy, affectsState, getByName, getByName

Methods from class SoFieldContainer:

setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, set, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

ACTION BEHAVIOR
SoGLRenderAction, SoCallbackAction, SoRayPickAction
If specified, resets current transformation matrix to identity.

SoGetBoundingBoxAction

If specified, resets current transformation matrix to identity and current
computed bounding box to be empty.

502 Open Inventor C++ Reference Pages

SoResetTransform

SoGetMatrixAction
Returns identity matrix.

FILE FORMAT/DEFAULTS
Reset Transf orm {

what ToReset TRANSFORM
}

INCLUDE FILE
#i ncl ude <Inventor/ nodes/ SoReset Tr ansf orm h>
enum ResetType {
SoResetTransform::TRANSFORM

Reset the current transformation to identity
SoResetTransform::BBOX

Reset the bounding box to empty
}

SEE ALSO
SoTransform

503

SoRotateCylindricalDragger

NAME

SoRotateCylindricalDragger — object you rotate along a cylindrical surface by
dragging with the mouse

INHERITS FROM

SoBase > SoFieldContainer > SoNode > SoBaseKit > SolnteractionKit > SoDragger >
SoRotateCylindricalDragger

DESCRIPTION

FIELDS

PARTS

504

SoRotateCylindricalDragger is a simple dragger that rotates about the y axis of its
local space. The feel of the rotation is as if you were spinning a cylinder about its
axis of rotation. The local space is determined by its location in the scene graph.
Transformation nodes placed before it will affect both the dragger and the direction
of motion.

This node has a rotation field which always reflects its orientation in local space. If
you set the field, the dragger will rotate accordingly. You can also connect fields of
other nodes or engines from this one to make them follow the dragger’s orientation.

This dragger contains four parts, rotator, rotatorActive, feedback, and feedbackActive.

Each of these is set by default from a resource described in the Dragger Resources
section of the online reference page for this class. You can change the parts in any
instance of this dragger using setPart().

You can make your program use different default resources for the parts by copying
the file /usr/share/data/draggerDefaults/rotateCylindricalDragger.iv into your
own directory, editing the file, and then setting the environment variable
SO_DRAGGER_DIR to be a path to that directory.

SoSFRotation rotation
Orientation of the dragger.

Fields from class SoDragger:
isActive

Fields from class SolnteractionKit:
renderCaching, boundingBoxCaching, renderCulling, pickCulling

Parts from class SoBaseKit:
callbackList

Open Inventor C++ Reference Pages

SoRotateCylindricalDragger

METHODS
SoRotateCylindricalDragger()
Constructor.

void setProjector(SbCylinderProjector *p)
const SbCylinderProjector *
getProjector() const
Set and get a different cylinder projector. See the SbCylinderProjector man
pages to find out how each kind affects the feel of your dragger’s motion.
The default uses an SbCylinderPlaneProjector.

Passing in NULL will cause this default type of projector to be used. Any
projector you pass in will be deleted by this dragger when this dragger is
deleted. Note that the axis and radius of the cylinder are determined by the
dragger, based on the y-axis in local space and how far the initial mouse
click occured from the center of rotation.

static const SoNodekitCatalog *
getClassNodekitCatalog() const
Returns an SoNodekitCatalog for this class

static SoType getClassTypeld()
Returns type identifier for this class.

Methods from class SoDragger:

addStartCallback, removeStartCallback, addMotionCallback,
removeMotionCallback, addFinishCallback, removeFinishCallback,
addValueChangedCallback, removeValueChangedCallback, setMinGesture,
getMinGesture, setMinScale, getMinScale

Methods from class SolnteractionKit:
setPartAsPath

Methods from class SoBaseKit:

getNodekitCatalog, getPart, getPartString, createPathToPart, setPart, set, set,
isSearchingChildren, setSearchingChildren

Methods from class SoNode:
setOverride, isOverride, copy, affectsState, getByName, getByName

Methods from class SoFieldContainer:

setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

505

SoRotateCylindricalDragger

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

MACROS
Macros from class SoBaseKit:

SO_GET_PART, SO_CHECK_PART
CATALOG PARTS

All parts
NULL by
Part Name Part Type Default Type Default
callbackList NodeKitListPart -- yes
rotator Separator - yes
rotatorActive Separator -- yes
feedback Separator -- yes
feedbackActive Separator -- yes

Extra information for list parts from above table
Part Name Container Type Permissible Types

callbackList Separator Callback, EventCallback

FILE FORMAT/DEFAULTS
Rot at eCyl i ndri cal Dragger {

r ender Cachi ng AUTO
boundi ngBoxCachi ng AUTO
render Cul l'i ng AUTO
pi ckCul |i ng AUTO
i SActive FALSE
rotation 001 O
}
INCLUDE FILE
#i ncl ude <I nventor/draggers/ SoRot at eCyl i ndri cal Dragger. h>
SEE ALSO

SolnteractionKit, SoDragger, SoCenterballDragger, SoDirectionalLightDragger,
SoDragPointDragger, SoHandleBoxDragger, SoJackDragger, SoPointLightDragger,
SoRotateDiscDragger, SoRotateSphericalDragger, SoScalelDragger, SoScale2Dragger,
SoScale2UniformDragger, SoScaleUniformDragger, SoSpotLightDragger,
SoTabBoxDragger, SoTabPlaneDragger, SoTrackballDragger,
SoTransformBoxDragger, SoTranslatelDragger, SoTranslate2Dragger

506 Open Inventor C++ Reference Pages

SoRotateDiscDragger

NAME

SoRotateDiscDragger — object you can rotate like a knob by dragging With the
mouse

INHERITS FROM

SoBase > SoFieldContainer > SoNode > SoBaseKit > SolnteractionKit > SoDragger >
SoRotateDiscDragger

DESCRIPTION

FIELDS

PARTS

SoRotateDiscDragger is a simple dragger that rotates about the z axis of its local
space. The feel of the rotation is as if you were spinning a record on a turntable or
rotating the volume knob of a radio. The local space is determined by its location in
the scene graph. Transformation nodes placed before it will affect both the dragger
and the direction of motion.

This node has a rotation field which always reflects its orientation in local space. If
you set the field, the dragger will rotate accordingly. You can also connect fields of
other nodes or engines from this one to make them follow the dragger’s rotation.

This dragger contains four parts, rotator, rotatorActive, feedback, and feedbackActive.

Each of these is set by default from a resource described in the Dragger Resources
section of the online reference page for this class. You can change the parts in any
instance of this dragger using setPart().

You can make your program use different default resources for the parts by copying
the file /usr/share/data/draggerDefaults/rotateDiscDragger.iv into your own
directory, editing the file, and then setting the environment variable
SO_DRAGGER_DIR to be a path to that directory.

SoSFRotation rotation
Orientation of the dragger.

Fields from class SoDragger:
isActive

Fields from class SolnteractionKit:
renderCaching, boundingBoxCaching, renderCulling, pickCulling

Parts from class SoBaseKit:
callbackList

507

SoRotateDiscDragger

METHODS
SoRotateDiscDragger()
Constructor.

static const SoNodekitCatalog *
getClassNodekitCatalog() const
Returns an SoNodekitCatalog for this class

static SoType getClassTypeld()
Returns type identifier for this class.

Methods from class SoDragger:

addStartCallback, removeStartCallback, addMotionCallback,
removeMotionCallback, addFinishCallback, removeFinishCallback,
addValueChangedCallback, removeValueChangedCallback, setMinGesture,
getMinGesture, setMinScale, getMinScale

Methods from class SolnteractionKit:
setPartAsPath

Methods from class SoBaseKit:

getNodekitCatalog, getPart, getPartString, createPathToPart, setPart, set, set,
isSearchingChildren, setSearchingChildren

Methods from class SoNode:
setOverride, isOverride, copy, affectsState, getByName, getByName

Methods from class SoFieldContainer:

setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

MACROS
Macros from class SoBaseKit:

SO_GET_PART, SO_CHECK_PART

508 Open Inventor C++ Reference Pages

SoRotateDiscDragger

CATALOG PARTS

All parts
NULL by
Part Name Part Type Default Type Default
callbackList NodeKitListPart -- yes
rotator Separator - yes
rotatorActive Separator - yes
feedback Separator -- yes
feedbackActive Separator -- yes

Extra information for list parts from above table
Part Name Container Type Permissible Types

callbackList Separator Callback, EventCallback

FILE FORMAT/DEFAULTS
Rot at eDi scDr agger {

r ender Cachi ng AUTO
boundi ngBoxCachi ng AUTO
render Cul l'i ng AUTO
pi ckCul |'i ng AUTO
i SActive FALSE
rotation 001 O
}
INCLUDE FILE

#i ncl ude <l nventor/ dragger s/ SoRot at eDi scDr agger . h>

SEE ALSO
SolnteractionKit, SoDragger, SoCenterballDragger, SoDirectionalLightDragger,
SoDragPointDragger, SoHandleBoxDragger, SoJackDragger, SoPointLightDragger,
SoRotateCylindricalDragger, SoRotateSphericalDragger, SoScale1Dragger,
SoScale2Dragger, SoScale2UniformDragger, SoScaleUniformDragger,
SoSpotLightDragger, SoTabBoxDragger, SoTabPlaneDragger, SoTrackballDragger,
SoTransformBoxDragger, SoTranslate1Dragger, SoTranslate2Dragger

509

SoRotateSphericalDragger

NAME

SoRotateSphericalDragger — object you can rotate about a spherical surface by
dragging with the mouse

INHERITS FROM

SoBase > SoFieldContainer > SoNode > SoBaseKit > SolnteractionKit > SoDragger >
SoRotateSphericalDragger

DESCRIPTION

FIELDS

PARTS

510

SoRotateSphericalDragger is a simple dragger that rotates freely in all directions.
The feel of the rotation is as if you were rolling a ball. The center of rotation is the
origin of the local space, determined by the dragger’s location in the scene graph.
Transformation nodes placed before it will affect both the dragger and the direction
of motion.

This node has a rotation field which always reflects its orientation in local space. If
you set the field, the dragger will rotate accordingly. You can also connect fields of
other nodes or engines from this one to make them follow the dragger’s orientation.

This dragger contains four parts, rotator, rotatorActive, feedback, and feedbackActive.

Each of these is set by default from a resource described in the Dragger Resources
section of the online reference page for this class. You can change the parts in any
instance of this dragger using setPart().

You can make your program use different default resources for the parts by copying
the file /usr/share/data/draggerDefaults/rotateSphericalDragger.iv into your own
directory, editing the file, and then setting the environment variable
SO_DRAGGER_DIR to be a path to that directory.

SoSFRotation rotation
Orientation of the dragger.

Fields from class SoDragger:
isActive

Fields from class SolnteractionKit:
renderCaching, boundingBoxCaching, renderCulling, pickCulling

Parts from class SoBaseKit:
callbackList

Open Inventor C++ Reference Pages

SoRotateSphericalDragger

METHODS
SoRotateSphericalDragger()
Constructor.

void setProjector(SbSphereProjector *p)
const SbSphereProjector *
getProjector() const
Set and get a different sphere projector. See the SbSphereProjector man
pages to find out how each kind affects the feel of your dragger’s motion.
The default uses an SbSpherePlaneProjector.

Passing in NULL will cause the default type of projector to be used. Any
projector you pass in will be deleted by this dragger when this dragger is
deleted. Note that the center and radius of the sphere are determined by the
dragger, based on the origin of the local space and the distance between the
initial mouse click and that origin.

static const SoNodekitCatalog *
getClassNodekitCatalog() const
Returns an SoNodekitCatalog for this class

static SoType getClassTypeld()
Returns type identifier for this class.

Methods from class SoDragger:

addStartCallback, removeStartCallback, addMotionCallback,
removeMotionCallback, addFinishCallback, removeFinishCallback,
addValueChangedCallback, removeValueChangedCallback, setMinGesture,
getMinGesture, setMinScale, getMinScale

Methods from class SolnteractionKit:
setPartAsPath

Methods from class SoBaseKit:

getNodekitCatalog, getPart, getPartString, createPathToPart, setPart, set, set,
isSearchingChildren, setSearchingChildren

Methods from class SoNode:
setOverride, isOverride, copy, affectsState, getByName, getByName

Methods from class SoFieldContainer:

setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

511

SoRotateSphericalDragger

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

MACROS
Macros from class SoBaseKit:

SO_GET_PART, SO_CHECK_PART
CATALOG PARTS

All parts
NULL by
Part Name Part Type Default Type Default
callbackList NodeKitListPart -- yes
rotator Separator - yes
rotatorActive Separator -- yes
feedback Separator -- yes
feedbackActive Separator -- yes

Extra information for list parts from above table
Part Name Container Type Permissible Types

callbackList Separator Callback, EventCallback

FILE FORMAT/DEFAULTS
Rot at eSpheri cal Dragger {

r ender Cachi ng AUTO
boundi ngBoxCachi ng AUTO
render Cul l'i ng AUTO
pi ckCul |i ng AUTO
i SActive FALSE
rotation 001 O
}
INCLUDE FILE
#i ncl ude <I nventor/draggers/ SoRot at eSpheri cal Dragger. h>
SEE ALSO

SolnteractionKit, SoDragger, SoCenterballDragger, SoDirectionalLightDragger,
SoDragPointDragger, SoHandleBoxDragger, SoJackDragger, SoPointLightDragger,
SoRotateCylindricalDragger, SoRotateDiscDragger, SoScalelDragger,
SoScale2Dragger, SoScale2UniformDragger, SoScaleUniformDragger,
SoSpotLightDragger, SoTabBoxDragger, SoTabPlaneDragger, SoTrackballDragger,
SoTransformBoxDragger, SoTranslatelDragger, SoTranslate2Dragger

512 Open Inventor C++ Reference Pages

SoRotation

NAME
SoRotation — node representing a 3D rotation about an arbitrary axis

INHERITS FROM
SoBase > SoFieldContainer > SoNode > SoTransformation > SoRotation

DESCRIPTION
This node defines a 3D rotation about an arbitrary axis through the origin. The
rotation is accumulated into the current transformation, which is applied to
subsequent shapes. The rotation field provides a variety of methods for specifying
the rotation.

FIELDS
SoSFRotation rotation
Rotation specification.

METHODS
SoRotation()
Creates a rotation node with default settings.

static SoType getClassTypeld()
Returns type identifier for this class.

Methods from class SoNode:
setOverride, isOverride, copy, affectsState, getByName, getByName

Methods from class SoFieldContainer:

setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, set, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

ACTION BEHAVIOR
SoGLRenderAction, SoCallbackAction, SoGetBoundingBoxAction,
SoRayPickAction
Accumulates rotation transformation into the current transformation.

SoGetMatrixAction
Returns the matrix corresponding to the rotation.

513

SoRotation

FILE FORMAT/DEFAULTS
Rot ati on {
rotation 001 O

}

INCLUDE FILE
#i ncl ude <l nvent or/ nodes/ SoRot ati on. h>

SEE ALSO
SoRotationXYZ, SoTransform

514 Open Inventor C++ Reference Pages

SoRotationXYZ

NAME
SoRotationXYZ — node representing a 3D rotation about the x-, y-, or z-axis

INHERITS FROM
SoBase > SoFieldContainer > SoNode > SoTransformation > SoRotationXYZ

DESCRIPTION
This node defines a 3D rotation about one of the three principal axes. The rotation
is accumulated into the current transformation, which is applied to subsequent
shapes.

FIELDS
SOSFEnum axis
Rotation axis.

SoSFFloat angle
Rotation angle (in radians), using the right-hand rule.

METHODS
SoRotationXYZ()
Creates a rotation node with default settings.

SbRotation getRotation() const
Returns an SbRotation equivalent to the specified rotation.

static SoType getClassTypeld()
Returns type identifier for this class.

Methods from class SoNode:
setOverride, isOverride, copy, affectsState, getByName, getByName

Methods from class SoFieldContainer:

setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, set, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

ACTION BEHAVIOR
SoGLRenderAction, SoCallbackAction, SoGetBoundingBoxAction,
SoRayPickAction
Accumulates rotation transformation into the current transformation.

515

SoRotationXYZ

SoGetMatrixAction
Returns the matrix corresponding to the rotation.

FILE FORMAT/DEFAULTS
Rot at i onXYZ {
axi s X
angle O

}

INCLUDE FILE
#i ncl ude <Inventor/nodes/ SoRot ati onXYZ. h>

enum Axis {
SoRotationXYZ::X The x-axis

SoRotationXYZ::Y The y-axis
SoRotationXYZ::Z The z-axis

SEE ALSO
SoRotation, SoTransform

516 Open Inventor C++ Reference Pages

SoRotor

NAME

SoRotor — animated rotation node

INHERITS FROM

SoBase > SoFieldContainer > SoNode > SoTransformation > SoRotation > SoRotor

DESCRIPTION

FIELDS

The SoRotor class is derived from SoRotation, so it applies a rotation to the current
transformation. Using engines connected to the realTime global field, the rotation
value is animated over time, achieving a spinning effect. The period of the rotation
can be adjusted by changing the speed field.

The current rotation at any time is available in the rotation field, inherited from
SoRotation. This field can also be set to specify the axis of rotation. Note that
unless a non-zero rotation is specified for the rotation, the node will not know
which axis to use. For example, to set a rotor to spin about the y-axis, use the
following:

rotor->rotation.setValue(axis, 0.1);

where axis is a vector containing (0,1,0). Any non-zero angle can be used in this
code.

SoSFFloat speed
Defines the speed of the rotor, in revolutions per second.
SoSFBool on

Allows applications to enable or disable the motion easily.

Fields from class SoRotation:

rotation
METHODS
SoRotor()
Creates a rotor node with default settings.
static SoType getClassTypeld()

Returns type identifier for this class.

Methods from class SoNode:
setOverride, isOverride, copy, affectsState, getByName, getByName

517

SoRotor

Methods from class SoFieldContainer:
setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, set, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled
Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

ACTION BEHAVIOR

SoGLRenderAction, SoCallbackAction, SoGetBoundingBoxAction,
SoRayPickAction

Concatenates current rotation value with the current transformation matrix.

SoGetMatrixAction
Returns transformation matrix specified by the rotation.

FILE FORMAT/DEFAULTS

Rot or {
rotation 001 O
speed 1
on TRUE
}
INCLUDE FILE

#i ncl ude <l nvent or/ nodes/ SoRot or . h>

SEE ALSO
SoPendulum, SoShuttle

518 Open Inventor C++ Reference Pages

SoScale

NAME
SoScale — node representing a 3D geometric scaling

INHERITS FROM
SoBase > SoFieldContainer > SoNode > SoTransformation > SoScale

DESCRIPTION
This node defines a 3D scaling about the origin. If the components of the scaling
vector are not all the same, this produces a non-uniform scale.

FIELDS
SoSFVec3f scaleFactor
The scaling factors in the X, y, and z dimensions. Non-positive values may
cause undesirable results.
METHODS
SoScale()
Creates a scale node with default settings.
static SoType getClassTypeld()

Returns type identifier for this class.

Methods from class SoNode:
setOverride, isOverride, copy, affectsState, getByName, getByName

Methods from class SoFieldContainer:

setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, set, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

ACTION BEHAVIOR
SoGLRenderAction, SoCallbackAction, SoGetBoundingBoxAction,
SoRayPickAction
Accumulates scaling transformation into the current transformation.

SoGetMatrixAction
Returns the matrix corresponding to the scaling.

FILE FORMAT/DEFAULTS
Scal e {
scal eFactor 1 1 1
}

519

SoScale

INCLUDE FILE
#i ncl ude <l nvent or/ nodes/ SoScal e. h>

SEE ALSO
SoTransform, SoUnits

520 Open Inventor C++ Reference Pages

SoScalelDragger

NAME

SoScalelDragger — object you can scale in one dimension by dragging with the
mouse

INHERITS FROM

SoBase > SoFieldContainer > SoNode > SoBaseKit > SolnteractionKit > SoDragger >
SoScalelDragger

DESCRIPTION

FIELDS

PARTS

SoScalelDragger is a simple dragger that scales in one dimension when dragged
with the mouse. It moves along the x axis of its local space, as determined by its
location in the scene graph. Transformation nodes placed before it will affect both
the dragger and the direction of motion.

This node has a scaleFactor field which always reflects its size in local space. If you
set the field, the dragger will change accordingly. You can also connect fields of
other nodes or engines from this one to make them follow the dragger’s motion.

This dragger contains four parts, scaler, scalerActive, feedback, and feedbackActive.

Each of these is set by default from a resource described in the Dragger Resources
section of the online reference page for this class. You can change the parts in any
instance of this dragger using setPart().

You can make your program use different default resources for the parts by copying
the file /usr/share/data/draggerDefaults/scalelDragger.iv into your own
directory, editing the file, and then setting the environment variable
SO_DRAGGER_DIR to be a path to that directory.

SoSFVec3f scaleFactor
Scale factor affecting the dragger.

Fields from class SoDragger:
isActive

Fields from class SolnteractionKit:
renderCaching, boundingBoxCaching, renderCulling, pickCulling

Parts from class SoBaseKit:
callbackList

521

SoScalelDragger

METHODS
SoScalelDragger()
Constructor.

static const SoNodekitCatalog *
getClassNodekitCatalog() const
Returns an SoNodekitCatalog for this class

static SoType getClassTypeld()
Returns type identifier for this class.

Methods from class SoDragger:

addStartCallback, removeStartCallback, addMotionCallback,
removeMotionCallback, addFinishCallback, removeFinishCallback,
addValueChangedCallback, removeValueChangedCallback, setMinGesture,
getMinGesture, setMinScale, getMinScale

Methods from class SolnteractionKit:
setPartAsPath

Methods from class SoBaseKit:

getNodekitCatalog, getPart, getPartString, createPathToPart, setPart, set, set,
isSearchingChildren, setSearchingChildren

Methods from class SoNode:
setOverride, isOverride, copy, affectsState, getByName, getByName

Methods from class SoFieldContainer:

setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

MACROS
Macros from class SoBaseKit:

SO_GET_PART, SO_CHECK_PART

522 Open Inventor C++ Reference Pages

SoScalelDragger

CATALOG PARTS

All parts
NULL by
Part Name Part Type Default Type Default
callbackList NodeKitListPart -- yes
scaler Separator - yes
scalerActive Separator -- yes
feedback Separator -- yes
feedbackActive Separator -- yes

callbackList Separator

Part Name Container Type

Extra information for list parts from above table

Permissible Types

Callback, EventCallback

FILE FORMAT/DEFAULTS
Scal elDr agger {
r ender Cachi ng
boundi ngBoxCachi ng
render Cul l'i ng

pi ckCul |'i ng
i SActive
scal eFact or
}
INCLUDE FILE

AUTO
AUTO
AUTO
AUTO
FALSE
111

#i ncl ude <l nventor/draggers/ SoScal elDr agger . h>

SEE ALSO

SolnteractionKit, SoDragger, SoCenterballDragger, SoDirectionalLightDragger,
SoDragPointDragger, SoHandleBoxDragger, SoJackDragger, SoPointLightDragger,
SoRotateCylindricalDragger, SoRotateDiscDragger, SoRotateSphericalDragger,
SoScale2Dragger, SoScale2UniformDragger, SoScaleUniformDragger,
SoSpotLightDragger, SoTabBoxDragger, SoTabPlaneDragger, SoTrackballDragger,
SoTransformBoxDragger, SoTranslate1Dragger, SoTranslate2Dragger

523

SoScale2Dragger

NAME

SoScale2Dragger — object you can scale in two dimensions by dragging with the
mouse

INHERITS FROM

SoBase > SoFieldContainer > SoNode > SoBaseKit > SolnteractionKit > SoDragger >
SoScale2Dragger

DESCRIPTION

FIELDS

PARTS

524

SoScale2Dragger is a simple dragger that scales freely and independently in two
dimensions when dragged with the mouse. It moves within the x-y plane of its local
space, as determined by its location in the scene graph. Transformation nodes
placed before it will affect both the dragger and the plane of motion.

This node has a scaleFactor field which always reflects its size in local space. If you
set the field, the dragger will change accordingly. You can also connect fields of
other nodes or engines from this one to make them follow the dragger’s motion.

This dragger contains four parts, scaler, scalerActive, feedback, and feedbackActive.

Each of these is set by default from a resource described in the Dragger Resources
section of the online reference page for this class. You can change the parts in any
instance of this dragger using setPart().

You can make your program use different default resources for the parts by copying
the file /usr/share/data/draggerDefaults/scale2Dragger.iv into your own
directory, editing the file, and then setting the environment variable
SO_DRAGGER_DIR to be a path to that directory.

SoSFVec3f scaleFactor
Scale factor affecting the dragger.

Fields from class SoDragger:
isActive

Fields from class SolnteractionKit:
renderCaching, boundingBoxCaching, renderCulling, pickCulling

Parts from class SoBaseKit:
callbackList

Open Inventor C++ Reference Pages

SoScale2Dragger

METHODS

SoScale2Dragger()
Constructor.

static const SoNodekitCatalog *
getClassNodekitCatalog() const
Returns an SoNodekitCatalog for this class

static SoType getClassTypeld()
Returns type identifier for this class.

Methods from class SoDragger:

addStartCallback, removeStartCallback, addMotionCallback,
removeMotionCallback, addFinishCallback, removeFinishCallback,
addValueChangedCallback, removeValueChangedCallback, setMinGesture,
getMinGesture, setMinScale, getMinScale

Methods from class SolnteractionKit:
setPartAsPath

Methods from class SoBaseKit:

getNodekitCatalog, getPart, getPartString, createPathToPart, setPart, set, set,
isSearchingChildren, setSearchingChildren

Methods from class SoNode:
setOverride, isOverride, copy, affectsState, getByName, getByName

Methods from class SoFieldContainer:

setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

MACROS

Macros from class SoBaseKit:
SO_GET_PART, SO_CHECK_PART

525

SoScale2Dragger

CATALOG PARTS

All parts
NULL by
Part Name Part Type Default Type Default
callbackList NodeKitListPart -- yes
scaler Separator - yes
scalerActive Separator -- yes
feedback Separator -- yes
feedbackActive Separator -- yes

Extra information for list parts from above table
Part Name Container Type Permissible Types

callbackList Separator Callback, EventCallback

FILE FORMAT/DEFAULTS

Scal e2Dr agger {

r ender Cachi ng AUTO
boundi ngBoxCachi ng AUTO
render Cul l'i ng AUTO
pi ckCul |'i ng AUTO
i SActive FALSE
scal eFact or 111
}
INCLUDE FILE

#i ncl ude <l nventor/draggers/ SoScal e2Dr agger . h>

SEE ALSO

526

SolnteractionKit, SoDragger, SoCenterballDragger, SoDirectionalLightDragger,
SoDragPointDragger, SoHandleBoxDragger, SoJackDragger, SoPointLightDragger,
SoRotateCylindricalDragger, SoRotateDiscDragger, SoRotateSphericalDragger,
SoScalelDragger, SoScale2UniformDragger, SoScaleUniformDragger,
SoSpotLightDragger, SoTabBoxDragger, SoTabPlaneDragger, SoTrackballDragger,
SoTransformBoxDragger, SoTranslate1Dragger, SoTranslate2Dragger

Open Inventor C++ Reference Pages

SoScale2UniformDragger

NAME

SoScale2UniformDragger — object you can scale uniformly in two dimensions by
dragging with the mouse

INHERITS FROM

SoBase > SoFieldContainer > SoNode > SoBaseKit > SolnteractionKit > SoDragger >
SoScale2UniformDragger

DESCRIPTION

FIELDS

PARTS

SoScale2UniformDragger is a simple dragger that scales uniformly in the x and y
dimensions when dragged within the x-y plane with the mouse. The local space is
determined by its location in the scene graph. Transformation nodes placed before
it will affect both the dragger and the plane of motion.

This node has a scaleFactor field which always reflects its size in local space. If you
set the field, the dragger will change accordingly. You can also connect fields of
other nodes or engines from this one to make them follow the dragger’s motion.

This dragger contains four parts, scaler, scalerActive, feedback, and feedbackActive.

Each of these is set by default from a resource described in the Dragger Resource
section of the online reference page for this class. You can change the parts in any
instance of this dragger using setPart().

You can make your program use different default resources for the parts by copying
the file /usr/share/data/draggerDefaults/scale2UniformDragger.iv into your own
directory, editing the file, and then setting the environment variable
SO_DRAGGER_DIR to be a path to that directory.

SoSFVec3f scaleFactor
Scale factor affecting the dragger.

Fields from class SoDragger:
isActive

Fields from class SolnteractionKit:
renderCaching, boundingBoxCaching, renderCulling, pickCulling

Parts from class SoBaseKit:
callbackList

527

SoScale2UniformDragger

METHODS
SoScale2UniformDragger()
Constructor.

static const SoNodekitCatalog *
getClassNodekitCatalog() const
Returns an SoNodekitCatalog for this class

static SoType getClassTypeld()
Returns type identifier for this class.

Methods from class SoDragger:

addStartCallback, removeStartCallback, addMotionCallback,
removeMotionCallback, addFinishCallback, removeFinishCallback,
addValueChangedCallback, removeValueChangedCallback, setMinGesture,
getMinGesture, setMinScale, getMinScale

Methods from class SolnteractionKit:
setPartAsPath

Methods from class SoBaseKit:

getNodekitCatalog, getPart, getPartString, createPathToPart, setPart, set, set,
isSearchingChildren, setSearchingChildren

Methods from class SoNode:
setOverride, isOverride, copy, affectsState, getByName, getByName

Methods from class SoFieldContainer:

setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

MACROS
Macros from class SoBaseKit:

SO_GET_PART, SO_CHECK_PART

528 Open Inventor C++ Reference Pages

SoScale2UniformDragger

CATALOG PARTS

All parts
NULL by
Part Name Part Type Default Type Default
callbackList NodeKitListPart -- yes
scaler Separator - yes
scalerActive Separator -- yes
feedback Separator -- yes
feedbackActive Separator -- yes

Extra information for list parts from above table
Part Name Container Type Permissible Types

callbackList Separator Callback, EventCallback

FILE FORMAT/DEFAULTS
Scal e2Uni f or nDr agger {

r ender Cachi ng AUTO
boundi ngBoxCachi ng AUTO
render Cul l'i ng AUTO
pi ckCul |'i ng AUTO
i SActive FALSE
scal eFact or 111
}
INCLUDE FILE

#i ncl ude <l nventor/draggers/ SoScal e2Uni f or nDr agger . h>

SEE ALSO
SolnteractionKit, SoDragger, SoCenterballDragger, SoDirectionalLightDragger,
SoDragPointDragger, SoHandleBoxDragger, SoJackDragger, SoPointLightDragger,
SoRotateCylindricalDragger, SoRotateDiscDragger, SoRotateSphericalDragger,
SoScalelDragger, SoScale2Dragger, SoScaleUniformDragger, SoSpotLightDragger,
SoTabBoxDragger, SoTabPlaneDragger, SoTrackballDragger,
SoTransformBoxDragger, SoTranslate1Dragger, SoTranslate2Dragger

529

SoScaleUniformDragger

NAME
SoScaleUniformDragger — object you can scale uniformly in 3D by dragging with
the mouse

INHERITS FROM
SoBase > SoFieldContainer > SoNode > SoBaseKit > SolnteractionKit > SoDragger >
SoScaleUniformDragger

DESCRIPTION
SoScaleUniformDragger is a simple dragger that scales uniformly in all 3
dimensions when dragged with the mouse. The local space is determined by its
location in the scene graph. Transformation nodes placed before it will affect both
the dragger and the plane of motion.

This node has a scaleFactor field which always reflects its size in local space. If you
set the field, the dragger will change accordingly. You can also connect fields of
other nodes or engines from this one to make them follow the dragger’s motion.

This dragger contains four parts, scaler, scalerActive, feedback, and feedbackActive.

Each of these is set by default from a resource described in the Dragger Resources
section of the online reference page for this class. You can change the parts in any
instance of this dragger using setPart().

You can make your program use different default resources for the parts by copying
the file /usr/share/data/draggerDefaults/scaleUniformDragger.iv into your own
directory, editing the file, and then setting the environment variable
SO_DRAGGER_DIR to be a path to that directory.

FIELDS
Fields from class SoDragger:

isActive

Fields from class SolnteractionKit:
renderCaching, boundingBoxCaching, renderCulling, pickCulling

PARTS
Parts from class SoBaseKit:

callbackList

METHODS
Methods from class SoDragger:

addStartCallback, removeStartCallback, addMotionCallback,
removeMotionCallback, addFinishCallback, removeFinishCallback,

530 Open Inventor C++ Reference Pages

SoScaleUniformDragger

addValueChangedCallback, removeValueChangedCallback, setMinGesture,
getMinGesture, setMinScale, getMinScale, getClassNodekitCatalog,
getClassTypeld

Methods from class SolnteractionKit:
setPartAsPath

Methods from class SoBaseKit:

getNodekitCatalog, getPart, getPartString, createPathToPart, setPart, set, set,
isSearchingChildren, setSearchingChildren

Methods from class SoNode:
setOverride, isOverride, copy, affectsState, getByName, getByName

Methods from class SoFieldContainer:

setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

MACROS
Macros from class SoBaseKit:

SO_GET_PART, SO_CHECK_PART

CATALOG PARTS

All parts
NULL by
Part Name Part Type Default Type Default
callbackList NodeKitListPart - yes
scaler Separator - yes
scalerActive Separator -- yes
feedback Separator -- yes
feedbackActive Separator -- yes

531

SoScaleUniformDragger

Extra information for list parts from above table
Part Name Container Type Permissible Types

callbackList Separator Callback, EventCallback

FILE FORMAT/DEFAULTS
Scal eUni f or nDr agger {

r ender Cachi ng AUTO
boundi ngBoxCachi ng AUTO
render Cul | i ng AUTO
pi ckCul | i ng AUTO
i SActive FALSE
scal eFact or 111
}
INCLUDE FILE

#i ncl ude <l nventor/draggers/ SoScal eUni f or nDr agger . h>

SEE ALSO
SolnteractionKit, SoDragger, SoCenterballDragger, SoDirectionalLightDragger,
SoDragPointDragger, SoHandleBoxDragger, SoJackDragger, SoPointLightDragger,
SoRotateCylindricalDragger, SoRotateDiscDragger, SoRotateSphericalDragger,
SoScalelDragger, SoScale2Dragger, SoScale2UniformDragger, SoSpotLightDragger,
SoTabBoxDragger, SoTabPlaneDragger, SoTrackballDragger,
SoTransformBoxDragger, SoTranslatelDragger, SoTranslate2Dragger

532 Open Inventor C++ Reference Pages

SoSceneKit

NAME

SoSceneKit — scene nodekit class

INHERITS FROM

SoBase > SoFieldContainer > SoNode > SoBaseKit > SoSceneKit

DESCRIPTION

PARTS

This nodekit is used to organize camera, (SoCameraKit), light, (SoLightKit), and
object, (SoShapeKit, SoSeparatorKit, and SoWrapperKit) nodekits into a scene. A
scene is composed of a list of cameras, a list of lights, and a list of children. There
are three parts created by this nodekit: cameraList, lightList, and childList.

The cameraList part is a list part of SoCameraKit nodes. The list itself is an
SoNodeKitListPart, and since only one camera can be active at a time, the container
of the list part is an SoSwitch node. Use setCameraNumber(), and the scene kit will
set the switch to make that camera active.

The lightList part is a list of SoLightKit nodes. The lightList is used to illuminate the
objects contained in the childList part.

The childList part contains a set of SoSeparatorKit nodes. You can add any kind of
SoSeparatorKit to this list, including SoShapeKit and SoWrapperKit. Since each
SoSeparatorKit in turn contains a childList, this part is used to describe a
hierarchical scene. (See the reference page for SoSeparatorKit). All members of
childList are lit by the lights in lightList and rendered by the active camera in
cameralList.

(SoNodeKitListPart)
cameral.ist
This part is an SoNodeKitListPart It has a container that is an SoSwitch
node. The list may contain only SoCameraKit nodekits. The active child of
the SoSwitch is the active camera. This part is NULL by default, but is
automatically created whenever you add a camera, as with
setPart("cameraList[0]", myNewCamera) .

(SoNodeKitListPart)
lightList
This part is an SoNodeKitListPart that uses an defines an SoGroup as its
container The list may contain only SoLightKit nodekits. Add SoLightKits to
this list and they will light the members of the childList of this SoSceneKit.
This part is NULL by default, but is automatically created when you add a
light.

533

SoSceneKit

(SoNodeKitListPart)
childList

This part is an SoNodeKitListPart that uses an SoGroup for its container. The
list may contain only SoSeparatorKit nodekits or nodekits derived from
SoSeparatorKit (e.g., SoShapeKit and SoWrapperKit). These children
represent the objects in the scene. This part is NULL by default, but is
automatically created whenever you add a child to the childList. Also, when
asked to build a member of the childList, the scenekit will build an
SoShapeKit by default. So if the childList part is NULL, and you call:
getPart("childList[0]", TRUE) . the scene kit will create the childList and add
an SoShapeKit as the new element in the list.

Parts from class SoBaseKit:
callbackList

METHODS

534

SoSceneKit()
Constructor.

static const SoNodekitCatalog *
getClassNodekitCatalog() const
Returns an SoNodekitCatalog for the class SoSceneKit.

int getCameraNumber()

void setCameraNumber(int camNum)
Gets and sets current camera index. This index refers to which child is active
in the cameralList part (SoSwitch node).

static SoType getClassTypeld()
Returns type identifier for this class.

Methods from class SoBaseKit:
getNodekitCatalog, getPart, getPartString, createPathToPart, setPart, set, set,
isSearchingChildren, setSearchingChildren

Methods from class SoNode:
setOverride, isOverride, copy, affectsState, getByName, getByName

Methods from class SoFieldContainer:

setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Open Inventor C++ Reference Pages

SoSceneKit

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

MACROS

Macros from class SoBaseKit:
SO_GET_PART, SO_CHECK_PART

CATALOG PARTS

Part Name

callbackList
cameralist
lightList
childList

All parts

Part Type

NodeKitListPart
NodeKitListPart
NodeKitListPart
NodeKitListPart

Default Type

NULL by
Default

yes
yes
yes
yes

Part Name

callbackList
cameral.ist
lightList
childList

Container Type

Separator
Switch
Group
Group

Extra information for list parts from above table

Permissible Types

Callback, EventCallback

CameraKit
LightKit

ShapeKit, SeparatorKit

FILE FORMAT/DEFAULTS
SceneKit {

}
INCLUDE FILE

#i ncl ude <l nventor/ nodekits/ SoSceneKit.h>

SEE ALSO

SoAppearanceKit, SoBaseKit, SoCameraKit, SoLightKit, SoNodeKit, SoNodeKitDetail,
SoNodeKitListPart, SoNodeKitPath, SoNodekitCatalog, SoSeparatorKit, SoShapeKit,

SoWrapperKit

535

SoSceneManager

NAME

SoSceneManager — manages scene graph rendering and event handling

INHERITS FROM

SoSceneManager

DESCRIPTION

SoSceneManager provides Inventor rendering and event handling inside a window
provided by the caller. The scene manager is able to render in only a portion of a
window if desired. The SoXtRenderArea class employs a SoSceneManager, and
handles most all the details for setting up a window, converting X events to
Inventor events, automatically redrawing the scene when necessary, and so on. It is
simplest to use a render area when rendering in an entire window. The
SoSceneManager class is available for programmers not working with the Inventor
Xt Component and Utility Library.

METHODS
SoSceneManager(SbBool useCurrentGLValues = FALSE)
~SoSceneManager()

Constructor and destructor. The parameter specifies whether current GL
values (material, line width, etc.) are to be used for rendering. If this is FALSE
(the default), Inventor will set up its own reasonable values.

virtual void render(SbBool clearWindow = TRUE, SbBool clearZbuffer =

TRUE)

Apply an SoGLRenderAction to the scene graph managed here. The caller is
responsible for setting up a window to render into. If clearWindow is TRUE,
this clears the graphics window before rendering. If clearZbuffer is TRUE, the
z buffer will be cleared before rendering.

virtual SbBool processEvent(const SoEvent *event)
Process the passed event by applying an SoHandleEventAction to the scene
graph managed here. Returns TRUE if the event was handled by a node.

void reinitialize()
Reinitialize graphics. This should be called, for instance, when there is a new
window.

void scheduleRedraw()
Schedule a redraw for some time in the near future. If there is no render
callback set, or this is not active, no redraw will be scheduled.

536 Open Inventor C++ Reference Pages

SoSceneManager

virtual void setSceneGraph(SoNode *newScene)

virtual SoNode * getSceneGraph() const
Set and get the scene graph which is managed here. This is the Inventor
scene which will be traversed for rendering and event processing.

void setWindowsSize(const ShVec2s &newsSize)

const SbVec2s & getWindowsSize() const
Set and get the size of the window in which the scene manager should
render. This size must be set before render() and processEvent() are called.

void setSize(const SbVec2s &newsSize)
const SbVec2s & getSize() const
void setOrigin(const SbVec2s &newOrigin)

const SbVec2s & getOrigin() const
Set and get the size and origin of the viewport within the window. Default is
to render the entire window region. The origin (0,0) is the lower left corner
of the window.

void setBackgroundColor(const ShColor &c)

const SbColor & getBackgroundColor() const
Set and get the window background color when in RGB mode. This is the
color the scene manager viewport is cleared to when render() is called with
clearWindow set to TRUE. Default is black (0,0,0).

void setBackgroundindex(int index)

int getBackgroundlndex() const
Set and get the window background color when in color index mode. This is
the color the scene manager viewport is cleared to when render() is called
with clearWindow set to TRUE. Default is black (index 0).

void setRGBMode(SbBool onOrOff)

SbBool iSRGBMode() const
Set and get the color mode (TRUE — RGB mode, FALSE — color map mode).
Default is RGB mode. Only a subset of Inventor nodes will render correctly
in color map mode. Basically, when in color index mode, lighting should be
turned off (the model field of SoLightModel should be set to BASE_COLOR),
and the SoColorIndex node should be used to specify colors.

virtual void activate()

virtual void deactivate()
Activate and deactivate the scene manager. The scene manager will only
employ sensors for automatic redraw while it is active. Typically, the scene
manager should be activated whenever its window is visible on the screen,
and deactivated when its window is closed or iconified.

537

SoSceneManager

void setRenderCallback(SoSceneManagerRenderCB *f, void
*userData = NULL)

The render callback provides a mechanism for automatically redrawing the
scene in response to changes in the scene graph. The scene manager
employs a sensor to monitor scene graph changes. When the sensor is
triggered, the render callback registered here is invoked. The callback should
set up its graphics window, then call the scene manager render() method. If
the callback is set to NULL (the default), auto-redraw is turned off.

SbBool isAutoRedraw() const
Returns TRUE if there is currently a render callback registered.

void setRedrawPriority(unsigned long priority)
unsigned long getRedrawPriority() const
static unsigned long
getDefaultRedrawPriority()
Set and get the priority of the redraw sensor. Sensors are processed based on
priority, with priority values of O processed immediately. The default priority
for the scene manager redraw sensor is 10000.

void setAntialiasing(SbBool smoothing, int numPasses)

void getAntialiasing(SbBool &smoothing, int &numPasses) const
Set/get the antialiasing for rendering. There are two kinds of antialiasing
available: smoothing and multipass antialiasing. If smoothing is set to TRUE,
smoothing is enabled. Smoothing uses OpenGL’s line- and point-smoothing
features to provide cheap antialiasing of lines and points. The value of
numpPasses controls multipass antialiasing. Each time a render action is
applied, Inventor renders the scene numPasses times from slightly different
camera positions, averaging the results. numPasses can be from one to 255,
inclusive. Setting numPasses to one disables multipass antialiasing. You can
use either, both, or neither of these antialiasing techniques. By default, both
smoothing and multipass antialiasing are disabled.

INCLUDE FILE
#i ncl ude <l nvent or/ SoSceneManager . h>

typedef void SoSceneManagerRenderCB(void *userData, SoSceneManager *mgr)

SEE ALSO
SoXtRenderArea, SOGLRenderAction, SoHandleEventAction

538 Open Inventor C++ Reference Pages

SoSearchAction

NAME
SoSearchAction — searches for nodes in a scene graph

INHERITS FROM
SoAction > SoSearchAction

DESCRIPTION
This class is used to search scene graphs for specific nodes, nodes of a specific type,
nodes with a specific name, or any combination of these. It can search for just the
first or last node satisfying the criteria or for all such nodes. The actions return paths
to each node found.

METHODS
SoSearchAction()
Constructor.
void setNode(SoNode *n)
SoNode * getNode() const
Sets/returns the node to search for.
void setType(SoType t, int derivedlsOk = TRUE)
SoType getType(int &derivedlsOk) const
Sets/returns the node type to search for. If derivedisOk is TRUE, a node that is
of a type that is derived from t will pass this search criterion.
void setName(const SbName &n)

const SbName & getName() const
Sets/returns the name of the node to search for.

void setFind(int what)

int getFind()
Sets/returns what to look for; what is a bitmask of LookFor enum values.
Default is no flags at all. Note that setting a node, type, and/or name to
search for activates the relevant flag, so you may never need to call this
method directly.

void setinterest(Interest interest)
Interest getinterest() const
Sets/returns which paths to return. Default is FIRST.

void setSearchingAll(SbBool flag)

SbBool isSearchingAll() const
Sets/returns whether searching uses regular traversal or whether it traverses
every single node. For example, if this flag is FALSE, an SoSwitch node will
traverse only the child or children it would normally traverse for an action.

539

SoSearchAction

If the flag is TRUE, the switch would always traverse all of its children. The
default is FALSE.

SoPath * getPath() const
Returns resulting path, or NULL if no path was found. This should be used if
the interest is FIRST or LAST.

SoPathList & getPaths()
Returns resulting path list. This should be used if the interest is ALL.

void reset()
Resets options back to default values; clears list of returned paths. This can
be used to apply the action again with a different set of search criteria.

Methods from class SoAction:
apply, apply, apply, getClassTypeld, getTypeld, isOfType, invalidateState

INCLUDE FILE
#i ncl ude <l nventor/actions/ SoSear chActi on. h>

enum LookFor {
SoSearchAction::NODE
Search for a particular node (by pointer)
SoSearchAction:: TYPE
Search for a particular type of node
SoSearchAction::NAME
Search for a node with a particular name

}

enum Interest {
SoSearchAction::FIRST
Return only the first path found
SoSearchAction::LAST
Return only the last path found
SoSearchAction::ALL
Return all paths found

SEE ALSO
SoPath

540 Open Inventor C++ Reference Pages

SoSelection

NAME
SoSelection — manages a list of selected objects

INHERITS FROM
SoBase > SoFieldContainer > SoNode > SoGroup > SoSeparator > SoSelection

DESCRIPTION
SoSelection defines a node which can be inserted into a scene graph and will
generate and manage a selection list from picks on any node in the subgraph below
it. Nodes are selected based on a current selection policy. Callback functions report
back to the application when a path has been selected or deselected. The selection
list can also be managed programatically.

When handling events, SoSelection makes sure that the mouse release event was
over the same object as the mouse press event before changing the list of selected
objects. This allows users to mouse down on an object, change their mind and move
the cursor off the object, then release the mouse button without altering the
selection.

The selection can be highlighted automatically through the SoXtRenderArea, or
the application can provide custom highlights. Please see the chapter "Creating a
Selection Highlight Style" in the Inventor Toolmaker.

FIELDS
SOSFEnum policy
Selection policy that is followed in response to user interaction. This can be
set to SoSelection::SINGLE, SoSelection::TOGGLE, or SoSelection::SHIFT.

Fields from class SoSeparator:
renderCaching, boundingBoxCaching, renderCulling, pickCulling

METHODS
SoSelection()
SoSelection(int nChildren)
Constructor. The second constructor allows the programmer to pass in the
approximate number of children to the node.
static SoType getClassTypeld()
Return the type id for the SoSelection class.
void select(const SoPath *path)

Select the passed path by adding it to the selection list. The selection node
must lie in the path. The path is copied and truncated such that the
selection node is the head of the path. If the selection node does not lie in

541

SoSelection

542

void

void

void

void

void

void

SbBool

SbBool

void

the path, the selection list remains unchanged. This method ignores the
current selection policy.

select(SoNode *node)
Select the passed node by creating a path to it, and adding the path to the
selection list by calling select(path). If there is more than one instance of
node beneath the selection node, the created path will be the first instance
found.

deselect(const SoPath *path)
Deselect the passed path by removing it from the selection list.

deselect(int which)
Deselect a path by removing it from the selection list. The argument which
specifies which path in the list to be removed.

deselect(SoNode *node)
Deselect the passed node by creating a path to it, and removing the node
from the selection list by calling deselect(path). If there is more than one
instance of node beneath the selection node, the created path will be the first
instance found.

toggle(const SoPath *path)
Toggle the selection status of the passed path — if the path is in the
selection list, it is removed; if not in the list, it is added.

toggle(SoNode *node)
Toggle the selection status of the passed node by creating a path to it, then
calling toggle(path). If there is more than one instance of node beneath the
selection node, the created path will be the first instance found.

isSelected(const SoPath *path) const
Returns TRUE if the passed path is selected, that is, if it is in the selection
list.

isSelected(SoNode *node) const
Returns TRUE if the passed node is selected by creating a path to it, then
calling isSelected(). If there is more than one instance of node beneath the
selection node, the created path will be the first instance found.

deselectAll()
Deselect all paths in the selection list, that is, clear the list.

Open Inventor C++ Reference Pages

SoSelection

int

getNumSelected() const
Return the number of paths in the selection list.

const SoPathList *

getList() const
Return the list of selected paths.

SoPath * getPath(int index) const
SoPath * operator [](int i) const

void

void

void

void

void

void

Return the ith path in the selection list.

addSelectionCallback(SoSelectionPathCB *f, void *userData =
NULL)
removeSelectionCallback(SoSelectionPathCB *f, void
*userData = NULL)
The selection callbacks are invoked every time an object is selected, whether
it be from user interaction or from method call. The callbacks are invoked
after the object has been added to the selection list.

addDeselectionCallback(SoSelectionPathCB *f, void *userData
= NULL)
removeDeselectionCallback(SoSelectionPathCB *f, void
*userData = NULL)
The deselection callbacks are invoked every time an object is deselected,
whether it be from user interaction or from method call. This is invoked
after the object has been removed from the selection list.

addStartCallback(SoSelectionClassCB *f, void *userData =
NULL)
removeStartCallback(SoSelectionClassCB *f, void *userData =
NULL)
The start callbacks are invoked when the user has initiated an interactive
change to the selection list (by picking objects). This will be followed by
invocations of the select and/or deselect callbacks, finally followed by each
finish callback. A start callback can be used, for instance, to save the current
selection for later restoration (e.g. undo/redo). The start callbacks are not
called when the selection list is changed programatically.

543

SoSelection

544

void

void

void

addFinishCallback(SoSelectionClassCB *f, void *userData =
NULL)
removeFinishCallback(SoSelectionClassCB *f, void *userData =
NULL)
The finish callbacks are invoked when the user has finished interactively
changing the selection list (by picking objects). This was preceeded by an
invocation of each start callback, and invocations of the select and/or
deselect callbacks. The finish callbacks are not called when the selection list
is changed programatically.

setPickFilterCallback(SoSelectionPickCB *f, void *userData =
NULL, SbBool callOnlylfSelectable = TRUE)

The pick filter callback is invoked when a pick has occurred and the
selection node is about to change the selection list. The callback function
returns the path that the selection node should use when selecting and
deselecting. If no pick callback is registered (the default), the selection node
will use the path returned by SoPickedPoint::getPath() on the picked point
associated with the event being processed. The returned path should not be
ref’d - selection will ref() and unref() it. (See SoPath::unrefNoDelete().)

Note that a picked object may or may not be a child of the selection node. A
selection node will only select paths that pass through it. Possible return
values from the callback:

[a] NULL — selection behaves as if nothing was picked (i.e. for SINGLE and
SHIFT policies, this clears the selection list). Handle event action traversal
halts.

[b] Path — this path will be selected/deselected according to the selection
policy (it must lie under the selection node). Handle event action traversal
halts.

[c] Path containing only the selection node — apply the selection policy as if
nothing was picked. Handle event action traversal continues.

[d] Path not passing through the selection node — selection ignores this pick
event and no change is made to the selection list. Handle event action
traversal continues.

A simple way to tell selection to ignore the pick is to return an SoPath with

no nodes in it. (i.e. return new SoPath;) Selection will always ref the path
returned by the callback, make a copy of the path, then unref the path.

Open Inventor C++ Reference Pages

SoSelection

The callOnlylfSelectable argument, when set to TRUE, means the pick callback
function will only be invoked on picks which pass through the selection
node. When FALSE, all picks will be passed to the callback whether they pass
through the selection or not.

void setPickMatching(SbBool pickTwice)

SbBool getPickMatching() const
SoSelection will pick once on mouse down and once on mouse up, and
make sure the picks match before changing the selection list. This allows the
user to pick down on an object, change their mind and drag off the object,
release the mouse button and not affect the selection. Pass TRUE to enable
this behavior. Pass FALSE to disable this, meaning whatever is picked on a
mouse release is added to/removed from the selection list. Default is pick-
matching on.

Methods from class SoSeparator:
setNumRenderCaches, getNumRenderCaches

Methods from class SoGroup:

addChild, insertChild, getChild, findChild, getNumChildren, removeChild,
removeChild, removeAllChildren, replaceChild, replaceChild

Methods from class SoNode:
setOverride, isOverride, copy, affectsState, getByName, getByName

Methods from class SoFieldContainer:

setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, set, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

FILE FORMAT/DEFAULTS
Sel ection {

r ender Cachi ng AUTO
boundi ngBoxCachi ng AUTO
render Cul | i ng AUTO
pi ckCul i ng AUTO
policy SHI FT

545

SoSelection

INCLUDE FILE
#i ncl ude <l nvent or/ nodes/ SoSel ecti on. h>

typedef void SoSelectionPathCB(void *userData, SoPath *path)
typedef void SoSelectionClassCB(void *userData, SoSelection *sel)
typedef SoPath * SoSelectionPickCB(void *userData, const SoPickedPoint *pick)

enum Policy {

SoSelection::SINGLE Left mouse pick on object clears selection, then selects
object. Left mouse pick on nothing clears selection. Only
one object may be selected at a time.

SoSelection::TOGGLE Left mouse pick on object toggles its selection status. Left
mouse pick on nothing does nothing. Multiple objects may
be selected.

SoSelection::SHIFT When shift key is down, selection policy is TOGGLE. When
shift key is up, selection policy is SINGLE. Multiple objects
may be selected.

SEE ALSO
SoEventCallback, SoXtRenderArea, SoBoxHighlightRenderAction,
SoLineHighlightRenderAction

546 Open Inventor C++ Reference Pages

SoSelectOne

NAME

SoSelectOne — selects one value from a multiple-value field.
INHERITS FROM

SoBase > SoFieldContainer > SOEngine > SoSelectOne

DESCRIPTION

This engine selects a single value from a multiple-value field, based on the input
field index. The type of the input field can be any subclass of SoMField. The type is
specified when an instance of the class is created. For example,

SoSelectOne(SoMFFloat::getClassTypeld()) creates an engine that selects one
floating-point value.

Note that unlike most other engine fields, the input field and output are pointers.

Note also that by default input does not contain any values, and no value is output
from the engine.

INPUTS
SoSFLong index
Index of the value to select from the multiple-value field.
<inputType> input
The multiple-value field from which the value will be selected.
OUTPUTS

(<outputType>) output
The single value selected.

METHODS

SoSelectOne(SoType inputType)
Constructor. The argument specifies the type of the multiple-value input

field.
Methods from class SoEngine:

getClassTypeld, getOutputs, getOutput, getOutputName, copy, getByName,
getByName

Methods from class SoFieldContainer:

setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, set, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

547

SoSelectOne

FILE FORMAT/DEFAULTS

Sel ect One {
type <i nput Type>
i nput []
index O
}
INCLUDE FILE

#i ncl ude <I nventor/engi nes/ SoSel ect One. h>

SEE ALSO
SoEngineOutput, SoConcatenate, SoGate

548 Open Inventor C++ Reference Pages

SoSensor

NAME

SoSensor — abstract base class for Inventor sensors

INHERITS FROM

SoSensor

DESCRIPTION

Sensors detect changes either to time or to Inventor objects in a scene graph, and

call a user-defined callback function. Sensors are scheduled when the thing they are

attached to changes, and sometime after they are scheduled they are triggered,
calling the user’s callback function.

METHODS
void setFunction(SoSensorCB *callbackFunction)
Sets the callback function that is called when the sensor is triggered. The
function must take two arguments — user-supplied callback data (of type
void *) and a pointer to the sensor that is triggering the function (of type
SoSensor *).
SoSensorCB * getFunction() const
Returns the callback function that will be called when the sensor is
triggered.
void setData(void *callbackData)
Sets the callback data passed to the callback function.
void * getData() const
Returns the user-supplied pointer that will be passed to the callback
function.
INCLUDE FILE

#i ncl ude <l nventor/sensors/ SoSensor. h>

typedef void SoSensorCB(void *data, SoSensor *sensor)

SEE ALSO

SoAlarmSensor, SoDataSensor, SoFieldSensor, SoldleSensor, SoNodeSensor,
SoPathSensor, SoSensorManager

549

SoSeparator

NAME

SoSeparator — group node that saves and restores traversal state

INHERITS FROM

SoBase > SoFieldContainer > SoNode > SoGroup > SoSeparator

DESCRIPTION

This group node performs a push (save) of the traversal state before traversing its
children and a pop (restore) after traversing them. This isolates the separator’s
children from the rest of the scene graph. A separator can include lights, cameras,
coordinates, normals, bindings, and all other properties. Separators are relatively
inexpensive, so they can be used freely within scenes.

The SoSeparator node provides caching of state during rendering and bounding box
computation. This feature can be enabled by setting the renderCaching and
boundingBoxCaching fields. By default, these are set to AUTO, which means that
Inventor decides whether to build a cache based on internal heuristics.

Separators can also perform culling during rendering and picking. Culling skips over
traversal of the separator’s children if they are not going to be rendered or picked,
based on the comparison of the separator’s bounding box with the current view
volume. Culling is controlled by the renderCulling and pickCulling fields. These
are also set to AUTO by default; however, render culling can be expensive (and can
interfere with render caching), so the AUTO heuristics leave it disabled unless
specified otherwise.

FIELDS
SOSFEnum renderCaching
Whether to cache during rendering traversal.
SOSFEnum boundingBoxCaching
Whether to cache during bounding box traversal.
SOSFEnum renderCulling
Whether to cull during rendering traversal.
SOSFEnum pickCulling
Whether to cull during picking traversal.
METHODS
SoSeparator()
Creates a separator node with default settings.
550 Open Inventor C++ Reference Pages

SoSeparator

SoSeparator(int nChildren)
Constructor that takes approximate number of children.

static void setNumRenderCaches(int howMany)
By default, each separator node maintains 2 render caches. (This is to allow
two different representations, such as filled and wire-frame, to both be
cached.) The setNumRenderCaches() method sets the number of render
caches each separator will have. Each render cache uses memory, so
increasing this number may increase the memory requirements of the
application. This method affects only separators that are created after it is
called, not separators that were created before. Setting the number of caches
to 0 turns off render caching globally from then on.

static int getNumRenderCaches()
Returns the current number of render caches.

static SoType getClassTypeld()
Returns type identifier for this class.

Methods from class SoGroup:

addChild, insertChild, getChild, findChild, getNumChildren, removeChild,
removeChild, removeAllChildren, replaceChild, replaceChild

Methods from class SoNode:
setOverride, isOverride, copy, affectsState, getByName, getByName

Methods from class SoFieldContainer:

setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, set, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

ACTION BEHAVIOR

SoGLRenderAction, SoCallbackAction, SoGetBoundingBoxAction,

SoGetMatrixAction, SoHandleEventAction, SoRayPickAction, SoSearchAction
Saves the current traversal state, traverses all children, and restores the
previous traversal state.

551

SoSeparator

FILE FORMAT/DEFAULTS
Separ at or {

r ender Cachi ng AUTO
boundi ngBoxCachi ng AUTO
render Cul l'i ng AUTO
pi ckCul i ng AUTO
}
INCLUDE FILE

#i ncl ude <l nventor/ nodes/ SoSepar at or. h>

enum CacheEnabled {
SoSeparator::OFF Never build a cache
SoSeparator::ON Always try to build a cache
SoSeparator::AUTO Decide whether to cache based on some heuristic

SEE ALSO
SoSelection, SoTransformSeparator

552 Open Inventor C++ Reference Pages

SoSeparatorKit

NAME
SoSeparatorKit — separator nodekit class

INHERITS FROM
SoBase > SoFieldContainer > SoNode > SoBaseKit > SoSeparatorKit

DESCRIPTION
A nodekit that is used for creating nodekit hierarchies. SoSeparatorKit contains a
transform part, a childList part, and a few others in its catalog. The transform part (an
SoTransform node) affects all of the children in the childList. Each of these
children must be an SoSeparatorKit or from a class that is derived from
SoSeparatorKit (e.g., SoShapeKit and SoWrapperKit). Since all members of the
childList are in turn SoSeparatorKits, and each contains a transform, these nested
lists allow you to create a hierarchy of motion, in which each transform affects an
entire subgraph of nodekits.

The other parts added to the catalog for the SoSeparatorKit are pickStyle, appearance,
units and texture2Transform. Furthermore, since SoSeparator is derived from
SoBaseKit, it inherits an the callbackList part. This is a list of SoCallback and/or
SoEventCallback nodes which enable the SoSeparatorKit to perform special
callbacks whenever an is applied to it.

By creating the pickStyle part, a user can alter the pick style for the entire nodekit
hierarchy. The appearance part is an SoAppearanceKit nodekit. Note that all parts
contained in the SoAppearanceKit catalog can be accessed as if they were part of
the SoSeparatorKit. For example:
myMtl = mySepKit->getPart("material", TRUE)
and

mySepKit->setPart("material”,myMtl)

See SoBaseKit for further explanation.

FIELDS
SOSFEnum renderCaching
Set render caching mode. Default is AUTO.
SOSFEnum boundingBoxCaching

Set bounding box caching mode. Default is ON. Setting this value to AUTO
is equivalent to ON — automatic culling is not implemented.

553

SoSeparatorKit

PARTS

554

SOSFEnum renderCulling
Set render culling mode. Default is OFF. Setting this value to AUTO is
equivalent to ON — automatic culling is not implemented.

SOSFEnum pickCulling
Set pick culling mode. Default is AUTO.

(SoPickStyle) pickStyle
An SoPickStyle property node that can be used to set the picking style of its
children. This part is NULL by default, but is created automatically if
necessary.

(SoAppearanceKit)
appearance
An SoAppearanceKit nodekit which can be used to set the appearance
properties of its children. This part is NULL by default, but is created
automatically if necessary.

(SoUnits) units
An SoUnits node which can be used to set the types of units, (e.g., feet), of
its children. This part is NULL by default, but is created automatically if
necessary.

(SoTransform) transform
An SoTransform node which can be used to set the overall position,
orientation, and scale of its children. This part is NULL by default, but is
created automatically if necessary.

(SoTexture2Transform)
texture2Transform
An SoTexture2Transform node which can be used to apply a
transformation to any textures used by its children. This part is NULL by
default, but is created automatically if necessary.

(SoNodeKitListPart)
childList

This part contains the children nodekits of this SoSeparatorKit. This part is
a list part and can have multiple children. This part is NULL by default, but
is created automatically when the first child is added to the childList. Also,
when asked to build a member of the childList, the separatorKit will build an
SoShapeKit by default. So if the childList part is NULL, and you call:
getPart("childList[0]", TRUE), the separator kit will create the childList and
add an SoShapeKit as the new element in the list.

Open Inventor C++ Reference Pages

SoSeparatorKit

Parts from class SoBaseKit:
callbackList

METHODS
SoSeparatorKit()
Constructor.

static const SoNodekitCatalog *
getClassNodekitCatalog() const
Returns an SoNodekitCatalog for the class SoSeparatorKit.

static SoType getClassTypeld()
Returns type identifier for this class.

Methods from class SoBaseKit:
getNodekitCatalog, getPart, getPartString, createPathToPart, setPart, set, set,
isSearchingChildren, setSearchingChildren

Methods from class SoNode:
setOverride, isOverride, copy, affectsState, getByName, getByName

Methods from class SoFieldContainer:
setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled
Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

MACROS
Macros from class SoBaseKit:

SO_GET_PART, SO_CHECK_PART

555

SoSeparatorKit

CATALOG PARTS

All parts
NULL by
Part Name Part Type Default Type Default
callbackList NodeKitListPart -- yes
pickStyle PickStyle -- yes
appearance AppearanceKit -- yes
units Units -- yes
transform Transform -- yes
texture2Transform Texture2Transform -- yes
childList NodeKitListPart -- yes

Extra information for list parts from above table
Part Name Container Type Permissible Types

callbackList Separator Callback, EventCallback
childList Separator ShapeKit, SeparatorKit

FILE FORMAT/DEFAULTS
SeparatorKit ({

r ender Cachi ng AUTO
boundi ngBoxCachi ng AUTO
render Cul | i ng AUTO
pi ckCul i ng AUTO
}
INCLUDE FILE

#i ncl ude <l nvent or/ nodekits/ SoSeparatorKit.h>

enum CacheEnabled {
SoSeparatorKit::OFF Never build or use a cache
SoSeparatorKit::ON Always try to build a cache
SoSeparatorKit::AUTO Automatic caching

SEE ALSO
SoAppearanceKit, SoBaseKit, SoCameraKit, SoLightKit, SONodeKit, SoNodeKitDetail,
SoNodeKitListPart, SoNodeKitPath, SoNodekitCatalog, SoSceneKit, SoShapeKit,
SoWrapperKit

556 Open Inventor C++ Reference Pages

SoSFBitMask

NAME
SoSFBitMask — single-value field containing a set of bit flags

INHERITS FROM
SoField > SoSField > SoOSFEnum > SoSFBitMask

DESCRIPTION
A single-value field that contains a mask of bit flags, stored as an integer. Nodes that
use this field class define mnemonic names for the bit flags. These names should be
used when setting or testing the values of the field, even though the values are
treated as integers in the methods.

The bit-wise "&" and "[* operators should be used when testing and setting flags in a
mask. For example, to turn on the sides of a 3D text node and turn off the back you
would write:

text3->parts = text3->parts.getValue() | SoText3::SIDES;
text3->parts = text3->parts.getValue() & “SoText3::BACK;

SoSFBitMasks are written to file as one or more mnemonic enumerated type
names, in this format:

(flagl |flag2|...)
If only one flag is used in a mask, the parentheses are optional. These names differ
among uses of this field in various node or engine classes. See their man pages for

the names.

The field values may also be represented as integers, but this is not guaranteed to be

portable.

METHODS
static SoType getClassTypeld()
virtual void getTypeld() const

Returns the type for this class or a particular object of this class.

int getValue() const
Returns this field’s value.

void setValue(int newValue)

int operator =(int newValue)
Sets this field to newValue.

557

SoSFBitMask

int operator ==(const SoSFBitMask &f) const
int operator !=(const SoSFBitMask &f) const
Returns TRUE if f is of the same type and has the same value as this field.

Methods from class SoField:

setlgnored, islgnored, isDefault, isOfType, set, get, touch, connectFrom,
connectFrom, disconnect, isConnected, isConnectedFromField,
getConnectedField, isConnectedFromEnNngine, getConnectedEngine,
enableConnection, isConnectionEnabled, getForwardConnections,
getContainer

INCLUDE FILE
#i ncl ude <l nventor/fiel ds/ SoSFBi t Mask. h>

SEE ALSO
SoField, SoSField, SoMFBitMask

558 Open Inventor C++ Reference Pages

SoSFBool

NAME
SoSFBool — field containing a single boolean value

INHERITS FROM
SoField > SoSField > SoSFBool

DESCRIPTION
A field containing a single boolean (true or false) value.

SoSFBools may be written to file as "0" (representing FALSE), "1", "TRUE", or

"FALSE".
METHODS
static SoType getClassTypeld()
virtual void getTypeld() const
Returns the type for this class or a particular object of this class.
SbBool getValue() const
Returns this field’s value.
SbBool operator =(SbBool newValue)
void setValue(SbBool newValue)

Sets this field to newValue.

int operator ==(const SoSFBool &f) const
int operator !=(const SoSFBool &f) const
Returns TRUE if f is of the same type and has the same value as this field.

Methods from class SoField:
setlgnored, islgnored, isDefault, isOfType, set, get, touch, connectFrom,
connectFrom, disconnect, isConnected, isConnectedFromField,
getConnectedField, isConnectedFromEngine, getConnectedEngine,

enableConnection, isConnectionEnabled, getForwardConnections,
getContainer

INCLUDE FILE
#i ncl ude <l nventor/fiel ds/ SoSFBool . h>

SEE ALSO
SoField, SoSField, SoMFBool

559

SoSFColor

NAME
SoSFColor — field containing an RGB color

INHERITS FROM
SoField > SoSField > SoSFColor

DESCRIPTION
A single-value field containing an SbColor. Values may be set in either RGB (red,
green, blue) or HSV (hue, saturation, value) color spaces.

SoSFColors are written to file as an RGB triple of floating point numbers in standard
scientific notation, in the range 0.0 to 1.0.

METHODS
void setValue(const SbVec3f &vec)
void setValue(float red, float green, float blue)
void setValue(const float rgb[3])
void setHSVValue(float hue, float saturation, float value)
void setHSVValue(const float hsv[3])
Convenience methods for setting the value.
static SoType getClassTypeld()
virtual void getTypeld() const

Returns the type for this class or a particular object of this class.

const SbColor & getValue() const
Returns this field’s value.

const SbColor & operator =(const SbColor & newValue)
void setValue(const SbColor & newValue)
Sets this field to newValue.

int operator ==(const SoSFColor &f) const
int operator !=(const SoSFColor &f) const
Returns TRUE if f is of the same type and has the same value as this field.

Methods from class SoField:

setlgnored, islgnored, isDefault, isOfType, set, get, touch, connectFrom,
connectFrom, disconnect, isConnected, isConnectedFromField,
getConnectedField, isConnectedFromEngine, getConnectedEngine,
enableConnection, isConnectionEnabled, getForwardConnections,
getContainer

SEE ALSO
SoField, SoSField, SoMFColor, SbColor

560 Open Inventor C++ Reference Pages

SoSFEnum

NAME
SoSFEnum — field containing an enumerated value

INHERITS FROM
SoField > SoSField > SoOSFEnhum

DESCRIPTION
A single-value field that contains an enumerated type value, stored as an integer.
Nodes that use this field class define mnemonic names for the values. These names
should be used when setting or testing the values of the field, even though the
values are treated as integers in the methods.

SOSFEnums are written to file as a mnemonic enumerated type name. The name
differs among uses of this field in various node or engine classes. See the man pages
for specific nodes or engines for the names (e.g. SoDrawsStyle).

METHODS
void setValue(const SbName &name)
Sets this field to contain the given mnemonic name, passed in as a name or
string.
static SoType getClassTypeld()
virtual void getTypeld() const
Returns the type for this class or a particular object of this class.
int getValue() const
Returns this field’s value.
int operator =(int newValue)
void setValue(int newValue)
Sets this field to newValue.
int operator ==(const SOSFEnum &f) const
int operator !=(const SOSFEnum &f) const

Returns TRUE if f is of the same type and has the same value as this field.

Methods from class SoField:

setlgnored, islgnored, isDefault, isOfType, set, get, touch, connectFrom,
connectFrom, disconnect, isConnected, isConnectedFromField,
getConnectedField, isConnectedFromEngine, getConnectedEngine,
enableConnection, isConnectionEnabled, getForwardConnections,
getContainer

SEE ALSO
SoField, SoSField, SOMFEnum

561

SoSFFloat

NAME
SoSFFloat — field containing a floating-point value

INHERITS FROM
SoField > SoSField > SoSFFloat

DESCRIPTION
A field that contains one single-precision floating point number.

SoSFFloats are written to file in standard scientific notation.

METHODS
static SoType getClassTypeld()
virtual void getTypeld() const
Returns the type for this class or a particular object of this class.
float getValue() const
Returns this field’s value.
float operator =(float newValue)
void setValue(float newValue)
Sets this field to newValue.
int operator ==(const SoSFFloat &f) const
int operator !=(const SoSFFloat &f) const

Returns TRUE if f is of the same type and has the same value as this field.

Methods from class SoField:
setlgnored, islgnored, isDefault, isOfType, set, get, touch, connectFrom,
connectFrom, disconnect, isConnected, isConnectedFromField,
getConnectedField, isConnectedFromEngine, getConnectedEngine,

enableConnection, isConnectionEnabled, getForwardConnections,
getContainer

INCLUDE FILE
#i ncl ude <l nventor/fiel ds/ SoSFFI oat. h>

SEE ALSO
SoField, SoSField, SoMFFloat

562 Open Inventor C++ Reference Pages

SoSField

NAME
SoSField — abstract base class for all single-value fields

INHERITS FROM
SoField > SoSField

DESCRIPTION
Each class derived from SoSField begins with an SoSF prefix and contains one value
of a particular type. Each has setValue() and getValue() methods that are used to
change or access this value. In addition, some field classes have extra convenience
routines that allow values to be set or retrieved in other related formats (see below).

In addition to setValue(), all single-value fields overload the "=" assignment operator
to set the field value from the correct datatype or from another field instance of the
same type.

The value of a single-value field is written to file in a format dependent on the field
type; see the subclass man pages for details.

A field that is ignored has a tilde (7) either in place of the value (if the actual value is
the default) or after it (otherwise).

METHODS
static SoType getClassTypeld()
Return the type identifier for this field class.

Methods from class SoField:
setlgnored, islgnored, isDefault, getTypeld, isOfType, set, get, operator ==,
operator !=, touch, connectFrom, connectFrom, disconnect, isConnected,
isConnectedFromField, getConnectedField, isConnectedFromEngine,
getConnectedEngine, enableConnection, isConnectionEnabled,
getForwardConnections, getContainer

INCLUDE FILE
#i ncl ude <l nventor/fields/ SoField.h>

SEE ALSO
SoField, SoMField

563

SoSFImage

NAME

SoSFImage — Field containing a 2D image

INHERITS FROM

SoField > SoSField > SoSFImage

DESCRIPTION

564

A field containing a two-dimensional image. Images can be greyscale (intensity),
greyscale with transparency information, RGB, or RGB with transparency. Each
component of the image (intensity, red, green, blue or transparency (alpha)) can
have an unsigned one-byte value from 0 to 255.

Values are returned as arrays of unsigned chars. The image is stored in this array
starting at the bottom left corner of the image with the intensity or red component
of that pixel, followed by either the alpha, the green and blue, or the green, blue
and alpha components (depending on the number of components in the image).
The next value is the first component of the next pixel to the right.

SoSFImages are written to file as three integers representing the width, height and
number of components in the image, followed by width*height hexadecimal values
representing the pixels in the image, separated by whitespace. A one-component
image will have one-byte hexadecimal values representing the intensity of the
image. For example, OxFF is full intensity, 0x00 is no intensity. A two-component
image puts the intensity in the first (high) byte and the transparency in the second
(low) byte. Pixels in a three-component image have the red component in the first
(high) byte, followed by the green and blue components (so OxFF0O0OQO is red). Four-
component images put the transparency byte after red/green/blue (so 0xO000FF80 is
semi-transparent blue). Note: each pixel is actually read as a single unsigned
number, so a 3-component pixel with value "0x0000FF" can also be written as "OxFF"
or "255" (decimal).

For example,
1 2 1 OxFF 0x00

is a 1 pixel wide by 2 pixel high greyscale image, with the bottom pixel white and
the top pixel black. And:

2 4 3 OXFFO000 OXFFOO 00 00 OxFFFFFF OXFFFFOO
is a 2 pixel wide by 4 pixel high RGB image, with the bottom left pixel red, the

bottom right pixel green, the two middle rows of pixels black, the top left pixel
white, and the top right pixel yellow.

Open Inventor C++ Reference Pages

SoSFImage

METHODS

const unsigned char *

void

getValue(SbVec2s &size, int &nc) const
Returns the pixels in the image as an array of unsigned chars. The size and nc
arguments are filled in with the dimensions of the image and the number of
components in the image; the number of bytes in the array returned will be
size[0]*size[1]*nc.

setValue(const SbVec2s &size, int nc, const unsigned char
*bytes)
Sets the value of this field to be an image of the given size, with the given
number of components, and with the given pixel values. size[0]*size[1]*nc
bytes from the given array will be copied into internal storage maintained by
the SoSFImage field.

unsigned char * startEditing(SbVec2s &size, int &nc)

void

finishEditing()
These methods can be used to efficiently edit the values in an image field.
startEditing() returns the size of the image in the size and nc arguments;
writing past the end of the array returned is a good way to cause hard-to-
find core dumps.

Methods from class SoSField:

getClassTypeld

Methods from class SoField:

INCLUDE FILE

setlgnored, islgnored, isDefault, getTypeld, isOfType, set, get, operator ==,
operator !=, touch, connectFrom, connectFrom, disconnect, isConnected,
isConnectedFromField, getConnectedField, isConnectedFromEngine,
getConnectedEngine, enableConnection, isConnectionEnabled,
getForwardConnections, getContainer

#i ncl ude <lnventor/fiel ds/ SoSFl mage. h>

SEE ALSO

SoField, SoSField

565

SoSFLong

NAME

SoSFLong — field containing a long integer

INHERITS FROM

SoField > SoSField > SoSFLong

DESCRIPTION

A field containing a single long (32-bit) integer.

SoSFLongs are written to file as an integer in decimal, hexadecimal (beginning with
'0x") or octal (beginning with '0’) format.

METHODS
static SoType getClassTypeld()
virtual void getTypeld() const
Returns the type for this class or a particular object of this class.
long getValue() const
Returns this field’s value.
long operator =(long newValue)
void setValue(long newValue)
Sets this field to newValue.
int operator ==(const SoSFLong &f) const
int operator !=(const SoSFLong &f) const

Returns TRUE if f is of the same type and has the same value as this field.

Methods from class SoField:

setlgnored, islgnored, isDefault, isOfType, set, get, touch, connectFrom,
connectFrom, disconnect, isConnected, isConnectedFromField,
getConnectedField, isConnectedFromEngine, getConnectedEngine,
enableConnection, isConnectionEnabled, getForwardConnections,
getContainer

INCLUDE FILE

#i ncl ude <Inventor/fiel ds/ SoSFLong. h>

SEE ALSO

566

SoField, SoSField, SoMFLong, SoSFULong

Open Inventor C++ Reference Pages

SoSFMatrix

NAME
SoSFMatrix — field containing a 4x4 matrix

INHERITS FROM
SoField > SoSField > SoSFMatrix

DESCRIPTION
A field containing a transformation matrix (an SbMatrix).

SoSFMatrices are written to file as 16 floating point numbers separated by
whitespace. For example, an identity matrix is written as:

1000010000100001

METHODS
void setValue(float all, float al2, float al3, float al4, float a21, float
a22, float a23, float a24, float a31, float a32, float a33, float
a34, float a41, float a42, float a43, float a44)
Sets this field to contain the matrix given by the 16 values. For a translation
matrix, the x, y and z translations should be in the a41, a42, and a43
arguments.
static SoType getClassTypeld()
virtual void getTypeld() const

Returns the type for this class or a particular object of this class.

const SbMatrix &
getValue() const
Returns this field’s value.

const SbMatrix &
operator =(const SbMatrix & newValue)
void setValue(const SbMatrix & newValue)
Sets this field to newValue.

int operator ==(const SoSFMatrix &f) const
int operator !=(const SoSFMatrix &f) const
Returns TRUE if f is of the same type and has the same value as this field.

Methods from class SoField:

setlgnored, islgnored, isDefault, isOfType, set, get, touch, connectFrom,
connectFrom, disconnect, isConnected, isConnectedFromField,
getConnectedField, isConnectedFromEngine, getConnectedEngine,

567

SoSFMatrix

enableConnection, isConnectionEnabled, getForwardConnections,
getContainer

INCLUDE FILE
#i ncl ude <l nventor/fields/SoSFMatri x. h>

SEE ALSO
SoField, SoSField, SoMFMatrix, SbMatrix

568 Open Inventor C++ Reference Pages

SoSFName

NAME
SoSFName — field containg a name

INHERITS FROM
SoField > SoSField > SoSFName

DESCRIPTION
A field containing a name. Names are short series of characters generally used for
labels or names, and are stored in a special table designed to allow fast lookup and
comparison. For most purposes, an SoSFString field is probably more appropriate.

SoSFNames are written to file as a string of characters. Names must begin with an
underscore or alphabetic character, and must consist entirely of underscores,
alphabetic characters, or numbers.

METHODS
void setValue(const char *string)
Set this field to the name equivalent to the given string.
static SoType getClassTypeld()
virtual void getTypeld() const

Returns the type for this class or a particular object of this class.

const SbName & getValue() const
Returns this field’s value.

const SbName & operator =(const SbName & newValue)
void setValue(const SbName & newValue)
Sets this field to newValue.

int operator ==(const SoSFName &f) const
int operator !=(const SoSFName &f) const
Returns TRUE if f is of the same type and has the same value as this field.

Methods from class SoField:

setlgnored, islgnored, isDefault, isOfType, set, get, touch, connectFrom,
connectFrom, disconnect, isConnected, isConnectedFromField,
getConnectedField, isConnectedFromEngine, getConnectedEngine,
enableConnection, isConnectionEnabled, getForwardConnections,
getContainer

569

SoSFName

INCLUDE FILE
#i ncl ude <l nventor/fiel ds/ SoSFNane. h>

SEE ALSO
SoField, SoSField, SoMFName

570 Open Inventor C++ Reference Pages

SoSFNode

NAME
SoSFNode — field containing a pointer to a node

INHERITS FROM
SoField > SoSField > SoSFNode

DESCRIPTION
This field maintains a pointer to an SoNode instance, correctly maintaining its
reference count.
SoSFNodes are written to file as the node they are pointing to. For example:

mySoSFNodeField Cube {}

is an SoSFNode field named 'mySoSFNodeField’, pointing to an SoCube node. If the
node is used elsewhere, the regular DEF/USE instancing mechanism applies:

anotherSoSFNodeField USE topSeparator

is an SoSFNode field that points to a node named 'topSeparator’ that was DEF’ed
earlier in the scene.

METHODS
static SoType getClassTypeld()
virtual void getTypeld() const
Returns the type for this class or a particular object of this class.
SoNode * getValue() const
Returns this field’s value.
SoNode * operator =(SoNode * newValue)
void setValue(SoNode * newValue)
Sets this field to newValue.
int operator ==(const SoSFNode &f) const
int operator !=(const SoSFNode &f) const

Returns TRUE if f is of the same type and has the same value as this field.

Methods from class SoField:

setlgnored, islgnored, isDefault, isOfType, set, get, touch, connectFrom,
connectFrom, disconnect, isConnected, isConnectedFromField,
getConnectedField, isConnectedFromEngine, getConnectedEngine,
enableConnection, isConnectionEnabled, getForwardConnections,
getContainer

571

SoSFNode

INCLUDE FILE
#i ncl ude <l nventor/fiel ds/ SoSFNode. h>

SEE ALSO
SoField, SoSField, SoMFNode, SoNode

572 Open Inventor C++ Reference Pages

SoSFPath

NAME
SoSFPath — field containing a pointer to an SoPath

INHERITS FROM
SoField > SoSField > SoSFPath

DESCRIPTION

This field maintains a pointer to an SoPath instance, correctly maintaining its
reference count.

SoSFPaths are written to file as the path they point to. See the SoPath manual page
for a description of the file format for a path.

METHODS
static SoType getClassTypeld()
virtual void getTypeld() const
Returns the type for this class or a particular object of this class.
SoPath * getValue() const
Returns this field’s value.
SoPath * operator =(SoPath * newValue)
void setValue(SoPath * newValue)
Sets this field to newValue.
int operator ==(const SoSFPath &f) const
int operator !=(const SoSFPath &f) const

Returns TRUE if f is of the same type and has the same value as this field.

Methods from class SoField:

setlgnored, islgnored, isDefault, isOfType, set, get, touch, connectFrom,
connectFrom, disconnect, isConnected, isConnectedFromField,
getConnectedField, isConnectedFromEngine, getConnectedEngine,
enableConnection, isConnectionEnabled, getForwardConnections,
getContainer

INCLUDE FILE
#i ncl ude <l nventor/fiel ds/ SoSFPat h. h>

SEE ALSO
SoField, SoSField, SoMFPath, SoPath

573

SoSFPlane

NAME

SoSFPlane — field containing a plane equation

INHERITS FROM

SoField > SoSField > SoSFPlane

DESCRIPTION

A field containing a plane equation (an SbPlane).

SoSFPlanes are written to file as four floating point values separated by whitespace.
The first three are the normal direction of the plane, the fourth is the distance of
the plane from the origin (in the direction of the normal).

METHODS
static SoType getClassTypeld()
virtual void getTypeld() const

Returns the type for this class or a particular object of this class.

const SbPlane & getValue() const
Returns this field’s value.

const SbPlane & operator =(const SbPlane & newValue)
void setValue(const SbPlane & newValue)
Sets this field to newValue.

int operator ==(const SoSFPlane &f) const
int operator !=(const SoSFPlane &f) const
Returns TRUE if f is of the same type and has the same value as this field.

Methods from class SoField:

setlgnored, islgnored, isDefault, isOfType, set, get, touch, connectFrom,
connectFrom, disconnect, isConnected, isConnectedFromField,
getConnectedField, isConnectedFromEngine, getConnectedEngine,
enableConnection, isConnectionEnabled, getForwardConnections,
getContainer

INCLUDE FILE

#i ncl ude <l nventor/fiel ds/ SoSFPI ane. h>

SEE ALSO

574

SbPlane, SoField, SoSField, SoMFPlane

Open Inventor C++ Reference Pages

SoSFRotation

NAME
SoSFRotation — field containing a rotation

INHERITS FROM
SoField > SoSField > SoSFRotation

DESCRIPTION
A field containing a single SbRotation (an arbitrary rotation).

SoSFRotations are written to file as four floating point values separated by
whitespace. The 4 values represent an axis of rotation followed by the amount of
right-handed rotation about that axis, in radians. For example, a 180 degree rotation
about the Y axis is:

010 3.14159265

METHODS

void getValue(const SbVec3f &axis, float angle) const
Gets the value of the field as an axis/angle.

void setValue(float O, float q1, float g2, float q3)

setValue(float q[4])

Set the field to the given quaternion.

void setValue(const SbVec3f &axis, float angle)
Set the field to the rotation given by axis/angle.

static SoType getClassTypeld()

virtual void getTypeld() const

Returns the type for this class or a particular object of this class.

const SbRotation &
getValue() const
Returns this field’s value.

const SbRotation &
operator =(const SbRotation & newValue)
void setValue(const SbRotation & newValue)
Sets this field to newValue.

575

SoSFRotation

int operator ==(const SoSFRotation &f) const
int operator !=(const SoSFRotation &f) const
Returns TRUE if f is of the same type and has the same value as this field.

Methods from class SoField:

setlgnored, islgnored, isDefault, isOfType, set, get, touch, connectFrom,
connectFrom, disconnect, isConnected, isConnectedFromField,
getConnectedField, isConnectedFromEnNngine, getConnectedEngine,
enableConnection, isConnectionEnabled, getForwardConnections,
getContainer

INCLUDE FILE
#i ncl ude <l nventor/fiel ds/ SoSFRot ati on. h>

SEE ALSO
SbRotation, SoField, SoSField, SoMFRotation

576 Open Inventor C++ Reference Pages

SoSFShort

NAME
SoSFShort — field containing a short integer

INHERITS FROM
SoField > SoSField > SoSFShort

DESCRIPTION
A field containing a short (16-bit) integer.

SoSFShorts are written to file as a single short integer value, represented as decimal,
hexadecimal (beginning with ’'0x’) or octal (beginning with ’0’) value.
METHODS
static SoType getClassTypeld()
virtual void getTypeld() const
Returns the type for this class or a particular object of this class.

short getValue() const
Returns this field’s value.

short operator =(short newValue)
void setValue(short newValue)
Sets this field to newValue.

int operator ==(const SoSFShort &f) const
int operator !=(const SoSFShort &f) const
Returns TRUE if f is of the same type and has the same value as this field.

Methods from class SoField:
setlgnored, islgnored, isDefault, isOfType, set, get, touch, connectFrom,
connectFrom, disconnect, isConnected, isConnectedFromField,
getConnectedField, isConnectedFromEngine, getConnectedEngine,

enableConnection, isConnectionEnabled, getForwardConnections,
getContainer

INCLUDE FILE
#i ncl ude <l nventor/fields/ SoSFShort. h>

SEE ALSO
SoField, SoSField, SoMFShort, SoSFUShort, SoSFLong

577

SoSFString

NAME

SoSFString — field containing a string

INHERITS FROM

SoField > SoSField > SoSFString

DESCRIPTION

A field containing an ASCII string (sequence of characters). Inventor does not
support non-ASCII strings.

SoSFStrings are written to file as a sequence of ASCII characters in double quotes
(optional if the string doesn’t contain any whitespace). Any characters (including
newlines) may appear within the quotes. To include a double quote character

within the string, precede it with a backslash. For example:

Testing
"One, Two, Three"
"He said, \"Immel did it"\\""

are all valid strings.

METHODS
setValue(const char *string)
Convenience method to set the field’s value given a character array.
static SoType getClassTypeld()
virtual void getTypeld() const

578

Returns the type for this class or a particular object of this class.

const SbString & getValue() const

Returns this field’s value.

const SbString & operator =(const SbString & newValue)
void setValue(const SbString & newValue)

Sets this field to newValue.

int operator ==(const SoSFString &f) const
int operator !=(const SoSFString &f) const

Returns TRUE if f is of the same type and has the same value as this field.

Methods from class SoField:

setlgnored, islgnored, isDefault, isOfType, set, get, touch, connectFrom,
connectFrom, disconnect, isConnected, isConnectedFromField,

Open Inventor C++ Reference Pages

SoSFString

getConnectedField, isConnectedFromEngine, getConnectedEngine,
enableConnection, isConnectionEnabled, getForwardConnections,
getContainer

INCLUDE FILE
#i ncl ude <Inventor/fields/SoSFString. h>

SEE ALSO
SbString, SoField, SoSField, SOMFString

579

SoSFTime

NAME
SoSFTime — field containing an SbTime

INHERITS FROM
SoField > SoSField > SoSFTime

DESCRIPTION
A multiple-value field that contains any number of time values.

SoSFTimes are written to file as a double-precision floating point value representing
the length of time in seconds. Absolute times are measured relative to 00:00:00
GMT, January 1, 1970.

METHODS
static SoType getClassTypeld()
virtual void getTypeld() const

Returns the type for this class or a particular object of this class.

const SbTime & getValue() const
Returns this field’s value.

const SbTime & operator =(const SbTime & newValue)
void setValue(const SbTime & newValue)
Sets this field to newValue.

int operator ==(const SoSFTime &f) const
int operator !=(const SoSFTime &f) const
Returns TRUE if f is of the same type and has the same value as this field.

Methods from class SoField:
setlgnored, islgnored, isDefault, isOfType, set, get, touch, connectFrom,
connectFrom, disconnect, isConnected, isConnectedFromField,
getConnectedField, isConnectedFromEngine, getConnectedEngine,

enableConnection, isConnectionEnabled, getForwardConnections,
getContainer

INCLUDE FILE
#i ncl ude <l nventor/fiel ds/ SoSFTi ne. h>

SEE ALSO
SbTime, SoField, SoSField, SOMFTime

580 Open Inventor C++ Reference Pages

SoSFTrigger

NAME
SoSFTrigger — field used to trigger engines or connection networks

INHERITS FROM
SoField > SoSField > SoSFTrigger

DESCRIPTION
This class can be used to start or to synchronize a network of field connections. It is
the "null”" field — a field with no values. It is typically used as the "start button" for
engines that change over time.

Triggers can be connected from any other type of field, and will notify any engines
or nodes they are part of (or any other triggers they are connected to) whenever the
value of the field changes or the field is touch()’ed.

Since they have no value, SoSFTriggers are not written to file. A node or engine
containing an SoSFTrigger field will write only the field’s name.

METHODS
void setValue()
Starts the notification process; this is equivalent to calling touch().

void getValue()

Forces any connected engines or fields to evaluate themselves.
int operator ==(const SoSFTrigger &t) const
int operator !=(const SoSFTrigger &t) const

All trigger fields are equal; these methods always return TRUE and FALSE,
respectively.

Methods from class SoSField:
getClassTypeld

Methods from class SoField:
setlgnored, islgnored, isDefault, getTypeld, isOfType, set, get, touch,
connectFrom, connectFrom, disconnect, isConnected,
isConnectedFromField, getConnectedField, isConnectedFromEngine,
getConnectedEngine, enableConnection, isConnectionEnabled,
getForwardConnections, getContainer

INCLUDE FILE
#i ncl ude <lnventor/fiel ds/ SoSFTri gger. h>

SEE ALSO
SoSFBool, SoMFBool

581

SoSFULong

NAME
SoSFULong — field containing an unsinged long integer

INHERITS FROM
SoField > SoSField > SoSFULong

DESCRIPTION
A single-value field containg an unsigned 32-bit integer, representing a number
from O to 4,294,967,295.

SoSFULongs are written to file as a single unsigned long (32-bit) integer in decimal,
hexadecimal or octal format.

METHODS
static SoType getClassTypeld()
virtual void getTypeld() const

Returns the type for this class or a particular object of this class.

long unsigned long
getValue() const
Returns this field’s value.

long unsigned long
operator =(long unsigned long newValue)
void setValue(long unsigned long newValue)
Sets this field to newValue.

int operator ==(const SoSFULong &f) const
int operator !=(const SoSFULong &f) const
Returns TRUE if f is of the same type and has the same value as this field.

Methods from class SoField:
setlgnored, islgnored, isDefault, isOfType, set, get, touch, connectFrom,
connectFrom, disconnect, isConnected, isConnectedFromField,
getConnectedField, isConnectedFromEngine, getConnectedEngine,
enableConnection, isConnectionEnabled, getForwardConnections,
getContainer

INCLUDE FILE
#i ncl ude <lnventor/fiel ds/ SoSFULong. h>

SEE ALSO
SoField, SoSField, SOMFULong

582 Open Inventor C++ Reference Pages

SoSFUShort

NAME
SoSFUShort — field containing an unsigned short integer

INHERITS FROM
SoField > SoSField > SoSFUShort

DESCRIPTION
A single-value field containing a short (16-bit) integer.

SoSFUShorts are written to file in decimal, hexadecimal (beginning with '0x’) or
octal (beginning with '0’) values.

METHODS
static SoType getClassTypeld()
virtual void getTypeld() const

Returns the type for this class or a particular object of this class.

short unsigned short
getValue() const
Returns this field’s value.

short unsigned short
operator =(short unsigned short newValue)
void setValue(short unsigned short newValue)
Sets this field to newValue.

int operator ==(const SoSFUShort &f) const
int operator !=(const SoSFUShort &f) const
Returns TRUE if f is of the same type and has the same value as this field.

Methods from class SoField:

setlgnored, islgnored, isDefault, isOfType, set, get, touch, connectFrom,
connectFrom, disconnect, isConnected, isConnectedFromField,
getConnectedField, isConnectedFromEngine, getConnectedEngine,
enableConnection, isConnectionEnabled, getForwardConnections,
getContainer

INCLUDE FILE
#i ncl ude <l nventor/fiel ds/SoSFUShort. h>

SEE ALSO
SoField, SoSField, SoMFUShort

583

SoSFVec2f

NAME
SoSFVec2f — Field containing a two-dimensional vector

INHERITS FROM
SoField > SoSField > SoSFVec2f

DESCRIPTION
Field containing a two-dimensional vector.

SoSFVec2fs are written to file as a pair of floating point values separated by

whitespace.

METHODS
void setValue(float x, float y)
void setValue(const float xy[2])

Sets the field to the given value.

static SoType getClassTypeld()
virtual void getTypeld() const
Returns the type for this class or a particular object of this class.

const SbVec2f & getValue() const
Returns this field’s value.

const SbVec2f & operator =(const ShVec2f & newValue)
void setValue(const SbVec2f & newValue)
Sets this field to newValue.

int operator ==(const SoSFVec2f &f) const
int operator !=(const SoSFVec2f &f) const
Returns TRUE if f is of the same type and has the same value as this field.

Methods from class SoField:

setlgnored, islgnored, isDefault, isOfType, set, get, touch, connectFrom,
connectFrom, disconnect, isConnected, isConnectedFromField,
getConnectedField, isConnectedFromEngine, getConnectedEngine,
enableConnection, isConnectionEnabled, getForwardConnections,
getContainer

INCLUDE FILE
#i ncl ude <Inventor/fiel ds/ SoSFVec2f. h>

SEE ALSO
SoField, SoSField, SoMFVec2f

584 Open Inventor C++ Reference Pages

SoSFVec3f

NAME
SoSFVec3f — field containing a three-dimensional vector

INHERITS FROM
SoField > SoSField > SoSFVec3f

DESCRIPTION
Field containing a three-dimensional vector.

SoSFVec3fs are written to file as three floating point values separated by whitespace.

METHODS
void setValue(float x, float y, float z)
void setValue(const float xyz[3])
Sets the field to the given value.

static SoType getClassTypeld()
virtual void getTypeld() const
Returns the type for this class or a particular object of this class.

const SbVec3f & getValue() const
Returns this field’s value.

const SbVec3f & operator =(const ShVec3f & newValue)
void setValue(const SbVec3f & newValue)
Sets this field to newValue.

int operator ==(const SoSFVec3f &f) const
int operator !=(const SoSFVec3f &f) const
Returns TRUE if f is of the same type and has the same value as this field.

Methods from class SoField:

setlgnored, islgnored, isDefault, isOfType, set, get, touch, connectFrom,
connectFrom, disconnect, isConnected, isConnectedFromField,
getConnectedField, isConnectedFromEngine, getConnectedEngine,
enableConnection, isConnectionEnabled, getForwardConnections,
getContainer

INCLUDE FILE
#i ncl ude <Inventor/fiel ds/ SoSFVec3f. h>

SEE ALSO
SoField, SoSField, SoOMFVec3f

585

SoSFVec4f

NAME

SoSFVecaf — field containing a homogeneous three-dimensional vector

INHERITS FROM

SoField > SoSField > SoSFVec4f

DESCRIPTION

Field containing a homogeneous three-dimensional vector.

SoSFVec4fs are written to file as four floating point values separated by whitespace.

METHODS
void setValue(float x, float y, float z, float w)
void setValue(const float xyzw[4])
Sets the field to the given value.
static SoType getClassTypeld()
virtual void getTypeld() const

Returns the type for this class or a particular object of this class.

const SbVec4f & getValue() const
Returns this field’s value.

const SbVec4f & operator =(const ShVec4f & newValue)
void setValue(const SbVec4f & newValue)
Sets this field to newValue.

int operator ==(const SoSFVec4f &f) const
int operator !=(const SoSFVec4f &f) const
Returns TRUE if f is of the same type and has the same value as this field.

Methods from class SoField:

setlgnored, islgnored, isDefault, isOfType, set, get, touch, connectFrom,
connectFrom, disconnect, isConnected, isConnectedFromField,
getConnectedField, isConnectedFromEngine, getConnectedEngine,
enableConnection, isConnectionEnabled, getForwardConnections,
getContainer

INCLUDE FILE

#i ncl ude <Inventor/fiel ds/ SoSFVec4f. h>

SEE ALSO

586

SoField, SoSField, SoMFVec4f

Open Inventor C++ Reference Pages

SoShape

NAME
SoShape — abstract base class for all shape nodes

INHERITS FROM
SoBase > SoFieldContainer > SoNode > SoShape

DESCRIPTION
This node is the abstract base class for all shape (geometry) nodes. All classes derived
from SoShape draw geometry during render traversal.

METHODS
static SoType getClassTypeld()
Returns type identifier for this class.

Methods from class SoNode:
setOverride, isOverride, copy, affectsState, getByName, getByName

Methods from class SoFieldContainer:

setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, set, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

FILE FORMAT/DEFAULTS
This is an abstract class. See the reference page of a derived class for the format and
default values.

INCLUDE FILE
#i ncl ude <l nvent or/ nodes/ SoShape. h>

SEE ALSO
SoCone, SoCube, SoCylinder, SolndexedNurbsCurve, SolndexedNurbsSurface,
SoNurbsCurve, SoNurbsSurface, SoShapeHints, SoShapeKit, SoSphere, SoText2,
SoText3, SoVertexShape

587

SoShapeHints

NAME

SoShapeHints — node that provides hints about shapes

INHERITS FROM

SoBase > SoFieldContainer > SoNode > SoShapeHints

DESCRIPTION

FIELDS

588

By default, Inventor assumes very little about the shapes it renders. You can use the
SoShapeHints node to indicate that vertex-based shapes (those derived from
SoVertexShape) are solid, contain ordered vertices, or contain convex faces.

These hints allow Inventor to optimize certain rendering features. Optimizations
that may be performed include enabling back-face culling and disabling two-sided
lighting. For example, if an object is solid and has ordered vertices, Inventor turns
on backface culling and turns off two-sided lighting. If the object is not solid but has
ordered vertices, it turns off backface culling and turns on two-sided lighting. In all
other cases, both backface culling and two-sided lighting are off. Note that if the
current drawing style is not filled or any clipping planes are in effect, backface
culling will not be performed.

The SoShapeHints node also affects how default normals are generated. When a
node derived from SoVertexShape has to generate default normals, it uses the
creaseAngle field to determine which edges should be smooth-shaded and which
ones should have a sharp crease. The crease angle is the angle between surface
normals on adjacent polygons. For example, a crease angle of .5 radians (the default
value) means that an edge between two adjacent polygonal faces will be smooth
shaded if the normals to the two faces form an angle that is less than .5 radians
(about 30 degrees). Otherwise, it will be faceted.

SOSFEnum vertexOrdering
Indicates how the vertices of faces are ordered. CLOCKWISE ordering means
that the vertices of each face form a clockwise loop around the face, when
viewed from the outside (the side toward which the normal points).

SOSFEnum shapeType
Indicates whether the shape is known to enclose a volume (SOLID) or not. If
the inside (the side away from the surface normal) of any part of the shape is
visible, the shape is not solid.

SOSFEnum faceType
Indicates whether each face is convex. Because the penalty for non-convex
faces is very steep (faces must be triangulated expensively), the default
assumes all faces are convex. Therefore, shapes with concave faces may not
be displayed correctly unless this hint is set to UNKNOWN_FACE_TYPE.

Open Inventor C++ Reference Pages

SoShapeHints

SoSFFloat creaseAngle
Indicates the minimum angle (in radians) between two adjacent face
normals required to form a sharp crease at the edge when default normals
are computed and used.

METHODS
SoShapeHints()
Creates a shape hints node with default settings.
static SoType getClassTypeld()

Returns type identifier for this class.

Methods from class SoNode:
setOverride, isOverride, copy, affectsState, getByName, getByName

Methods from class SoFieldContainer:

setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, set, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled

Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

ACTION BEHAVIOR
SoGLRenderAction, SoCallbackAction, SoRayPickAction,
SoGetBoundingBoxAction
Sets the state to contain the hints; sets up optimizations based on the hints.

FILE FORMAT/DEFAULTS
ShapeHi nts {
vertexOrdering UNKNOAN_ORDERI NG

shapeType UNKNOWN_SHAPE_TYPE
faceType CONVEX
creaseAngl e 0.5

589

SoShapeHints

INCLUDE FILE
#i ncl ude <l nvent or/ nodes/ SoShapeH nts. h>

enum VertexOrdering {
SoShapeHints::UNKNOWN_ORDERING
Ordering of vertices is unknown
SoShapeHints::CLOCKWISE
Face vertices are ordered clockwise (from the outside)
SoShapeHints::COUNTERCLOCKWISE
Face vertices are ordered counterclockwise (from the outside)

}

enum ShapeType {
SoShapeHints::UNKNOWN_SHAPE_TYPE
Nothing is known about the shape
SoShapeHints::SOLID
The shape encloses a volume

}

enum FaceType {
SoShapeHints::UNKNOWN_FACE_TYPE
Nothing is known about faces
SoShapeHints::CONVEX
All faces are convex

SEE ALSO
SoClipPlane, SoDrawStyle, SoVertexShape

590 Open Inventor C++ Reference Pages

SoShapeKit

NAME

SoShapeKit — shape nodekit class

INHERITS FROM

SoBase > SoFieldContainer > SoNode > SoBaseKit > SoSeparatorKit > SoShapeKit

DESCRIPTION

FIELDS

PARTS

A nodekit that is used for creating a shape (i.e. geometry). SoShapeKit is derived
from SoSeparatorKit and SoBaseKit, and thus inherits all the parts defined by these
classes.

Furthermore, SoShapeKit adds numerous parts that can be used to define a variety
of shape objects, a localTransform part, and of course a shape part.

All of the property nodes requires to define any of the Inventor shapes are included
as parts in this class. Not all of these parts (nodes) are needed for any one type of
shape. For example, if you set the shape part to be an SoSphere node, then it is not
necessary to create a profileCoordinate3 part since it will be ignored in drawing the
sphere. (And the unneeded parts will not be created, so there is no performance
penalty for using this class of node.

This class contains two private parts. They are both SoSeparator nodes. One of them
sits just below the nodekit itself, and serves to contain all properties within this
nodekit from affecting nodes that come after this nodekit. The second separator sits
above the shape and localTransform parts, and serves to cache them even when the
transform and appearance parts are changing.

Fields from class SoSeparatorKit:
renderCaching, boundingBoxCaching, renderCulling, pickCulling

(SoSeparator) shapeSeparator
This is a private part. The parent node of the actual shape part. It is a
SoSeparator and is NULL by default, but is created automatically if
necessary.

(SoMaterialBinding)
materialBinding
An SoMaterialBinding node that can be used to set the material binding for
the shape. This part is NULL by default, but is created automatically if
necessary.

591

SoShapeKit

592

(SoNormalBinding)
normalBinding
An SoNormalBinding node that can be used to set the normal binding for
the shape. This part is NULL by default, but is created automatically if
necessary.

(SoTextureCoordinateBinding)
textureCoordinateBinding
An SoTextureCoordinateBinding node that can be used to set the texture
coordinate binding for the shape. This part is NULL by default, but is created
automatically if necessary.

(SoShapeHints) shapeHints
An SoShapeHints node that can be used to set the shape hints for the shape.
This part is NULL by default, but is created automatically if necessary.

(SoCoordinate3) coordinate3
An SoCoordinate3 node that can be used to set the 3D coordinates for a
vertex-based shape. This part is NULL by default, but is created automatically
if necessary.

(SoCoordinate4) coordinate4
An SoCoordinate4 node that can be used to set the 4D coordinates for a
NURBS shapes. This part is NULL by default, but is created automatically if
necessary.

(SoNormal) normal
An SoNormal node that can be used to set the normal vectors for a vertex-
based shape. This part is NULL by default, but is created automatically if
necessary.

(SoTextureCoordinate?)
textureCoordinate2
An SoTextureCoordinate2 node that can be used to set the texture
coordinates for a vertex-based shape. This part is NULL by default, but is
created automatically if necessary.

(SoTextureCoordinateFunction)
textureCoordinateFunction
An SoTextureCoordinateFunction node that can be used to set the a
procedural texture coordinates function for a vertex-based shape. This part is
NULL by default, but is created automatically if necessary.

Open Inventor C++ Reference Pages

SoShapeKit

(SoProfileCoordinate2)
profileCoordinate2
An SoProfileCoordinate2 node that can be used to set the 2D profile
coordinates for a shape that uses them, (e.g., SoText3). This part is NULL by
default, but is created automatically if necessary.

(SoProfileCoordinate3)
profileCoordinate3
An SoProfileCoordinate3 node that can be used to set the 3D profile
coordinates for a shape that uses them, (e.g., SOSONURBSCurve). This part is
NULL by default, but is created automatically if necessary.

(SoNodeKitListPart)
profileList
An SoProfileList node that can be used to set the profile curve for a shape
that uses them, (e.g., SONurbsCurve). This part is NULL by default, but is
created automatically if necessary.

(SoTransform) localTransform
An SoTransform node that can be used to set a local tranformation on the
shape. This part is NULL by default, but is created automatically if necessary.

(SoShape) shape
This is the part which specifies the actual shape node. This can be any node
derived from SoShape By default, an SoCube is created. It is important to set
all of the appropriate parts within this nodekit to suit the type of SoShape
that is used. For example, if the shape part is set to an SoFaceSet, then the
coordinate3 shape and probably the normal shape would be set as well. See
the reference page of the shape used for details on which other nodes are
necessary.

Parts from class SoSeparatorKit:
pickStyle, appearance, units, transform, texture2Transform, childList

Parts from class SoBaseKit:
callbackList

593

SoShapeKit

METHODS
SoShapeKit()
Constructor.

static const SoNodekitCatalog *
getClassNodekitCatalog() const
Returns an SoNodekitCatalog for the class SoShapeKit.

static SoType getClassTypeld()
Returns type identifier for this class.

Methods from class SoBaseKit:
getNodekitCatalog, getPart, getPartString, createPathToPart, setPart, set, set,
isSearchingChildren, setSearchingChildren

Methods from class SoNode:
setOverride, isOverride, copy, affectsState, getByName, getByName

Methods from class SoFieldContainer:
setToDefaults, hasDefaultValues, fieldsAreEqual, copyFieldValues, get,
getFields, getField, getFieldName, enableNotify, isNotifyEnabled
Methods from class SoBase:
ref, unref, unrefNoDelete, touch, getTypeld, isOfType, setName, getName

MACROS
Macros from class SoBaseKit:

SO_GET_PART, SO_CHECK_PART

594 Open Inventor C++ Reference Pages

SoShapeKit

CATALOG PARTS

Part Name

callbackList
pickStyle
appearance
units
transform
texture2Transform
childList
materialBinding
normalBind